Depositional sedimentary environment and hydrothermal controls on organic matter enrichment in the Lower Cambrian Niutitang shale reservoir, South China
Tan, Jingqiang; Wang, Zhangwu; Wang, Wenhui; Hilton, Jason; Guo, Jianhua; Wang, Xikai

DOI: 10.1306/12222018196
License: None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Depositional environment and hydrothermal controls on organic matter enrichment in the lower Cambrian Niutitang shale, South China

Jingqiang Tan1,2, Zhanghu Wang 1,2, Wenhui Wang1,2, Jason Hilton3, Jianhua Guo1,2, Xikai Wang1,2

1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-physics, Central South University, Changsha, 410083, China

2. Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha 410083, China

3. School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, B15 2TT, UK

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grants 41872151, 41772001, 41402010), the Fundamental Research Funds for the Central Universities of Central South University (Grant 502221901), and the Innovation-driven Project of Central South University (Grant 502501005). We thank Barry Katz, Robert Merrill, Thomas Algeo and two anonymous reviewers for helpful and constructive comments on earlier versions of the manuscript.
The purpose of this research was to examine paleoenvironments, hydrothermal activity, and seawater restriction of the lower Cambrian Niutitang Formation shale gas reservoir in the eastern Xuefeng Uplift and to determine factors affecting organic matter (OM) enrichment. In the studied borehole (X1) in western Hunan Province, the Niutitang Formation can be subdivided into the Niu1, Niu2, and Niu3 members based on geological and geochemical features, including trace element enrichment, lithology and fossil content. Total organic carbon (TOC) values of the Niutitang Formation are variable, averaging 1.5 wt.% in the Niu1 Member, 12.7 wt.% in the Niu2 Member, and 5.1 wt.% in the Niu3 Member. Paleoclimatic changes were responsible for changes in biota, which impacted patterns of OM enrichment. Climate proxies (Chemical Index of Alteration (CIA)), and productivity proxies (Ba_{bio}, Cu/Al, and Ni/Al) consistently indicate higher paleoproductivity in the Niu2 Member. The Niu1 and Niu2 members were possibly affected by hydrothermal events, whereas hydrothermal activity was absent during deposition of the Niu3 Member. Hydrothermal activity may not only provide nutrients and silica but also enhance the reducing condition of the water column. In addition, hydrothermal events may have possibly influenced biological survival in the different environments, which in turn increased their reproduction within the early Cambrian ocean and affected OM production. Redox proxies (Mo_{EF} and U_{EF}) imply that the Niu1, Niu2, and Niu3 members were deposited in suboxic, euxinic, and ferruginous environments, respectively. Redox conditions, strongly restricted water environments, and
hydrothermal events were conducive to OM enrichment during the early Cambrian.
INTRODUCTION

During the early Cambrian, a marine transgression event resulted in widespread deposition of organic-rich shale across South China. Although the lower Cambrian shales were subsequently eroded in some parts of the Upper Yangtze Region, their present distribution extends across an area of more than 9.0×10^5 km2 (~3.5×105 mi2) (Zhang et al., 2017). These organic-rich shale intervals are 50–200 m (164–656 ft) thick in many places, with total organic carbon (TOC) contents commonly above 1.0 wt.% and can reach 30 wt.% (Tan et al., 2013; Yu et al., 2017). Over the past decade, organic-rich shale reservoirs in the Upper Yangtze Region have been widely studied for their promising petroleum potential (Hao et al., 2013; Tan et al., 2014a; Bu et al., 2015; Lyu et al., 2018a; Xiao et al., 2018; L. Li et al., 2019). Of these studies, considerable achievements have been made in our understanding of the Niutitang Formation (and its equivalent horizons, including the Qiongzhusi and Jiumenchong formations) shale gas resources. Wells targeting lower Cambrian shale intervals in Sichuan, Guizhou, and Hubei provinces have already obtained commercial scale shale gas flow. In 2017, the China Geological Survey (CGS) drilled the EYiYe-1 well in Yichang, west Hubei Province, and achieved a production rate of 2.1 MMcf per day (MMcf/d) and an open gas flow rate of 4.4 MMcf/d.

Previous studies on the Niutitang Formation have primarily focused on shale reservoir characteristics and gas potential (Tan et al., 2014b; Tian et al., 2015; T. Lin et al., 2016; J. Yan et al., 2016; Lyu et al., 2018b; Sun et al., 2018). However, the effects of hydrothermal events and depositional environment on organic matter (OM)
enrichment of the Niutitang shale have, by comparison, been overlooked (Liu et al., 2015; Yeasmin et al., 2017; Gao et al., 2018). OM enrichment mechanisms in marine shales are complex and influenced by various factors, including terrigenous detrital supply, paleoclimate, primary productivity, hydrothermal activity, redox conditions, and seawater restriction (Piper et al., 2004; Liu et al., 2015; Wu et al., 2016).

Variations in paleoclimate have a marked impact on the abundance of organisms in marine settings and thus influence the supply of OM, while the preservation of OM is controlled by redox conditions, terrigenous dilution, and seawater restriction. The OM supply can be affected by hydrothermal activity, in addition to primary productivity and influences from preservation conditions (Knoll and Carroll, 1999; Reysenbach and Cady, 2001; Little and Vrijenhoek, 2003; Simoneit, 2004; R. Yang et al., 2008; Lane et al., 2010; Fuchida et al., 2014; Y. Li et al., 2015; Han et al., 2017).

In South China, hydrothermal activity mainly occurred during the deposition of the lower part of the Niutitang shale (R. Yang et al., 2008; D. Chen et al., 2009; Y. Li et al., 2015; Liu et al., 2015; Han et al., 2017), whereas the upper part of the Niutitang shale was not obviously affected. Submarine hydrothermal activity with abundant metals and volatile gases (CH₄ and H₂S) may change the redox and chemical conditions of seawater and affect the reproduction of biological communities (Jones and Gislason, 2008; Chambers et al., 2013). The relationship between hydrothermal activity and biological productivity is, nevertheless, not fully understood.

Investigations are also relatively rare on the links between seawater restriction and organic-rich shales. The depositional environments during the different time intervals
of the early Cambrian could result in markedly different OM enrichment mechanisms.

Previously studied profiles were principally deposited in shallow-deep shelf environments, i.e., Guizhou Province (Y. Li et al., 2015). To examine the correlation between the depositional environments and OM enrichment, freshly cored shale samples that were deposited in deep marine settings were investigated in detail in the current research.

The primary objective of this study was to reconstruct sedimentary environment, hydrothermal activity, and their influences on OM enrichment during shale deposition from the eastern Xuefeng Uplift in the lower Cambrian Niutitang shale. To illustrate the primary factors influencing OM enrichment, a series of analyses including lithofacies, mineralogy, trace and major elements, and TOC were undertaken on shale samples from the recently drilled X1well in Anhua County, Hunan Province, South China (Figure 1).

GEOLOGICAL SETTING

During the late Ediacaran to early Cambrian, the South China Craton consisted of the Yangtze and Cathaysia blocks. From the northwest to the southeast, sedimentary facies comprised marine platform, shallow shelf, deep shelf, slope, and marine basin settings (Goldberg et al., 2007; S. Wang et al., 2015) (Figure 1A). The lower Cambrian sedimentary rocks in the shallow-water areas were primarily composed of dolomite and limestone (e.g., Zhujiaqing and Madiping formations), whereas those sedimentary rocks in deep-water areas principally consisted of siliceous- and
organic-rich shale (e.g., Liuchapo Formation and the lower part of the Niutitang Formation) (Figures 1 and 2). The lower Cambrian interval includes the Cambrian evolutionary radiation of small shelly fossil assemblages (including brachiopods, gastropods and trilobites) and marine plankton (including algae and other microfossils) (R. Yang et al., 2008), providing significant OM inputs into marine depositional settings.

During the late Cambrian Stage 2 (Figure 2), as a result of the breakup of the Rodinia Supercontinent, the Yangtze and Cathaysia blocks commenced rifting. In South China, a major transgression occurred, as well as extensive hydrothermal and volcanic activity (Steiner et al., 2001; D. Chen et al., 2009; Han et al., 2017). Volcanic tuffs and metal ore layers (Ni-Mo, V, and Ba) were widely distributed in the Yu’anshan and Niutitang formations. Black carbonaceous shales were widely developed in the research area as a result of anoxic events in the sedimentary basin, in addition to phosphatic nodules, pyrite, and siliceous shales (Steiner et al., 2007; Wu et al., 2017). Due to paleogeographic differences, the thicknesses and TOC contents of the Niutitang shale vary considerably among its different locations (Figure 2).

The Xuefeng Uplift represents the transitional zone between the Yangtze and Cathaysia tectonic blocks. Sedimentary strata from the Cambrian to the Silurian were extensively developed in the eastern Xuefeng area. The Niutitang shales in the eastern Xuefeng Uplift are characterized by their great thicknesses, high TOC contents, and advanced thermal maturities (T. Lin et al., 2016; J. Chen et al., 2017). Several lower Cambrian sections have been previously studied in detail for volcanic and
biostratigraphic analyses, including the Xiaotan section in Yunnan Province (A. Yang et al., 2003; Steiner et al., 2007; Compston et al., 2008; Och et al., 2013; Jin et al., 2016; C. Yang et al., 2018), the Songtao section in Guizhou Province (A. Yang et al., 2003; Goldberg et al., 2007; D. Chen et al., 2015), the Longbizui section in Hunan Province (J. Wang et al., 2012; C. Yang et al., 2017), and the Ganziping section in Hunan Province (D. Chen et al., 2009), distributed across shallow shelf facies in the west to slope facies in the east (Figure 2).

