Epithelial NAIPs protect against colonic tumorigenesis
Allam, Ramanjaneyulu; Maillard, Michel H; Tardivel, Aubry; Chennupati, Vijaykumar; Bega, Hristina; Yu, Chi Wang; Velin, Dominique; Schneider, Pascal; Maslowski, Kendle M

DOI:
10.1084/jem.20140474

License:
Creative Commons: Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 01. Nov. 2023
Epithelial NAIPs protect against colonic tumorigenesis

Ramanjaneyulu Allam,1,5 Michel H. Maillard,3 Aubry Tardivel,1 Vijaykumar Chennupati,2 Hristina Bega,3 Chi Wang Yu,1 Dominique Velin,3 Pascal Schneider,1 and Kendle M. Maslowski1,4

1Department of Biochemistry, 2Ludwig Center for Cancer Research, University of Lausanne, 1066 Ecully, Switzerland 3Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, 1015 Lausanne, Switzerland 4Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan 5Universitätsklinik für Hämatologie und Hämatologisches Zentrallabor, Inselspital/Universitätsspital, 3010 Bern, Switzerland

NLR family apoptosis inhibitory proteins (NAIPs) belong to both the Nod–like receptor (NLR) and the inhibitor of apoptosis (IAP) families. NAIPs are known to form an inflammasome with NLRC4, but other in vivo functions remain unexplored. Using mice deficient for all NAIP paralogs (Naip1−6/Naip1−6), we show that NAIPs are key regulators of colorectal tumorigenesis. Naip1−6/Naip1−6 mice developed increased colorectal tumors, in an epithelial–intrinsic manner, in a model of colitis–associated cancer. Increased tumorigenesis, however, was not driven by an exacerbated inflammatory response. Instead, Naip1−6/Naip1−6 mice were protected from severe colitis and displayed increased antiapoptotic and proliferation–related gene expression. Naip1−6/Naip1−6 mice also displayed increased tumorigenesis in an inflammation–independent model of colorectal cancer. Moreover, Naip1−6/Naip1−6 mice, but not Nlrc4-null mice, displayed hyper-activation of STAT3 and failed to activate p53 18 h after carcinogen exposure. This suggests that NAIPs protect against tumor initiation in the colon by promoting the removal of carcinogen–elicited epithelium, likely in a NLRC4 inflammasome–independent manner. Collectively, we demonstrate a novel epithelial–intrinsic function of NAIPs in protecting the colonic epithelium against tumorigenesis.

Inflammatory bowel disease (IBD) is an important risk factor that favors the development and progression of colitis–associated cancer (CAC; Eaden et al., 2001; Terzic et al., 2010; Rubin et al., 2013). Even in the absence of overt inflammatory disease in colorectal cancer (CRC), loss of barrier function in the tumor epithelium enables translocation of microbial products into tumor tissue. This triggers the activation of lamina propria immune cells and colonic epithelial cells via pattern-recognition receptors (PRRs) to produce cytokines and chemokines. Those factors then promote tumor growth and mediate recruitment of further immune cells (Grievinkov et al., 2012; Mueller, 2012). Alternatively, epithelial innate immune components could be subverted during tumorigenesis and influence tumor growth independently. Although cytokine/chemokine–mediated modulation of tumor growth has been described, the role of epithelial–intrinsic, innate immune components still remains elusive.

Several Nod–like receptors (NLRs) have previously been implicated in colon inflammation and tumorigenesis, mostly in protective roles (Allen et al., 2010; Hu et al., 2010; Chen et al., 2011; Elinav et al., 2011; Zaki et al., 2011; Carvalho et al., 2012). In some cases, this has been attributed to reduced inflammasome–mediated release of IL-18, which is protective for the colonic epithelium (Allen et al., 2010; Dupaul-Chicoine et al., 2010). In other cases, noninflammasome–mediated factors were found to protect mice against CAC development. For example, Nlrc12 was protective against colonic inflammation and tumorigenesis by dampening NF-κB and ERK activation in macrophages (Zaki et al., 2011). However, several discrepancies also exist, as illustrated by...
Caspase-1–deficient mice, which display increased colon tumorigenesis. In one study, this was dependent on NLRC4 and was epithelial intrinsic rather than inflammation mediated (Hu et al., 2010), whereas, in another study, increased tumorigenesis involved NLRP3 and was inflammation and hematopoietic cell–dependent (Allen et al., 2010). Such discrepancies are suggested to arise from differences in microbiota between facilities or use of WT mice from external sources (Ubeda et al., 2012), but could also arise from opposing functions of inflammasome components in different tissues, which has been demonstrated in a skin tumorigenesis model (Drexler et al., 2012).

