Twin-twin transfusion syndrome is associated with alterations in the metabolic profile of maternal plasma in early gestation

Yang, Yang ; Wen, Li; Han, Ting-Li; Zhang, Lan; Fu, Huijia; Gan, Jie; Saffery, Richard; Tong, Chao; Li, Junnan; Qi, Hongbo; Baker, Philip; Kilby, Mark

DOI: 10.1002/pd.5933

License: None: All rights reserved

Citation for published version (Harvard):

Copyright and Permissions

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

Users may freely distribute the URL that is used to identify this publication.

Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?). Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Twin-Twin Transfusion Syndrome Is Associated with Alterations in the Metabolic Profile of Maternal Plasma in Early Gestation: A Pilot Study

Yang Yang1,2,3#, Li Wen1,2,3#, Ting-li Han1,2,3, Lan Zhang1,2,3, Huijia Fu4, Jie Gan1,2,3, Richard Saffery5,6, Chao Tong1,2,3*, Junnan Li1,2,3*, Hongbo Qi1,2,3*, Philip N. Baker1,7, Mark D. Kilby8,9

1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
2International Collaborative Laboratory of Reproduction and Development, Ministry of Education, Chongqing Medical University, Chongqing 400016, China;
3State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
4Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
5Cancer, Disease and Developmental Epigenetics, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
6Department of Pediatrics, University of Melbourne, Parkville, VIC 3052, Australia;
7College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK.
8Institute of Metabolism and System Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK;
9Fetal Medicine Centre, Birmingham Women’s & Children’s foundation Trust,
These authors contributed equally to this work.

*Correspondence to Dr. Chao Tong, Dr. Junnan Li and Dr. Hongbo Qi.

Address: Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China (H.Q & J.L & C.T);

Tel: +86 23 89011101 (H.Q & J.L); +86 23 89011800 (C.T).

Fax: +86 23 89011102 (H.Q & J.L); +86 23 89011791(C.T);

Email: chaotongcqmu@163.com (C.T); summerbolo@163.com (J.L);

qihongbo728@163.com (H.Q).

Word count: 3156

Number of tables: 1

Number of figures: 4

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by National Key R&D Program of China (2018YFC1002900), National Natural Science Foundation of China (81520108013 and 81771613), Chongqing Science and Technology Commission (cstc2017jcyjBX0045,
MDK was funded for this work by a grant from the Richard and Jack Wiseman Trust. The Wiseman Trust had no involvement in study design; in the collection, analysis and interpretation of the data; in the writing of the report; and in the decision to submit the article for publication.

Bulleted statements:

What’s already known about this topic?

- Twin-twin transfusion syndrome (TTTS) is associated with fetal and perinatal mortality and early intervention by fetoscopic laser coagulation of the placental arteriovenous anastomoses may increase the chance of a favorable outcome and reduce morbidity.

- Maternal circulating “biomarkers” for aiding the prediction of TTTS in the first trimester are still lacking.

What does this study add?

- Based on a large prospective longitudinal twin birth cohort, we used a prospectively collected case-controlled cohort of monochorionic twins that developed TTTS, an altered metabolome of maternal plasma before 16 weeks was noted. This principally involved fatty acids, TCA cycle intermediates and amino acids those involved in angiogenesis and energy metabolism.

- Metabolic perturbations can be detected in maternal plasma before ultrasound features that are diagnostic of TTTS, and could therefore be a promising approach
for early screening of monochorionic twin pregnancies.

Availability of data and materials

The LOTiS datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Abstract

Objective: Twin-twin transfusion syndrome (TTTS) causes perinatal mortality and morbidity in monochorionic (MC) twins. Early recognition and interventional therapy for TTTS is associated with a more favorable overall prognosis. However, the prediction by ultrasound in the first trimester has relatively poor sensitivity and specificity. This study aims to profile maternal metabolic changes before the clinical onset of TTTS and identify potential metabolic biomarkers to aid ultrasound screening.

Method: Maternal plasma was prospectively collected between 11-15 weeks of gestation in apparently uncomplicated MCDA pregnancies. This cohort was divided into: i) patients subsequently diagnosed using ultrasound with TTTS and ii) uncomplicated matched controls. Gas chromatography-mass spectrometry was used for metabolomic profiling.