In 2017, a new test well was drilled in Anhua County, Hunan Province. From the bottom up, the lower Cambrian consisted of the Liuchapo, Niutitang, and Wunitang formations. The present investigation focused on the Niutitang Formation, which has previously been subdivided into three intervals based on the distribution of metal ore layers (Ni-Mo, V, and Ba), carbonaceous shale, tuff, and fossils (Jin et al., 2016). The boundary between intervals I and II is primarily characterized by Ni-Mo layers, carbonaceous shale, and small shelly fossil assemblages (SSF1-4 of Steiner et al. (2007)). The geochronology of the Ni-Mo layer deposited in the transition period between Stages 2 and 3 of the Cambrian is dated to 521±5Ma, based on the Re-Os isochron age (Xu et al., 2011). Shales with high TOC contents are frequently present at the bottom of the Niutitang Formation and close to the metal ore layers. The Niutitang Formation can be subdivided into three members, here named the Niu1, Niu2 and Niu3 members. The lowermost Niu1 Member chiefly consists of dark gray calcareous shales with calcareous patches (Figures 3A and B), with dolomite present at the top of the member (Table 1). The Niu2 Member consists of black siliceous shale,
whereas the Niu3 Member principally consists of gray-black shales (Figures 3C and D). However, small shelly fossils are not obvious in the study area. The boundary of the Niu1 and Niu2 members can be characterized by a Ni-Mo layer and lithology. The boundary between Niu2 and Niu3 can be identified according to the relative concentration of trace metals (Mo, V, and U), lithology, and biota (Jin et al., 2016). Trace metal elements of the Niu2 shale are much higher than those of the Niu3 shale by more than one order of magnitude. The trace element values were also consistent with four other sections and wells, including the Xy1 well (J. Li et al., 2018), the Jinsha (Jin et al., 2016), and Dingtai sections (Xu et al., 2012) in the deep shelf facies, and the Yk1 well in slope facies (Y. Li et al., 2015). The three members of the Niutitang Formation can be identified from the GR/API results (Figure 1), with the Niu2 Member having higher values than the Niu1 and Niu3 members. GR/API results have also been applied to the Xy1 and Yk1 wells (Y. Li et al., 2015) and may represent an important method for identifying the members in other well cores.

Through geological history, the study area underwent multiple periods of tectonic movement, resulting in thrusting, folding, uplift, and denudation. The (prototype) Nanhua basin was shaped during the Ediacaran, but marine deposition dominated from the early Cambrian to the Triassic. After the mid-Triassic, the basin was uplifted and significantly altered, forming a series of thrust nappes and para-foreland basins (Wan et al., 2018). The Indosinian (257–205 Ma), Yanshanian (199.6–133.9 Ma), and Himalayan (23 Ma-present) orogenies strongly influenced the study area and formed many narrow anticlines and wide synclines. At present, the
outcrops of sedimentary rocks in western Hunan are mainly Paleozoic and Mesozoic in age, and extend in a NE-SW direction. These strata form a compound syncline, with the Cambrian-Silurian rocks in the northwest and southeast, while the Devonian-Middle Triassic rocks are principally located in the center.

MATERIALS AND METHODS

Samples were collected from the X1 well in west Hunan Province (Figures 1B and C). The Liuchapo Formation occurs at the bottom of the well core and consists primarily of a series of gray-black cherts. Pyrite is abundant within the Niutitang shale and occurs as nodules, veins and star spots (Figures 3E and F). The overlying Wunitang Formation consists of dark gray, muddy limestones intercalated with shales.

Samples were taken from the chert and organic-rich shale interval of the core at a spacing of 5–6 m (16–20 ft). A total of 4 Liuchapo chert and 28 Niutitang shale samples were analyzed. Individual samples were ground to less than 100 mesh for analyses of mineralogy and TOC and to below 200 mesh for analyses of trace and major elements.

X-ray diffraction (XRD) measurements were conducted at the Chongqing Mineral Resources Supervision and Test Center using a Bruker D8 Advance diffractometer equipped with a Cu-target tube and a curved graphite monochromator. Measurements were performed at 40 kV and 40 mA. Samples were step-scanned from 3–45° with 0.02° (2θ)/steps.

To determine TOC values, 200 mg of sample was weighed and placed into a
combustion crucible. Excess hydrochloric acid (volume ratio 1:7) was added to remove inorganic carbon. The crucible was then dried in an oven for 1h at 105 °C under vacuum conditions. The TOC content was analyzed using a Multi N/C 3100 Analyzer (Germany). The analytical errors were better than ±0.2 %.

For elemental analysis, the sample powder was dried in an oven for 2 h at 105 °C under vacuum conditions. To measure the major elements, 500 mg of dried sample was oxidized with 7 g of lithium borate (mixture of 67 % Li$_2$B$_4$O$_7$ and 33 % anhydrous LiBO$_2$) for 2 h at 200 °C, and then the mixture was melted to make a fused glass disk. Measurements were conducted using an Axios MAX pw4400/40 X-ray fluorescence spectrometer. Major elements were represented by oxides (SiO$_2$, Al$_2$O$_3$, FeO, CaO, Fe$_2$O$_3$, K$_2$O, MgO, MnO, Na$_2$O, P$_2$O$_5$ and TiO$_2$). To determine trace elements, including Th, U, V, Ni, Co, Ba, Sr, Mo, Cu and Cr, 50 mg of dried sample was weighed and treated using boric acid. Trace elements were then determined with quadrupole inductively coupled plasma-mass spectrometry (ICP-MS). The analytical errors were better than ±5 %.

Enrichment factors (EF) were calculated based on the ratio between trace element and aluminum (Al) concentrations of the sample. The same ratio in the Post-Archean Australian Shale (PAAS, Taylor and McLennan, 1985). The following formula was used for this calculation:

$$X_{EF} = (X_{sample}/Al_{sample})/ (X_{PAAS}/Al_{PAAS})$$ (1)
where X_{sample} and A_{sample} are concentrations of trace element X and Al samples, respectively; X_{PAAS} and A_{PAAS} are concentrations of trace element X and Al in the PAAS, respectively. $X_{\text{EF}} > 1.0$ and $X_{\text{EF}} < 1.0$ indicate enrichment and depletion in the X element, respectively.

RESULTS

Mineral Composition

Quartz, feldspar, calcite, dolomite, pyrite and clay are the principal minerals (Table 1). Except for certain Niu1 samples, all samples show $> 60\%$ of brittle minerals (e.g., quartz, feldspar, and pyrite), while typically $< 30\%$ are ductile minerals (i.e., clay minerals). Quartz dominates the mineral content ($\bar{x}=61.0\%$), whereas the average contents of feldspar and carbonates are much lower at 4.3%, and 7.5%, respectively (Figure 4). Two samples from the boundary between the Niu1 and Niu2 members include barite (2.7%) and glauberite (3.8% and 29.0 wt.%). The quartz content of Liuchapo chert generally exceeds 94%.

TOC Content

The TOC content varies from 0.1–20.1 wt.% (Table 2). The TOC generally increases from the Niu1 Member (0.1–4.0 wt.%, mean(\bar{x})=1.5 wt.%) to the Niu2 Member (8.1–20.1 wt.%, \bar{x}=12.7 wt.%) and then decreases to the Niu3 Member (2.6–8.1 wt.%), \bar{x}=5.1 wt.%) (Figure 5). The TOC contents of the Liuchapo cherts are lower than 0.4 wt.%.
Major Element Composition

The major element compositions show considerable variations among the three members (Table 2). Except for a dolomite sample, the elements of the analyzed shale samples are dominated by SiO$_2$ (30–74 %). The SiO$_2$ concentrations are commonly higher in the Niu2 and Niu3 samples than in the Niu1 samples. The Al$_2$O$_3$ concentrations are variable for the Niu1 samples, ranging from 2–17 %. Most of the Niu2 samples show Al$_2$O$_3$ contents below 6 %, while all Niu3 samples show Al$_2$O$_3$ contents higher than 6%. The Fe$_2$O$_3$ concentrations are below 5 % for all analyzed samples, with the Niu3 samples showing higher values than those of the Niu1 and Niu2 samples. Compared to the Niu2 and Niu3 shales, the Niu1 shale samples contain relatively high MgO and CaO concentrations that can reach >10 %. In addition, the K$_2$O concentration of in the Niu2 samples is relatively lower than that in the Niu1 and Niu3 shales. Commonly, the FeO, TiO$_2$, Na$_2$O, P$_2$O$_5$, and MnO contents are below 1 %.

Trace Element Composition

Trace element values are given in Tables 3 and 4. The Cu, Ni, and Ba contents are typically high in the Niu2 samples, moderate in the Niu3 samples, and low in the Niu1 samples. Compared to the Liuchapo chert samples, the Niutitang samples are rich in Mo, U, and V. The enrichment factors of these three redox elements vary significantly (Table 4). The Niu1 samples are weakly enriched with Mo (Mo$_{EF}$: 3–
244), V (\(V_{EF}: 1–17\)), and U (\(U_{EF}: 6–31\)). The enrichment of these three elements is
stronger in the Niu2 samples (\(Mo_{EF}: 168–1265\), \(V_{EF}:6–129\), and \(U_{EF}:31–657\)) and
moderate in the Niu3 samples (\(Mo_{EF}: 42–161\), \(V_{EF}:1–4\), and \(U_{EF}:5–31\)).

DISCUSSION

Paleoclimate

Paleoclimate can greatly influence marine productivity, redox conditions, and the
supply of terrestrial materials. From an analysis of paleomagnetism, South China was
inferred to be located in a subtropical-tropical zone near the equator during the early
Cambrian (Mckerrow et al., 1992; Yeasmin et al., 2017). Quantitative information on
the paleoclimatic conditions can be interpreted from geochemical proxies because
trace elements in sedimentary rocks are sensitive paleoclimate indicators in several
cases (Galloway et al., 2013; Vosoughi Moradi et al., 2016; Yeasmin et al., 2017).

The Chemical Index of Alteration (CIA) is used to identify climate conditions in
deep time (Nesbitt and Young, 1982). CIA values from 50–65 indicate cold climates
with weak chemical weathering, from 65–85 indicate warm and humid climates with
moderate weathering, and from 85–100 represent hot and humid climates with strong
weathering (Nesbitt and Young, 1982; Cole et al., 2009). Furthermore, CIA is also
related to the parent rock type; when carbonate parent rocks dominate, the ratio is
relatively low (Zhai et al., 2018). CIA is calculated using the molar oxides according
to the following formula:
\[
\text{CIA} = \frac{\text{Al}_2\text{O}_3}{(\text{Al}_2\text{O}_3 + \text{CaO}^* + \text{Na}_2\text{O} + \text{K}_2\text{O})} \times 100
\]

(2)

where \(\text{CaO}^*\) was corrected by using \(\text{P}_2\text{O}_5\) data (\(\text{CaO}^* = \text{CaO} - \frac{10}{3} \times \text{P}_2\text{O}_5\)). If the content of \(\text{CaO}\) was less than that of \(\text{Na}_2\text{O}\), the \(\text{CaO}\) value was used as \(\text{CaO}^*\). In contrast, \(\text{CaO}^*\) was assumed to be equivalent to \(\text{Na}_2\text{O}\) (McLennan, 1993; Fedo et al., 1995; Zhai et al., 2018).

