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EXPLICIT REFORMULATIONS FOR ROBUST OPTIMIZATION
PROBLEMS WITH GENERAL UNCERTAINTY SETS

IGOR AVERBAKH∗ AND YUN-BIN ZHAO†

(Published in SIAM Journal on Optimization, 18 (2007), No. 4, pp. 1436-1466 )
Abstract. We consider a rather general class of mathematical programming problems with data

uncertainty, where the uncertainty set is represented by a system of convex inequalities. We prove
that the robust counterparts of this class of problems can be equivalently reformulated as finite and
explicit optimization problems. Moreover, we develop simplified reformulations for problems with
uncertainty sets defined by convex homogeneous functions. Our results provide a unified treatment
of many situations that have been investigated in the literature, and are applicable to a wider range
of problems and more complicated uncertainty sets than those considered before. The analysis in this
paper makes it possible to use existing continuous optimization algorithms to solve more complicated
robust optimization problems. The analysis also shows how the structure of the resulting reformu-
lation of the robust counterpart depends both on the structure of the original nominal optimization
problem and on the structure of the uncertainty set.

Key words. Robust optimization, data uncertainty, mathematical programming, homogeneous
functions, convex analysis

AMS subject classifications. 90C30, 90C15, 90C34, 90C25, 90C05.

1. Introduction. In classical optimization models, the data are usually assumed
to be known precisely. However, there are numerous situations where the data are
inexact/uncertain. In many applications, the optimal solution of the nominal op-
timization problem may not be useful because it may be highly sensitive to small
changes of the parameters of the problem.

Sensitivity analysis and stochastic programming are two traditional methods to
deal with uncertain optimization problems. The former offers only local information
near the nominal values of the data, while the latter requires one to make assumptions
about the probability distribution of the uncertain data which may not be appropriate.
Moreover, the stochastic programming approach often leads to very large optimiza-
tion problems, and cannot guarantee satisfaction of certain hard constraints which is
required in some practical settings.

An increasingly popular approach to optimization problems with data uncertainty
is robust optimization, where it is assumed that possible values of data belong to some
well-defined uncertainty set. In robust optimization, the goal is to find a solution
that satisfies all constraints for any possible scenario from the uncertainty set, and
optimizes the worst-case (guaranteed) value of the objective function. See e.g. [5]-
[14], [21]-[26] and [29, 35, 39, 40]. The solutions of robust optimization models are
“uniformly good” for realizations of data from the uncertainty set. Early work in
this direction was done by Soyster [39, 40] and Falk [22] under the name of “inexact
linear programming”. The robust optimization approach has been applied to various
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problems in operations management, financial planning, and engineering design (e.g.,
[29, 26, 10, 6, 31, 35]).

A formulation of a robust model as a mathematical programming problem is called
a robust counterpart. Since in the robust approach the constraints must be satisfied
for all possible realizations of data from the uncertainty set, the robust counterpart is
typically a complicated semi-infinite optimization problem. A fundamental question
in robust optimization is whether the robust counterpart can be represented as a
single finite and explicit optimization problem, so that existing optimization methods
can be used to solve it. Such an analysis also helps to understand computational
complexity of robust optimization problems.

So far, to obtain sufficiently simple robust counterparts, the uncertainty set was
normally assumed to have a fairly simple structure, for example a Cartesian product
of intervals, or an ellipsoid, or an intersection of ellipsoids, or a set defined by certain
norms (see for example, [1]-[14], [23]-[26], [29]). Of course, the simpler the uncertainty
set is, the easier it is to solve the robust optimization problem, and in some situa-
tions simplifying assumptions about uncertainty sets are natural when modelling a
practical problem. However, more complicated uncertainty sets may be encountered
in both theoretical study and in applications (see Remark 3.1 of this paper for de-
tails). Therefore, it is important to understand possibilities of the robust approach
dealing with problems involving complicated or general uncertainty sets. Study of
robust optimization problems with general uncertainty sets may provide additional
tools for modelling intricate real-life situations and a unified treatment of specialized
cases. Moreover, such a study can provide additional insights and results and even
improve known results for some specialized cases when general results are reduced to
such specialized cases (see Section 6 for details).

In this paper, we consider robust optimization problems with uncertainty sets
defined by a system of convex inequalities. The optimization problems we consider
may be non-convex and are wide enough to include linear programming, linear com-
plementarity problems, quadratic programming, second order cone programming, and
general polynomial programming problems. We prove that the robust counterparts
of the considered problems with uncertainty are finite optimization problems which
can be formulated by using the nominal data of the underlying optimization prob-
lem and the conjugates of the functions defining the uncertainty set. Compared with
the original optimization problem, a major extra difficulty of the robust counterpart
comes from the conjugates of the functions that define the uncertainty set. The con-
jugates of these functions usually are not given explicitly, and may be difficult to
compute. To identify explicit and simplified formulations of robust counterparts, we
focus on a class of convex functions whose conjugates can be expressed explicitly.
Our strongest results and simplest reformulations of robust counterparts correspond
to the case where the uncertainty sets are defined by convex homogeneous functions.
This class of uncertainty sets is broad enough to include most uncertainty models that
have been investigated in the literature, as well as many other important cases, for
example where deviations of data from nominal values may be asymmetric and not
even defined by norms.

We note that instead of optimizing the worst-case value of the objective function,
another possibility is to optimize the worst-case regret, which is the worst-case devia-
tion of the objective function value from the optimal value under the realized scenario,
or, in other words, to minimize the worst-case loss in the objective function value that
may occur because the decision is made before the realized scenario is known. This
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criterion leads to minmax regret optimization models [29, 1, 2, 3, 4]. Minmax regret
problems are typically computationally hard [29, 4], although there are exceptions
(e.g., [1, 2, 3]). Minmax regret problems also fit the general paradigm of robust op-
timization, but we do not consider them in this paper. We note also that there are
other concepts of robustness in the literature under the name of “model uncertainty”
or “ambiguity”. See e.g. [42, 28, 17, 33, 18, 38, 27, 37, 16, 19, 20, 21, 31, 41].

This paper is organized as follows. In Section 2, we describe the class of optimiza-
tion problems that we consider. In Section 3, we define the uncertainty set of data, and
provide an equivalent, deterministic representation of the robust optimization prob-
lems via Fenchel’s conjugate functions. In Section 4, we give an explicit representation
for the robust counterpart when the uncertainty set is defined by (non-homogeneous)
convex functions that fall in the linear space generated by homogeneous functions of
arbitrary degrees. The case of uncertainty sets defined by homogeneous functions is
studied in Section 5. Specializing the general results of Sections 3, 4, and 5 to robust
problems where the nominal problem is a linear programming problem and/or the
uncertainty set is of a special type commonly used in the literature is discussed in
Section 6, and concluding remarks are provided in Section 7.

2. A class of optimization problems with data uncertainty. We consider
the following optimization problem:

min{cT x : fi(x) ≤ bi, i = 1, ..., m, F (x) ≤ 0},(2.1)

where c = (c1, ..., cn)T and b = (b1, ..., bm)T are fixed vectors, and fi’s are functions
of the form

fi(x) =
(
W (i)(x)

)T

M (i)V (i)(x), i = 1, ..., m,(2.2)

where W (i)(x) and V (i)(x) are two mappings from Rn to RNi , and M (i) is an Ni×Ni

real matrix, Ni’s are positive integers. We write W (i)(x) and V (i)(x) as W (i)(x) =
(W (i)

1 (x), ...., W (i)
Ni

(x))T and V (i)(x) = (V (i)
1 (x), ...., V (i)

Ni
(x))T , where each W

(i)
j (j =

1, ..., Ni) is a function from Rn to R.
We assume that only the data M (i), i = 1, ..., m, are subject to uncertainty. In

(2.1), F (x) ≤ 0 denotes constraints without uncertainty, e.g. the simple constraints
x ≥ 0. We assume that c and b are certain without loss of generality, because a
problem with uncertain c and b can be easily transformed into a problem with certain
coefficients of the objective function and right-hand sides of the constraints. Also, if
the objective function is not linear, it can be made linear by introducing an additional
variable and a new constraint. We note that functions fi are linear in the uncertain
data M (i) (but can be nonlinear in the decision variables x).

The above optimization model is very general. For example, it includes the fol-
lowing important special cases.

Linear Programming (LP). Let A ∈ Rm×n (i.e., an m × n matrix) and b =
(b1, ..., bm)T . Without loss of generality, we assume m ≤ n. Consider functions fi(x)
of the form (2.2), where

W (i)(x) = ei ∈ Rn, V (i)(x) = x ∈ Rn, M (i) =
[

A
0

]

n×n

,

where ei, throughout this paper, denotes the ith column of n × n Identity Matrix,
and 0 in M (i) denotes (n − m) × n zero matrix. It is evident that the inequalities
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fi = (W (i))T M (i)V (i) ≤ bi, i = 1, ..., m, are equivalent to Ax ≤ b. Therefore, problem
(2.1) with F (x) = −x ≤ 0 reduces to the linear programming problem:

min{cT x : Ax ≤ b, x ≥ 0}.(2.3)

This implies that the linear programming problem (2.3) with uncertain coefficient
matrix A is a special case of the optimization problem (2.1) with uncertain data
M (i). There is also another way to write an LP in the form (2.1)-(2.2); see (6.14) and
(6.15) in Section 6.2 for details.

Linear Complementarity Problem (LCP). Given a matrix M ∈ Rn×n and a vector
q ∈ Rn, the LCP is defined as

Mx + q ≥ 0, x ≥ 0, xT (Mx + q) = 0.

Solutions to LCP are very sensitive to changes in data because of the equation
xT (Mx + q) = 0. When the matrix M is uncertain, it is hard to find a solution that
satisfies the above system and is “immune” to changes of M. Thus, it is reasonable
to consider the optimization form of LCP, i.e.,

min{xT (Mx + q) : Mx + q ≥ 0, x ≥ 0},
or equivalently

min{t : xT (Mx + q)− t ≤ 0, Mx + q ≥ 0, x ≥ 0},
which is less sensitive in the sense that it is equivalent to LCP if the LCP has a
solution, and can still have a solution even when the LCP has no solution. The above
optimization problem can be reformulated as (2.2) by letting

W (1)(x) =




x
1
e1


 ∈ R2n+1; W (i) =

(
0(n+1)

ei−1

)
∈ R2n+1, for i = 2, ..., n + 1,

M (i) =




M q 0

n−1︷ ︸︸ ︷
0 ...0

0 0 −1 0 ...0
−M −q 0 0 ...0


 , V (i)(x) =




x
1
t

0(n−1)


 ∈ R2n+1, i = 1, ..., n+1,

where t ∈ R, and 0(n+1) and 0(n−1) denote (n + 1) and (n − 1)-dimensional zero
vectors, respectively. It is easy to verify that problem (2.1) with F (x) = −x ≤ 0 and
fi = (W (i))T M (i)V (i) ≤ 0 (i = 1, ..., n + 1) is the same as the optimization form of
LCP. It is worth mentioning that Zhang [43] considered equality constrained robust
optimization, and his approach may be also used to deal with LCPs with uncertainty
data.