The physiological function of the NLR protein NAIP (NLR family apoptosis inhibitory protein, previously known as neuronal apoptosis inhibitory protein) is not fully characterized, mainly because mice have several possibly redundant Naip paralogs (e.g., 4 functional and 2 noncoding Naip genes in the C57BL/6 genome; Yaraghi et al., 1998; Endrizzi et al., 2000; Growney and Dietrich, 2000). Humans also have several NAIP genes, one of which is full length (Schmutz et al., 2004; Romanish et al., 2009). NAIPs are intracellular, cytosolic proteins with a tripartite structure; three N-terminal baculovirus inhibitor of apoptosis (IAP) protein repeat (BIR) domains, a central NACHT domain and C-terminal leucine rich–repeat (LRR) domains. The latter two domains group NAIPs to the NLR family of proteins. Indeed, NAIPs are best characterized for their inflammasome function. Mouse and human NAIPs are involved in the detection of intracellular pathogens, such as Salmonella, and activation of the NLRC4 inflammasome, inducing pyroptosis and caspase–1–mediated cleavage of IL-1β and IL-18 (Kofoed and Vance, 2011; Zhao et al., 2011; Rayamajhi et al., 2013; Yang et al., 2013). In mice, NAIP paralogs provide specificity to different bacterial components (Kofoed and Vance, 2011; Zhao et al., 2011). In vivo, the NAIP5–NLRC4 inflammasome was required for sepsis-induced mortality by an Escherichia coli pathobiont or by systemic delivery of intracellular–targeted flagellin, although partial redundancy to other Naip paralogs was apparent (Ayres et al., 2012; von Moltke et al., 2012).

NAIPs also belong to the IAP family due to three N-terminal BIR domains; but whether they actually function as inhibitors of apoptosis is controversial. Some studies show direct binding and inhibition of caspase-3 and -9 (Maier et al., 2002; Davoodi et al., 2004, 2010), but others do not (Roy et al., 1997). Also, NAIPs lack certain caspase–interaction residues within the BIR domains that would be necessary for direct inhibition of caspasas, raising concern about whether NAIP can inhibit caspasas in physiological settings (Scott et al., 2005; Eckelman and Salvesen, 2006; Eckelman et al., 2006). Additionally, NAIPs mediate inflammasome–induced caspase–1 activation and induction of pyroptosis via NLRC4, which is contrary to the suggested inhibitor of apoptosis function (Kofoed and Vance, 2012). BIR domains, however, can mediate a broad range of protein–protein interactions and therefore could be implicated in diverse cellular functions in addition to inhibition of caspasas. In NAIPs, the BIR domains appeared to be necessary for NLRC4 inflammasome formation and activation of caspase–1 (Kofoed and Vance, 2011).

A mouse model lacking all Naip paralogs has not been available, preventing definitive analysis of NAIPs physiological function. In this study, we describe the first complete Naip1–6 knockout mice and demonstrate a crucial role for NAIPs in preventing colonic tumor initiation and progression.

RESULTS

Naip1–6 knockout mice develop normally

C57BL/6 mice have four functional copies of Naip (1, 2, 5, and 6) and two noncoding (nc) copies (Δ and 3; Fig. 1 A). Using a two-step targeting strategy, we generated C57BL/6 mice containing loxP sites flanking the Naip locus (Naip1–6Δ/Δ; Fig. 1 A–D). These mice were crossed with CMV-cre deleter mice (10 generations on C57BL/6 background) to generate full-body knockout of the Naip locus (Naip1–6Δ/Δ). Naip1–6Δ/Δ and Naip1–6Δ/Δ mice bred as concurrent nonlittermate homozygous lines were used in most experiments, except where litters are indicated. Naip1–6Δ/Δ mice were indistinguishable from their WT Naip1–6Δ/Δ counterparts when housed under specific pathogen–free conditions for up to one year. FACS analysis of immune cell subsets in the spleen and BM showed normal T cell, B cell, monocyte, and granulocyte populations (Fig. 1 E).

Naips are highly expressed in the colon and innate immune cells

We observed the highest expression of Naips in the large intestine, with increasing levels from the cecum to the distal colon (Fig. 1 F). Naips are also expressed in innate immune cells such as macrophages, dendritic cells, and neutrophils (Fig. 1 F; and BioGPS gene annotation portal). Similarly, high expression of human NAIP was reported in the colonic epithelium and in innate immune cells (Diez et al., 2000; see also BioGPS and the Human Protein Atlas). Expression of Naips in the colon would be congruent with their role in detecting enteric pathogens such as Salmonella (Kofoed and Vance, 2011; Zhao et al., 2011; Sellin et al., 2014); but it also raises the question of whether NAIPs play any other physiological role in this organ.