In this research, the lithology of the Niu1 Member is principally calcareous shale (Table 2). The calculated CIA values of the Niu1 samples are relatively low (mean(\(\bar{x}\))=71) but should have been affected by the high carbonate contents (Figure 5). A detailed explanation of the entire Niu1 interval is thus complex based on CIA values alone. Nevertheless, glauberite occurs in the upper part of the Niu1 Member and the lower part of Niu2 Member. This suggests arid and hot climates (L. Wang et al., 2013). The average CIA value of all Niu2 shales is 75, and that of the Niu3 shales is 75. Because shale samples from these two intervals contain few carbonate minerals, CIA values indicate that the climate was warm and humid. Overall, the CIA results indicate that climate fluctuations occurred during the early Cambrian (Figure 5).

Warm climates in the Niu2 and Niu3 members are more conducive to greater biomass than conditions occurring during the Niu1 Member.

Redox Conditions

Anoxic conditions are more conducive to OM preservation because of weak degradation (Tribovillard et al., 2012; Ocubalidet et al., 2018). The Niu2 Member...
shale samples are rich in pyrite (Figures 3E and F), reflecting that the water column is dominated by reducing conditions. The trace elements Mo, U and V are sensitive to redox conditions in sedimentary environments and hardly migrate during diagenesis; they are excellent proxies for reconstructing redox conditions (Algeo and Maynard, 2008; Algeo and Tribovillard, 2009; Algeo and Rowe, 2012; Wu et al., 2016). The precipitation of U occurred earlier than that of Mo in the suboxic environment. In this study, we rely on Mo geochemistry (Scott and Lyons, 2012) and trace metal enrichment (Mo$_{EF}$ and U$_{EF}$) (Tribovillard et al., 2006; Algeo and Tribovillard, 2009) as paleoredox proxies.

Previous studies on modern oceans have shown that Mo contents less than 25 ppm, between 25–100 ppm, and more than 100 ppm indicate non-euxinic, intermittent, and strongly euxinic environments, respectively (Scott and Lyons, 2012). In this research, all Niu1 samples show Mo contents below 25 ppm ($\bar{x} = 8.3$ ppm), indicating the predominance of non-euxinic environments (Figure 5). The Mo contents of the Niu2 samples are variable, ranging from 18.0–209.0 ppm ($\bar{x} = 83.4$ ppm). Although there are two samples below 25 ppm, most Niu2 samples have Mo contents exceeding 50 ppm or even 100 ppm, suggesting intermittent euxinic/euxinic environments. The Mo contents of most Niu3 samples are above 25 ppm but below 100 ppm (ranging from 24.3–76.2 ppm, $\bar{x} = 40.3$ ppm), indicating the predominance of intermittent euxinic environments. In addition, shale samples fall into different zones on the covariation plot of Mo$_{EF}$ - U$_{EF}$, indicating different sedimentary environments (Figure 7). Niu1 shales were deposited under primarily suboxic conditions, as shown by the
weak enrichment of Mo and U (i.e., low Mo\textsubscript{EF} and U\textsubscript{EF}). In contrast, the Mo\textsubscript{EF}–U\textsubscript{EF} of all Niu2 samples are high, and those of the Niu3 samples are moderate, indicating that the shales were deposited under primarily oxygen-depleted conditions, i.e., euxinic and ferruginous (e.g., anoxic) environments (Algeo and Li., 2020). These conclusions are consistent with the Mo geochemistry observed.

The redox conditions in the early Cambrian were also related to sea level changes. During Niu1 shale deposition, there was a short-term marine regression with seawater shallowing and becoming oxygen-rich (Figure 5). Subsequently, as the sea level increased, the oxygen content decreased in the seawater; thus, reducing conditions during Niu2 and Niu3 deposition increased. The ferruginous-euxinic threshold of this study is 10 wt.% (e.g., TOC). Pi et al. (2013) reported a threshold value of 5 wt.% because of differences in terrigenous dilution and marine paleoproductivity. TOC content vs Mo/Al (r = +0.44, p(a) < 0.05, n = 28) (Figure 8A) and TOC content vs V/Al (r = +0.73, p(a) < 0.01, n = 28) (Figure 8B) demonstrate that redox conditions are conducive to OM enrichment in the Niutitang shale. Consequently, all selected parameters suggest that the reduction strength in the early Cambrian was in the order of Niu2>Niu3>Niu1.

Terrigenous Debris

All analyzed shale samples contain a high proportion of quartz, with an average content of 65 % (Table 1). Siliceous minerals can be derived from terrestrial,
hydrothermal, or biogenic origins (Pi et al., 2013; X. Yang et al., 2018). Al and Ti are mainly related to terrigenous detritus (Wedepohl, 1971). In the Niutitang shale samples, the correlation between Al$_2$O$_3$ and SiO$_2$ is very weak (Figure 9A), indicating that the silica may not be largely derived from continental sources. In addition to terrigenous origins, a large amount of silica in the shales must therefore originate from other sources. The Al$_2$O$_3$ contents in the Niutitang shales are highly variable (Table 1), with the Niu1 Member (\overline{x}=6.8 %) > Niu2 Member (\overline{x}=3.8 %) < the Niu3 Member (\overline{x}=9.9 %). This suggests that the distance of Niu2 shales from the clastic source was greater than that distance of either the Niu1 or Niu3 shales. In addition, the TOC contents also show negative correlations with the TiO$_2$ contents, indicating the terrigenous dilution of OM (Figure 9B).

Hydrothermal Sedimentation Processes

The Al/(Al+Mn+Fe) ratio is used to determine siliceous origins (Adachi et al., 1986; Yamamoto, 1987), with a pure hydrothermal activity ratio of 0.01 and a pure biogenic origin having a ratio of more than 0.60 (Yamamoto, 1987; Harris et al., 2011). In addition, biogenic shales are characterized by high SiO$_2$ and P$_2$O$_5$ values and low Al$_2$O$_3$, TiO$_2$, and MgO values, whereas the enrichment of Fe and Mn is mainly related to hydrothermal activity (X. Wang et al., 2016; Liao et al., 2018). Similarly, the (Fe+Mn)/Ti ratio is an index for determining conditions of hydrothermal deposition. Typical hydrothermal deposits are characterized by Al/(Al+Mn+Fe) <0.4 and (Fe+Mn)/Ti >15 (Adachi et al., 1986). Niutitang shale samples fall in the different
zones on an Al-Fe-Mn ternary diagram (Figure 10), indicating that the silica comes from different origins. Cherts from the Liuchapo Formation exhibit low Al/(Al+Mn+Fe) ratio values (0.1‒0.3), and high (Fe+Mn)/Ti ratio values (18.1‒37.7), suggesting intense hydrothermal activity (Figure 6). Rare earth element geochemistry of the Liuchapo cherts also suggests that intense hydrothermal activity occurred in the deep water area (Guo et al., 2016). Siliceous genesis of the Niu1 and Niu2 members mainly relates to intense hydrothermal activity (Al/(Al+Mn+Fe) = 0.4‒0.8, (Fe+Mn)/Ti = 5.6‒17.9), whereas that of the Niu3 Member relates more to non-hydrothermal origins (Al/(Al+Mn+Fe) > 0.60, (Fe+Mn)/Ti < 15). Z. Wang et al., (2020) also found that hyalophane was developed at different depths in the Niu1 and Niu2 shales. The hyalophane with another minerals (e.g., spehalerite and monazite) can be an important proxy for hydrothermal activity. These results are in accordance with the discovery of volcanic material (Figure 2), hydrothermal vent communities and hydrothermal minerals at the bottom of the Niutitang Formation (R. Yang et al., 2008; Han et al., 2017). The comparison of rare earth elements (Eu anomalies) in several sections from South China also confirms that hydrothermal activity occurred during the early Cambrian (Guo et al., 2016; Gao et al., 2018).

In general, the non-detrital fraction of a given element can be estimated by subtracting the detrital fraction from the total amount of the element. Regarding Si, we assume that all excess Si in the non-detrital fraction and is entirely derived from either hydrothermal or biological origins. The calculations for $\text{Si}_{\text{excess}}$ and $\text{SiO}_2_{\text{excess}}$ are:
\[\text{Si}_{\text{excess}} = \text{Si}_{\text{sample}} - (\text{Si}/\text{Al})_{\text{background}} \times \text{Al}_{\text{sample}} \]

\[\text{SiO}_{2\text{excess}} = \text{SiO}_{2\text{ sample}} - [(\text{Si}/\text{Al})_{\text{background}} \times \text{Al}_{\text{sample}}] \times 60.1/28.1 \]

where \(\text{Si}_{\text{excess}} \) represents the non-detrital silicon content, \(\text{Si}_{\text{sample}} \) represents the silicon concentration in the sample, \(\text{Al}_{\text{sample}} \) represents the Al concentration in the sample and the \(\text{(Si}/\text{Al})_{\text{background}} \) value is 3.11 (Wedepohl, 1971).

According to Figure 5, excess silica amounts increase from the top of the Niu1 to Niu2 members and then decrease in the Niu3 Member. The excess silica contents of the Niu1 Member vary from 0–49.0 % (\(\bar{x} = 23.8 \% \)). The contents of the Niu2 samples are commonly high, between 41.4 % and 77.6 % (\(\bar{x} = 57.5 \% \)), while those of the Niu3 samples are moderate, varying from 27.6–50.3 % (\(\bar{x} = 35.3 \% \)). This implies that a large proportion of silica should be of either a hydrothermal or biogenic origin, with a certain amount of silica originating from terrigenous detritus. In addition, the origin of chert and the source of silica during the Ediacaran-Cambrian transition are still widely disputed. It has been argued that excess silica in shales may be related to hydrothermal activity and also continental weathering (D. Chen et al., 2009; D. Lin et al., 2015; Liu et al., 2015). In this research, although the CIA values suggest moderate weathering during deposition of the Niu2 and Niu3 members, the CIA values do not correlate with the excess silica contents observed, even for samples deposited under the shallowest water conditions (e.g. in the Niu1 Member) (Figure 11A). This indicates insignificant influences of continental weathering on silica enrichment in the
analyzed samples. In contrast, the excess silica content positively correlates with the ratios of Al/(Fe+Al+Mn) (Figure 11B), implying that the silica contents were affected by hydrothermal events. The correlations between excess silica and TOC contents are significant for the Niu3 samples (Figure 11C), but are unclear for the Niu1 and Niu2 samples (Figure 11D). Organisms most likely thrived during the deposition of Niu3 and provided biogenic silica. However, the silica sources of the Niu1 and Niu2 members should be dominated by hydrothermal sources. Liu et al. (2015) analyzed the interbedded layers of chert and shale from the Yangtiao section in Guizhou Province and they concluded that chert and shale intervals were deposited during intense and weak hydrothermal activity, respectively. Strong hydrothermal events could release more silica into the ancient ocean than weaker events, thus forming silica-rich rocks (e.g., chert). Nevertheless, in the early Cambrian hydrothermal events may not only carry silica but also abundant redox-sensitive metal elements into the water column. In the current study, certain redox-sensitive trace elements (Mo, U, and V) from the X1 well and a typical hydrothermal plume from the Mid-Atlantic Ridge were selected to illustrate whether hydrothermal activity affected the redox conditions (German et al., 1991a). Through observations of the Niu3 deposition processes, no obvious hydrothermal activity occurred. Thus, correlations among these three elements of the Niu3 shales are still evident (Figures 12A and B). Correlations among these three elements from the Niu1 and Niu2 shales are all much weaker than those correlations among the three elements of the Niu3 shales (Figures 12C and D), which is consistent with correlations observed in typical hydrothermal samples (Figure 12E).
However, the correlations of the Mo and V elements from the hydrothermal plume are better than those of the X1 well samples (Figure 12F). Previous studies show that V and U concentrations both exhibit pronounced linear correlations with hydrothermal intensity based on samples from the Mid-Atlantic Ridge (German et al., 1991b). Hydrothermal fluid may be conducive to the enrichment of these two elements. In our work, V_{EF} and U_{EF} are relatively high in samples deposited in shallow water conditions (e.g., Niu1 Member) but low in deep water samples (e.g., Niu3 Member). This phenomenon suggests that hydrothermal activity not only provided redox trace elements but also enhanced marine reducing conditions.