(Nonconvex) Quadratic Programming (QP). Consider functions fi(x) of the form
(2.2) where

W (i)(x) =
(

x
1

)
∈ Rn+1, for i = 0, ..., m,

V (0)(x) =
(

x
t

)
∈ Rn+1, V (i)(x) =

(
x
0

)
∈ Rn+1, for i = 1, ..., m
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and

M (i) =
[

Qi 0
qT
i −1

]

(n+1)×(n+1)

, for i = 0, ..., m,(2.4)

where each Qi is an n×n symmetric matrix and each qi is a vector in Rn. Then the op-
timization problem (2.1) with the objective t and constraints fi = (W (i))T M (i)V (i) ≤
−ci(i = 0, ..., m) is reduced to the quadratic programming problem:

min xT Q0x + qT
0 x + c0

s.t. xT Qix + qT
i x + ci ≤ 0, for i = 1, ....m.

Thus, a QP with uncertain coefficients (Qi, qi)(i = 0, ..., m) can be represented as an
optimization problem (2.1) with uncertain data M (i) given as (2.4).

Second Order Cone Programming (SOCP). Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and
β be a scalar. Let

W (1)(x) = V (1)(x) =
(

x
1

)
∈ Rn+1,

and

M (1) =
[

AT A− ccT 0
2bT A− 2βcT bT b− β2

]
,(2.5)

and W (2)(x) = e ∈ Rn (the vector with all components equal to 1), V (2)(x) = x ∈ Rn

and

M (2) =
[ −cT

0

]

n×n

.

Then the constraint f1 = (W (1))T M (1)V (1) ≤ 0 together with f2 = (W (2))T M (2)V (2) ≤
β is equivalent to the second order cone constraint: ‖Ax+b‖ ≤ cT x+β. In fact, f1 ≤ 0
can be written as

(Ax + b)T (Ax + b) ≤ (cT x + β)2

and f2 ≤ β can be written as cT x+β ≥ 0. Combination of these two inequalities leads
to a second order cone constraint. Thus, uncertainty of the data (A,B, c, β) leads to
uncertainty of the matrices M (1) and M (2).

Polynomial Programming. We recall that a monomial in x1, ..., xn is a product
of the form xα1

1 · xα2
2 · · ·xαn

n , where α1, ..., αn are nonnegative integers. It is evident
that if the components of W (x) and V (x) are monomials, then for any given matrix
M , a function of the form (2.2) is a polynomial. Conversely, any real polynomial is a
linear combination of some monomials, i.e.,

P (x1, x2, ..., xn) =
∑

(α1,α2,...,αn)

C(α1,α2,...,αn)xα1
1 xα2

2 ...xαn

n

where C(α1,...,αn) are real coefficients. Then the simplest way to write it in the form
(2.2) is to set W (x) = e , set V (x) to be the vector of all monomials xα1

1 xα2
2 ...xαn

n ap-
pearing in P (x), and set M to be the diagonal matrix with diagonal entries C(α1,α2,...,αn).

Thus polynomial optimization with uncertain coefficients is a special case of (2.1) with
uncertain data M (i).
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3. Robust counterparts as finite deterministic optimization problems.
We start with a description of the uncertainty set. Let Ki, i = 1, ..., m, be a bounded
subset of RN2

i that contains the origin. Suppose that the uncertain data M (i) (i =
1, ..., m) of the ith constraint of (2.1) are allowed to vary in such a way that the
deviations from their fixed nominal values M

(i)
fall in Ki. That is, the uncertainty

set of the data M (i) is defined as

Ui =
{

M̃ (i)
∣∣∣vec(M̃ (i))− vec(M

(i)
) ∈ Ki

}
, i = 1, ..., m,(3.1)

where for a given matrix M , vec(M) denotes the vector obtained by stacking the
transposed rows of M on top of one another. Then the robust counterpart of the
optimization problem (2.1) with uncertainty sets Ui is defined as follows:

min cT x(3.2)

s.t. fi =
(
W (i)(x)

)T

M̃ (i)V (i)(x) ≤ bi,∀M̃ (i) ∈ Ui, i = 1, ..., m, F (x) ≤ 0},

which is a semi-infinite optimization problem. The optimal solution to this problem
is feasible for all realizations of the data M̃ (i).

We denote by δ(u|K) the indicator function of a set K (see [36]), and the conjugate
function of δ(u|K) is denoted by δ∗(u|K) which is equal to the support function
ψK(u) = max{uT v : v ∈ K}. First we state the following general result which shows
that the robust counterpart (3.2) can be equivalently written as a finite deterministic
optimization problem, regardless of the type of uncertainty sets.

Theorem 3.1. The robust optimization problem (3.2) is equivalent to the follow-
ing finite and deterministic optimization problem:

min cT x

s.t.
(
W (i)(x)

)T

M
(i)

V (i)(x) + δ∗(χi|cl(coKi)) ≤ bi, i = 1, ..., m,

F (x) ≤ 0,

where cl(coKi) denotes the closure of the convex hull of set Ki, and χi = W (i)(x) ⊗
V (i)(x) ∈ RN2

i , i.e., is the Kronecker Product of the vectors W (i)(x) and V (i)(x).

Proof. In fact, the constraint fi =
(
W (i)(x)

)T
M̃ (i)V (i)(x) ≤ bi for all vec(M̃ (i))−

vec(M
(i)

) ∈ Ki is equivalent to

sup
{

W (i)(x)T M̃ (i)V (i)(x) : vec(M̃ (i))− vec(M
(i)

) ∈ Ki

}
≤ bi.(3.3)

Notice that for any square matrices B,C, we have tr(BC) = (vec(B))T vec(CT ). Thus,
we have

(
W (i)(x)

)T

M̃ (i)V (i)(x) = tr

(
M̃ (i)V (i)(x)

(
W (i)(x)

)T
)

=
(
vec(M̃ (i))

)T

vec

(
W (i)(x)

(
V (i)(x)

)T
)

=
(
vec(M̃ (i))

)T (
W (i)(x)⊗ V (i)(x)

)
.
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Denoting χi = W (i)(x)⊗ V (i)(x), the constraint (3.3) can be written as

bi ≥ sup
{(

vec(M̃ (i))
)T

χi : vec(M̃ (i))− vec(M
(i)

) ∈ Ki

}

=
(
vec(M

(i)
)
)T

χi + sup
u∈Ki

uT χi =
(
vec(M

(i)
)
)T

χi + sup
u∈cl(coKi)

uT χi

=
(
W (i)(x)

)T

M
(i)

V (i)(x) + δ∗(χi|cl(coKi)).

The original semi-infinite constraints become finite and deterministic constraints.

For robust optimization, when the uncertainty set is not convex, the robust coun-
terpart remains unchanged if we replace the uncertainty set by its closed convex hull.
This observation was first mentioned in [7], and can be seen clearly from the above
result. Because of this fact, we may assume without loss of generality that each Ki

is a closed convex set. In applications, the convex set Ki is usually determined by a
system of convex inequalities. So, throughout the rest of the paper, we assume that
Ki is a closed, bounded convex set containing the origin and it can be represented as

Ki =
{

u
∣∣∣ g

(i)
j (u) ≤ ∆(i)

j , j = 1, ..., `(i)
}

, i = 1, ..., m,(3.4)

where `(i)’s are given integers, ∆(i)
j ’s are constants, and g

(i)
j ’s are proper closed convex

functions from RN2
i to R. Here, R = R∪{+∞} and “proper” means that the function

is finite somewhere (throughout the paper, we use the terminology from [36]). Since
0 ∈ Ki, we have g

(i)
j (0) ≤ ∆(i)

j for all j = 1, ..., `(i).
Remark 3.1. In this remark, we give additional motivation for considering the

general uncertainty set (3.4) as opposed to special uncertainty sets studied in the
literature. We note that importance of studying robust problems with complicated
uncertainty sets was emphasized, for example, in [15].

(i) Consider the following uncertainty set:

U =



D

∣∣∣∣∣∣
∃z ∈ R|N | : D = D0 + ψ(z) = D0 +

∑

j∈N

∆Djzj , ‖z‖ ≤ Ω



 ,(3.5)

where Ω is a given number, D0 is a given vector (nominal values of the uncertain
data), and ∆Dj ’s are directions of data perturbation. This uncertainty set has been
widely used in the literature (e.g. [5]-[14], [23]-[26]). It is the image of a ball (defined
by some norm) under linear transformation, i.e., the function ψ(z) here is a linear
function in z. This widely used uncertainty set can be written in the form (3.4) with
only one convex inequality g(u) ≤ Ω, where function g(u) is also homogeneous of 1-
degree, and g(u) is not a norm in general unless |N | is equal to the number of data and
the data perturbation directions ∆Dj ’s are linearly independent (see Section 6.1 for
details). This typical example shows that it is necessary to study the case when the
functions g

(i)
j (u) in (3.4) are convex and homogeneous (but not necessarily norms).

Section 5 of this paper is devoted to this important case.
For the uncertainty set U defined by (3.5), the function ψ(z) is linear in z. In some

applications, however, such a model is insufficient for description of more complicated
uncertainty sets. The next two examples show that in some situations the function
ψ(z) may be nonlinear and hence the uncertainty set may be much more complicated.
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(ii) Consider the second order cone programming (SOCP). It is often assumed
that the data (A, b, c) are subject to an ellipsoidal uncertainty set which is the case
of (3.5) where the norm is the 2-norm. When we reformulate SOCP into the form of
(2.1), the data M (1) is determined by the matrix (2.5). It is easy to see the data M (1)

belongs to the following uncertainty set

U =
{

D
∣∣∣∃z ∈ R|N | : D = D0 + ψ(z), ‖z‖ ≤ Ω

}
,(3.6)

where ψ(z) is a quadratic function in z. Thus, this example shows that a more com-
plicated uncertainty set than (3.5) might appear when we make a reformulation of
the problem. Such reformulations are often made when a problem is studied from
different perspectives.

(iii) This example, taken from [23], shows that a nonlinear function ψ(z) arises
in (3.6) when robust interpolation problems are considered. Let n ≥ 1 and k be given
integers. We want to find a polynomial of degree n− 1, p(t) = x1 + ... + xntn−1 that
interpolates given points (ai, bi), i.e., p(ai) = bi, i = 1, ..., k. If interpolation points
(ai, bi) are known precisely, we obtain the following linear equation




1 a1 · · · an−1
1

...
...