Results: The levels of fatty acids, organic acids, oxaloacetic acid, and beta-alanine were significantly lower in the maternal plasma of TTTS at 11-15 weeks of gestation, while methionine and glycine were higher (p<0.05, FDR<0.12). Generally, in TTTS pregnancies, metabolism of amino acid, carbohydrate, cofactors, vitamins, and purine were ‘down-regulated’; whilst bile secretion and pyrimidine metabolism were ‘upregulated’.

Conclusions: Metabolomics scanning of early gestation maternal plasma may identify those pregnancies that subsequently develop TTTS, especially,
downregulated fatty acid level may be biologically plausible to be implicated in the pathogenesis of TTTS.

Keywords: Twin-twin transfusion syndrome, GC-MS, metabolite, biomarker

Acknowledgments

We thank team members for their support and contribution to this study. Especially, thanks for all participants who volunteered to provide blood samples.
1. Introduction

Twin-twin transfusion syndrome (TTTS) complicates 15% of monochorionic diamniotic (MCDA) twin pregnancies and the underlying etiology and predisposition is the presence of unidirectional placental arteriovenous anastomoses causing imbalanced intertwin hemodynamics1,2. This leads to the “recipient fetus” having a “hyperdynamic” circulation with increased cardiac afterload with increased ventricular and systemic blood pressure3, and secondary endocrine dysfunction, involving the renin-angiotensin-aldosterone, atrial natriuretic factor and endothelin-1 systems4. In contrast, the “donor fetus” rarely demonstrates significant change in cardiac function and has relatively poor perfusion, hypovolemia with associated oliguria and oligohydramnios5. If untreated, TTTS leads to perinatal death before 26 weeks in over 90% of diagnosed cases4. It is also associated with severe fetal morbidity and neurodevelopmental sequelae, preterm birth, growth restriction, cardiomyopathy, and hydrops fetalis. Fetoscopic laser coagulation (FLC) of the pathologic placental vascular anastomoses is the optimal fetal therapy, leading to survival of at least one fetus in 90% of pregnancies and minimizing both preterm birth and neurologic morbidity5,6,7.

Early prediction of ‘at risk’ monochorionic twin pregnancies to aid the timely diagnosis of TTTS is clinically important, as early intervention, before there is significant cardiac dysfunction, may result in a more favorable overall prognosis8. There has been much interest in the role of first trimester (11+0 - 13+6 weeks)
ultrasound biometric measurement of fetal crown rump length (CRL) and nuchal translucency (NT) in the prediction of adverse outcome in monochorionic twining. However, the individual measurements of CRL and NT and the intertwine differences have only a moderate predictive value for the development of TTTS, selective growth restriction (sGR) or indeed fetal demise; only 52% of cases deemed high risk ultimately develop TTTS. This may be further refined by measurement of Ductus Venosus velocimetry as noted in small cohort studies) but overall the predictive value of first trimester ultrasound alone is disappointing. In the second trimester, the ultrasound detection of mild discordance in deepest vertical pool measurement in the amniotic sacs has a moderate ability to predict later onset of TTTS but again, as in the first trimester, sensitivity and specificity of prediction is not high. Therefore, to improve early detection, novel approaches for screening are required using other modalities in addition to ultrasound.

Metabolomics is a powerful tool for investigating the final downstream products of genotype and environmental interactions and may be employed to investigate the complex interactions between specific metabolites and others as well as disease. In a comparison of pre- and post-laser coagulation, Dunn and colleagues observed perturbations in carbohydrate and fatty acid levels in the fetal “recipient” amniotic fluid of monochorionic pregnancies complicated by TTTS, indicating that this pathological process may be associated with aberrant metabolism. Moreover, a profound change in the first-trimester metabolite profile of maternal plasma has been
noted in women who subsequently developed early-onset preeclampsia15, indicating that metabolic changes in the first trimester may be an indicator of the occurrence or development of diseases.

In this ‘pilot’ study, \textbf{Gas Chromatography-Mass Spectrometry} (GC-MS) was used in a metabolomics analysis of plasma collected at 11-15 weeks of gestation from pregnant women with monochorionic, diamniotic twin pregnancies (identified using ultrasound) that subsequently developed TTTS later in gestation. The finding from biochemical compounds and metabolic networks may enhance understanding of the maternal metabolic changes in early pregnancy associated with the occurrence of TTTS.