Marine Productivity

Paleoproductivity, referring to the amount of OM produced in a certain period of geological history (Taylor, 1964; Gupta and Kawahata, 2006; Tribovillard et al., 2006; Zhao et al., 2017), is typically evaluated using TOC as a proxy. However, TOC is commonly affected by diagenesis, redox reactions, biological action, and the dilution of macerals, which may lead to either over- or underestimates of primary productivity (Gupta and Kawahata, 2006; Tribovillard et al., 2006). Since Ba is an inert element and has a long residence time in oceans, it is commonly used as an auxiliary indicator of paleoproductivity (Taylor, 1964; Böttcher et al., 2003; Schoepfer et al., 2015). In most modern aquatic sediments, Ba mainly exists in the form of BaSO₄. There is a significant correlation between Ba content of sediments and biological productivity in
the overlying water column. To eliminate the influence of Ba from terrestrial debris, the content of biogenic Ba (B_{bio}) is obtained by subtracting the terrestrial fraction from the total Ba. B_{bio} is calculated by the formula:

$$B_{\text{bio}} = B_{\text{sample}} - B_{\text{detrital}} = B_{\text{sample}} - A_{\text{sample}} \times (B/Al_{alu}) \quad (5)$$

where B_{sample} is the Ba concentration in the sample, A_{sample} is the Al concentration in the sample, and B/Al_{alu} is the ratio of Ba and Al in PAAS. The B/Al_{alu} ratio is the Ba/Al ratio of the aluminosilicate component ranging from 0.005–0.01 in crustal rocks (Taylor, 1964). A value of 0.0075 is widely used to calculate the contents of B_{bio} (Dymond et al., 1992; Zhao et al., 2016). In general, the Niutitang shales exhibit moderate to high degrees of calculated B_{bio} contents (38 to 8264 ppm; averaging 1382 ppm), compared to those values documented from the modern equatorial Pacific (~1000–5000 ppm) (Murray and Leinen, 1993). The B_{bio} contents are variable in the three members, showing mean values of Niu1 (\bar{x}=1199 ppm) \lt Niu2 (\bar{x}=1642 ppm) \gt Niu3 (\bar{x}=932 ppm). The Ba and B_{bio} contents slowly vary vertically throughout the shale interval, with Niu2 shale samples being slightly more enriched than Niu1 and Niu3 shale samples. The correlation between B_{bio} and TOC contents is unclear (Figure 6). This may be caused by the loss in Ba as a consequence of the elevated rate of bacterial sulfate reduction (Schoepfer et al., 2015). During the deposition of Niu3, B_{bio} contents were less than 1000 ppm, since BaSO$_4$ was easily reduced under anoxic conditions. Thus, the B_{bio} contents of the Niu1 samples that accumulated under
suboxic conditions can be reliably used to evaluate paleoproductivity.

Paleoproductivity was relatively high in the Niu1 and Niu2 intervals, and it was moderate in the Niu3 interval.

In addition to biogenic Ba, Ni and Cu can also reflect initial productivity (Calvert and Pedersen, 1993; Algeo and Maynard, 2004; Tribovillard et al., 2006). In modern oceanic sediments, Cu and Ni show positive linear correlations with TOC. As nutrient elements, they either combine with OM or form organic complexes (Froelich et al., 1979; Emerson et al., 1985). High Cu and Ni contents therefore relate to high OM inputs, reflecting higher paleoproductivity (Emerson et al., 1985; Piper and Perkins, 2004; Zhao et al., 2016). To exclude the influence of terrigenous clastic dilution, Cu/Al and Ni/Al ratios were used to characterize paleoproductivity. The Cu/Al and Ni/Al ratios vary to a certain degree in the three members, showing mean values of Niu1 (Cu/Al = 8.8 and Ni/Al = 8.3) < Niu2 (Cu/Al = 77.3 and Ni/Al = 73.5) > Niu3 (Cu/Al = 10.1 and Ni/Al = 16.6) (Figure 6). Paleoproductivity in the Niu2 Member is higher than that in either the Niu1 or Niu3 members, which is consistent with interpretations observed from the biogenic Ba. The TOC contents of the Niu3 shales are generally lower than 10 wt.% (Table 2), with an average of 5.1 wt.%, and close to that of the Longmaxi Formation in the Sichuan Basin (Yan et al., 2012; Feng et al., 2018). Previous studies have shown that silica genesis in the Longmaxi Formation shale is dominated by biological origins, rather than hydrothermal sources (Liu et al., 2017; Luo et al., 2017; Zhao et al., 2017). After demonstrating the existence of hydrothermal events, there is still a need to analyze the effect of hydrothermal activity.
on organismal abundance. Hydrothermal activity may not only provide nutrients, but may also affect organismal survival (Z. Wang et al., 2020). The depositional environments of the lower part of the Niutitang Formation were dominated by an intermittent sulfur-containing water column (C. Li et al., 2010; Jin et al., 2016). Chen et al. (2009) analyzed samples from the Ganziping section in Hunan Province (Figure 2) and reported that hydrothermal venting released large amounts of silica-rich hydrothermal fluids with greenhouse gases (methane) and volcanic-derived H$_2$S into the ocean and/or atmosphere during the early Cambrian. Gao et al. (2018) also documented that hydrothermal venting probably promoted a sulfidic ocean chemistry, which then gradually evolved into a persistent anoxic ocean. The nutrients provided by hydrothermal activity were conducive to the reproduction of phytoplankton (e.g., algae) and thus enhanced the supply of OM (Uematsu et al., 2004; Duggen et al., 2010). Toxic elements (e.g., Hg, Pb, and Cr) and volatile gases (e.g., HCl and SO$_2$) carried by hydrothermal events could also have inhibited the growth of zooplankton (Jones and Gislason, 2008; Chambers et al., 2013). The decomposition of OM during the deposition process could consume a large amount of oxygen in the water column, and significantly affect living organisms. The ecological imbalance probably strengthened the reducing potential of the water column and in turn was beneficial to the preservation of OM. By analyzing the evolutionary events of early Cambrian organisms, the first stage biota comprises small shelly fossils that became extinct before 521 Ma, while the Chengjiang fauna represents the second stage biota that began to expand at 518.03 ± 0.69 Ma (D. Wang et al., 2018; C. Yang et al., 2018). The
large-scale pervasive oxygenation of the ocean was not the primary control on animal
diversity (Jin et al., 2016; Xiang et al., 2017). Hydrothermal activity may inhibit
zooplankton reproduction and accelerate phytoplankton reproduction (Z. Wang et al.,
2020), as well as increase OM contents in sedimentary rocks. Under reducing
conditions, greater OM content in sediment can be preserved. In this research, the
TOC content of the Niu2 shale is generally in excess of 10 wt.% and in certain cases
up to 20 wt.% (Table 2). Hydrothermal activity may be one of the main reasons for
OM enrichment in the Niutitang Formation.

Seawater Restriction

Mo can be used to determine the degree of water restriction in ancient sediments.
Mo exists in a stable state with a high valence (+6) in oxygen-enriched water and is
difficult to deposit in sediments. However, Mo(VI) can convert from molybdates to
thiomolybdates, and be transferred to anoxic sediments (Taylor and McLennan, 1985;
Algeo and Tribovillard, 2009). The average Mo content in the upper crust is as low as
3.7 ppm (Zheng et al., 2000; Rowe et al., 2008; Morford et al., 2009; Tribovillard et
al., 2012). Furthermore, Mo has a long residence time in water (approximately 780
kyr). This unique feature of Mo is often used to assess the restriction of modern and
ancient seawater (Tribovillard et al., 2012; Zhao et al., 2016; Liu et al., 2017). The
relationship between Mo and TOC can reveal the degree of anoxic water restriction
but not oxic/suboxic conditions. In this research, the Niu1 Member is shown to be
dominated by suboxic sedimentary conditions (Figure 13). An oxygen-containing water column was not conducive to the precipitation of Mo, so the Mo contents are commonly low. In addition, the seawater was shallow, and poorly connected to the surrounding ocean such that the environment should be strongly restricted. The Mo/TOC ratio of the bottom part of the Niu2 Member varies from 1.2–5.8, indicating that the water column was strongly restricted close to the values from recent Black Sea sediments (Mo/TOC = 4.5) (Algeo and Lyons, 2006; Tribovillard et al., 2012). However, the Mo/TOC ratio of the upper part of the Niu2 shale is closer to present day values of the Cariaco Basin (Mo/TOC = 25) (Algeo et al., 2007; Tribovillard et al., 2012), indicating a weakly to moderately restricted water environment. With sea level falling, seawater became more restricted in the Niu3 Member, with the Mo/TOC value of this member becoming close to that of the present day Framvaren Fjord value (Mo/TOC = 9).

Although the eastern Xuefeng Uplift experienced euxinic environments during deposition of the Niu2 Member, the shale was also affected by hydrothermal activity. However, the TOC content changes markedly in the vertical direction within the Niu2 shale, ranging from 8.1–20.1 wt.% (Table 1). The restricted marine environment may play an important role in the enrichment of OM in shales. The water column was strongly restricted in the lower part of the Niu2 Member, with the seawater isolated to a large degree from the surrounding ocean. This provided a low water exchange rate and allowed the water to carry less oxygen, which was conducive to preserving OM in low oxygenated conditions. As the sea level rose, the water column changed to a
moderately/weakly restricted environment in the upper part of the Niu2 Member. The water exchange rate was faster and the water carried more oxygen, resulting in more OM being degraded under oxygenated conditions. Thus, seawater restriction was also an important factor affecting OM enrichment.

