Sympatry of two ankylosaurs (Hungarosaurus and cf. Struthiosaurus) in the Santonian of Hungary
Ősi, Attila; Prondvai, Edina

Citation for published version (Harvard):

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Sympathy of two ankylosaurs (*Hungarosaurus* and cf. *Struthiosaurus*) in the Santonian of Hungary

Attila Ösi*, Edina Prondvai

Hungarian Academy of Sciences — Eötvös Loránd University, Lendület Dinosaur Research Group, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary

ARTICLE INFO

Article history:
Received 9 October 2012
Accepted in revised form 25 March 2013
Available online xxx

Keywords:
Hungarosaurus
cf. *Struthiosaurus*
Co-existence
Late Cretaceous
Hungary

ABSTRACT

A complete and well-preserved right ankylosaurian humerus from the Upper Cretaceous (Santonian) Csehbánya Formation of Iharkút, western Hungary is described here. Based on its osteological features and 21.5 cm adult length, the new specimen is markedly different from the slender humerus of *Hungarosaurus*, the previously known ankylosaur from the locality, and more similar to that of *Struthiosaurus*. Thus, the new Hungarian specimen is tentatively assigned here to cf. *Struthiosaurus* thereby dating back the first occurrence of this genus to the Santonian. The new fossil demonstrates the symatric co-existence of two different nodosaurid ankylosaurs (a smaller, robust form with 2–2.5 m total body length and a larger, cursorial form with 4–4.5 m body length) in the Iharkút fauna. This also suggests that the pattern of the European ankylosaur diversity was more complex than previously thought.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Ankylosaur remains from the Upper Cretaceous of Europe are relatively poorly known and up to now only two valid genera have been identified. *Struthiosaurus* Bunzel, 1871 is widespread in Europe, having been reported from several important vertebrate localities of early Campanian–Maastrichtian age (e.g., Seeley, 1881; Nopcsa, 1929; Pereda-Suberbiola, 1992, 1999; Buffetaut et al., 1996; Garcia and Pereda-Suberbiola, 2003; Codrea et al., 2010). Three currently valid species of this genus are known. In stratigraphical order, *S. austriacus* Bunzel, 1871 was described from the lower Campanian Gosau beds of Austria based on some cranial and mainly postcranial material of at least three individuals of different ontogenetic stages (Pereda-Suberbiola and Galton, 2001). Similarly aged, early Campanian *Struthiosaurus languedocensis* Garcia and Pereda-Suberbiola, 2003 from Villeveyrac, southern France was described on the basis of an articulated skeleton consisting of the pelvic girdle, synsacrum and posterior dorsal vertebrae. The youngest species is *S. transylvanicus* Nopcsa, 1915 from the Maastrichtian deposits of the Hâţeg Basin, Romania that is known on the basis of most probably associated cranial and postcranial material (*Nopcsa, 1929*). Additional ankylosaur material referred to as *Struthiosaurus* sp. was described from the upper Campanian to lower Maastrichtian of Laño (Pereda-Suberbiola, 1999) and some unpublished ankylosaur material is also known from the Campano-Maastrichtian of Chera in the Iberian Peninsula (J. Company, pers. comm.), and from the upper Campanian–lower Maastrichtian of Cruzy, southern France (E. Buffetaut, 2005).

The other Late Cretaceous European ankylosaur genus, being almost double the size of *Struthiosaurus* (total body length ca. 4.5 m), is *Hungarosaurus tormai* from the Santonian of Iharkút, western Hungary (Ösi, 2005; Ösi and Makádi, 2009). This taxon is known on the basis of five published and one unpublished skeleton (a hip region, discovered in the summer of 2012), the latter of which is the first articulated vertebrate specimen discovered in Iharkút. *Acanthopholis horridus* Huxley, 1867 from the Cenomanian of England is regarded as a nomen dubium (Pereda-Suberbiola and Barrett, 1999; Vickaryous et al., 2004).

New excavations at the Iharkút continental vertebrate site resulted in a complete and well-preserved right humerus of an ankylosaur that is markedly different from that of *Hungarosaurus* suggesting the co-occurrence of another ankylosaur taxon in the region. The results of the comparative anatomical and histological investigation presented here clearly support this hypothesis.