\section*{2. Methods}

\subsection*{2.1. Patient recruitment}

430 women with twin pregnancies were recruited in the Chongqing Longitudinal Twin Study (LoTiS)16, which has been registered with the Chinese Clinical Trial Registry (ChiCTR-OOC-16008203). Of the 430 twin pregnancies, 117 were monochorionic diamniotic (MCDA), and 7 of the MCDA twin pregnancies developed TTTS (6\%) (Figure 1). High-resolution fetal ultrasound was used to diagnose TTTS. The diagnosis was made using international criteria; if a monochorionic pregnancy had markedly discordant amniotic fluid volumes by a deepest vertical pool (DVP) >10 cm (100mm) at >20+0 weeks’ and >8 cm (80mm) at <20+0 weeks’ gestation in the recipient twin together with a DVP <2 cm (20mm) in the co-twin17.

\setcounter{footnote}{0}
However, sGR was diagnosed when one twin had an estimated fetal weight of <10%.18 As there are different diagnostic criteria for TTTS and sGR, sGR was excluded. Uncomplicated MCDA twin pregnancies were assigned to the non-TTTS group as controls; the gestation age was matched between TTTS and control groups when the plasma sample was collected in the first trimester (always in the morning with similar timing in the TTTS and control groups). The control group excluded MCDA twin pregnancies with the serious complications, of sGR, malformation and of course TTTS (Figure 1). Participants were recruited at a median gestation of 13+1 (range 12+4 - 13+5) weeks of gestation; five of the seven patients were diagnosed with Quintero stage I TTTS in the second trimester at a median gestation of 19+5 (19, 22+6) week.19 These MCDA twins where treated by fetoscopic laser coagulation and the outcome monitored until delivery (with overall 80% perinatal survival). A further two MCDA twin pregnancies were complicated by Stage III TTTS, diagnosed in the third trimester at 34+1 or 36+1 weeks and were delivered by cesarean section; all fetuses survived (100% survival).

\textbf{2.2 Collection of samples}

Maternal blood samples were collected into tubes with ethylene diamine tetra-acetic acid (EDTA) between 11-15 weeks (in the mornings) of gestation and then centrifuged at 4°C and 3000 rpm for 10 min. The plasma was stored at -80°C for future use.
2.3 Sample preparation

To extract the metabolites from plasma, 100 μl of plasma was added into the tubes with 400 μl of pre-chilled methanol; an internal standard (20 μl of 2,3,3,3-d_{4}-alanine (10 mM, Sigma-Aldrich, Missouri, USA)) was then added. The mixture was vortexed for 1 min and incubated at -20°C for 30 min to precipitate protein. The supernatant was collected after centrifugation (17,000 g, 15 min), dried by using a SpeedVac (Labconco, Kansas, USA), and stored at -20°C for derivatization.

2.4 Methyl chloroformate derivatization and GC-MS analysis

Samples were chemically derivatized using a methyl chloroformate (MCF) method to extract metabolites according to the protocol published by Smart et al.20. Briefly, 200 μL of sodium hydroxide (1 M) was added to the dried samples, and 167 μL of methanol and 34 μL of pyridine were added. Then, 20 μL of MCF was added with 30s of vortexing, and the addition of another 20 μL of MCF was followed by 30s of vortexing. Then, 400 μL of chloroform and 400 μL of sodium bicarbonate (50 mM) were added and vortexed for 10s. The lower chloroform phase was used for GC-MS analysis.

The samples were analyzed in a GC7890 system with an MSD5975 mass selective detector (Agilent, California, USA). The MSD5975 mass selective detector (Agilent) was a ZB-1701 GC capillary column (30 m x 250 μm id x 0.15 μm with 5-m guard column, Phenomenex, California, USA). One microliter of sample was injected into
the GC inlet. Helium gas was the carrier gas flow at 1 mL/min. The auxiliary

temperature, MS quadrupole, and MS source were 250°C, 230°C, and 150°C,
respectively, and the scan speed was 1.562 u/s.