OM Accumulation Mechanism in the Niutitang Formation

The TOC content of the Niutitang shale is variable (Table 2) for which the mechanisms of OM accumulation in the three members are significantly different (Figure 14). In the Niu1 interval, the climate was hot, and marine productivity was comparatively moderate. Weak hydrothermal activity was present. Nutrients and volatile gas entered the water column (Figure 14A), and they slightly advanced the initial productivity and the reducing potential of the seawater. The weak hydrothermal activity had less relative effect on the redox and chemical conditions of the water column. The redox conditions were dominated by suboxic environments. This interpretation is consistent with the lithology analysis (e.g., calcareous shale). OM was easily decomposed and consumed in oxygen-containing seawater and thus was not conducive to preservation. The TOC contents of the Niu1 shale are below 4 wt.%. Thus, redox condition was the main factor controlling OM accumulation during the Niu1 interval.

During the Niu2 interval, the climate was humid and warm, with marine productivity at its highest (Figure 14B). The redox conditions of seawater were dominated by an euxinic environment. Strong hydrothermal activity occurred.
Abundant nutrients and volatile gas entered the water column, and they strongly increased the initial productivity and greatly enhanced the reducing potential of the seawater. The nutrients from hydrothermal activity were conducive to algae thriving, but the euxinic seawater inhibited the survival of zooplankton (e.g., radiolaria). In addition, algal reproduction led to a significant increase in the OM that was deposited and buried in the marine basin. The Niu2 interval can be divided into two parts due to seawater restriction. In the lower part of the Niu2 interval, which is associated with the sea level slowly rising, the water column was gradually transformed into euxinic conditions. Seawater was also strongly restricted, and had poor connectivity with surrounding oceans. The strongly restricted environment could have resulted in a slow exchange rate of oxygen and an enhanced reducing potential, which is similar to the current state of the Black Sea. It also reduced the consumption of OM by limiting oxygen. The TOC contents of the lower Niu2 shales are generally above 13 wt.% and can be up to 20 wt.% In the upper part of the Niu2 interval, which is associated with the sea level rising, the water column transformed into a weakly restricted environment. The seawater had good connectivity with the surrounding oceans. A rapid exchange of oxygen could have consumed a significant amount of OM. The TOC contents of the upper Niu2 shales are generally greater than 10 wt.%. Overall, the restricted marine environments, redox conditions, and hydrothermal activity enhanced OM enrichment during the deposition of Niu2 shales. During the Niu3 interval, the climate was similar to that of the Niu2 interval (Figure 14C). The study area changed into a ferruginous environment due to sea level
decline. The water column was also moderately restricted, similar to that of the upper Niu2 interval. In addition, hydrothermal activity was not obvious, and led to the restoration of ecological balance. Zooplankton reproduction was not limited. More algae were consumed and thus abated the supply of OM. The reducing potential of the water column had not been strengthened by the other causes introduced. The TOC contents of the Niu3 shales are generally less than 10 wt.%. Redox conditions and moderately restricted environments both played an important role in the preservation of OM.

CONCLUSIONS

Based on the analysis of lithofacies, mineralogy, and a series of proxies from major and trace elements in the lower Cambrian Niutitang shale samples from the eastern Xuefeng Uplift, we show that the Niutitang Formation includes three distinct sedimentary periods corresponding to the Niu1, Niu2, and Niu3 members. Redox proxies (Mo geochemistry, Mo_{EF}, and U_{EF}) indicate that the Niu1, Niu2 and Niu3 members were deposited in suboxic, euxinic, and ferruginous environments, respectively. Climatic conditions and paleoproductivity proxies (Ba_{bio}, Cu/Al, and Ni/Al) suggested an overall paleoproductivity trend of Niu1 < Niu2 > Niu3. Submarine hydrothermal activity probably appeared in the Niu1 interval, strengthened in the Niu2 interval, and was insignificant in the Niu3 interval. Nutrients provided by hydrothermal activity were conducive to phytoplankton (e.g., algae) thriving and thus increased the OM supply. However, volatile gases (e.g., HCl and SO_2) and euxinic
conditions may inhibit the survival of zooplankton. An ecological imbalance strengthened the reducing potential of the water column that led to a large increase in the amount of OM deposited and buried in marine basins. In addition, due to the variation in sea level, the strongly restricted environment in the early Niu2 interval was more beneficial to the preservation of OM than that occurring in the upper Niu2 and Niu3 intervals. Hydrothermal activity may play a dual role in the supply and preservation of OM, which is the key factor of OM enrichment in the lower Cambrian Niutitang shale.

REFERENCES CITED

Algeo, T. J., and H. Rowe, 2012, Paleoceanographic applications of trace–metal concentration data: Chemical Geology, v. 324, p. 6–18,

Guo, Q., Y. Deng, D. Hippler, G. Franz, and J. Zhang, 2016, REE and trace element

Li, Y., T. Fan, J. Zhang, J. Zhang, X. Wei, X. Hu, W. Zeng, and W. Fu, 2015,

AUTHOR VITA

JINGQIANG TAN ~ Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-physics, Central South University, Changsha, 410083, China; tanjingqiang@csu.edu.cn

Jingqiang Tan is Professor of Petroleum Geology and Head of Department of Geological Resources at the Central South University, China. He received his Ph.D. degree from the Technical University of Berlin in Germany in 2014. His primary research interests are geological and geochemical analysis of shale gas and oil systems, and characterization and stimulation of unconventional reservoirs.

ZHANGHU WANG ~ Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-physics, Central South University, Changsha, 410083, China; zhanghu.wang@csu.edu.cn

Zhanghu Wang is currently a Ph.D. student at Central South University. He gained his M.S. from Central South University in 2017. His research interests include sequence
stratigraphy, depositional systems, and reservoir characterization. His present research includes the influence of hydrothermal activity on paleoenvironments, and unconventional shale reservoirs.

WENHUI WANG ~ Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-physics, Central South University, Changsha, 410083, China; whwang@csu.edu.cn

Wenghui Wang is Associate Professor of Paleontology and Stratigraphy at Central South University, China. She received her Ph.D. degree from Nanjing University in 2013 where she subsequently worked as an assistant researcher until the end of 2016. Her research focusses on Palaeozoic planktonic palaeontology, palynology and stratigraphy. She is currently investigating graptolitic biostratigraphy from south China near the Cambrian/Ordovician and Ordovician/Silurian boundaries.

JASON HILTON ~ School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, B152TT, UK; J.M.Hilton@bham.ac.uk

Jason Hilton is a Reader in Palaeobiology and Palaeoenvironments at the University of Birmingham. He received his BSc from Sheffield University in 1992, and his Ph.D. from Cardiff University in 1996. His wide-ranging, multidisciplinary research focusses on palaeobotany, sedimentology, stratigraphy and palaeoenvironments. Since 2003, he has worked extensively on resource-bearing sedimentary successions in
China.

JIANHUA GUO ~ Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-physics, Central South University, Changsha, 410083, China;
gjh796@csu.edu.cn

Jianhua Guo is a Professor of Petroleum Geology at Central South University, China. He has more than 30 years experience working in the petroleum industry. His primary research interests are sedimentology and basin analysis.

XIKAI WANG ~ Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-physics, Central South University, Changsha, 410083, China;
852303596@qq.com

Xikai Wang obtained his Masters’ degree in Petroleum Geology at the Central South University in China in 2019. He is currently a Ph.D. candidate at the University of North Carolina at Chapel Hill in the United States. His research focuses on shale gas geology and basin analysis.
Figure 1. (A) Paleogeographic map of the Yangtze Platform in the early Cambrian, modified after Wang et al. (2012). Selected sections include: 1 - Xiaotan, 2 - Songtao, 3 - Longbizui, 4 – Ganziping; (B) Early Cambrian paleogeographic map showing lithofacies distribution in the Xuefeng Uplift area and sampling sites; (C) Stratigraphic column of the Niutitang Formation of the X1 well and sampling depths.
Figure 2. Stratigraphic correlation with biostratigraphic and tuff/ore dating of the early Cambrian (ca. 541-514 Ma) sections across South China. Intervals I, II, and III are mainly modified after Jin et al. (2016). Data source: 1 – Xiaotan (Yang et al., 2003; Och et al., 2013); 2 – Songtao (Yang et al., 2003; Goldberg et al., 2007); 3 – Longbizui (Wang et al., 2012; Yang et al., 2017); 4 – Ganziping (Chen et al., 2009); 5 – X1 (this study). U–Pb ages of the Xiaotan and Songtao sections are from adjacent Meishucun (Compston et al., 2008), Maotianshan (Yang et al., 2018a), and Bahuang (Chen et al., 2015), respectively. Abbreviations: CLP = Canglangpu Formation, DY = Dengying Formation, LCP = Liuchapo Formation, CJB = Chengjiang Biota.
Figure 3. Lithologies of samples from X1 well. (A) Calcite patches in dark gray calcareous shale, 869.4m (2852.4 ft); (B) Calcite patches in dark gray calcareous shale, 864.3m (2835.6 ft); (C) Black siliceous shale, 850.1m (2789.1 ft); (D) Black shale with intense graphite reflectance, 848.2m (2782.8 ft); (E) Pyrite bands in black siliceous shale, 840.8m (2758.5 ft); (F) Black siliceous shale interbedded with gray-black mudstone, 813.4m (2668.6 ft).
Figure 4. Ternary diagram of minerals from the Niutitang shale Niu1, Niu2 and Niu3 members and the underlying Liuchapo chert (LCP).

Figure 5. Stratigraphic distribution of TOC contents (wt.%), CIA, redox proxies (Mo,
Mo$_{EF}$/U$_{EF}$, seawater restriction, and inferred sea-level changes. LCP = Liuchapo Formation.

Figure 6. Stratigraphic distribution of TOC contents (wt.%), excess SiO$_2$ contents (wt.%), hydrothermal proxies, and paleoproductivity proxies (Ba$_{bio}$, Cu/Al, Ni/Al).
Figure 7. Mo$_{EF}$ vs. U$_{EF}$ Plot. The solid line represents Mo/U ratios of sea water. The dash lines represent multiples (0.3*, 1*, and 3*) of Mo/U ratios of modern seawater. The gray area represents the unrestricted marine trend and the green area represents the particulate shuttle trend. Modified after Algeo and Tribovillard (2009) and Tribovillard et al. (2012).

Figure 8. TOC contents vs. Mo/Al (A) and V/Al (B).
Figure 9. Al_2O_3 contents vs. SiO_2 contents (A) and TOC contents vs. TiO_2 contents (B).

