Molecular subtypes of T1 bladder cancer
Ward, Douglas G; Arnold, Roland; Bryan, Richard T

DOI:
10.1016/j.eururo.2020.07.021

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
MOLECULAR SUBTYPES OF T1 BLADDER CANCER: BIOMOLECULAR CHARACTERISTICS VERSUS CLINICAL UTILITY

Douglas G Ward¹, Roland Arnold¹, Richard T Bryan¹.

¹Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.

INVITED EDITORIAL

Re: A.G. Robertson et al. Identification of Differential Tumor Subtypes of T1 Bladder Cancer.

Keywords:

Bladder cancer; molecular; subtypes; T1; utility.

Correspondence:

Mr Richard T Bryan
The Bladder Cancer Group, Institute of Cancer & Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
T +44 121 414 7870, F +44 121 414 3630, E r.t.bryan@bham.ac.uk

Disclosures:

RT Bryan has contributed to advisory boards for Olympus Medical Systems & Janssen, and undertakes research funded by UroGen Pharma.
From low grade Ta to high grade T1, non-muscle-invasive bladder cancers (NMIBCs) are highly heterogeneous both clinically and biologically. As with muscle-invasive bladder cancer (MIBC), high grade NMIBCs have a high mutation burden, multiple copy number changes and loss of tumour suppressors (e.g. TP53, RB1), whereas low grade NMIBCs exhibit oncogene activation (e.g. FGFR3, RAS) in a relatively normal genome [1]. Recently, “subtyping” based on gene expression has offered further insights into NMIBC biology [1-3], yet risk stratification (and hence treatment selection) remains entirely based upon clinico-pathological observations, without the inclusion of biomolecular information [4].

The majority of urologists treat high grade T1 patients with induction and maintenance intravesical BCG, with radical cystectomy considered in suitable patients [4]. BCG efficacy varies: over 60% of patients experience durable responses [5;6], up to 20% experience progression to MIBC within 5-years [5;6], and as many as 15% have lymph node metastases at diagnosis [7]. There would be great benefit to patients if such biomolecular insights could be used to predict those more likely to respond to BCG, those who should be treated by other (novel) therapeutics, those who would be optimally managed by early radical cystectomy and, potentially, those who do not require prolonged adjuvant therapies.

In this month’s issue of European Urology, Robertson et al describe the identification of five subtypes of high grade T1 bladder cancer [8]. The authors utilise a discovery cohort of 73 patients with high grade T1 disease; 84% of these patients had undergone re-TUR, 100% had received induction BCG, and 64% had received maintenance BCG. At 24 months, 32% had recurred and 8% had progressed to MIBC; overall, 9 patients progressed during follow-up. Transurethral resection specimens were subjected to RNA sequencing using standard methodology. State-of-the-art analyses were used to interpret the data at the level of defined pathways and regulons, and to provide insights into the (immune) microenvironment.

In brief, unsupervised consensus clustering based on gene expression was used to define 5 subtypes considered to optimally describe tumour biology and characteristics, with an open-access “single
sample classifier" generated to facilitate subtyping. Regulon analysis identified a dichotomy, with similar transcription factor activity in the T1-Myc and T1-LumGU subtypes and in the T1-TLum and T1-Early subtypes. Although recurrence-free survival curves for the 5 subtypes did not differ significantly, combined T1-Myc/Early versus combined T1-LumGU/Inflam/TLum resulted in a significant difference in recurrence-free survival. As a limited validation, the gene expression patterns were corroborated in a cohort of 26 patients with high grade tumours who underwent radical cystectomy (69% ≤T1, 31% ≥T2), suggesting that the 5 subtypes are intrinsic properties of high grade bladder cancer rather than a result of “overfitting”. Subsequent in vitro data highlighted the potential of this classification for the selection of targeted therapies.

Unlike previous studies predominantly focussed on MIBCs and/or NMIBCs of all grades and stages [2;3;9], the advantage of the current study is that it has analysed only high grade T1 tumours from patients treated with at least induction BCG; hence, the influence of intrinsic biology on the outcomes of high grade T1 disease can largely be separated from the confounding effects of grade, stage, and varying treatments (see later). Comparison with existing subtyping methods showed that T1-LumGU shows similarity to LumU (MIBC consensus [9]) and GU (Lund [2]) subtypes, and T1-Inflam shows similarity to cluster 2b (UROMOL [10]) and Basal & Mesenchymal (Lund) subtypes, whilst the remaining proposed T1 subtypes are predominantly similar to LumP (MIBC consensus), cluster 2a (UROMOL) and urothelial-like (Lund). Thus, the subtypes described here provide more detailed characterisation of T1 tumours than existing schema.

The Brief Correspondence format does not do justice to these data, nor permit detailed explanations of methodology and iterative steps. Hence, the analyses are not without the need for clarification; as the authors state, the results require robust independent validation. Although high MYC expression is reason to combine T1-Myc and T1-Early (with a significant recurrence-free survival difference versus T1-LumGU/Inflam/TLum), they are derived from opposite regulon clusters, and other shared biology is not evidenced. Also, data relating to immune microenvironment should be interpreted carefully: for
example, MCP-counter does not report absolute measurements of cell-type fractions but individual cell-type scores, which are potentially influenced by normalisation procedures. Furthermore, it remains unclear if the validation readout (expression of two regulons, expression of seven genes, CIS gene-set expression, and MIBC subtype) is not intrinsically modelled in the classifier (which is based on the expression of 300 genes). In addition, the differential outcomes for the subtypes are based on a small number of events in a modest number of patients with no independent validation. Finally, is recurrence-free survival the most clinically-relevant outcome for patients with high grade T1 tumours following induction BCG? Figure 1A illustrates the treatments of the 9 patients who progressed to MIBC: only 1/9 had undergone re-TUR and had received maintenance BCG. Progression in high grade T1 patients after optimal bladder-preserving management (re-TUR, induction and maintenance BCG [4]) is life-threatening, and is the outcome of most interest to clinicians (and their patients). Arguably, this one patient is the only patient who matters in this study – what are the unique biomolecular characteristics of her tumour?

As with interventional clinical trials where one undertakes sample size calculations to adequately “power“ the study, it is likely that many hundreds of T1 tumours (accompanied by high quality clinical data and follow-up) need to be analysed to answer the question(s) of most importance for this clinical setting. With RNA sequencing still costly and transcriptome data analysis complex, this remains a challenge. Additionally, subtype is only be one of the biomolecular factors influencing outcomes from high grade T1 disease, with important contributions to pathogenesis from other genomic and epigenomic phenomena, as well as cell and immune biology. There is still a long journey ahead to fully understand high grade T1 disease such that we can optimally stratify patients, and develop new therapies; however, alongside previous analyses [1-3;10], this study represents a promising waypoint.