...
1 ak · · · an−1

k







x1

...
xn


 =




b1

...
bn


 .

Now assume that ai’s are not known precisely, i.e., ai(δ) = ai + δi, i = 1, ..., k, where
the δ = (δ1, ..., δk) is unknown but bounded, i.e., ‖δ‖∞ ≤ ρ where ρ ≥ 0 is given. A
robust interpolant is a solution x that minimizes ‖A(δ)x−b‖ over the region ‖δ‖∞ ≤ ρ,
where

A(δ) =




1 a1(δ) · · · a1(δ)n−1

...
...

...
1 ak(δ) · · · ak(δ)n−1




is an uncertain Vandermonde matrix. Such a matrix can be written in the form (3.6)
with nonlinear function ψ(z). In fact, we have (see [23] for details)

A(δ) = A(0) + L∆(I −D∆)−1RA

where L,D and RA are constant matrices determined by ai’s, and ∆ = ⊕k
i=1δiIn−1.

(iv) Our model provides a unified treatment of many uncertainty sets in the
literature. Note that (3.6) can be written in the form (3.4), by letting g(D) = inf{‖z‖ :
D = ψ(z)}. Then U − {D0} = {D : g(D) ≤ Ω}. This can be proved by the same
argument as Lemma 6.1 in this paper.

(v) Studying problems with general uncertainty sets may in fact lead to new or
stronger results for important special cases, as we demonstrate in Section 6.

Since robust optimization problems in general are semi-infinite optimization prob-
lems which are hard to solve, the fundamental question is whether a robust optimiza-
tion problem can be explicitly represented as an equivalent finite optimization prob-
lem, so that the existing optimization methods can be applied. We are addressing
this question in this paper. It should be mentioned that, generally, two research di-
rections are possible: 1) Developing computationally tractable approximate (relaxed)
formulations; 2) Developing exact formulations which, naturally, will be computation-
ally difficult for sufficiently complicated nominal problems and/or uncertainty sets.
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Our paper focuses on the second direction; the first direction was investigated, for
instance, in Bertsimas and Sim [14]. We believe that both directions are important
for theoretical and practical progress in robust optimization; we comment on this in
more detail in Section 6.

Let us mention some auxiliary results and definitions. Given a function f, we
denote its domain by dom(f), and denote its Fenchel’s conjugate function by f∗, i.e.,

f∗(w) = sup
x∈dom(f)

(
wT x− f(x)

)
.

We recall that the infimal convolution function of gj(j = 1, · · · , `), denoted by g1 ¦
g2 ¦ · · · ¦ g`, is defined as

(g1 ¦ g2 ¦ · · · ¦ g`)(u) = inf





∑̀

j=1

gj(uj) :
∑̀

j=1

uj = u



 .

The following result will be used in our later analysis.
Lemma 3.2. ([36], Theorem 16.4.) Let f1, ..., f` : Rn → R be proper convex

functions. Then (cl(f1)+· · ·+cl(f`))∗ = cl(f∗1 ¦· · ·¦f∗` ), where cl(f) denotes the closure
of the convex function f. If the relative interiors of the domains of these functions,
i.e., ri(dom(fi)), i = 1, ..., `, have a point in common, then

(∑̀

i=1

fi

)∗

(x) = (f∗1 ¦ · · · ¦ f∗` )(x) = inf

{∑̀

i=1

f∗i (xi) :
∑̀

i=1

xi = x

}
,

where for each x ∈ Rn the infimum is attained.
Now we consider the robust programming problem (3.2) where the uncertainty

set is determined by (3.1) and (3.4). We have the following general result.
Theorem 3.3. Let Ki (i = 1, ..., m) be given by (3.4) where each g

(i)
j (j = 1..., `(i))

is a closed proper convex function. Suppose that Slater’s condition holds for each i,
i.e., for each i, there exists a point u

(i)
0 such that g

(i)
j (u(i)

0 ) < ∆(i)
j for all j = 1, ..., `(i).

Then the robust counterpart (3.2) is equivalent to

min cT x

s.t.
(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

λ
(i)
j ∆(i)

j +




`(i)∑

j=1

λ
(i)
j g

(i)
j



∗

(χi) ≤ bi, i = 1, ..., m,

λ
(i)
j ≥ 0, j = 1, ..., `(i); i = 1, ..., m,

F (x) ≤ 0,

where χi = W (i)(x)⊗ V (i)(x). This problem can be further written as

min cT x

s.t.
(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

λ
(i)
j ∆(i)

j + Υ(i)(λ(i), u(i)) ≤ bi, i = 1, ..., m,

χi =

{ ∑
j∈Ji

u
(i)
j , if Ji 6= ∅,

0, otherwise,
i = 1, ..., m,(3.7)

λ
(i)
j ≥ 0, j = 1, ..., `(i); i = 1, ..., m,

F (x) ≤ 0.
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where Ji = {j : λ
(i)
j > 0, j = 1, ..., `(i)}, λ(i) denotes the vector whose components are

λ
(i)
j , j = 1, ..., `(i), u(i) denotes the vector whose components are u

(i)
j , j ∈ Ji, and

Υ(i)(λ(i), u(i)) =

{ ∑
j∈Ji

λ
(i)
j

(
g
(i)
j

)∗ (
u

(i)
j /λ

(i)
j

)
, if Ji 6= ∅,

0, otherwise.

Proof. We see from the proof of Theorem 3.1 that x is feasible to the robust
problem (3.2) if and only if F (x) ≤ 0 and for each i we have

(
W (i)(x)

)T

M
(i)

V (i)(x) + max
u∈Ki

uT χi ≤ bi.(3.8)

Let Z(χi) = max{uT χi : u ∈ Ki} where Ki is given by (3.4) which by our assumption
is a bounded, closed convex set. Thus the maximum value of the convex optimiza-
tion problem max{uT χi : u ∈ Ki} is finite and attainable. Denote the Lagrangian
multiplier vector for this problem by λ(i) = (λ(i)

1 , λ
(i)
2 , ..., λ

(i)

`(i)) ∈ R`(i)

+ . Since Slater’s
condition holds for the problem max{uT χi : u ∈ Ki}, by Lagrangian Saddle-Point
Theorem (see e.g. Theorem 28.3, Corollary 28.3.1 and Theorem 28.4 in [36]), we have

Z(χi) = −min{−uT χi : g
(i)
j (u) ≤ ∆(i)

j , j = 1, ..., `(i)}

= − sup
λ(i)∈R`(i)

+

inf
u∈R

N2
i


−uT χi +

`(i)∑

j=1

λ
(i)
j

(
g
(i)
j (u)−∆(i)

j

)



= − sup
λ(i)∈R`(i)

+


−

`(i)∑

j=1

λ
(i)
j ∆(i)

j + inf
u∈R

N2
i


−uT χi +

`(i)∑

j=1

λ
(i)
j g

(i)
j (u)







= − sup
λ(i)∈R`(i)

+


−

`(i)∑

j=1

λ
(i)
j ∆(i)

j − sup
u∈R

N2
i


uT χi −

`(i)∑

j=1

λ
(i)
j g

(i)
j (u)







= − sup
λ(i)∈R`(i)

+


−

`(i)∑

j=1

λ
(i)
j ∆(i)

j −



`(i)∑

i=1

λ
(i)
j g

(i)
j



∗

(χi)




= inf
λ(i)∈R`(i)

+




`(i)∑

j=1

λ
(i)
j ∆(i)

j +




`(i)∑

j=1

λ
(i)
j g

(i)
j



∗

(χi)


 .(3.9)

Under our assumptions, the above infimum is attainable (by the existence of a saddle
point of the Lagrangian function [36]). Substituting (3.9) into (3.8), we see that x
satisfies (3.8) if and only if it satisfies the following inequalities for some λ(i):

(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

λ
(i)
j ∆(i)

j +




`(i)∑

j=1

λ
(i)
j g

(i)
j



∗

(χi) ≤ bi,(3.10)

λ(i) = (λ(i)
1 , λ

(i)
2 , ..., λ

(i)

`(i)) ∈ R`(i)

+ .(3.11)

Indeed, if x is feasible to (3.8), since the infimum in (3.9) is attainable, there exists
some λ(i) ∈ R`(i)

+ such that (x, λ(i)) is feasible to the system (3.10)-(3.11). Conversely,
10



if (x, λ(i)) is feasible to (3.10) and (3.11), then by (3.9), we see that (3.10) implies
(3.8). Replacing (3.8) by (3.10) together with (3.11), the first part of the desired
result follows from Theorem 3.1.

We now derive the optimization problem (3.7). Suppose that (x, λ(i)) satisfies
(3.10) and (3.11). We have two cases:

Case 1. Ji = {j : λ
(i)
j > 0, j = 1, ..., `(i)} 6= ∅. Denote by u(i) the vector

whose components are u
(i)
j , j ∈ Ji. Notice that for any constant α > 0, the conjugate

(αf)∗(x) = αf∗(x/α). For given λ(i) ∈ R`(i)

+ , by Lemma 3.2, we have



`(i)∑

j=1

λ
(i)
j g

(i)
j



∗

(χi) = inf
u(i)





∑

j∈Ji

λ
(i)
j

(
g
(i)
j

)∗
(u(i)

j /λ
(i)
j ) : χi =

∑

j∈Ji

u
(i)
j



 .

Again, by Lemma 3.2, the infimum above is attainable and hence there are u
(i)
j , j ∈ Ji

such that



`(i)∑

j=1

λ
(i)
j g

(i)
j



∗

(χi) =
∑

j∈Ji

λ
(i)
j

(
g
(i)
j

)∗
(u(i)

j /λ
(i)
j ),

χi =
∑

j∈Ji

u
(i)
j .

Case 2. Ji = ∅. Notice that



`(i)∑

j=1

λ
(i)
j g

(i)
j



∗

(w) = sup
u∈Rn

(wT u− 0) =
{ ∞, if w 6= 0,

0, if w = 0.

Since (x, λ(i)) is feasible to (3.10) and (3.11), we conclude that for this case

χi = 0,




`(i)∑

j=1

λ
(i)
j g

(i)
j



∗

(χi) = 0.