2.5 Data analysis and statistics

Automated Mass Spectral Deconvolution & Identification System (AMDIS) software
was used to de-convolute GC-MS chromatograms and identify metabolites with our
in-house MCF. The metabolite values were normalized to the abundance of the
internal standard and total ion count. Significant metabolites were analyzed with the
limma R package. Principal component analysis (PCA) was based on data from all
metabolites to visualize the differences between TTTS and control group. Log
transformation was used to make the distributions of the data more similar to a
Gaussian distribution. Mann–Whitney U-test, Chi square test, Student’s t-test and box
plot were used in R and SPSS 24.0. The discrepancy in the CRL of the twins was
calculated by subtracting the CRL of the smaller fetus from that of the larger one and
expressing this as a quotient of the larger fetus CRL. Power analysis was applied in
website (https://www.metaboanalyst.ca/). PAPi enrichment approach was applied to
compare metabolic pathways activities based on R-software package, then t-test was
used to investigate difference between TTTS and control group. The metabolic
pathways with p-values less than 0.05 and q-values less than 0.30 were considered
statistically significant. Based on KEGG database, Cytoscape was used to visualize
and interpret metabolomic data in the context of metabolic networks.
3. Results

Population characteristics

Seven TTTS pregnancies and seven control MCDA pregnancies from LoTiS were included in this pilot study. A retrospective calculation of a sample size of 7 cases and 7 controls available in this study, indicated we had a power of 0.67 to detect a difference of 1.2 folds in metabolite abundance at a false discovery rate of 5% (supplementary Figure 1). The gestational age at diagnosis of the five second trimester TTTS patients was 19+5 weeks (19, 22+6). The other two patients were diagnosed with late-onset acute TTTS stage III at 34+1 and 36+6 weeks’, respectively. Clinical maternal and fetal characteristics are outlined in Table 1. There were no significant differences in maternal age, nuchal translucency (NT), crown–rump length (CRL) discrepancy, gestational age and fetal gender, between the two groups at sample collection. Maternal pre-pregnancy BMI, CRL, gestational age at delivery (32+2-35+3, 37+2-37+3 weeks’), larger and smaller amniotic fluid volume, amniotic fluid volume difference, and birth weight of the large fetus were significantly different between TTTS and control groups.

Metabolome of maternal plasma in the control versus TTTS group

In the maternal plasma samples that were collected between the 11th and 15th weeks of gestation, there were over 200 individual spectral peaks separated by gas chromatography. PCA analysis showed that the metabolites were notably separated (Figure 2). Significance is assessed via moderated t-tests implemented in the limma
package of Bioconductor, 17 metabolites were significantly differ in plasma from
the control and TTTS groups (Figure 3). Specifically, the levels of saturated fatty
acids (palmitic acid, pentadecanoic acid and myristic acid), unsaturated fatty acids
(9-heptadecenoic acid and linolelaaidic acid), organic acids (4-aminobutyric acid,
D-fumaric acid, 2-methyloctadecanoic acid and cabamic acid), TCA cycle and
intermediate acids (oxaloacetic acid), alkanes (pentadecane), nicotinamide, an amino
acid derivative (beta-alanine) and cysteine were decreased in the TTTS group
compared to the control group, while the levels of amino acid (methionine and glycine)
were increased in the TTTS group.

Disrupted metabolic pathways in the maternal plasma of TTTS pregnancies
from 11-16 weeks of gestation

To elucidate the metabolic pathways that were different in pregnancies complicated
by TTTS, all of the identified metabolites were subjected to pathway analysis, and the
data suggested that 13 metabolic pathways were significantly altered in
TTTS-complicated pregnancies from 11-15 weeks of gestation (Figure 4a): amino
acid metabolism, carbohydrate metabolism, cofactors, vitamins, and purine were
downregulated, and bile secretion and pyrimidine metabolism were upregulated. A
metabolic network was constructed based on these results (Figure 4b). Intriguingly,
glycine and cysteine were the nexus of the network. The correlation between
identified metabolites and metabolic pathways is illustrated in Figure 4c, in which the
involved pathway is predicted. Taken together, these findings suggest that
perturbations in metabolic pathways of maternal blood during early gestation may be
associated with subsequent TTTS development.