TLR and inflammasome responses in Naip1–6Δ/Δ mice

Naip1–6Δ/Δ BM–derived macrophages (BMDMs) responded normally to a range of Toll-like receptor (TLR) ligands with regard to production of the cytokines IL–6 and IL–10 (Fig. 2 A). However, consistent with NAIPs role in NLRC4 inflammasome activation (Kofoed and Vance, 2011; Zhao et al., 2011; Yang et al., 2013), upon infection of Naip1–6Δ/Δ BMDMs with Salmonella typhimurium (S.Tm), IL–1β production and pyroptosis were severely attenuated (Fig. 2 B and C). Priming with LPS resulted in normal induction of pro–IL–1β, further confirming intact TLR responses in Naip1–6Δ/Δ BMDMs (Fig. 2 C). NLRP3 inflammasome activators (Fig. 2 C), and AIM2 inflammasome activator poly(dA:dT; not depicted),
Figure 1. Generation of *Naip1-6* knockout mice and *Naip* tissue expression. *Naip*1-6 knockout mice were generated at Ozgene Pty. Ltd. using C57BL/6 material (DNA, blastocysts and ES cells). (A) Schematic of the targeting strategy (*Naip* locus schematic adapted from; Endrizzi et al., 2000). First, the region between the *Smn* and *Naip2* genes was targeted with a vector containing neomycin selection flanked by loxP sites (HA, homology arms). Targeted ES cells were selected using neomycin (Neo) and germline transmission of the mutation was achieved. (B) Southern blot demonstrating the presence of WT or floxed allele (A2 to A5 represent different mice). ES cells were then isolated from the resulting heterozygous mice and used for the second...
induced similar levels of caspase-1 activation and IL-1β production in both Naip1-6/wt and Naip1-6/fl/fl BMDMs, indicating that other inflammasomes are intact in the Naip1-6/fl/fl mouse. We observed residual activation of Caspase-1 and production of IL-1β in Naip1-6/fl/fl BMDMs stimulated with high titers of S.Tm (Fig. 2, B and C), in line with previous observations of NLRC4-independent, NLRP3-mediated detection of S.Tm (Broz et al., 2010).

Naip1-6/fl/fl mice have increased colon tumorigenesis

NAIPs have been suggested to act as tumor promoters because they are IAP family members. However, whether they act as IAPs is controversial. Additionally, NAIPs belong to the NLR family, and several NLRs are protective in colonic inflammation and tumorigenesis, through a variety of mechanisms (Allen et al., 2010; Hu et al., 2010; Chen et al., 2011; Elinav et al., 2011; Zaki et al., 2011; Carvalho et al., 2012). Naip1-6/wt and Naip1-6/fl/fl mice (nonlittermates) were challenged in a CAC model with administration of the carcinogen azoxymethane (AOM; 10 mg/kg) followed by three cycles of dextran sulfate sodium (DSS; 2.5% wt/vol) to induce colitis and accelerate tumorigenesis. Colon endoscopy assessment after the last dose of DSS revealed greater tumor burden in Naip1-6/fl/fl mice compared with Naip1-6/wt (Fig. 3 A). Autopsy confirmed increased tumor burden, and also increased tumor size, in Naip1-6/fl/fl mice (Fig. 3, B–D). Histological analysis of tumors demonstrated development of tubular adenomas with high-grade dysplasia in Naip1-6/fl/fl mice, whereas Naip1-6/wt mice mostly had low-grade dysplasia, with only a few cases of high-grade dysplasia (Fig. 3 E). Naip1-6/fl/fl tumors showed increased staining for ki67 compared with Naip1-6/wt tumors (Fig. 3 E), indicating increased proliferation, which is consistent with the increased tumor size. In accordance with this, STAT3 was highly phosphorylated and located in the nucleus of Naip1-6/fl/fl tumor epithelium (as well as in infiltrating leukocytes; Fig. 3 E). However, tumors in Naip1-6/wt showed very little pSTAT3 staining in epithelial cells (but did have pSTAT3-expressing infiltrating leukocytes; Fig. 3 E). STAT3 activation is an important stimulus for tumor growth (Levy and Darnell, 2002; Bollrath et al., 2009; Terzić et al., 2010).

Analysis of transcripts within tumor and in adjacent nontumoral tissue revealed an up-regulation of many proinflammatory cytokines within tumors of both genotypes (Fig. 3 F), which would be congruent with decreased barrier function within tumor epithelium (Grivennikov et al., 2012). Expression of IL-6, IL-11, IL-12, and Trif were all significantly higher in Naip1-6/fl/fl tumors compared with Naip1-6/wt (Fig. 3 F). Because IL-6 and IL-11 can activate STAT3 (Bollrath et al., 2009; Putoczki et al., 2013), increased pSTAT3 observed in Naip1-6/fl/fl tumors might be related to the observed up-regulation of those cytokines. Also consistent with STAT3 activation, downstream targets Mmp9 and Timp1, which can act to enhance tumor growth or invasion (Kim et al., 2012; Shuman Moss et al., 2012), as well as Stat3 itself, were elevated (Fig. 3 F). In contrast, transcripts for each of the Naips were significantly down-regulated in tumor tissue, compared with surrounding nontumoral tissue of WT mice (Fig. 3 G). This suggests that reduced expression of all Naip paralogs could be associated with tumor progression, and therefore that they may all play a role in this phenotype.