Combining the above two cases leads to the optimization problem (3.7).
We see from Theorem 3.3 that the level of complexity of the robust counterpart,

compared with the nominal optimization problem, is determined mainly by the con-
jugate functions (g(i)

j )∗ (j = 1, ..., `(i), i = 1, ..., m) and functions χi (i = 1, ..., m). The
more complicated the conjugate functions are, the more difficult the robust counter-
part is. Notice that the constraint

∑
j∈Ji

u
(i)
j = χi is an explicit expression, and in

some cases, e.g. LP, χi is linear in x, and thus does not add difficulty. We also note
that when `(i) = 1, i.e., when Ki is defined by only one constraint, then u

(i)
j = χi,

in which case the formula
∑

j∈Ji
u

(i)
j = χi will not appear in (3.7). For an arbitrary

function, however, its conjugate function is not given explicitly and hence (3.7) is not
an explicit optimization problem. As a result, to obtain an explicit formulation of
the robust counterpart, one has to compute the conjugate functions of the constraint
functions g

(i)
j , which except for very simple cases is not easy. This motivates us to

investigate in the remainder of the paper under what conditions the robust counter-
part in Theorem 3.3 can be further simplified, avoiding the computation of conjugate
functions.
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4. Explicit reformulation for robust counterparts. For any function f , let

<D(f) =
⋃

x∈dom(f)

∂f(x),

that is, <D(f) is the range of the subdifferential mapping ∂f(·). If f is differentiable,
<D(f) reduces to the range of its gradient mapping, i.e., <D(f) = {∇f(x) : x ∈
dom (f)}. In this section we make the following assumption.

Assumption 4.1. The functions g
(i)
j (j = 1, ..., `(i), i = 1, ..., m) in (3.4) belong

to the set of convex functions f that satisfy the condition

dom(f∗) = <D(f).(4.1)

In fact, by the definition of subdifferential, the following relation always holds for
any proper convex function: dom(f∗) ⊇ <D(f). Condition (4.1) requires the converse
also to be true. Indeed, condition (4.1) holds for many functions. It is evident that
all convex functions defined on a subset of Rn with <D(f) = Rn satisfy condition
(4.1). For example, when the function f is differentiable and strongly convex on Rn,
the gradient ∇f(x) is a strongly monotone function from Rn to Rn. This implies that
∇f(x) is a bijective mapping ([34], Theorem 6.4.4), and hence we have <D(f) = Rn.
A simple example is the quadratic function f = 1

2xT Qx+ bx+ c where Q is a positive
definite matrix, then <D(f) = {Qx + b : x ∈ Rn} = Rn. When <D(f) 6= Rn, (4.1)
can still be satisfied in many cases. Later, we will show that all convex homogeneous
of 1-degree functions satisfy (4.1) trivially, and <D(f) of any function of this class
is a closed bounded region including the origin. Notice that for any (u, x) such that
u ∈ ∂f(x), we have f∗(u) = uT x − f(x). The importance of condition (4.1) is
that under (4.1), for any u ∈ dom(f∗) there is x ∈ dom(f) such that u ∈ ∂f(x)
and therefore f∗(u) = uT x − f(x). Therefore, under Assumption 4.1, the robust
counterpart (3.7) can be represented explicitly. However, we omit the statement of
this general result. We are interested now in functions that have more properties
leading to further simplification of the robust counterpart.

We recall that a function h : Rn → R is said to be positively homogeneous if there
exists a constant p > 0 such that h(λx) = λph(x) for all λ ≥ 0 and x ∈ dom(h). If
such a p exists, we simply say that the function h is homogeneous of p-degree. Notice
that the definition implies 0 ∈ dom(h) and h(0) = 0. We consider the linear space LH

generated by homogeneous functions, i.e., LH is the collection of all functions that are
finite linear combinations of homogeneous functions. Notice that for any real number
α, (αh)(x) is also a homogeneous function if h is homogeneous. Therefore, LH is the
set of all finite sums of homogeneous functions. Clearly, a function f which is the sum
of several homogeneous functions fi is not necessarily homogeneous, unless all fi have
the same homogeneous degree. Linear space LH includes many important classes of
functions. Needless to say, all homogeneous functions (in particular, all norms ‖ · ‖)
are in LH and all polynomial functions are in LH .

The classical Euler’s Homogeneous Function Theorem claims that if f is contin-
uously differentiable and homogeneous of p-degree, then pf(x) = xT∇f(x), where
∇f(x) is the gradient of f. Below, we establish a somewhat different version of the
Euler’s Homogeneous Function Theorem. This version allows the function to be non-
differentiable and non-homogeneous, but belong to LH and be convex.

Lemma 4.1. Let f : Rn → R be a convex function in LH . Thus, f can be
12



represented as f(x) = f1(x) + · · ·+ fN (x) for some N, where each fi is homogeneous
of pi-degree, respectively.

(i) For any x ∈ dom (f), we have

N∑

i=1

pifi(x) = inf
y∈∂f(x)

yT x = sup
y∈∂f(x)

yT x,

i.e., for any y ∈ ∂f(x), we have
∑N

i=1 pifi(x) = yT x.
(ii) Suppose that f : Rn → R is a convex function and is homogeneous of p-degree.

Then for any x ∈ dom (f), and for any y ∈ ∂f(x), we have pf(x) = yT x.
Proof. For any given x ∈ dom(f) and y ∈ ∂f(x), by definition of subdifferential

we have f(u) ≥ f(x) + yT (u − x) for all u ∈ dom(f). Notice that x ∈ dom(f) if and
only if x ∈ dom(fi) for all i = 1, ..., N. Since all fi’s are homogeneous, for any t > 0, we
have u = tx ∈ dom(fi) for all i = 1, ..., N. This in turn implies that u = tx ∈ dom (f)
for any t > 0. Setting u = tx in the above inequality and by using homogeneity, we
have

f(tx) =
N∑

i=1

fi(tx) =
N∑

i=1

tpifi(x) ≥ f(x) + yT (tx− x), for all t > 0.

i.e.,

N∑

i=1

(tpi − 1)fi(x) ≥ (t− 1)yT x, for all t > 0.(4.2)

For t > 1, dividing both sides by t−1 and noting that y is any given element in ∂f(x),
we see from the above inequality that

lim
t→1+

N∑

i=1

tpi − 1
t− 1

fi(x) ≥ sup
y∈∂f(x)

yT x.

Thus, we have
∑N

i=1 pifi(x) ≥ supy∈∂f(x) yT x. Similarly, when t < 1, dividing both
sides of (4.2) by t− 1, we can prove that

N∑

i=1

pifi(x) = lim
t→1−

N∑

i=1

tpi − 1
t− 1

fi(x) ≤ inf
y∈∂f(x)

yT x.

Combining the last two inequalities yields the desired result (i). Setting N = 1, we
obtain the result (ii) from (i).

Notice that when N > 1 Lemma 4.1 requires convexity of f , but does not require
convexity of individual functions fi, which can be nonconvex. The next theorem
is the main result of this section, which states that the robust counterpart can be
represented explicitly by using only the nominal data and the constraint functions gi

together with their sub-differentials.
Theorem 4.2. Let Ki (i = 1, ..., m) be given by (3.4) where each g

(i)
j (j =

1..., `(i), i = 1, ..., m) is a closed proper convex function and belongs to the linear space
LH , and is represented as

g
(i)
j (x) =

m(ij)∑

k=1

h
(ij)
k (x),(4.3)
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where each h
(ij)
k (x) is homogeneous of p

(ij)
k -degree, and each m(ij) ≥ 1 is a given

integer number. Let g
(i)
j satisfy Assumption 4.1 and Slater’s condition for each i.

Then the robust programming problem (3.2) is equivalent to

min cT x

s.t.
(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

λ
(i)
j ∆(i)

j + Υ(i) ≤ bi, i = 1, ..., m

χi =

{ ∑
j∈Ji

u
(i)
j , if Ji 6= ∅,

0, otherwise,
i = 1, ..., m,(4.4)

λ
(i)
j ≥ 0, j = 1, ..., `(i); i = 1, ..., m,

F (x) ≤ 0,

where χi = W (i)(x)⊗ V (i)(x) and Ji = {j : λ
(i)
j > 0, j = 1, ..., `(i)}, and

Υ(i) =

{ ∑
j∈Ji

λ
(i)
j

(∑m(ij)

k=1 (p(ij)
k − 1)h(ij)

k (w(i)
j )

)
, if Ji 6= ∅,

0, otherwise
,

where w
(i)
j satisfies that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w(i)

j ) for j ∈ Ji 6= ∅.
Proof. Let f ∈ LH be any convex function such that f(x) = f1(x) + · · ·+ fN (x)

where fi is homogeneous of pi-degree, and let f satisfy condition (4.1). Let y∗ be any
element in dom(f∗) = <D(f). This implies that there exists some point x∗ ∈ dom (f)
such that y∗ ∈ ∂f(x∗). Then, for any x ∈ dom(f), we have f(x) ≥ f(x∗)+(y∗)T (x−x∗)
which can be written as (y∗)T x − f(x) ≤ (y∗)T x∗ − f(x∗) for all x ∈ dom(f). This
together with Lemma 4.1 implies that

f∗(y∗) = (y∗)T x∗ − f(x∗) =
N∑

i=1

pifi(x∗)− f(x∗) =
N∑

i=1

(pi − 1)fi(x∗).(4.5)

Setting f = g
(i)
j and y∗ = u

(i)
j /λ

(i)
j , where g

(i)
j is given by (4.3), it follows from (4.5)

that

(
g
(i)
j

)∗
(u(i)

j /λ
(i)
j ) =

m(ij)∑

k=1

(p(ij)
k − 1)h(ij)

k (w(i)
j )

where w
(i)
j can be any point such that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w(i)

j ). Substituting the above
into Theorem 3.3, we have the desired result.

We now consider the case in which all the function g
(i)
j (j = 1, ..., `(i)) are homoge-

neous. This is a special case of (4.3) with m(ij) = 1 (for all j = 1, ..., `(i), i = 1, ..., m).
We have the following result.

Corollary 4.3. Let Ki be given by (3.4) where each g
(i)
j (j = 1, ..., `(i)) is

convex and homogeneous of p
(i)
j -degree, and g

(i)
j satisfy Assumption 4.1. Then the

robust programming problem (3.2) is equivalent to (4.4), but Υ(i) is givan as follows

Υ(i) =

{ ∑
j∈Ji

(p(i)
j − 1)λ(i)

j g
(i)
j (w(i)

j ), if Ji 6= ∅,
0, otherwise

,
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where w
(i)
j satisfies that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w(i)

j ) for j ∈ Ji 6= ∅.
It is worth mentioning that Υ(i) can be written as

Υ(i) =

{ ∑
j∈Ji

(
1− 1/p

(i)
j

)
(u(i)

j )T w
(i)
j , if Ji 6= ∅,

0, otherwise.