Discussion

Pregnancy is characterized by its complex metabolic processes that can impact fetal
development24. Given the potential high fetal mortality of TTTS without appropriate
fetal therapy, clinical evidence suggests that the optimal time frame for fetoscopy in
TTTS is 16-26 weeks of gestation6. Predictive metabolic biomarkers (before 16
weeks) may aid timely identification of “at risk” monochorionic twin pregnancies and a
potentially diagnosis of TTTS at a lower Quintero stage with improved double survival
rates8. This ‘proof of principle study’ noted metabolic perturbations in maternal plasma
at 11-15 weeks of gestation in apparently uncomplicated monochorionic, diamniotic
twin pregnancies prior to the subsequent ultrasound diagnosis of TTTS.

Dunn and colleagues have previously reported higher levels of fatty acids and lower
levels of carbohydrates in amniotic fluid of post-FLC; they suggested that metabolic
disorders existed in TTTS, and the changes were associated with fetal or placental
energy metabolism and the echocardiographic measures of recipient cardiac
function14.

A role for fatty acids in the pathogenesis of TTTS is biologically plausible. Fatty acids
can be imported, oxidized, synthesized, and exported by endothelial cells, and fatty
acid oxidation contributes to approximately 5% of total cellular ATP production in endothelial cells25. Oxidation of fatty acids is irreplaceable for endothelial cell proliferation because carbons are provided for de novo nucleotide synthesis26. Hence, fatty acids are a metabolic determinant of the angiogenic process. Many studies have shown that fatty acids are key to pregnancy outcomes. Lipid metabolic genes are upregulated in the first trimester, and fatty acid uptake by placental trophoblast cells is associated with angiogenic processes27. Fatty acids are not only a substantial energy source but also have effects on membrane fluidity, intracellular cell-signaling cascades and susceptibility to oxidative injury28. Linolelaidic acid has been shown to exhibit a proliferative effect on human umbilical vein smooth muscle cells29. Trophoblasts oxidize palmitate and myristate for energy30. During normal pregnancy, vascular remodeling, fatty acid synthesis and transport, and lipid droplet formation are increased31. Fatty acids are key to angiogenesis and thus play an important role in human placentation32,33. Maternal angiogenic activity is decreased in severe TTTS34. However, in our study, we found that the decrease of saturated fatty acids and unsaturated fatty acids in TTTS group, which indicated that the utilization of fatty acids in TTTS pregnant women was increased. Increased oxidative utilization of fatty acids can provide energy for vascular remodeling of placenta. Fatty acids are important components of cell membrane. Therefore, increased utilization of fatty acids in the first trimester can promote the process of pathological placental vascular anastomosis in TTTS patients, and it may develop into an early metabolic disorder that disrupts placental angiogenesis and the fetal energy supplies.
Recently, amino acid metabolism was found to play important roles in regulating and maintaining various aspects of vascular function, such as vascular tone, coagulation and fibrinolysis, cell growth and differentiation, redox homeostasis, and immune and inflammatory responses35. In this study, we found that methionine and glycine were upregulated in the maternal plasma of pregnancies subsequently complicated by TTTS and that these metabolites positively correlated with abnormal amniotic fluid depth. Alterations in amino acid levels between donor and recipient twins in TTTS and between non-TTTS twin pairs have previously been reported, due to intertwin transfusion that impairs placental transport of amino acids36. In placental insufficiency, maternal cysteine and methionine levels are decreased, and maternal glycine is increased37. Amino acids enhance protein synthesis and cell proliferation in the placenta38. Glycine can promote angiogenesis39. Methionine, a sulfur-containing amino acid, is a major component in protein synthesis35, and blockade of methionine metabolism in endothelial cells leads to endothelial damage or inflammation40. In the metabolome of amniotic fluid, higher levels of carbohydrates in TTTS pregnancies before fetoscopic laser coagulation treatment and higher levels of fatty acids post-treatment14, indicate that this treatment can partially correct metabolic changes. These studies suggest that amino acids are associated with placentation and angiogenesis. In addition, upregulated methionine and glycine levels may be a sign that indicates early changes in the metabolic microenvironment during the first
trimester in women whose pregnancies are subsequently complicated by TTTS.