Analysis of inflammasome activation in tumoral and nontumoral tissues of Naip1-6/wt and Naip1-6/fl/fl mice revealed reduced mature IL-18, but increased IL-1β levels in tumors of both genotypes (Fig. 3 H). Because this was performed on whole-tissue homogenates, it is not possible to distinguish between colonic epithelium and hematopoietic-derived cytokine, which may account for the different regulation of IL-18 and IL-1β. Cleaved caspase-1 was also similarly detected at a low level, in both genotypes, with slight increase in tumor tissue (Fig. 3 H). These results make it unlikely that tumor progression in Naip1-6/fl/fl would be caused by differences in inflammasome-derived cytokines.

Collectively, this data shows increased tumor development in Naip1-6/fl/fl mice compared with Naip1-6/wt. Both genotypes showed induction of an inflammatory milieu in developed tumors, but this was more marked in Naip1-6/fl/fl mice. In addition, Naip1-6/fl/fl tumors had increased levels of proliferation markers (ki67) and STAT3 activation, which might, at least in part, account for the increased tumor size. No major differences in IL-18 and IL-1β were observed between genotypes, indicating normal activation of canonical inflammasomes in Naip1-6/fl/fl mice. In addition, the down-regulation of Naips in WT tumors further suggests a role for Naips in tumor suppression.
Inflammasome activation during DSS-induced colitis has previously been shown to be protective, particularly through the production of IL-18. IL-18 and IL-1\(β\) were induced at the protein level in colon lysates of both genotypes after DSS (Fig. 4 I). IL-22bp mRNA was shown to be negatively regulated during DSS colitis in a time-dependent manner and also after biopsy-induced damage. In the biopsy model, this regulation was absent in NLRP3 and NLRP6 inflammasome-deficient mice (Huber et al., 2012). We observed no change in IL-22BP in DSS exposed animals, with no difference between genotypes (Fig. 4 I). This is in contrast to Huber et al. (2012); however, the DSS dosing and timing, and line susceptibility, may affect the timing of IL-22BP protein and mRNA regulation. This data indicates that inflammasomes other than NAIP/NLRC4 are activated during acute colitis, but neither IL-18 and IL-1\(β\), nor IL-22BP levels, play a role in the Naip1-6\(^{A/A}\) phenotype.

We then compared gene expression after AOM and DSS exposure in Naip1-6\(^{fl/fl}\) and Naip1-6\(^{A/A}\) mice. Analysis of mRNA expression in colon homogenates revealed a reduction of IL-1\(β\), IL-6, IL-17, and Cxcl1 transcript levels in Naip1-6\(^{A/A}\) mice (Fig. 4 J), consistent with reduced disease severity. In contrast, antiapoptotic, proliferation, or survival-related genes Bel2, Bki-xl, Myc, Ras, Mdm2, Ccld1 (Cyclin D1),...
Figure 3. Increased colon tumorigenesis in Naip1-6Δ/Δ mice AOM/DSS CAC model. Naip1-6Δ/Δ and Naip1-6Δ/Δ (nonlittermates) mice were injected i.p. with AOM (10 mg/kg) on day −1 and on day 0 mice were treated DSS (2.5% wt/vol) in the drinking water for 7 d, followed by 14 d of normal drinking water. DSS treatment was repeated twice. Mice were sacrificed after last DSS exposure on day 56. (A) Representative endoscopic view at day 55 and colonoscopy score. (B) Macroscopic appearance of colons at autopsy (day 56) shows tumor development in distal colon, (C) tumor burden, and (D) tumor size, expressed as percent of tumors in the entire cohort observed in the indicated size range. (E) Immunohistology

Downloaded from http://rupress.org/jem/article-pdf/212/3/369/1214959/jem_20140474.pdf by Birmingham Univ Med Lib user on 05 February 2021
and IL-22 were all increased in Naip1-6ΔΔ mice (Fig. 4 J). This indicates that reduced colitis was not a result of failure to react to DSS-induced damage, but rather that tissue protective and regenerative responses were elicited.

Colitis was also assessed among littermates to rule out any effect of microbiota drift between the Naip1-6ΔΔ and Naip1-6Δβ mice, which were bred as concurrent homozygous lines. In litters of Naip1-6Δβ, Naip1-6ΔΔ, and Naip1-6ΔΔΔΔ, the Naip1-6ΔΔΔΔ mice still displayed less severe colitis, with reduced weight loss and less reduction in colon length compared with Naip1-6Δβ and Naip1-6ΔΔΔΔ-ΔΔΔΔ (Fig. 4 K). Naip heterozygotes showed slightly less severe weight loss but a similar degree of colon shortening as Naip1-6Δβ (Fig. 4 K). This demonstrates that the phenotype of Naip1-6ΔΔΔΔ mice is not a result of microbiota drift between parental lines.