Institutional abbreviations: AMNH, American Museum of Natural History, New York, USA; MC, Mechin Collection (private collection), Vitrolles, France; MCNA, Museo de Ciencias Naturales de Alava; MHN, Muséum d’Histoire Naturelle d’Aix-en-Provence, Aix-en-Provence, France; MTM, Magyar Természettudományi Múzeum, Budapest, Hungary; PIUW, Paläontologisches Institut, University of Vienna, Vienna, Austria.

* Corresponding author. Tel.: +36 1 3722500/8722; fax: +36 1 3812130.
E-mail addresses: hungaros@gmail.com (A. Ösi), edina.prondvai@gmail.com (E. Prondvai).

0195-6671/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cretres.2013.03.006

Please cite this article in press as: Ösi, A., Prondvai, E., Sympathy of two ankylosaurs (*Hungarosaurus* and cf. *Struthiosaurus*) in the Santonian of Hungary, Cretaceous Research (2013), http://dx.doi.org/10.1016/j.cretres.2013.03.006
2. Materials and methods

The specimen MTM PAL 2012.30.1, as all other fossils collected from the Iharkút vertebrate site, is housed in the Hungarian Natural History Museum. Preparation of the specimen was made mechanically by vibro-tool in the laboratory of the Hungarian Natural History Museum.

Histological investigation was carried out to determine the ontogenetic stage of the new specimen in order to exclude the possibility that potential morphological differences reflect ontogenetic allometries of Hungarosaurus. The humeral shaft was sampled on its anterior surface, at the mid-diaphysis following the core drilling method described by Stein and Sander (2009). The core sample has been embedded in epoxy resin and processed into transverse thin section with standard methods (Wells, 1989). The obtained slide was studied under a Leica DMLP polarized light microscope, photographed with Leica DFC420 digital camera, and obtained slide was studied under a Leica DMLP polarized light microscope, photographed with Leica DFC420 digital camera, and processed with Imagic ImageAccess software. Interpretative figures were compiled using CorelDRAW X5, Corel PHOTO-PAINT and Photoshop 7.0 softwares.

3. Locality and geology

Similarly to the remains of Hungarosaurus, MTM PAL 2012.30.1 was also collected from the Santonian Csehbánya Formation exposed in the Iharkút open-pit mine close to the villages Némethánya and Bakonyjárád. The specimen was found approximately 200 m eastwards from the classical outcrop of the Szál-6 vertebrate-bearing beds (for geological details see Özsi et al., 2012a) that provided most of the Hungarosaurus bones, besides other remains. The sediment containing this specimen (and other elements such as ankylosaur dermal scutes, ribs, Itharkutosuchus mandible and tooth, and hundreds of turtle shell fragments) is a greyish, fine sandstone—siltstone enclosing some carbonized plant fossils. Although the succession in this new outcrop is quite similar to that seen in the Szál-6 outcrop, there is no direct evidence that the fossiliferous bed of this new fossil site is stratigraphically equivalent (within the ca. 50 m thick Csehbánya Formation) with those of the Szál-6 locality. Based on their stratigraphical positions relative to the underlying Upper Triassic Main Dolomite, the fossiliferous bed of the new outcrop is perhaps a few meters lower in position, thus probably slightly older than that of the Szál-6 locality, but their age difference, if any, cannot be resolved.

4. Description and comparisons

The right humerus (MTM PAL 2012.30.1, Fig. 1A–E) is complete, only slightly compressed anteroposteriorly and has a total length of 21.5 cm which is less than half the length of the humerus of Hungarosaurus (45.5 cm, Fig. 1G). In general, the new specimen is much more robust than the elongate and slender humerus of Hungarosaurus thereby being more reminiscent of the humeri of other ankylosaurs (see e.g. that of Sauropelta edwardsi in Carpenter et al., 1995 or that of Gastonia butcheri in Kirkland, 1998). Whereas the greatest width to length ratio (width measured from the medial most point of the bicipital crest to the lateral most point of the deltopectoral crest) of the new humerus is 0.55, this ratio is 0.4 in Hungarosaurus, 0.52 in Niobrarasaurus, and 0.57 in Sauropelta. The shaft of the new specimen shows great similarities with that of the right fragmentary humeri of Struthiosaurus australicus (PIUW 2349/18) and Struthiosaurus sp. (MCN 6528) in having diverging contours of the medial and lateral margins (Fig. 1H). Nevertheless, the lateral and especially medial margins are more widely divergent in the new Iharkút specimen than those in S. australicus. The fragmentary specimen from Laño (MCN 6528) appears to have a slightly shorter, and lateromedially wider diaphysis (Pereda-Suberbiola, 1999: fig. 5A) compared to new Hungarian specimen.