Figure 10. Al-Fe-Mn ternary diagram showing Liuchapo cherts (LCP) are from intense hydrothermal source, excess silica of the Niu1 and Niu2 shales are from hydrothermal and biogenic sources but that of the Niu3 shale is primarily biogenic origin. Position of hydrothermal and biogenic chert origins from Adachi et al. (1986) and Yamamoto (1987).
Figure 11. Excess SiO$_2$ contents vs paleoclimate proxies (A), excess SiO$_2$ contents vs. hydrothermal proxies (B), TOC contents vs. excess SiO$_2$ of Niu3 samples (C), and TOC contents vs. excess SiO$_2$ of Niu1 and Niu2 samples (D).
Figure 12. Correlations among redox metal elements. U/Al vs. Mo/Al ratios (A) and V/Al vs. Mo/Al ratios (B) in Niu3 samples; U/Al vs. Mo/Al ratios (C) and V/Al vs. Mo/Al ratios (D) in Niu1 and Niu2 samples; U concentration vs. Mo concentration (E) and V concentration vs. Mo concentration (F) in particles from the Mid-Atlantic Ridge hydrothermal plume.
Figure 13. Mo concentrations vs. TOC contents. Dashed lines represent four modern anoxic basin systems in Saanich Inlet, Cariaco Basin, Framvaren Fjord, and Black sea (Algeo and Lyons, 2006; Algeo et al., 2007), showing different seawater restriction environments.
Figure 14. Depositional models and inferred paleoclimates of the Lower Cambrian sedimentary rocks in the eastern Xuefeng Uplift through the Niutitang Formation.
Table 1. Mineral compositions of the analyzed samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Formation</th>
<th>Member</th>
<th>Lithology</th>
<th>Quartz</th>
<th>Feldspar</th>
<th>Calcite</th>
<th>Dolomite</th>
<th>Pyrite</th>
<th>Barite</th>
<th>Anhydrite</th>
<th>Glauberite</th>
<th>Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>A28</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>59.6</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.5</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>30.0</td>
</tr>
<tr>
<td>A27</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>58.3</td>
<td>1.3</td>
<td>0.9</td>
<td>0.0</td>
<td>5.9</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
<td>31.1</td>
</tr>
<tr>
<td>A25</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>62.1</td>
<td>3.0</td>
<td>2.8</td>
<td>0.0</td>
<td>5.1</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>26.1</td>
</tr>
<tr>
<td>A23</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>60.9</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.5</td>
<td>0.0</td>
<td>1.2</td>
<td>0.0</td>
<td>27.4</td>
</tr>
<tr>
<td>A20</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>71.7</td>
<td>0.0</td>
<td>5.9</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.4</td>
</tr>
<tr>
<td>A18</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>81.8</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>5.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>12.5</td>
</tr>
<tr>
<td>A16</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>75.7</td>
<td>0.0</td>
<td>10.3</td>
<td>0.0</td>
<td>7.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.8</td>
</tr>
<tr>
<td>A14</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>68.1</td>
<td>5.1</td>
<td>1.4</td>
<td>4.9</td>
<td>6.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>13.7</td>
</tr>
<tr>
<td>A12</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>79.8</td>
<td>4.6</td>
<td>1.9</td>
<td>0.7</td>
<td>4.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.4</td>
</tr>
<tr>
<td>A10</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>78.5</td>
<td>3.3</td>
<td>2.1</td>
<td>0.0</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.4</td>
</tr>
<tr>
<td>A08</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>49.3</td>
<td>1.1</td>
<td>3.8</td>
<td>0.0</td>
<td>9.5</td>
<td>2.7</td>
<td>0.0</td>
<td>29.0</td>
<td>4.6</td>
</tr>
<tr>
<td>A06</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Dolomite</td>
<td>28.2</td>
<td>3.3</td>
<td>1.3</td>
<td>56.3</td>
<td>5.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.4</td>
</tr>
<tr>
<td>A05</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Calcareous shale</td>
<td>28.2</td>
<td>16.3</td>
<td>10.1</td>
<td>12.4</td>
<td>12.2</td>
<td>0.0</td>
<td>0.0</td>
<td>3.8</td>
<td>17.0</td>
</tr>
<tr>
<td>A03</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Siliceous shale</td>
<td>68.2</td>
<td>2.4</td>
<td>7.2</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>20.3</td>
</tr>
<tr>
<td>A01</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Calcareous shale</td>
<td>49.1</td>
<td>0.0</td>
<td>0.0</td>
<td>30.5</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>14.8</td>
</tr>
<tr>
<td>B03</td>
<td>Liuchapo</td>
<td>Chert</td>
<td></td>
<td>94.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.6</td>
</tr>
<tr>
<td>B01</td>
<td>Liuchapo</td>
<td>Chert</td>
<td></td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sample</td>
<td>Formation</td>
<td>Member</td>
<td>Lithology</td>
<td>Depth/m</td>
<td>TOC (wt.%)</td>
<td>SiO₂</td>
<td>Al₂O₃</td>
<td>FeO</td>
<td>Fe₂O₃</td>
<td>TiO₂</td>
<td>Na₂O</td>
<td>MgO</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>A28</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>730.0</td>
<td>2.61</td>
<td>72.92</td>
<td>10.81</td>
<td>0.51</td>
<td>3.40</td>
<td>0.41</td>
<td>0.11</td>
<td>1.43</td>
</tr>
<tr>
<td>A27</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>737.3</td>
<td>4.59</td>
<td>67.25</td>
<td>11.27</td>
<td>0.41</td>
<td>4.28</td>
<td>0.50</td>
<td>0.31</td>
<td>1.29</td>
</tr>
<tr>
<td>A26</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>740.6</td>
<td>5.83</td>
<td>74.22</td>
<td>9.49</td>
<td>0.26</td>
<td>2.66</td>
<td>0.41</td>
<td>0.20</td>
<td>1.10</td>
</tr>
<tr>
<td>A25</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>746.9</td>
<td>4.99</td>
<td>69.68</td>
<td>9.75</td>
<td>0.21</td>
<td>2.88</td>
<td>0.43</td>
<td>0.36</td>
<td>1.07</td>
</tr>
<tr>
<td>A24</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>756.5</td>
<td>3.70</td>
<td>69.50</td>
<td>11.80</td>
<td>0.36</td>
<td>2.88</td>
<td>0.52</td>
<td>0.15</td>
<td>1.40</td>
</tr>
<tr>
<td>A23</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>761.5</td>
<td>4.02</td>
<td>71.70</td>
<td>10.87</td>
<td>0.31</td>
<td>2.71</td>
<td>0.43</td>
<td>0.08</td>
<td>1.34</td>
</tr>
<tr>
<td>A22</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>772.0</td>
<td>4.20</td>
<td>65.62</td>
<td>10.15</td>
<td>0.31</td>
<td>4.13</td>
<td>0.47</td>
<td>0.18</td>
<td>2.10</td>
</tr>
<tr>
<td>A21</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>775.7</td>
<td>7.99</td>
<td>69.03</td>
<td>8.94</td>
<td>0.26</td>
<td>3.18</td>
<td>0.39</td>
<td>0.06</td>
<td>1.20</td>
</tr>
<tr>
<td>A20</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>783.4</td>
<td>8.05</td>
<td>72.24</td>
<td>6.22</td>
<td>0.26</td>
<td>2.54</td>
<td>0.29</td>
<td>0.06</td>
<td>1.13</td>
</tr>
<tr>
<td>A19</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>790.6</td>
<td>11.10</td>
<td>67.74</td>
<td>6.25</td>
<td>0.46</td>
<td>2.84</td>
<td>0.29</td>
<td>0.03</td>
<td>1.11</td>
</tr>
<tr>
<td>A18</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>796.8</td>
<td>11.40</td>
<td>75.60</td>
<td>4.66</td>
<td>0.26</td>
<td>2.90</td>
<td>0.23</td>
<td>0.06</td>
<td>0.85</td>
</tr>
<tr>
<td>A17</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>798.6</td>
<td>11.98</td>
<td>73.60</td>
<td>4.14</td>
<td>0.21</td>
<td>2.67</td>
<td>0.20</td>
<td>0.01</td>
<td>0.76</td>
</tr>
<tr>
<td>A16</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>804.7</td>
<td>8.05</td>
<td>58.23</td>
<td>3.12</td>
<td>0.31</td>
<td>2.85</td>
<td>0.21</td>
<td>0.09</td>
<td>4.17</td>
</tr>
<tr>
<td>A15</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>810.3</td>
<td>13.88</td>
<td>80.52</td>
<td>0.82</td>
<td>0.36</td>
<td>0.42</td>
<td>0.06</td>
<td>0.07</td>
<td>0.41</td>
</tr>
<tr>
<td>A14</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>815.3</td>
<td>11.78</td>
<td>70.88</td>
<td>6.18</td>
<td>0.36</td>
<td>3.03</td>
<td>0.34</td>
<td>0.51</td>
<td>0.90</td>
</tr>
<tr>
<td>A13</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>820.1</td>
<td>18.63</td>
<td>73.34</td>
<td>1.79</td>
<td>0.26</td>
<td>0.40</td>
<td>0.09</td>
<td>0.03</td>
<td>1.02</td>
</tr>
<tr>
<td>A12</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>824.3</td>
<td>11.30</td>
<td>74.63</td>
<td>4.40</td>
<td>0.46</td>
<td>1.75</td>
<td>0.28</td>
<td>0.15</td>
<td>0.78</td>
</tr>
<tr>
<td>A11</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>828.7</td>
<td>12.30</td>
<td>75.59</td>
<td>2.91</td>
<td>0.36</td>
<td>1.17</td>
<td>0.24</td>
<td>0.14</td>
<td>1.00</td>
</tr>
<tr>
<td>A10</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>833.6</td>
<td>12.63</td>
<td>76.81</td>
<td>2.89</td>
<td>0.26</td>
<td>2.93</td>
<td>0.22</td>
<td>0.39</td>
<td>1.29</td>
</tr>
<tr>
<td>A09</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>840.2</td>
<td>10.60</td>
<td>60.29</td>
<td>4.90</td>
<td>0.46</td>
<td>1.69</td>
<td>0.27</td>
<td>0.08</td>
<td>1.58</td>
</tr>
<tr>
<td>A08</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>848.2</td>
<td>20.10</td>
<td>57.07</td>
<td>4.46</td>
<td>0.21</td>
<td>2.02</td>
<td>0.22</td>
<td>0.14</td>
<td>0.85</td>
</tr>
<tr>
<td>A07</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>851.1</td>
<td>11.15</td>
<td>78.07</td>
<td>2.97</td>
<td>0.26</td>
<td>1.03</td>
<td>0.12</td>
<td>0.08</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Formation</td>
<td>Rock Type</td>
<td>Acidity</td>
<td>Bicarbonate</td>
<td>Calcium</td>
<td>Magnesium</td>
<td>Sodium</td>
<td>Potassium</td>
<td>Aluminum</td>
<td>Iron</td>
<td>Silica</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>A06</td>
<td>Niutitang</td>
<td>Niul</td>
<td>Dolomite</td>
<td>859.0</td>
<td>0.18</td>
<td>8.29</td>
<td>1.52</td>
<td>0.21</td>
<td>0.85</td>
<td>0.09</td>
<td>0.02</td>
<td>17.70</td>
</tr>
<tr>
<td>A05</td>
<td>Niutitang</td>
<td>Niul</td>
<td>Calcareous shale</td>
<td>861.2</td>
<td>4.03</td>
<td>49.72</td>
<td>16.86</td>
<td>0.31</td>
<td>2.75</td>
<td>0.65</td>
<td>0.18</td>
<td>1.86</td>
</tr>
<tr>
<td>A04</td>
<td>Niutitang</td>
<td>Niul</td>
<td>Calcareous shale</td>
<td>864.0</td>
<td>1.80</td>
<td>62.23</td>
<td>3.76</td>
<td>0.31</td>
<td>1.83</td>
<td>0.21</td>
<td>0.06</td>
<td>5.65</td>
</tr>
<tr>
<td>A03</td>
<td>Niutitang</td>
<td>Niul</td>
<td>Siliceous shale</td>
<td>866.2</td>
<td>1.96</td>
<td>74.21</td>
<td>7.76</td>
<td>0.41</td>
<td>1.48</td>
<td>0.41</td>
<td>0.07</td>
<td>1.52</td>
</tr>
<tr>
<td>A02</td>
<td>Niutitang</td>
<td>Niul</td>
<td>Calcareous shale</td>
<td>869.3</td>
<td>0.87</td>
<td>30.07</td>
<td>4.17</td>
<td>0.41</td>
<td>3.38</td>
<td>0.30</td>
<td>0.01</td>
<td>10.10</td>
</tr>
<tr>
<td>A01</td>
<td>Niutitang</td>
<td>Niul</td>
<td>Calcareous shale</td>
<td>872.0</td>
<td>0.11</td>
<td>52.99</td>
<td>6.97</td>
<td>0.36</td>
<td>3.68</td>
<td>0.42</td>
<td>0.01</td>
<td>7.60</td>
</tr>
<tr>
<td>B04</td>
<td>Liuchapo</td>
<td>Niul</td>
<td>Siliceous shale</td>
<td>873.2</td>
<td>0.16</td>
<td>70.32</td>
<td>9.34</td>
<td>0.31</td>
<td>3.49</td>
<td>0.34</td>
<td>0.03</td>
<td>3.54</td>
</tr>
<tr>
<td>B03</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>876.1</td>
<td>0.28</td>
<td>95.92</td>
<td>0.41</td>
<td>0.21</td>
<td>0.51</td>
<td>0.03</td>
<td>0.10</td>
<td>0.21</td>
<td>0.13</td>
</tr>
<tr>
<td>B02</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>881.9</td>
<td>0.30</td>
<td>98.59</td>
<td>0.19</td>
<td>0.26</td>
<td>0.32</td>
<td>0.04</td>
<td>0.18</td>
<td>0.27</td>
<td>0.15</td>
</tr>
<tr>
<td>B01</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>885.3</td>
<td>0.35</td>
<td>95.43</td>
<td>0.11</td>
<td>0.31</td>
<td>0.29</td>
<td>0.02</td>
<td>0.01</td>
<td>0.26</td>
<td>0.07</td>
</tr>
</tbody>
</table>