Altogether, this data suggests that Naip1-6ΔΔΔΔ mice are protected from severe DSS-induced epithelial damage because increased survival and proliferation maintains epithelial integrity. By keeping an intact epithelial barrier, the Naip1-6ΔΔΔΔ colon would be protected from the ensuing inflammation that follows epithelial barrier disruption. However, the pro-survival and proliferative response could also act to promote tumor progression.

Increased tumorigenesis is epithelium intrinsic

Next, we wanted to determine which tissue was responsible for NAIP protection against tumorigenesis. Because NAIPs are highly expressed in the colon and in the innate immune myeloid cell compartment, we generated epithelial (Naip1-6ΔΔΔΔEC) and myeloid (Naip1-6ΔΔΔΔM) cell–specific Naip KO mice by crossing Naip1-6Δβ mice to Villin-cre or LysM-cre, respectively (both are on the C57BL/6 background), and performed the AOM/DSS CAC model. Loss of Naip5 via Villin-cre deletion almost completely removed Naip expression from the colon, indicating the high expression of Naip5 within colonic epithelial cells (Fig. 5 A). Naip5 knockout in LysM-cre-deleted mice was around 75% in BM LysM+CD11b+ macrophages (Fig. 5 B). Deletion efficiency by LysM-cre has been shown to vary across the myeloid lineage (Clausen et al., 1999).

Similar to the full Naip1-6ΔΔΔΔ mice, Naip1-6ΔΔΔΔEC mice showed increased tumorigenesis compared with littermate Naip1-6Δβ mice, with increased tumor burden and tumor size (Fig. 5 C). Naip1-6ΔΔΔΔM mice, however, showed the same tumor burden as littermate controls (Fig. 5 D). Colitis assessed during the AOM/DSS protocol showed a significant difference in Naip1-6ΔΔΔΔEC mice with higher weight and less colon shortening compared with Naip1-6Δβ mice (Fig. 5 E).

In this experiment, mice received DSS for only 5 d, explaining why the impact on weight loss, colon shortening and tumor burden was less prominent than in other experiments. Naip1-6ΔΔΔΔM mice displayed a slight reduction of colitis in the early phase but no protection after 9 d, and colons exhibited equivalent shortening compared with WT littermates (Fig. 5 F). A role for Naip5 in myeloid cells in the initial phase of colitis could reflect activation of myeloid cells (macrophages or neutrophils) after barrier disruption. Together, this data indicates that NAIP deficiency in the colonic epithelium, and not in resident or infiltrating myeloid cells, drives the increased tumorigenesis.

Increased tumorigenesis in AOM-only model of CRC

Typically, decreased colonic inflammation is associated with decreased tumorigenesis. However, Naip1-6ΔΔΔΔ mice developed significantly more tumors than controls (Fig. 3, A–D), despite decreased inflammation (Fig. 4, A–G). This lack of correlation between tumorigenesis and inflammation led us to check whether Naip1-6 deficiency could also lead to increased tumorigenesis in an inflammation-independent setting. To test this, we used a model of AOM-induced CRC that is free of DSS or other inflammatory challenges (Schwitalla et al., 2013). Mice were injected with AOM (10 mg/kg) once per week for 6 wk and were assessed for tumor burden after 24 wk. Naip1-6ΔΔΔΔ mice had increased tumor burden, assessed by colonoscopy and at autopsy, compared with those of Naip1-6Δβ mice (Fig. 6, A and B). Naip1-6ΔΔΔΔ tumors also tended to be larger compared with Naip1-6Δβ mice; however, both genotypes had a similar percentage of tumors greater than 3 mm (Fig. 6 C). These data demonstrate that Naip deficiency can drive increased tumorigenesis in an inflammation-independent manner, and point toward a role in tumor initiation.

Altogether, this data suggests that the initiation of tumorigenesis by AOM is sufficient for increased tumorigenesis in Naip1-6ΔΔΔΔ mice. Furthermore, in the setting of AOM/DSS CAC, the tissue–protective response observed in Naip1-6ΔΔΔΔ mice in response to DSS, in addition to the induction of an inflammatory milieu in developed tumors, could act to promote tumor growth.