Both the Hungarian and Austrian bones possess a prominent, approximately 2 cm long, oval-shaped muscle scar on the posterior side of the proximal half of the shaft. A similar pronounced muscle scar is also present on an unpublished, almost complete humerus (private collection, MC 512) from the upper Campanian—lower Maastrichtian of Fox-Amphoux Syncline of the Aix Basin, southern France (Fig. 1F). In MTM PAL 2012.30.1, this scar has two distinct parts: the medial part is subcircular (proximodistal length ca. 16 mm), while the lateral part is proximodistally elongated, ridge-like ending distally in a small but prominent protuberance. Based on the reconstruction of Coombs (1978), this muscle scar or at least its lateral part corresponds to the insertion area of Musculus latissimus dorsi. The medial part may correspond to the insertion area of Musculus teres major (Fig. 1A). A similar, divided muscle scar is present in Ankylosaurus (AMNH 5895), Coombs (1978) noted that in Sauropelta and Panoplosaurus, this muscle scar is present but not divided suggesting a common tendinous origin for latissimus dorsi and teres major. However, on the humerus of AMNH 3035 of Sauropelta, the distally, laterodistally extended ridge of this muscle scar is also present suggesting a divided attachment of M. latissimus dorsi and M. teres major. In S. austriacus, though the bone is not complete, this muscle scar does not have the lateral ridge (Fig. 1H) observed in the Hungarian specimen. This scar is oval-shaped on the unpublished French specimen (MC512) and the lateral ridge, i.e. the possible separated insertion surface for latissimus dorsi, cannot be seen. The muscle scar is entirely missing in Hungarosaurus (Fig. 1G) and Polacanthus (NHM R1106).

The deltopectoral crest is relatively more developed than in Hungarosaurus, its dorsoventral extent makes up half of the total bone length, and it projects strongly laterally and slightly anteriorly. Its posterior surface is ornamented by several crests and ridges indicative of well-developed muscles attaching here. Especially the insertion surface for M. scapulohumeralis anterior could have been highly developed, which is indicated by the protuberance-like muscle scar. In contrast to Hungarosaurus (Ösi and Makádi, 2009), the step-like demarcation between the humeral head and the deltopectoral crest is as well developed as in Panoplosaurus (Sternberg, 1921). The humeral head is displaced medial to the longitudinal axis of the bone. It has a transversely wider, oval shape just as in Hungarosaurus but narrower transversely than in Sauropelta (Ostrom, 1970) and Niobrarasaurus (Carpenter et al., 1995).

The bicipital crest is well developed with straight and posteriorly rugose medial margin that has a pointed proximal end. Similarly to the condition present on the lateral side, a marked but narrower demarcation separates the humeral head from the pointed proximomedial end of the bicipital crest. As in most ankylosaurs (Vickaryous et al., 2004), the distal epiphysis is strongly divergent and not as narrow as in Hungarosaurus. The lateral and medial condyles are similar in size and a well-developed, rugose, crest-like ectepicondyle is present lateral to the lateral condyle. The medial condyle is also bordered medially by a less developed medial entepicondyle. Distally and anteriorly, the two condyles are separated by a shallow groove.