1213
1214
1215
1216
Table 3. Trace element composition of the analyzed samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Formation</th>
<th>Member</th>
<th>Lithology</th>
<th>Depth/m</th>
<th>V</th>
<th>Cr</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Sr</th>
<th>Mo</th>
<th>Th</th>
<th>U</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>A28</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>730.0</td>
<td>190</td>
<td>57</td>
<td>13</td>
<td>70</td>
<td>53</td>
<td>25</td>
<td>24</td>
<td>9</td>
<td>11</td>
<td>1304</td>
</tr>
<tr>
<td>A27</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>737.3</td>
<td>127</td>
<td>59</td>
<td>13</td>
<td>76</td>
<td>63</td>
<td>54</td>
<td>31</td>
<td>10</td>
<td>14</td>
<td>532</td>
</tr>
<tr>
<td>A26</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>740.6</td>
<td>103</td>
<td>47</td>
<td>11</td>
<td>61</td>
<td>56</td>
<td>25</td>
<td>28</td>
<td>7</td>
<td>8</td>
<td>1450</td>
</tr>
<tr>
<td>A25</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>746.9</td>
<td>118</td>
<td>45</td>
<td>12</td>
<td>53</td>
<td>49</td>
<td>76</td>
<td>37</td>
<td>9</td>
<td>12</td>
<td>1456</td>
</tr>
<tr>
<td>A24</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>756.5</td>
<td>348</td>
<td>61</td>
<td>13</td>
<td>91</td>
<td>44</td>
<td>40</td>
<td>45</td>
<td>7</td>
<td>13</td>
<td>1902</td>
</tr>
<tr>
<td>A23</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>761.5</td>
<td>308</td>
<td>56</td>
<td>12</td>
<td>91</td>
<td>46</td>
<td>29</td>
<td>41</td>
<td>6</td>
<td>10</td>
<td>1732</td>
</tr>
<tr>
<td>A22</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>772.0</td>
<td>257</td>
<td>65</td>
<td>11</td>
<td>95</td>
<td>57</td>
<td>107</td>
<td>31</td>
<td>8</td>
<td>14</td>
<td>911</td>
</tr>
<tr>
<td>A21</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>775.7</td>
<td>292</td>
<td>60</td>
<td>12</td>
<td>119</td>
<td>55</td>
<td>31</td>
<td>76</td>
<td>6</td>
<td>46</td>
<td>1058</td>
</tr>
<tr>
<td>A20</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>783.4</td>
<td>145</td>
<td>38</td>
<td>9</td>
<td>85</td>
<td>44</td>
<td>82</td>
<td>50</td>
<td>4</td>
<td>20</td>
<td>1588</td>
</tr>
<tr>
<td>A19</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>790.6</td>
<td>308</td>
<td>46</td>
<td>10</td>
<td>132</td>
<td>45</td>
<td>42</td>
<td>78</td>
<td>5</td>
<td>32</td>
<td>494</td>
</tr>
<tr>
<td>A18</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>796.8</td>
<td>2510</td>
<td>80</td>
<td>8</td>
<td>221</td>
<td>272</td>
<td>23</td>
<td>145</td>
<td>3</td>
<td>40</td>
<td>720</td>
</tr>
<tr>
<td>A17</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>798.6</td>
<td>1449</td>
<td>60</td>
<td>8</td>
<td>206</td>
<td>301</td>
<td>82</td>
<td>118</td>
<td>3</td>
<td>92</td>
<td>824</td>
</tr>
<tr>
<td>A16</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>804.7</td>
<td>151</td>
<td>35</td>
<td>10</td>
<td>100</td>
<td>60</td>
<td>166</td>
<td>209</td>
<td>3</td>
<td>207</td>
<td>257</td>
</tr>
<tr>
<td>A15</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>810.3</td>
<td>227</td>
<td>11</td>
<td>1</td>
<td>43</td>
<td>38</td>
<td>90</td>
<td>18</td>
<td>1</td>
<td>89</td>
<td>2160</td>
</tr>
<tr>
<td>A14</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>815.3</td>
<td>3364</td>
<td>133</td>
<td>9</td>
<td>186</td>
<td>169</td>
<td>69</td>
<td>128</td>
<td>2</td>
<td>78</td>
<td>482</td>
</tr>
<tr>
<td>A13</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>820.1</td>
<td>908</td>
<td>32</td>
<td>2</td>
<td>63</td>
<td>107</td>
<td>64</td>
<td>22</td>
<td>1</td>
<td>39</td>
<td>3352</td>
</tr>
<tr>
<td>A12</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>824.3</td>
<td>1033</td>
<td>52</td>
<td>8</td>
<td>125</td>
<td>39</td>
<td>74</td>
<td>56</td>
<td>2</td>
<td>66</td>
<td>1426</td>
</tr>
<tr>
<td>A11</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>828.7</td>
<td>2978</td>
<td>102</td>
<td>5</td>
<td>124</td>
<td>131</td>
<td>160</td>
<td>71</td>
<td>1</td>
<td>82</td>
<td>3387</td>
</tr>
<tr>
<td>A10</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>833.6</td>
<td>746</td>
<td>41</td>
<td>10</td>
<td>247</td>
<td>201</td>
<td>56</td>
<td>115</td>
<td>1</td>
<td>73</td>
<td>401</td>
</tr>
<tr>
<td>A09</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>840.2</td>
<td>1273</td>
<td>62</td>
<td>10</td>
<td>197</td>
<td>49</td>
<td>39</td>
<td>62</td>
<td>2</td>
<td>74</td>
<td>673</td>
</tr>
<tr>
<td>A08</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>848.2</td>
<td>4075</td>
<td>744</td>
<td>4</td>
<td>223</td>
<td>193</td>
<td>434</td>
<td>40</td>
<td>1</td>
<td>56</td>
<td>752</td>
</tr>
<tr>
<td>A07</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>851.1</td>
<td>2426</td>
<td>181</td>
<td>2</td>
<td>96</td>
<td>191</td>
<td>44</td>
<td>29</td>
<td>1</td>
<td>30</td>
<td>8382</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A06</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Dolomite</td>
<td>859.0</td>
<td>210</td>
<td>185</td>
<td>3</td>
<td>14</td>
<td>12</td>
<td>544</td>
<td>20</td>
<td>2</td>
<td>8</td>
<td>6939</td>
</tr>
<tr>
<td>A05</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Calcareous shale</td>
<td>861.2</td>
<td>936</td>
<td>258</td>
<td>7</td>
<td>43</td>
<td>32</td>
<td>45</td>
<td>24</td>
<td>5</td>
<td>38</td>
<td>2760</td>
</tr>
<tr>
<td>A04</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Calcareous shale</td>
<td>864.0</td>
<td>113</td>
<td>67</td>
<td>2</td>
<td>8</td>
<td>27</td>
<td>117</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2196</td>
</tr>
<tr>
<td>A03</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Siliceous shale</td>
<td>866.2</td>
<td>102</td>
<td>84</td>
<td>4</td>
<td>11</td>
<td>19</td>
<td>51</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1735</td>
</tr>
<tr>
<td>A02</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Calcareous shale</td>
<td>869.3</td>
<td>49</td>
<td>36</td>
<td>7</td>
<td>26</td>
<td>17</td>
<td>400</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>556</td>
</tr>
<tr>
<td>A01</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Calcareous shale</td>
<td>872.0</td>
<td>70</td>
<td>51</td>
<td>8</td>
<td>35</td>
<td>29</td>
<td>162</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>315</td>
</tr>
<tr>
<td>B04</td>
<td>Liuchapo</td>
<td>Siliceous shale</td>
<td>873.2</td>
<td>230</td>
<td>129</td>
<td>4</td>
<td>22</td>
<td>37</td>
<td>46</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>1035</td>
<td></td>
</tr>
<tr>
<td>B03</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>876.1</td>
<td>16</td>
<td>15</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>B02</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>881.9</td>
<td>17</td>
<td>14</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>B01</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>885.3</td>
<td>41</td>
<td>21</td>
<td>1</td>
<td>15</td>
<td>225</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>287</td>
<td></td>
</tr>
</tbody>
</table>