The early response to AOM is altered in Naip1-6ΔΔΔΔ mice

AOM induces O-6 methylguanine adducts on DNA guanine, causing G-to-A base changes, which usually elicits a wave of p53-mediated apoptosis that can be detected early after AOM injection (Hu et al., 2002; Kerr et al., 2013; Schwitalla et al., 2013). Failure to repair damaged DNA, or to eliminate AOM-mutated cells, leads to increased tumor burden (Schwitalla et al.,...
Figure 4. Decreased colitis severity in *Naip1-6*Δα mice. (A) Change in body weight was assessed at the indicated time points and the length of colons at autopsy of mice undergoing the AOM/DSS CAC model (as per Fig. 3). (B–I) Mice were treated with DSS (2.5% wt/vol) in the drinking water for 7 d, and were sacrificed and tissues analyzed on day 7. n = 5 for each group. (B) The percent change in weight of *Naip1-6*Δα and *Naip1-6*Δα mice at the indicated time points; n = 5 mice per group (n = 3 for untreated controls [Ctrl]). (C) Disease activity index on day 6 of the treatment. (D) Colon length. (E) Myeloperoxidase measurements of colon homogenates, expressed as optical density at 450 nm. (F) Histopathology scores performed blinded on H&E-stained colon sections. (G) Representative sections of colons stained with H&E and periodic acid-Schiff stain (PAS). Bars, 100 µm. (H) Expression of *Naips*
Because Naip1-6ΔΔ mice developed increased tumor burden in the AOM-only model of CRC, we assessed the role of Naip1-6ΔΔ in tumor initiation. Mice were injected with AOM (10 mg/kg) and the colons were analyzed 18 h later. Naip1-6Δβ mice showed induction of apoptosis in the colon, with increased immunoreactivity for TUNEL and active caspase 3, whereas this was significantly reduced in Naip1-6ΔΔ colons (Fig. 7 A and B). This illustrates a failure to induce apoptosis upon AOM administration in the absence of Naip1-6ΔΔ, which is contrary to their suggested IAP role. Consistent with this, Western blot analysis showed reduced activation of p53 (phosphorylation on S15) and stabilization of total p53) in Naip1-6ΔΔ compared with Naip1-6Δβ mice (Fig. 7 C). Additionally, mRNA analysis revealed increased induction of Bcl2, Myc and Cnd1 (cyclin D1; Fig. 7, C and D), which is consistent with increased survival and proliferation. This suggests that the increased tumor burden observed in Naip1-6ΔΔ mice results from an altered response to AOM.

The phenotype of Naip1-6ΔΔ mice, namely increased colon tumors in a context of lower inflammation, has been described before in gp130+/- mice, which express hyper-activated STAT3 (Bollrath et al., 2009). Similarly, IL-6-/- mice display increased colitis severity but decreased tumorigenesis, largely due to defective STAT3 activation (Grivennikov et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009), although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involvement in tumor progression is well established (Levy and Darnell, 2002; Bollrath et al., 2009). Although STAT3 involves...
Apc
min/+ intestinal tumor initiation (Musteau et al., 2010). To determine if STAT3 was affected during the initiation phase of AOM exposure in
\textit{Naip1-6}\ lasts mice, we analyzed phosphorylation of STAT3 in colon homogenates 18 h after AOM injection. Strikingly,
\textit{Naip1-6}\ lasts, but not \textit{Naip1-6}\ lasts mice, had abundant phosphorylation of STAT3 (T705 and S727) after AOM injection (Fig. 7 C). Accordingly, expression of downstream targets of STAT3 (Bcl-2, Myc, and \textit{Cond1}) was also increased in colons from \textit{Naip1-6}\ lasts, but not \textit{Naip1-6}\ lasts mice (Fig. 7, C and D). Increased STAT3 activation was also observed in \textit{Naip1-6}\ lasts, but not \textit{Naip1-6}\ lasts mice (Fig. 7 E), demonstrating an epithelial-intrinsic role for
\textit{Naip1-6} in the early response to AOM. Activation of STAT3 usually occurs via cytokine or growth factor signaling downstream of receptor tyrosine kinase activation (Levy and Darnell, 2002). Therefore, we checked expression of cytokines and growth factors IL-6, IL-11, IL-22, G-csf, and Gm-csf, as well as \textit{Socs3} (suppressor of cytokine signaling 3) by qRT-PCR; however none of these factors changed after administration of AOM, either between the genotypes or between AOM and control-treated mice (Fig. 7 F). This would indicate that AOM does not affect expression of cytokines or growth factors. Overall, this data suggests that STAT3 activation occurs in an epithelial-intrinsic manner in the absence of
\textit{Naip1-6} and could be an important impetus of tumor initiation in the absence of
\textit{Naip1-6}.

\textbf{\textit{Naip1-6} regulates STAT3 phosphorylation independent of the inflammasome axis}

Because \textit{Naip1-6} can act in concert with NLRC4 to induce inflammasome activity upon detection of intracellular pathogens, we tested whether NLRC4, Caspase-1, or ASC had any effect on STAT3 phosphorylation status. We injected \textit{Nlrc4}\ −/−, \textit{Caspase-1/11}\ −/−, \textit{Asc}\ −/−, or WT mice with AOM (10 mg/kg) and checked colon homogenates 18 h later. No differences in STAT3 phosphorylation, or downstream target Bcl-2, were observed between any of the genotypes (Fig. 7 G).