5. Histology-based ontogenetic status

The transverse thin section acquired from the mid-diaphyseal region of the humerus MTM PAL 2012.30.1 shows strong pyritization due to which the microstructural preservation of this element is very poor. Details of the structural organization, such as the original long-range fiber orientation, cannot be inferred, nor are the osteocyte lacunae preserved. However, some histological characters that are indispensable for assigning ontogenetic stage to the
specimen can still be observed. One of them is the extensive remodeling of the entire cortex by numerous secondary osteons except for a thin layer of primary bone adjacent to the periosteal surface (Fig. 2A and B). In this primary layer, the vascular canals are all longitudinal and of narrow lumen, the latter of which refers to their well-compacted, mature state. The largest part of this layer is devoid of secondary osteons and exhibits a feature of crucial importance: the onset of an external fundamental system (EFS). In the incipient EFS, primary vascular canals still occur but they are very sparse, and there is a number of closely packed lines of

![Fig. 1. Ankylosaur humeri from the upper Cretaceous of Europe. (A) cf. Struthiosaurus sp. right humerus (MTM PAL 2012.30.1) from the Santonian Csehbánya Formation of Harkút, western Hungary in posterior, (B) anterior, (C) lateral, (D) medial, (E) proximal views. (F) Unpublished humerus (MC 512) from the upper Campanian—lower Maastrichtian of Fox-Amphoux Syncline of the Aix Basin, southern France in posterior view. (G) Right humerus of Hungarosaurus tormai (MTM 2007.25.3) in posterior view. (H) Right humerus of Struthiosaurus austriacus (PUW 2349/18) in posterior view. Abbreviations: bc, bicipital crest; dpc, deltopectoral crest; hc, humeral condyle; his, place of histological sampling; imld, insertion area of Musculus latissimus dorsi; imtm, insertion area of Musculus teres major; lec, lateral ectepicondyle; mec, medial ectepicondyle; pr, protuberance in the insertion surface for M. scapulohumeralis anterior; rac, radial condyle; ulc, ulnar condyle.](image-url)
arrested growth (LAGs) the spacing of which gets denser toward the periosteal surface (Fig. 2C). The presence of an EFS is generally considered as the most reliable signal of the cessation of diometric bone growth. The onset of an EFS means that only negligible degree of bone deposition, the so-called residual bone growth could have happened even if the animal had lived any longer. Hence, the onset of an EFS along with the extensive secondary remodeling and the advanced state of infilling of the longitudinal primary vascular spaces all imply skeletal maturity of this specimen. Thus, despite the bad preservation obscuring finer microstructural details, it can be concluded with high confidence that the skeletal growth of this individual had nearly ceased by the time of its death, i.e. this specimen can be considered as a fully grown adult. The histological results unequivocally prove that this specimen is not the juvenile form of Hungarosaurus, hence excluding the possibility that the prominent morphological differences are the result of ontogenetic allometry.

6. Discussion

Assessing the information on the new humerus (MTM PAL 2012.30.1) from Iharkút, it can be concluded that it markedly differs from that of Hungarosaurus. In addition to its smaller size, the shape and morphological details clearly indicate its different taxonomic status. The new specimen is similar to the fragmentary humerus of Struthiosaurus austriacus (PIUW 2349/18), that of Struthiosaurus sp. from Laño (MCN A 6528), and the unpublished French specimen (MC 512), though the latter is more robust and it possesses more divergent distal epiphysis. Unfortunately, no published humerus is known in S. languedocensis, and only a silhouette drawing of the humerus is available yet for a new, associated specimen of S. transylvanicus (Codrea et al., 2010). The spherical radial condyle, present distally in MTM PAL 2012.30.1, is typically seen in most nodosaurids (Pereda-Suberbiola, 1999; Vickaryous et al., 2004) thus strengthening its supposed nodosaurid status. Due to their fragmentary nature, neither diagnostic features nor a unique combination of characters have been described on any humeri published and referred to as Struthiosaurus which are part of a fossil assemblage including other skeletal elements (i.e. the type material of S. austriacus and the Laño material). Thus, the Hungarian specimen cannot be assigned to Struthiosaurus with high confidence. On the other hand, following parsimony, the only known Late Cretaceous ankylosaur from Europe besides Hungarosaurus is Struthiosaurus the humerus of which, although fragmentary, shows great similarities with the new Hungarian specimen, hence we tentatively refer to this specimen as cf. Struthiosaurus sp.