This follows from (ii) of Lemma 4.1. Actually, for any function f satisfying Assump-
tion 4.1, (4.5) can also be written as f∗(y∗) = (y∗)T x∗ − f(x∗) = (1 − 1/p)(y∗)T x∗.
Therefore,

(
g
(i)
j

)∗
(u(i)

j /λ
(i)
j ) = (1− 1/p

(i)
j )(u(i)

j )T w
(i)
j /λ

(i)
j

for some w
(i)
j such that u

(i)
j /λ

(i)
j ∈ ∂g

(i)
j (w(i)

j ).
Remark 4.1. (i) Notice that in Corollary 4.3 we do not require Slater’s condition,

since it was shown in [32] that for homogeneous convex optimization, Lagrangian du-
ality results hold without Slater’s condition. (ii) It should be mentioned that Slater’s
condition in Theorem 4.2 is not essential, and can be removed in many situations,
or enforced by slightly changing the constants ∆(i)

j in (3.4). Any function g in the
linear space LH is the sum of some homogeneous functions whose value is zero at
the origin. Thus 0 ∈ Ki implies that 0 = g

(i)
j (0) ≤ ∆(i)

j for j = 1, ..., `(i), i.e., all

constants ∆(i)
j must be nonnegative in (3.4) when g

(i)
j ∈ LH . If all ∆(i)

j are positive,
Slater’s condition holds trivially (this is the situation in most practical applications;
for example, when g

(i)
j is a norm, ∆(i)

j is positive since otherwise the uncertainty set

contains at most one point). If not all ∆(i)
j are positive, replacing ∆(i)

j in (3.4) by

∆̂(i)
j where ∆̂(i)

j = ∆(i)
j if ∆(i)

j > 0, and ∆̂(i)
j = ε otherwise, for some small ε > 0,

allows to satisfy Slater’s condition.
In the next section, we show that in homogeneous cases the above results can be

further improved without making Assumption 4.1.

5. Homogeneous cases. We now show that for homogeneous of 1-degree func-
tions, Assumption 4.1 holds trivially, and for a degree p 6= 1, a simple transformation
will make the resulting functions satisfy Assumption 4.1. We also further simplify the
reformulation. We first prove some basic properties of homogeneous functions. Part
(i) of the following lemma in fact follows from [30], but for completeness we provide a
simple proof. It appears that the result of part (ii) of the following lemma should be
valid for non-differentiable functions as well, but for simplicity of the proof we state
it for twice differentiable functions.

Lemma 5.1. Let f : dom(f) ⊆ Rn → R be convex and homogeneous of p-degree.
(i) If the degree p > 1, then f(x) ≥ 0 over its domain, and if p < 1, then f(x) ≤ 0

over its domain.
(ii) Let f be twice differentiable over its domain. Then for p > 1, the function

(f(x))1/p is convex and homogeneous of 1-degree; For p < 1, the function −(−f(x))1/p

is convex and homogeneous of 1-degree.
Proof. Let x be any point in dom (f). By homogeneity and convexity of f, we

have

(1/2)p
f(x) = f(x/2) ≤ f(x)/2 + f(0)/2 = f(x)/2.

Thus, [(1/2)p − 1/2] f(x) ≤ 0, and hence the result (i) follows.
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We now prove the result of part (ii). Consider the case of p > 1. By (i), p > 1
implies that f(x) ≥ 0 over its domain. Let ε > 0 be any given positive number. Denote
gε(x) := (f(x) + ε)1/p. Notice that dom(gε) = dom (f), and gε is twice differentiable.
We prove first that gε is a convex function for any given ε > 0. It suffices to show
that ∇2gε(x) º 0 (positive semi-definite). Since

∇2gε(x) =
1
p
(f(x) + ε)

1
p−2

[(
1
p
− 1

)
∇f(x)∇f(x)T + (f(x) + ε)∇2f(x)

]
,

it is sufficient to prove that
(

1
p
− 1

)
∇f(x)∇f(x)T + (f(x) + ε)∇2f(x) º 0.

By Schur complementarity property, this is equivalent to showing that
[ p

p−1 (f(x) + ε) ∇f(x)T

∇f(x) ∇2f(x)

]
º 0.

Thus, we need to show for all (t, u) ∈ Rn+1 that

ϕ(t, u) = (t, uT )
[ p

p−1 (f(x) + ε) ∇f(x)T

∇f(x) ∇2f(x)

](
t
u

)

=
p

p− 1
t2(f(x) + ε) + 2t∇f(x)T u + uT∇2f(x)u ≥ 0.

Case 1: t = 0. By convexity of f , uT∇2f(x)u ≥ 0 for any u ∈ Rn, thus we have
ϕ(t, u) ≥ 0.

Case 2: t 6= 0. In this case, it suffices to show that for any u ∈ Rn

ϕ(1, u) =
p

p− 1
(f(x) + ε) + 2∇f(x)T u + uT∇2f(x)u ≥ 0.

Since ∇2f(x) º 0, the function ϕ(1, u) is convex with respect to u, and its minimum
is attained if there exists some u∗ such that

∇f(x) = −∇2f(x)u∗,(5.1)

and the minimum value is

ϕ(1, u∗) =
p

p− 1
(f(x) + ε) +∇f(x)T u∗.

By Euler’s formula, we have xT∇f(x) = pf(x). Differentiating both sides of this
equation, we have (p−1)∇f(x) = ∇2f(x)x, which shows that the vector u∗ = − 1

p−1x

satisfies equation (5.1), thus the minimum

ϕ(1, u∗) =
p

p− 1
(f(x) + ε)− 1

p− 1
∇f(x)T x =

p

p− 1
ε > 0.

The last equation follows from Euler’s formula again. Therefore ϕ(t, u) ≥ 0 for any
(t, u) ∈ Rn+1. Convexity of gε(x) follows. Since ε > 0 is arbitrary and (f(x))1/p =
limε→0 gε(x), we conclude that (f(x))1/p is convex.

The case of p < 1 is considered analogously.
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According to our definition of a homogeneous function, its domain includes the
origin. The next lemma shows that Assumption 4.1 is satisfied for any homogeneous
of 1-degree convex function, and its subdifferential at the origin defines the domain
of the conjugate function.

Lemma 5.2. Let h : dom(h) ⊆ RN → R be a closed proper convex function and
be homogeneous of 1-degree. Then

<D(h) =
⋃

x∈dom(h)

∂h(x) = ∂h(0).

Moreover, dom(h∗) = <D(h) = ∂h(0).
Proof. . Let z be any subgradient of h at x, then for any given y and any positive

number λ we have h(λy) ≥ h(x) + zT (λy− x). Since λ is positive, dividing both sides
of the inequality by λ, and using homogeneity of h, we have

h(y) ≥ h(x)− zT x

λ
+ zT y.

Let λ →∞. We have h(y) ≥ zT y which holds for any y. Consider the set:

S := {z : zT y ≤ h(y) for any y ∈ dom(h)}.
From the above proof, we have seen that ∂h(x) ⊆ S for any x, i.e., <D(h) ⊆ S. In
particular, we have ∂h(0) ⊆ S. Conversely, since h(0) = 0, we see that any z ∈ S is a
subgradient of h at x = 0. Thus, we have S ⊆ ∂h(0). We conclude that <D(h) = S =
∂h(0). The first part of the lemma has been proved.

We now prove the second part of the lemma. For any y∗ ∈ <D(h), there exists an
x∗ such that y∗ ∈ ∂f(x∗), and by definition of sub-gradient, we have that (y∗)T x −
h(x) ≤ (y∗)T x∗ − h(x∗) for any x ∈ dom(h), which implies that h∗(y∗) < ∞, i.e.,
y∗ ∈ dom(h∗). Thus, the inclusion <D(h) ⊆ dom(h∗) holds trivially (we mentioned
this observation at the beginning of Section 4).

Now we show that converse inclusion is also valid. Suppose that y∗ ∈ dom(h∗).
We show that y∗ ∈ S. Notice that for homogeneous of 1-degree function h, dom(h) is
a cone. Thus, for any given positive number λ, we have

λh∗(y∗) = sup
x∈dom(h)

(y∗)T (λx)− λh(x) = sup
x∈dom(h)

(y∗)T (λx)− h(λx) = h∗(y∗)

since λ > 0 can be any positive number, we have h∗(y∗) = 0, which in turn implies
that (y∗)T x − h(x) ≤ h∗(y∗) = 0 for any x ∈ dom(h), and therefore y∗ ∈ S. The
desired result follows.

We can now simplify the robust counterpart for the homogeneous 1-degree case.
Theorem 5.3. Let Ki be defined by (3.4) where all the functions g

(i)
j , i =

1, ..., `(i), are closed proper convex functions and are homogeneous of 1-degree. Then
the robust counterpart (3.2) is equivalent to

min cT x

s.t.
(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

λ
(i)
j ∆(i)

j ≤ bi, i = 1, ..., m,

χi =

{ ∑
j∈Ji

u
(i)
j , if Ji 6= ∅,

0, otherwise,
i = 1, ..., m,(5.2)

17



λ
(i)
j ≥ 0, j = 1, ..., `(i), i = 1, ..., m,

F (x) ≤ 0,

where χi and Ji are the same as in Theorem 4.1, and u
(i)
j /λ

(i)
j ∈ ∂g

(i)
j (0) for j ∈ Ji 6=

∅, i = 1, ..., m.
Proof. Under the conditions of the theorem, Lemma 5.2 claims that the Assump-

tion 4.1 holds, and moreover <D(g(i)
j ) = ∂g

(i)
j (0) for all i = 1, ..., `(i). From the proof of

Theorem 4.2, when Ji 6= ∅, we can set w
(i)
j = 0, and hence Υ(i) =

(
g
(i)
j

)∗
(u(i)

j /λ
(i)
j ) =

0. Thus, in this case, Υ(i) ≡ 0 no matter what Ji is. Therefore, the robust counter-
part (3.2) eventually reduces to (5.2). As mentioned in Remark 4.1, we do not need
Slater’s condition for homogeneous cases.

When g
(i)
j is homogeneous of p

(i)
j -degree where p

(i)
j 6= 1 and twice differentiable,

by (ii) of Lemma 5.1, we may transform it into a homogeneous of 1-degree function.
Then, we can use Theorem 5.3. When p

(i)
j < 1, by Lemma 5.1, the value of g

(i)
j is

non-positive, thus the constraint g
(i)
j ≤ ∆(i)

j becomes redundant (since ∆(i)
j ≥ 0) and

thus can be removed from the list of constraints defining Ki. Therefore, without loss
of generality, we assume that all p

(i)
j ≥ 1. We now have the following result.