\textbf{DISCUSSION}

In summary, in the absence of \textit{Naip1-6}, we observed that colonic epithelial cells failed to induce apoptosis in response to AOM exposure. Instead, there was an induction of STAT3 phosphorylation and signaling. This response to AOM was sufficient to drive tumorigenesis in an AOM-only model of CRC. In the colitis-associated cancer model, additional elements were at play. During acute colitis, similar to the altered response to AOM, we observed a change in gene expression indicative of a proliferative and protective epithelial response. However, by the stage of polyp induction, we could see greater induction of some inflammatory cytokines in \textit{Naip1-6}\ lasts compared with \textit{Naip1-6}\ lasts mice. This is consistent with loss of barrier function within tumors as they develop (Grivennikov et al., 2012). \textit{Naip1-6}\ lasts mice also had increased pSTAT3 and ki67 within tumors, which would account for the increase in tumor size in this model.
Naip-deficient mice, which would indicate an epithelial cell–intrinsic mechanism. Whether and how direct or indirect loss of inhibition of STAT3 occurs in the absence of Naips remains to be elucidated. It is also unclear whether there is a causal link between reduced p53 activation and apoptosis in Naip1-6ΔΔ mice and STAT3 phosphorylation.
We determined that NAIP’s effect on the early activation of STAT3 was independent of the NLRC4 inflammasome, because Nr3c1−/−, Asc−/−, and Casp-1/11−/− mice did not exhibit a similar dysregulation of STAT3 (Fig. 7 G). However, it is uncertain as to whether the phenotype of Naip1-6Δ mice in the AOM/DSS CAC model is independent of NLRC4. Caspase-1−/− and Nlrp4−/− mice have also been reported to have increased tumorigenesis in the AOM/DSS CAC model (Hu et al., 2010); however, another study reported no role for NLRC4 (Allen et al., 2010). The study by Hu et al. (2010) demonstrated, that similar to Naip1-6Δ mice, Nlrp4−/− and Caspase-1−/− mice display an epithelial-intrinsic increase in tumorigenesis that was not dependent on IL-1β or IL-18. Their results differ to the Naip1-6Δ phenotype in that Nlrp4−/− and Caspase-1−/− mice have equivalent levels of DSS-induced colitis compared with WT counterparts (which we saw similarly for Nlrp4−/− in our laboratory; unpublished data), whereas Naip1-6Δ mice have decreased susceptibility. Therefore, it appears that there are some differences between Naip1-6Δ mice and Nlrp4−/− mice. It is likely that some epithelial-intrinsic functions of NAIPs are mediated via NLRC4, such as NAIP/NLRC4 inflammasome-mediated extrusion of S.Tm-infected enterocytes (Sellin et al., 2014). However, it is also apparent that there are some NLRC4-independent functions of NAIPs. This is not surprising because NAIPs contain three BIR domains, which can mediate a variety of functions.

We propose that increased tumorigenesis observed in Naip−/− mice challenged with a chemical carcinogen results from decreased cell death of damaged/mutated cells during the initiation stage with AOM and from a growth advantage throughout tumor development. Further, similar mechanisms may be at play upon stress imposed by DSS, where damage is being compensated by a robust proliferation and survival response in the absence of NAIPs. Naip deficiency and/or constitutive STAT3 activation may confer tumor cells with survival and proliferation signals usually provided by an inflammatory context and provide a rational explanation for the observed dissociation between tumorigenesis and inflammation in these mice. Finally, although inflammation does promote tumor growth—hence, development of colorectal tumors within a relatively short period of time in the AOM/DSS model—the level of inflammation does not necessarily directly correlate with tumor burden, as shown in Naip1-6Δ mice. Instead, it would appear that different types of tissue responses to stressors could have the capacity to drive tumorigenesis. This has implications for the identification of populations at risk of developing CRC.

As Naip1-6Δ mice experienced deletion of a large genomic fragment, a possible contribution of intergenic elements to the phenotype should be kept in mind. Although currently available genome browsers did not detect micro RNAs or other elements predicted to be important in this region.

A previous study (Endo et al., 2004) found that NAIP mRNA expression was decreased in well and moderately differentiated colon adenocarcinoma, compared with adjacent tissue, in line with our observation that, in mice, Naips are down-regulated in colon tumor versus normal colon tissue (Fig. 3 G). This supports that down-regulation of NAIPs could play a role in human CRC. Additionally, data available on the Human Protein Atlas shows strong staining for NAIP1 in the human colon but weak staining in samples of colon adenocarcinoma. These results should prompt further interest into the role of NAIP in human CRC.