Accepting the former hypothesis, the new humerus from the Santonian of Iharkút represents the earliest occurrence of the genus thus extending its temporal range to encompass more than 17 million years (Santonian to Maastrichtian) (Fig. 3). Since the shaft of the Hungarian specimen is similar to that of S. austriacus in being more gracile and elongate and not as robust and divergent distally as that of the French specimen (MC 512), MTM PAL 2012.30.1 from Iharkút is likely to be more closely related to S. austriacus than to the western European form. This close relationship of the Austrian and Hungarian faunas has already been supported by other faunal elements such as the congeneric rhabdodontid taxa (Mochlodon suessi in Austria and M. vorosi in Hungary, Osi et al., 2012b) and the identical basal Tetanurae teeth known from both sites (Osi et al., 2010). Nevertheless, it has to be noted that among the three species of Struthiosaurus, only the material referred to as S. austriacus includes fragmentary humeri, thus comparison with that of S. languedocensis and S. transylvanicus is not yet possible. Perhaps the new, still undescribed material from Romania (Codrea et al., 2010) will help solve this problem, at least in the case of the latter species.

The new humerus from Iharkút unambiguously reveals the coexistence of two different ankylosaurs in the Santonian of Iharkút (Fig. 3). The 21.5 cm long, fully grown adult humerus (MTM PAL 2012.30.1) referred to as cf. Struthiosaurus sp. represents a typical, relatively massive element as seen in most ankylosaurs. It also shows that similarly to the other species of Struthiosaurus, the Hungarian taxon could also have been a small-bodied but robust form with a body length of no more than 2–2.5 m. In contrast, Hungarosaurus with a gracile and elongate humerus (45.5 cm) and a forelimb–hindlimb length ratio of 1.0 could have been more
cursorial with a total body length of 4–4.5 m (Osi and Makádi, 2009). The different size, body proportions and the supposed difference in locomotory abilities suggest different lifestyles for the two, probably sympatric Iharkút ankylosaurs.

The occurrence of two different ankylosaurs in the Santonian Hungarian fauna revives an earlier hypothesis (e.g. Seeley, 1881), namely that the ankylosaurs of European Late Cretaceous faunas were more diverse than previously thought. One classic example of this presumed diversity is the number of ankylosaur taxa represented in the early Campanian Austrian fauna. Several authors tried to approach this question but were always confronted by the lack of enough diagnostic skeletal elements. Seeley (1881) and later on Molnar (1980) distinguished two different taxa on the basis of postcranial material, while Nopcsa (1929) and more recently Pereda-Suberbiola and Galton (2001) considered the ankylosaur material of the Gosau beds as representing several (at least three) individuals of a single ankylosaurian species. However, it has to be noted that, for example the scapulae used by Seeley (1881) to distinguish the two different Austrian taxa are extremely similar to those of Hungarosaurus (Osi, 2005: fig. 11). This indicates that certain postcranial elements (e.g. scapula, dorsal and caudal vertebrae, femur) might not be useful for making taxonomic inferences. Other elements, such as the humerus, on the other hand are certainly useful to define taxonomic differences. The Hungarian remains, representing two different, probably sympatric taxa, may refresh the previous “high diversity”-hypotheses; nonetheless, discovery of more material is instrumental in offering a better view on the ankylosaurian diversity of Europe.

Acknowledgments

We thank the 2012 field crew for their assistance in the fieldwork. We are especially grateful to the Bakony Bauxite Mining Company and the Geovolán Zrt. for their logistic help. We are...
grateful to the following colleagues and institutions for access to the material in their care: Karl Rauscher (University of Vienna, Vienna, Austria), Patrick and Annie Mechlin (Vitrolles, France); Gilles Cheylan, Yves Dutour and Thierry Tortosa (Natural History Museum, Aix-en-Provence, France). Special thank goes to Martin Sander (University of Bonn, Bonn, Germany) for providing technical background for our histological investigations. We thank Koen Stein (University of Bonn, Bonn, Germany) for useful discussions. We thank Zsófia Hajdu and Dóra Csengődi (MTA-ELTE Dinosaur Research Group) and Olaf Dülfer for their technical assistance. Field and laboratory work was supported by the MTA-ELTE Lendület Dinosaur Research Group (Grant no. 95102), Hungarian Scientific Research Fund (OTKA T-38045, PD 73021, NF 84193), National Geographic Society (Grant No. 7228–02, 7508–03), Bolyai Fellowship, Hungarian Natural History Museum, Eötvös Loránd University, Jurassic Foundation and Hatkan Foundation.

References