Theorem 5.4. Let Ki be defined by (3.4) where the functions g
(i)
j , j = 1, ..., `(i),

are twice differentiable, convex and homogeneous of p
(i)
j -degree (p(i)

j ≥ 1), respectively.
Then, the robust programming problem (3.2) is equivalent to

min cT x

s.t.
(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

λ
(i)
j ∆̃(i)

j ≤ bi, i = 1, ..., m,

χi =

{ ∑
j∈Ji

u
(i)
j if Ji 6= ∅,

0, otherwise,
i = 1, ..., m,

λ
(i)
j ≥ 0, j = 1, ..., `(i), i = 1, ..., m,

F (x) ≤ 0,

where χi and Ji are the same as in Theorem 4.1, u
(i)
j ∈ λ

(i)
j ∂G(i)

j (0) for j ∈ Ji 6=
∅, i = 1, ..., m and

G(i)
j =

{
(g(i)

j )1/p
(i)
j , p

(i)
j > 1,

g
(i)
j , p

(i)
j = 1

, ∆̃(i)
j =

{
(∆(i)

j )1/p
(i)
j , p

(i)
j > 1,

∆(i)
j , p

(i)
j = 1.

(5.3)

Proof. We note that for p
(i)
j > 1, since g

(i)
j and ∆(i)

j are nonnegative by Lemma

5.1, the constraint g
(i)
j ≤ ∆(i)

j in (3.4) is equivalent to (g(i)
j )1/p

(i)
j ≤ (∆(i)

j )1/p
(i)
j . Define

G(i)
j and ∆̃(i)

j as in (5.3). Then this result is an immediate consequence of Theorem
5.3 and Lemma 5.1.

From Theorems 5.3 and 5.4, the structure of robust counterparts of uncertain
optimization problems mainly depends on the subdifferentials of g

(i)
j or G(i)

j at the

origin when functions g
(i)
j are homogeneous.

Notice that any norm is convex and homogeneous of 1-degree and can be defined
on the whole space (but the converse is not true, for example consider f(t) : R → R
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given by f(t) = t if t ≥ 0 and f(t) = 2|t| if t < 0. Clearly, f is convex and homogeneous
of 1-degree, but it is not a norm, because f(−1) 6= f(1)). Theorem 5.3 can be
immediately applied to the case of an uncertainty set defined by a finite system of
norm inequalities. For this case, however, in addition to the above formulation of the
robust counterpart via subgrandients at the origin, we can further simplify it using
dual norms and eliminating all variables λ

(i)
j . For any norm ‖ · ‖, we denote its dual

norm by ‖·‖∗, i.e., ‖u‖∗ = sup‖x‖≤1 uT x. When g
(i)
j is a norm, we denote it by ‖·‖(ij),

and its dual norm by ‖ · ‖(ij)∗ .

Corollary 5.5. Let Ki be defined by (3.4) where all g
(i)
j (j = 1, ..., `(i), i =

1, ..., m) are norms, denoted respectively by ‖ · ‖(ij)(j = 1, ..., `(i), i = 1, ..., m), then
the robust counterpart (3.2) is equivalent to

min cT x

s.t.
(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

∆(i)
j

∥∥∥u
(i)
j

∥∥∥
(ij)

∗
≤ bi, i = 1, ..., m,

χi =
`(i)∑

j=1

u
(i)
j , i = 1, ..., m,

F (x) ≤ 0.

where χi = W (i)(x)⊗ V (i)(x).
Proof. Notice that u ∈ ∂‖0‖ if and only if uT x ≤ ‖x‖ for any x which can be

written as uT (x/‖x‖) ≤ 1, i.e., ‖u‖∗ ≤ 1. Therefore, for j ∈ Ji 6= ∅, u
(i)
j /λ

(i)
j ∈ ∂g

(i)
j (0)

is equivalent to ‖u
(i)
j

λ
(i)
j

‖(ij)∗ ≤ 1, or just ‖u(i)
j ‖(ij)∗ ≤ λ

(i)
j . Therefore, the constraints of

(5.2) can be further written as

(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

λ
(i)
j ∆(i)

j ≤ bi, i = 1, ..., m,

χi =

{ ∑
j∈Ji

u
(i)
j , if Ji 6= ∅,

0, otherwise
, i = 1, ..., m,

λ
(i)
j ≥ 0, j = 1, ..., `(i); i = 1, ..., m,

‖u(i)
j ‖(ij)∗ ≤ λ

(i)
j , ∀j ∈ Ji 6= ∅, i = 1, ..., m,

F (x) ≤ 0,

It is evident that the above system is equivalent to

(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

λ
(i)
j ∆(i)

j ≤ bi, i = 1, ..., m,

‖u(i)
j ‖(ij)∗ ≤ λ

(i)
j , j = 1, ..., `(i); i = 1, ..., m,

χi =
`(i)∑

j=1

u
(i)
j , i = 1, ..., m,

λ
(i)
j ≥ 0, j = 1, ..., `(i); i = 1, ..., m,
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F (x) ≤ 0,

Eliminating the variables λ
(i)
j , the above system becomes

(
W (i)(x)

)T

M
(i)

V (i)(x) +
`(i)∑

j=1

∆(i)
j

∥∥∥u
(i)
j

∥∥∥
(ij)

∗
≤ bi, i = 1, ..., m,

χi =
`(i)∑

j=1

u
(i)
j , i = 1, ..., m,

F (x) ≤ 0.

The desired result is obtained.

6. Special cases. Complexity of robust counterparts depends both on the struc-
ture of the original optimization problems and on the structure of the uncertainty set.
The harder the original optimization problem is and/or the more complex the uncer-
tainty set is, the more difficult the robust counterpart is. In this section, we demon-
strate how the general results developed above can be simplified by considering special
optimization problems and/or special uncertainty sets. We take linear programming
problem (LP) as an example of a special optimization problem, and take the widely
used uncertainty set (3.5) as an example of a special uncertainty set. Thus we obtain
new results for problem (2.1) with uncertainty set defined by (3.5) and for robust
LP with general uncertainty sets. For this simplest of the considered cases (robust
LP with uncertainty set (3.5), we show that our results contain a number of related
results in the literature, but under less restrictive assumptions, thus generalizing and
strengthening these results.

6.1. Problem (2.1) with uncertainty set U defined by (3.5). Now we
consider the uncertainty set (3.5), i.e.,

U =:



D

∣∣∣∣∣∣
∃z ∈ R|N | : D = D0 +

∑

j∈N

∆Djzj , ‖z‖ ≤ Ω



 .

Since this model has been widely used in the literature (see for instance, [5]-[14]), it is
interesting to see how our general results can be simplified when reduced to the above
uncertainty set. Let H denote the matrix whose columns are ∆Dj , j = 1, ..., |N |, i.e.,

H = [∆D1, ...,∆D|N |].

Define the function

g(u) = inf{‖z‖ : Hz = u}.(6.1)

Then g(u) is convex and homogeneous of 1-degree (convexity is proven in [36], and
homogeneity can be checked directly). Now we show that the uncertainty set (3.5)
can be represented equivalently in the form (3.4).

Lemma 6.1. Consider the uncertainty set U given by (3.5). Let K = {u| g(u) ≤
Ω}, where g is given by (6.1). Then we have K = U − {D0}.

Proof. Let u be any point in K. By the definition of g(u), there exists a point
z∗ such that g(u) = ‖z∗‖ and Hz∗ = u. Since u ∈ K implies g(u) ≤ Ω, we have
‖z∗‖ ≤ Ω. By the definition of U , we see that u ∈ U − {D0}.
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Conversely, suppose that u ∈ U − {D0}. Then there exists a point D ∈ U such
that u = D−D0. By the definition of U , there exists a point z such that u = Hz and
‖z‖ ≤ Ω. By the definition of g, this implies g(u) ≤ Ω, and hence u ∈ K.

If the vectors {∆Dj : j = 1, ..., N} are linearly independent, from Hz = u we
have z = (HT H)−1HT u. Thus, we have

U − {D0} = K =
{
u

∣∣g(u) = ‖(HT H)−1HT u‖ ≤ Ω
}

.

Since in general |N | is less than the number of data of the problem, the term HT u
can be zero even when u 6= 0. Thus, g(u) is not a norm in this case, unless {∆Dj :
j = 1, ..., N} are linearly independent and |N | equals to the number of data of the
problem, in which case H is an |N | × |N | invertible matrix.

Notice that K here has only one constraint which corresponds to the case `(i) = 1
for all i = 1, ..., m, and by Theorem 16.3 in [36] the conjugate function of g(u) is given
by

g∗(w) ==
{

0, ‖HT w‖∗ ≤ 1,
∞, otherwise,

(6.2)

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖.
We now consider our problem (2.1) where data M (i)’s are subject to uncertainty

of the type (3.5), i.e., for each i, the data M (i) belong to the set


M (i)

∣∣∣∣∣∣
∃z ∈ R|N

(i)| : M (i) = M
(i)

0 +
∑

j∈N(i)

∆M
(i)
j zj , ‖z‖(i) ≤ Ω(i)



 .(6.3)

This can be equivalently written as

Ui =



vec(M(i))

∣∣∣∣∣∣
∃z ∈ R|N

(i)| : vec(M(i)) = vec(M
(i)
0 ) +

∑

j∈N(i)

vec

(
∆M

(i)
j

)
zj , ‖z‖(i) ≤ Ω(i)



 ,

(6.4)

i = 1, ..., m, where N (i) is the corresponding index set (not to be confused with Ni

- the dimension of matrix M (i)), and Ω(i) is a given number. Note that we add the
index (i) to the norm (i.e., ‖ · ‖(i)), which allows us to use different norms for different
constraints. Accordingly, we have the function

g(i)(u) = inf{‖z‖(i) : H(i)z = u},

where H(i) =
[
vec(∆M

(i)
1 ), vec(∆M

(i)
2 ), ..., vec(∆M

(i)

|N(i)|)
]

and thus by Lemma 6.1
we have

Ui − {vec(M
(i)

)} = Ki = {u|g(i)(u) ≤ Ω(i)}.

Using (6.2), we have

(g(i))∗(w) =
{

0, ‖(H(i))T w‖(i)∗ ≤ 1
∞, otherwise.

(6.5)

Now we have all necessary ingredients to develop our result. We first note that in this
case, `(i) = 1 for all i = 1, ..., m since the uncertainty set Ui has only one constraint
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g(i)(u) ≤ Ω(i). So, λ(i) is reduced to a scalar. Therefore, the constraints of the robust
counterpart (3.7) that correspond to index i reduce to

(
W (i)(x)

)T

M
(i)

V (i)(x) + λ(i)Ω(i) + Υ(i) ≤ bi,(6.6)

χi =
{

u(i), λ(i) > 0,
0, λ(i) = 0,

(6.7)

where

Υ(i) =
{

λ(i)(g(i))∗(u(i)/λ(i)), λ(i) > 0,
0, λ(i) = 0.