MATERIALS AND METHODS

General and specific deletion of Naip1-6 in mice

Mice were generated by Ozgene Pty. Ltd. as described in Fig. 1, on a C57BL/6 background. To create full-body knockout of Naip1-6, the double “floxed” targeted mice were crossed with cre-deleter (JAX, B6.129P2-Lyz2tm1(cre)Ifo/J) mice to remove the ~250-kb Naip locus. The CMV-cre line within our facility was backcrossed 10 generations to C57BL/6 background, which should preclude contamination with non-B6 alleles. Resulting Naip1-6Δ or Naip1-6Δ mice were maintained as concurrent WT (FL) or deficient (KO) lines (which were regularly renewed by intercrossing to avoid microbiota drift). Where indicated, mice were bred as heterozygote lines to use littermates. Tissue-specific deletion of Naip1-6 was achieved using Villin-Cre (JAX, B6.129P2-Lyz2tm1(cre)Ifo/J) and Ly5M-Cre mice (JAX, B6.129P2-Lyz2tm1(cre)Ifo/J), which were also backcrossed in our facility at least 10 times on a C57BL/6 background. Genotyping of Naip1-6Δ deficient mice by PCR was performed on ear biopsy lysates using the following primers: 5’-TTGCTGTAAGCTGACATCCTGG-3’ (fwd), 5’-TCATACAACTTCAGATGAAAAGTCA-3’ (rev), 5’-TGAGATGACAGACAGATGAG-3’ (fwd), and 5’-TAGATTATTCCCGAGCGCG-3’ (rev). Nlrp4−/−, Asc−/− (Marathanas et al., 2004), and Caspase-11−/− (Kuida et al., 1995) mice were described previously. Nonlittermate WT control mice for these lines were bred and maintained in the same facility. Mice were handled according to Swiss Federal Veterinary Office guidelines, and protocols were approved by the Office Vétérinaire Cantonal du Canton de Vaud. Mice are now maintained at RIKEN.

Models of CRC and colitis

Colitis and colitis-associated cancer was induced as previously described (Wirtz et al., 2007). In brief:

AOM/DSS CAC. Mice were injected i.p. on day −1 with AOM (10 mg/kg, Sigma-Aldrich). On day 0 dextran sodium sulfate (DSS; MW 36,000–50,000; MP Biomedicals) was given in the drinking water (2.5% wt/vol) for 7 d (unless otherwise specified), followed by 14 d normal water; DSS treatment was repeated twice. Mice were sacrificed and tissue was analyzed between days 52 and 62. Colonos were excised and washed and tumors were counted using a dissecting microscope. Colonos were either fixed in formalin and paraffin-embedded for histological analysis or tumor and normal tissue was dissected and frozen immediately for later analysis.

Colitis. Acute colitis was induced by administering 2.5% (wt/vol) DSS in the drinking water for 7 d. Mice were weighed every day and percent of body weight change for each mouse was calculated. Clinical scores are a combination of weight loss, rectal bleeding, and stool consistency (between 0 and 4, with 0 being normal and 1–4 being diarrhea) as described previously (Cooper et al., 1993). Mice were sacrificed at day 7. Colonos were removed, measured, weighed, washed, and fixed in 10% buffered formalin. A section of the colon was taken for MPO or RNA analyses.

AOM-induced CRC. AOM (Sigma-Aldrich) was injected i.p. (10 mg/kg) once per week for 6 wk. After 24 wk, mice were assessed by colonoscopy for development of tumors. For analysis of the early response to AOM, mice were sacrificed 18 h after AOM injection.
Colonoscopy procedures
Colonoscopy was performed using a Coloview minendoscopic system, consisting of a rigid Hopkins II miniature endoscope (0° direct vision, 30 cm length, 2 mm outer diameter) coupled to a Xenon 175 light source, an Endovision SLB Telecam camera (all from Karl Storz) and a low-pressure air pump (Rena Air 200; Rena). Polyps were classified and the colitis-associated cancer severity index calculated according to previously published parameters (Becker et al., 2005).

Histology
Colonoscopy procedures
Colonoscopy was performed using a Coloview minendoscopic system, consisting of a rigid Hopkins II miniature endoscope (0° direct vision, 30 cm length, 2 mm outer diameter) coupled to a Xenon 175 light source, an Endovision SLB Telecam camera (all from Karl Storz) and a low-pressure air pump (Rena Air 200; Rena). Polyps were classified and the colitis-associated cancer severity index calculated according to previously published parameters (Becker et al., 2005).

Histology
Colonoscopy procedures
Colonoscopy was performed using a Coloview minendoscopic system, consisting of a rigid Hopkins II miniature endoscope (0° direct vision, 30 cm length, 2 mm outer diameter) coupled to a Xenon 175 light source, an Endovision SLB Telecam camera (all from Karl Storz) and a low-pressure air pump (Rena Air 200; Rena). Polyps were classified and the colitis-associated cancer severity index calculated according to previously published parameters (Becker et al., 2005).

Histology
Colonoscopy procedures
Colonoscopy was performed using a Coloview minendoscopic system, consisting of a rigid Hopkins II miniature endoscope (0° direct vision, 30 cm length, 2 mm outer diameter) coupled to a Xenon 175 light source, an Endovision SLB Telecam camera (all from Karl Storz) and a low-pressure air pump (Rena Air 200; Rena). Polyps were classified and the colitis-associated cancer severity index calculated according to previously published parameters (Becker et al., 2005).