Because of the low incidence of TTTS in monochorionic twin pregnancies (~10%), it is difficult to investigate the manifestations of TTTS risk in early pregnancy maternal blood. A prospective study in a large cohort of monochorionic twins pregnancies would be required and the improved identification of ‘at risk’ pregnancies when metabolic profiles are used alone or in combination with fetal ultrasound variable would be desirable. The aim of this work was to evaluate the prognostic ability of individual first-trimester metabolomic biomarkers for TTTS in MC twins. For those metabolomic biomarkers where there was a statistically significant independent association with adverse outcome, calculating the absolute risk for each outcome using common values demonstrated that the markers may be useful clinically, although this would depends on a change in management consequent on the risk assessment.

Limitations

As the lower statistic power, we should expand a significantly larger prospective study of monochorionic twins to enable the development of a prognostic model. Secondly, another limit is that we only tested metabolites of maternal blood, rather the blood metabolome not likely reflects disrupted metabolism in unspecified uterus and fetal development. Thirdly, our study was not a randomized controlled study, but the results also could provide scientific support for future large randomized controlled cohort studies. Fourthly, early diagnosis is of great significance for the detection of
clinical diseases, but we cannot exclude that monochorionic twins will not develop to TTTS just because there is no difference in metabonomic of blood samples in the first trimester of pregnancy. The next step of our future work is to replicate the study in independent samples. Finally, the study should be performed and analyzed according to robust prognostic methodology, which has been reported by McShane and colleagues for predictive markers studies43.

Conclusions

Although the idea that TTTS can potentially be detected using this methodology is exciting, to our knowledge, this is the first report of a metabonomic profile with human plasma for predicting the occurrence of TTTS before 16 weeks. This study provides insights into the relationship between early metabolic changes and the occurrence of TTTS. Based on our results, we found that amino acid metabolism, carbohydrate metabolism and lipid metabolism were altered and that the abnormal changes may be related to subsequent placental development and angiogenesis.

Authors’ contributions

C.T, J.L and H.Q conceived the study, which was discussed with RS, MDK and PB at regular Chongqing 111 study meetings; Y.Y, L.W, T.H performed experiments and analyzed the data; L.Z, H.F and J.G collected samples and clinical data; Y.Y and C.T drafted the manuscript; R.S, M.D.K and P.B commented on the data and revised the manuscript.
Ethics approval and consent to participate

This study was approved by The Ethics Committee of The First Affiliate Hospital of Chongqing Medical University (approval number: 201530; date of approval: 2/29/2016). And each participant will sign the informed consent before re-investigation.

Consent for publication: Not applicable.
References

16. Tong C, Wen L, Xia Y, et al. Protocol for a longitudinal twin birth cohort study to unravel the complex interplay between early-life environmental and genetic risk factors in health...

32. Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental

Table 1. Clinical characteristics of subjects.
Figure legend

Figure 1. Flowchart showing selection of TTTS and control participants
Figure 2. Principal component analysis (PCA) of TTTS and controls.

PC1 vs. PC2. Score plot shows separation between TTTS cases (green) and controls (red) based on significant differences in metabolite abundance (p<0.01) between the groups (n=7 in each group).
Figure 3. Altered metabolites in the maternal plasma of TTTS versus control pregnancies between 12 and 15 weeks of gestation.

The boxplots show the significant metabolites with their relative concentrations. Blue boxes indicate TTTS group, red boxes indicate Control group. Only the metabolites with p-values less than 0.05 and q-values less than 0.12 are displayed in the figure.
Figure 4. Predicted alterations in metabolic pathways in TTTS between 11 and 16 weeks of gestation.

A. Predicted metabolic changes in TTTS compared to normal controls; red represents increased metabolism, whereas green represents downregulated metabolism. Only the metabolic pathways with p-values and q-values less than 0.05 are displayed in the heatmap. B. The metabolic network plotted according to the metabolites identified in maternal plasma collected at 12-15 weeks of gestational age is shown. The red dots represent metabolites that were significantly upregulated in TTTS, while the blue dots represent metabolites that were significantly downregulated in TTTS. The yellow dots represent the metabolites in plasma that showed no differences between TTTS and normal controls. The smaller yellow circles are unidentified metabolites that were directly connected to the identified metabolites. C. Circles indicate the connections between metabolic pathways and metabolites.