(6.8)

When λ(i) > 0, the system (6.6)-(6.8) becomes

(
W (i)(x)

)T

M
(i)

V (i)(x) + λ(i)Ω(i) + λ(i)(g(i))∗(u(i)/λ(i)) ≤ bi,

χi = u(i).

Eliminating u(i) and using (6.5), the above system is equivalent to

(
W (i)(x)

)T

M
(i)

V (i)(x) + λ(i)Ω(i) ≤ bi,

‖(H(i))T (χi)‖(i)∗ ≤ λ(i).

This can be written as
(
W (i)(x)

)T

M
(i)

V (i)(x) + Ω(i)‖(H(i))T χi‖(i)∗ ≤ bi.(6.9)

When λ(i) = 0, the system (6.6)-(6.8) is written as

(
W (i)(x)

)T

M
(i)

V (i)(x) ≤ bi,

χi = 0.

Clearly, this system can be written as (6.9), too. Hence, by Theorem 3.3, we have the
following result.

Theorem 6.2. Under the uncertainty set (6.3) (or equally, (6.4)), the robust
counterpart (3.2) is equivalent to

min cT x

s.t.
(
W (i)(x)

)T

M
(i)

V (i)(x) + Ω(i)
∥∥∥(H(i))T χi

∥∥∥
(i)

∗
≤ bi, i = 1, ..., m,

F (x) ≤ 0,

where χi = W (i)(x)⊗V (i)(x) and H(i) =
[
vec(∆M

(i)
1 ), vec(∆M

(i)
2 ), ...,∆vec(M (i)

N(i))
]
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6.2. Linear programming with general uncertainty sets. Consider the LP
problem discussed in Section 2: min{cT x : Ax ≤ b, x ≥ 0}, where A ∈ Rm×n, b ∈ Rm

and c ∈ Rn. As discussed in Section 2, without loss of generality, we assume that only
the coefficients of A are subject to uncertainty.

There are two widely used ways to characterize the uncertain data of LP problems.
One is the “row-wise” uncertainty model (a separate uncertainty set is specified for
each row of A), and the other is what we may call the “global” uncertainty model (one
uncertainty set for the whole matrix A is specified). We first consider the situation
of “global” uncertainty.

Suppose that A is allowed to vary in such a way that its deviations from a given
nominal A fall in a bounded convex set K of Rmn that contains the origin (zero).
That is, the uncertainty set is defined as

U = {Ã|vec(Ã)− vec(A) ∈ K},(6.10)

where K is defined by convex inequalities:

K = {u| gj(u) ≤ ∆j , j = 1, ..., `}.(6.11)

Here ∆j ’s are constants, and all gj are closed proper convex functions. Then the
robust counterpart of the LP problem with uncertainty set U is

min{cT x : Ãx ≤ b, x ≥ 0, ∀Ã ∈ U}.(6.12)

First of all, from Section 2 we know that for LP we can drop indexes i for g
(i)
j

and ∆(i)
j in the previous discussion, since in the reformulation of LP as a special

case of (2.1) and (2.2), the data matrix for each constraint (2.2) is the same, i.e.,

M (i) =
[

A
0

]

n×n

for all i (see Section 2). Second, we note that for LP, the vector

χi = W (i)⊗V (i) = ei⊗x is linear in x. Therefore, the results in previous sections can
be further simplified for LP. For example, Theorems 3.1, 3.3, 5.4, and Corollary 5.5
can be stated as follows (Theorems 6.3 through 6.5 and Corollary 6.6, respectively).

Theorem 6.3. The robust LP problem (6.12) is equivalent to the convex pro-
gramming problem

min cT x

s.t. āT
i x + δ∗(χi|cl(co(K))) ≤ bi, i = 1, ..., m,

x ≥ 0,

where cl(co(K)) is the closed convex hull of the set K, and χi = ei ⊗ x.
Since δ∗(·|cl(coK)) is a closed convex function, the robust counterpart of any LP

problem with the uncertainty set denoted by (6.10) and (6.11) is a convex program-
ming problem.

Theorem 6.4. Let K be given by (6.11) where gj(j = 1..., `) are arbitrary closed
proper convex functions. Suppose that Slater’s condition holds, i.e., there exists a
point u0 such that gj(u0) < ∆j for all j = 1, ..., `. Then the robust LP problem (6.12)
is equivalent to

min cT x

s.t. āT
i x +

∑̀

j=1

λ
(i)
j ∆j +


∑̀

j=1

λ
(i)
j gj



∗

(χi) ≤ bi, i = 1, ..., m,
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λ
(i)
j ≥ 0, j = 1, ..., `; i = 1, ..., m,

x ≥ 0,

or equivalently

min cT x

s.t. āT
i x +

∑̀

j=1

λ
(i)
j ∆j + Υ(i) ≤ bi, i = 1, ..., m,

χi =

{ ∑
j∈Ji

u
(i)
j , if Ji 6= ∅,

0, otherwise
, i = 1, ..., m,(6.13)

λ
(i)
j ≥ 0, j = 1, ..., `; i = 1, ..., m,

x ≥ 0,

where χi = ei ⊗ x, and Ji = {j : λ
(i)
j > 0, j = 1, ..., `}, and

Υ(i) =

{ ∑
j∈Ji

λ
(i)
j g∗j (u(i)

j /λ
(i)
j ), if Ji 6= ∅,

0, otherwise.

Remark 6.1. (i) For LP, the constraint “χi =
∑

j∈Ji
u

(i)
j ” is a linear constraint.

(ii) It is well known that for any convex function f , the function f̂(x, t) = tf(x/t),
where t > 0, is also convex in (x, t), and is positive homogeneous of 1-degree, that is,
f̂(αx, αt) = αf̂(x, t), for any α > 0. Problem (6.13) shows that all functions involved
are homogeneous of 1-degree with respect to the variables (x, λ(i), u(i)). Thus, the
robust LP problem (6.12) is not only a convex programming problem, but also a
homogeneous programming problem, i.e., an optimization problem where all functions
involved are homogeneous.

Theorem 6.5. Let K be defined by (6.11) where the functions gj , j = 1, ..., `,
are twice differentiable, convex and homogeneous of pj-degree (pj ≥ 1), respectively.
Then, the robust LP problem (6.12) is equivalent to

min cT x

s.t. āT
i x +

∑̀

j=1

λ
(i)
j ∆̃j ≤ bi, i = 1, ..., m,

χi =

{ ∑
j∈Ji

u
(i)
j , if Ji 6= ∅,

0, otherwise,
, i = 1, ..., m,

λ
(i)
j ≥ 0, j = 1, ..., `; i = 1, ..., m,

x ≥ 0,

where χi and Ji are the same as in Theorem 6.4, u
(i)
j ∈ λ

(i)
j ∂Gj(0) for j ∈ Ji 6= ∅, i =

1, ..., m and

Gj =
{

(gj)1/pj , pj > 1,
gj , pj = 1

, ∆̃j =
{

(∆j)1/pj , pj > 1,
∆j , pj = 1.
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Corollary 6.6. Let K be defined by (6.11) where all gj (j = 1, ..., `) are norms,
denoted respectively by ‖ · ‖(j), j = 1, ..., `, then the robust counterpart (6.12) is equiv-
alent to

min cT x

s.t. āT
i x +

∑̀

j=1

∆j‖u(i)
j ‖(j)∗ ≤ bi, i = 1, ..., m,

ei ⊗ x =
∑̀

j=1

u
(i)
j , i = 1, ..., m,

x ≥ 0.

Now we briefly discuss the situation of “row-wise” uncertainty sets. In this case, in
order to apply our general results, we reformulate LP in the form (2.1) in a different
way than in Section 2. Consider functions fi(x) of the form (2.2), where W (i)(x) =
ei ∈ Rn, V (i)(x) = x ∈ Rn (same as in Section 2). Throughout the rest of the paper,
we denote by Ai(i = 1, ..., m) the ith row of A. Thus, Ai is an n-dimensional row
vector. The n×n matrix M (i) is the matrix having Ai as its ith row and 0 elsewhere,
i.e.

M (i) =




0
Ai

0




n×n

, i = 1, ..., m.(6.14)

Then the ith constraint of Ax ≤ b can be written as

fi = (W (i))T M (i)V (i) ≤ bi(6.15)

for i = 1, ..., m. Then applying the results of Sections 3,4,5 to the optimization problem
(2.1) with the above inequality constraints and F (x) = −x ≤ 0, we can obtain a
formulation for robust LP with “row-wise” uncertainty sets. We omit these results.

The formulation for other special cases such as LCP and QP can be derived
similarly; we leave these derivations to interested readers.

6.3. Linear programming with uncertainty set of type (3.5). In this sec-
tion, we consider the LP problem min{cT x : Ax ≤ b, x ≥ 0} under uncertainty of type
(3.5). We will show that our results in this section include a number of recent results
on robust LP in the literature as special cases. From Theorem 6.2 and 6.4, we have
the following result.

Theorem 6.7. (i) Under the “row-wise” uncertainty set

Ui =



Ai

∣∣∣∣∣∣
∃u ∈ RN(i)

: Ai = Ai +
∑

j∈N(i)

∆A
(i)
j uj , ‖u‖(i) ≤ Ω(i)



 ,(6.16)

the robust counterpart of LP is equivalent to

min cT x

s.t. āT
i x + Ω(i)

∥∥∥∥
(
H(i)

)T

x

∥∥∥∥
(i)

∗
≤ bi, i = 1, ..., m,(6.17)

x ≥ 0.
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where the matrix H(i) =
[(

∆A
(i)
1

)T

,
(
∆A

(i)
2

)T

, ...,
(
∆A

(i)

|N(i)|

)T
]

.

(ii) Under the “global” uncertainty set

U =



A

∣∣∣∣∣∣
∃u ∈ R|N | : A = A +

∑

j∈N

∆Ajuj , ‖u‖ ≤ Ω



 ,(6.18)

where A is m× n matrix, the robust counterpart of LP is equivalent to

min cT x

s.t. āT
i x + Ω

∥∥∥H̃T χ̃i

∥∥∥
∗
≤ bi, i = 1, ..., m,(6.19)

x ≥ 0.

where the matrix H̃ = [vec(∆A1), vec(∆A2), ..., vec(∆A|N |)] and χ̃i = e
(m)
i ⊗ x where

e
(m)
i denotes the ith column of the m×m identity matrix. Equivalently, the inequality

(6.19) can be written as

āT
i x + Ω

∥∥∥∥
(
H̃(i)

)T

x

∥∥∥∥
∗
≤ bi, i = 1, ..., m

where the matrix H̃(i) =
[
(∆A1)T e

(m)
i , (∆A2)T e

(m)
i , ..., (∆A|N |)T e

(m)
i

]
.