1218
1219
1220
<table>
<thead>
<tr>
<th>Sample</th>
<th>Formation</th>
<th>Member</th>
<th>Lithology</th>
<th>Depth/m</th>
<th>CIA</th>
<th>Al/(Al+Fe+Mn)</th>
<th>U_{2+}</th>
<th>Mo_{2+}</th>
<th>V_{2+}</th>
<th>Ni/Al</th>
<th>Cu/Al</th>
<th>B_{bio}</th>
<th>Excess-SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>A28</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>730.00</td>
<td>74</td>
<td>0.67</td>
<td>6.03</td>
<td>42.46</td>
<td>2.21</td>
<td>12.16</td>
<td>9.19</td>
<td>875</td>
<td>34.85</td>
</tr>
<tr>
<td>A27</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>737.30</td>
<td>74</td>
<td>0.64</td>
<td>7.30</td>
<td>52.46</td>
<td>1.42</td>
<td>12.80</td>
<td>10.58</td>
<td>85</td>
<td>27.56</td>
</tr>
<tr>
<td>A26</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>740.60</td>
<td>73</td>
<td>0.71</td>
<td>5.44</td>
<td>55.73</td>
<td>1.37</td>
<td>12.04</td>
<td>11.05</td>
<td>1073</td>
<td>40.80</td>
</tr>
<tr>
<td>A25</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>746.90</td>
<td>71</td>
<td>0.70</td>
<td>7.56</td>
<td>72.46</td>
<td>1.52</td>
<td>10.35</td>
<td>9.51</td>
<td>1069</td>
<td>35.35</td>
</tr>
<tr>
<td>A24</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>756.50</td>
<td>74</td>
<td>0.73</td>
<td>6.56</td>
<td>71.55</td>
<td>3.71</td>
<td>14.52</td>
<td>7.06</td>
<td>1433</td>
<td>27.95</td>
</tr>
<tr>
<td>A23</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>761.50</td>
<td>77</td>
<td>0.73</td>
<td>5.72</td>
<td>70.38</td>
<td>3.57</td>
<td>15.83</td>
<td>8.03</td>
<td>1300</td>
<td>33.42</td>
</tr>
<tr>
<td>A22</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>772.00</td>
<td>73</td>
<td>0.63</td>
<td>8.34</td>
<td>56.95</td>
<td>3.19</td>
<td>17.75</td>
<td>10.51</td>
<td>508</td>
<td>29.88</td>
</tr>
<tr>
<td>A21</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>775.70</td>
<td>79</td>
<td>0.66</td>
<td>31.28</td>
<td>161.00</td>
<td>4.11</td>
<td>25.14</td>
<td>11.58</td>
<td>703</td>
<td>37.55</td>
</tr>
<tr>
<td>A20</td>
<td>Niutitang</td>
<td>Niu3</td>
<td>Shale</td>
<td>783.40</td>
<td>78</td>
<td>0.62</td>
<td>19.59</td>
<td>150.63</td>
<td>2.94</td>
<td>25.72</td>
<td>13.48</td>
<td>1341</td>
<td>50.34</td>
</tr>
<tr>
<td>A19</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>790.60</td>
<td>79</td>
<td>0.58</td>
<td>31.00</td>
<td>235.13</td>
<td>6.21</td>
<td>39.89</td>
<td>13.63</td>
<td>246</td>
<td>45.73</td>
</tr>
<tr>
<td>A18</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>796.80</td>
<td>75</td>
<td>0.52</td>
<td>52.69</td>
<td>587.74</td>
<td>67.83</td>
<td>89.58</td>
<td>110.25</td>
<td>535</td>
<td>59.19</td>
</tr>
<tr>
<td>A17</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>798.60</td>
<td>77</td>
<td>0.52</td>
<td>135.40</td>
<td>538.38</td>
<td>44.07</td>
<td>93.99</td>
<td>137.33</td>
<td>660</td>
<td>59.02</td>
</tr>
<tr>
<td>A16</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>804.70</td>
<td>84</td>
<td>0.42</td>
<td>404.26</td>
<td>1265.31</td>
<td>6.09</td>
<td>60.36</td>
<td>36.32</td>
<td>133</td>
<td>47.24</td>
</tr>
<tr>
<td>A15</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>810.30</td>
<td>65</td>
<td>0.43</td>
<td>657.62</td>
<td>414.63</td>
<td>34.86</td>
<td>98.82</td>
<td>87.07</td>
<td>2127</td>
<td>77.63</td>
</tr>
<tr>
<td>A14</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>815.30</td>
<td>64</td>
<td>0.58</td>
<td>76.61</td>
<td>391.23</td>
<td>68.55</td>
<td>56.85</td>
<td>51.65</td>
<td>237</td>
<td>49.12</td>
</tr>
<tr>
<td>A13</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>820.10</td>
<td>82</td>
<td>0.66</td>
<td>133.10</td>
<td>230.04</td>
<td>63.88</td>
<td>66.80</td>
<td>112.91</td>
<td>3281</td>
<td>67.04</td>
</tr>
<tr>
<td>A12</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>824.30</td>
<td>69</td>
<td>0.59</td>
<td>91.40</td>
<td>217.22</td>
<td>29.56</td>
<td>53.66</td>
<td>16.61</td>
<td>1251</td>
<td>59.14</td>
</tr>
<tr>
<td>A11</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>828.70</td>
<td>70</td>
<td>0.58</td>
<td>171.49</td>
<td>458.92</td>
<td>128.87</td>
<td>80.49</td>
<td>85.03</td>
<td>3271</td>
<td>65.34</td>
</tr>
<tr>
<td>A10</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>833.60</td>
<td>63</td>
<td>0.40</td>
<td>153.28</td>
<td>751.63</td>
<td>32.51</td>
<td>161.44</td>
<td>131.37</td>
<td>286</td>
<td>66.63</td>
</tr>
<tr>
<td>A09</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>840.20</td>
<td>85</td>
<td>0.63</td>
<td>91.65</td>
<td>237.46</td>
<td>32.72</td>
<td>75.94</td>
<td>19.00</td>
<td>478</td>
<td>43.03</td>
</tr>
<tr>
<td>A08</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Shale</td>
<td>848.20</td>
<td>82</td>
<td>0.60</td>
<td>76.78</td>
<td>168.56</td>
<td>115.06</td>
<td>61.31</td>
<td>81.74</td>
<td>575</td>
<td>41.36</td>
</tr>
<tr>
<td>A07</td>
<td>Niutitang</td>
<td>Niu2</td>
<td>Siliceous shale</td>
<td>851.10</td>
<td>87</td>
<td>0.63</td>
<td>60.52</td>
<td>185.07</td>
<td>102.86</td>
<td>16.90</td>
<td>121.47</td>
<td>8264</td>
<td>67.61</td>
</tr>
<tr>
<td>A06</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>Dolomite</td>
<td>859.00</td>
<td>70</td>
<td>0.51</td>
<td>30.67</td>
<td>244.81</td>
<td>17.40</td>
<td>16.90</td>
<td>15.29</td>
<td>6879</td>
<td>2.94</td>
</tr>
<tr>
<td>Code</td>
<td>Location</td>
<td>Formation</td>
<td>Age</td>
<td>Resistivity</td>
<td>Conductivity</td>
<td>Density</td>
<td>Porosity</td>
<td>Gamma-ray</td>
<td>Water</td>
<td>Oil</td>
<td>Gas</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------------</td>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>A05</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>861.20</td>
<td>0.80</td>
<td>13.66</td>
<td>27.34</td>
<td>6.99</td>
<td>4.85</td>
<td>3.54</td>
<td>2091</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A04</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>864.00</td>
<td>0.56</td>
<td>4.34</td>
<td>11.00</td>
<td>3.78</td>
<td>4.15</td>
<td>13.61</td>
<td>2047</td>
<td>48.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A03</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>866.20</td>
<td>0.75</td>
<td>2.77</td>
<td>3.70</td>
<td>1.66</td>
<td>2.58</td>
<td>4.67</td>
<td>1427</td>
<td>46.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A02</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>869.30</td>
<td>0.43</td>
<td>7.42</td>
<td>4.12</td>
<td>1.46</td>
<td>11.82</td>
<td>7.84</td>
<td>390</td>
<td>15.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A01</td>
<td>Niutitang</td>
<td>Niu1</td>
<td>872.00</td>
<td>0.56</td>
<td>4.63</td>
<td>3.47</td>
<td>1.26</td>
<td>9.49</td>
<td>7.83</td>
<td>38</td>
<td>28.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B04</td>
<td>Liuchapo</td>
<td>Siliceous shale</td>
<td>873.2</td>
<td>0.65</td>
<td>4.75</td>
<td>4.23</td>
<td>3.10</td>
<td>4.49</td>
<td>7.54</td>
<td>664</td>
<td>37.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B03</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>876.1</td>
<td>0.29</td>
<td>7.88</td>
<td>45.61</td>
<td>4.98</td>
<td>19.40</td>
<td>39.99</td>
<td>308</td>
<td>94.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B02</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>881.9</td>
<td>0.19</td>
<td>21.17</td>
<td>76.55</td>
<td>11.40</td>
<td>45.93</td>
<td>35.39</td>
<td>375</td>
<td>97.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B01</td>
<td>Liuchapo</td>
<td>Chert</td>
<td>885.3</td>
<td>0.12</td>
<td>108.57</td>
<td>348.59</td>
<td>47.05</td>
<td>260.13</td>
<td>178.52</td>
<td>282</td>
<td>95.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>