Proof. To prove the result (i), we show that it is an immediate corollary of
Theorem 6.2. To apply Theorem 6.2, we first reformulate the LP in the form (2.1) as
we did at the end of Section 6.2. The ith constraint of Ax ≤ b, i.e., Aix ≤ bi can be
written as (6.15) where M (i) is given by (6.14). Clearly, we have

vec(M (i)) = ei ⊗AT
i , vec(M

(i)
) = ei ⊗A

T

i .

Notice that when Ai belongs to the uncertainty set (6.16), then the vec(M (i)) belongs
to the following uncertainty set:


vec(M(i))

∣∣∣∣∣∣
∃u ∈ R|N

(i)| : vec(M(i)) = ei ⊗A
T
i +

∑

j∈N(i)

(
ei ⊗ (∆A

(i)
j )T

)
uj , ‖u‖(i) ≤ Ω(i)



 .

By Theorem 6.2, the robust LP is equivalent to

min cT x

s.t. āT
i x + Ω(i)

∥∥∥∥
(
P (i)

)T

χi

∥∥∥∥
(i)

∗
≤ bi, i = 1, ..., m,

x ≥ 0,

where χi = ei ⊗ x and the matrix

P (i) =
[
ei ⊗ (∆A

(i)
1 )T , ei ⊗ (∆A

(i)
2 )T , ..., ei ⊗ (∆A

(i)

|N(i)|)
T
]
.

Notice that
(
P (i)

)T

χi =
[
(∆A

(i)
1 )T , (∆A

(i)
2 )T , ..., (∆A

(i)

|N(i)|)
T
]T

x.
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Therefore, the result (i) holds.
Using the uncertainty set (6.18), item (ii) can also be proved by applying Theorem

6.2. In fact, we can reformulate the LP in the form of (2.1) as in Section 2 where all

the data matrix M (i) are equal to
[

A
0

]

n×n

. Notice that the uncertainty set (6.18)

can be written as{
vec

([
A
0

]) ∣∣∣∣∣∃u ∈ R|N| : vec

([
A
0

])
= vec

([
A
0

])
+

∑
j∈N

vec

([
∆Aj

0

])
uj , ‖u‖ ≤ Ω

}
.

This is the uncertainty set of the form (6.4). Thus, by Theorem 6.2, robust LP is
equivalent to

min cT x

s.t. āT
i x + Ω‖HT χi‖∗ ≤ bi, i = 1, ..., m,

x ≥ 0.

where χi = ei ⊗ x and the matrix

H =
[
vec

([
∆A1

0

])
, vec

([
∆A2

0

])
, ..., vec

([
∆A|N |

0

])]
.

Denote by χ̃i = e
(m)
i ⊗ x where e

(m)
i denote the ith column of the m × m identity

matrix. It is easy to check that

HT χi = H̃T χ̃i =
(
H̃(i)

)T

x,

where the matrices

H̃ =
[
vec(∆A1), vec(∆A2), ..., vec(∆A|N |)

]
,

H(i) =
[
(∆A1)T e

(m)
i , (∆A2)T e

(m)
i , ..., (∆A|N |)T e

(m)
i

]
.

Thus, the desired result (ii) follows.
Notice that dual norms appear in (6.17) and (6.19). If the norms used are some

special norms such as `1, `2, `∞, `1 ∩ `∞, `2 ∩ `∞, then their dual norms ‖ · ‖∗ are
explicitly known (see for example [14]).

In [12], Bertsimas, Pachamanova and Sim studied the case of robust LP with
uncertainty sets defined by general norms. Their result provides a unified treatment
of the approaches in [23, 24, 6, 7, 11]. However, their result is a special case of
Theorem 6.7 above. Their uncertainty set is defined by the inequality

‖M(vec(A)− vec(A))‖ ≤ ∆.

where M is an invertible matrix and ∆ is a given constant. Clearly, this inequality
can be written as

vec(A) = vec(A) + M−1u, ‖u‖ ≤ ∆.

This is a special case of the uncertainty model (6.18), corresponding to the case when
|N | is equal to the number of data and the perturbation directions ∆Aj ’s are linearly
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independent (here ∆Aj ’s are the column vectors of M−1). So, when we apply Theorem
6.7 (ii) to such a special uncertainty set, we obtain the same result as “Theorem 2” in
[12]. But our result in Theorem 6.7 (ii) is more general than the result in [12] because
our result can even deal with the cases when the perturbation direction matrix H is
singular and even not a square matrix.

It should be mentioned that “Theorem 2” in [12] can also be obtained from our
Corollary 6.6. Since M is invertible, we can define the function g(D) = ‖MD‖ which
is a norm. The uncertainty set is defined by only one norm inequality, i.e. g(D) ≤ ∆.
So, setting ` = 1 in Corollary 6.6, we obtain “Theorem 2” in [12] again.

Now we compare Theorem 6.7 with the corresponding results for robust LP in
Bertsimas and Sim [14]. For LP, Theorem 6.7 (i) strengthens (generalizes) the cor-
responding result in [14] in the sense that we do not impose extra conditions on the
norms, but in [14] a similar result is obtained under the additional assumption that
the norms are absolute norms. Below we elaborate on this in more detail.

As we pointed out in Section 2, without loss of generality, it is sufficient to consider
the case when only A is subject to uncertainty. For LP, only “row-wise” uncertainty is
considered in [14]; for the ith linear inequality Aix ≤ bi, Ai belongs to the uncertainty
set (6.16). Bertsimas and Sim [14] defined f(x,Ai) = −(Aix− bi), and

sj = g(x,∆A
(i)
j ) =: max{−(∆A

(i)
j )x, (∆A

(i)
j )x} =

∣∣∣(∆A
(i)
j )x

∣∣∣ , j = 1, ..., N (i).

Bertsimas and Sim [14] proved that for LP, when the norm ‖ · ‖(i) used in (6.16) is an
absolute norm, the robust LP constraint is equivalent to

f(x,Ai) ≥ Ω(i)‖s‖(i)∗ (or equally, f(x,Ai) ≥ Ω(i)y, ‖s‖(i)∗ ≤ y).

That is

−Aix− bi ≥ Ω(i)

∥∥∥∥
[
(∆A

(i)
1 )T , (∆A

(i)
2 )T , ..., (∆A

(i)

|N(i)|)
T
]T

x

∥∥∥∥
(i)

∗

which is

Aix + Ω(i)

∥∥∥∥
[
(∆A

(i)
1 )T , (∆A

(i)
2 )T , ..., (∆A

(i)

|N(i)|)
T
]T

x

∥∥∥∥
(i)

∗
≤ bi.

This is the same result as Theorem 6.7 (i). So, Bertsimas and Sim [14] proved the
result of Theorem 6.7 (i) under the assumption that the norms used are absolute
norms. We obtain this result without additional assumptions on the norms.

We can also apply our general results to nonlinear problems such as SOCP and
QP. Let us comment on the differences of our approach from the approach of Bert-
simas and Sim [14]. Applying our general results to robust QP would lead to exact
formulations which, in general, would be computationally difficult. Bertsimas and Sim
[14] aim at obtaining computationally tractable approximate formulations. These are
two different ways of approaching nonlinear robust optimization problems. Compu-
tationally tractable approximate formulations are important for practical solution of
large-scale problems: approximate solution is the price one has to pay for compu-
tational tractability. Exact formulations are also important. First, from theoretical
viewpoint, they allow to gain more insight and to study the structure of the problems.
Second, they can be used in practice to obtain exact solutions to small-scale problems.
Third, they can provide new or strengthened results for important special cases when
restricted to such cases, as demonstrated in this section.
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7. Conclusion. One of our main goals was to show how the classic convex anal-
ysis tools can be used to study robust optimization. We showed that some rather
general classes of robust optimization problems can be represented as explicit math-
ematical programming problems. We demonstrated how explicit reformulations of
the robust counterpart of an uncertain optimization problem can be obtained, if the
uncertainty set is defined by convex functions that fall in the space LH and satisfy
the condition (4.1). Our strongest results correspond to the case where the func-
tions defining the uncertainty set are homogeneous, because in this case the condition
(4.1) holds trivially, and the robust counterpart can be further simplified. Our re-
sults provide a unified treatment of many situations that have been investigated in
the literature. The analysis of this paper is applicable to much wider situations and
more complicated uncertainty sets than those considered before; for example, it is
applicable to cases where fluctuations of data may be asymmetric, and not defined by
norms.

REFERENCES

[1] I. Averbakh, On the complexity of a class of combinatorial optimization problems with uncer-
tainty, Math. Programming, 90 (2001), pp.263-272.

[2] I. Averbakh, Minmax regret solutions for minimax optimization problems with uncertainty,
Oper. Res. Letters, 27 (2000), pp. 57-65.

[3] I. Averbakh, Minmax regret linear resource allocation problems, Oper. Res. Letters, 32 (2004),
pp. 174-180.

[4] I. Averbakh and V. Lebedev, Interval data minmax regret network optimization problems,
Discrete Appl. Math. 138 (2004), pp. 289–301.

[5] A. Ben-Tal, Conic and Robust Optimization, Lecture Notes, University of Rome ”La Sapienza”,
July 2002.

[6] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res., 23 (1998), pp.
769-805.

[7] A. Ben-Tal and A. Nemirovski, Robust solutions to uncertain linear programs, Oper. Res.
Letters, 25 (1999), pp. 1-13.

[8] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated
with uncertain data, Math. Programming, 88 (2000), pp. 411-424.

[9] A. Ben-Tal and A. Nemirovski, and C. Roos, Robust solutions of uncertain quadratic and
conic-quadratic problems, SIAM J. Optim., 13 (2002), pp. 535-560.

[10] D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Math. Programming,
98 (2003), pp. 49-71.

[11] D. Bertsimas and M. Sim, The price of Robustness, Oper. Res., 52 (2004), pp. 35-53.
[12] D. Bertsimas, D. Pachamanova and M. Sim, Robust linear optimization under general norms,

Oper. Res. Letters, 32 (2004), pp. 510-516.
[13] D. Bertsimas and M. Sim, Robust discrete optimization under ellipsoidal uncertainty sets,

Report. March, 2004, MIT
[14] D. Bertsimas and M. Sim, Tractable approximations to robust conic optimization problems,

Math Program., Ser. B, 107 (2006), pp. 5-36.
[15] D. Bienstock, Experiments with robust optimization, Presented at 19th International Sympo-

sium on Mathematical Programming, Rio-de-Janeiro, 2006.
[16] Z. Chen and L.G. Epstein, Ambiguity, risk and asset returns in continuous time, Mimeo, 2000.
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