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Armadillo (Arm) repeat proteins contain tandem copies of a

degenerate protein sequence motif that forms a conserved

three-dimensional structure. Animal Arm repeat proteins

function in various processes, including intracellular

signalling and cytoskeletal regulation. A subset of these

proteins are conserved across eukaryotic kingdoms, and

non-metazoa such as Dictyostelium and Chlamydomonas

possess homologues of members of the animal Arm repeat

family. Higher plants also possess Arm repeat proteins,

which, like their animal counterparts, function in

intracellular signalling. Notably, these plant Arm proteins

have novel functions. In addition, genome sequencing has

identified a plethora of Arm-related proteins in Arabidopsis.

Proteins containing Arm repeats possess tandem
imperfect repeats of a sequence motif of about 42 amino
acids [1,2]. The ‘Armadillo’ nomenclature originates from
the appearance of embryos that are mutant for the
Drosophila segment polarity gene armadillo, the founding
member of the family [3,4]. Drosophila Arm is the
homologue of mammalian β-catenin, which is required
both for cell–cell adhesion and for regulating gene
expression during development (reviewed in ref. [5]).
Many other proteins also contain Arm repeats, and all of
these are thought to share a conserved three-dimensional
structure (Fig. 1). A single Arm repeat consists of three α
helices [2]. Tandem Arm repeats fold together and interact
extensively with one another to form a right-handed
superhelix of helices, which creates a surface for protein–
protein interactions [2,6–8] (Fig. 1). Arm repeat proteins
are structurally related to proteins containing tandem
HEAT motifs, and the two protein families probably had a
common phylogenetic origin [9].

Although originally characterized in animals, proteins
containing Arm repeats also exist outside the animal
kingdom. Arm family proteins with known functions can
be divided into several categories, with different
subfamilies having characteristic sequences outside the
Arm domain that contribute to protein function (Fig. 2).
Searches of the Pfam
(http://www.sanger.ac.uk/Software/Pfam) and MATDB
(http://mips.gsf.de/proj/thal/index.html) databases, as well
as BLAST searches [10] using sequences of known Arm

proteins, have detected at least 80 putative proteins
containing tandem Arm repeats in Arabidopsis (Fig. 3),
some of which have relatives in other plant species. As in
other organisms, plant proteins that contain Arm repeats
can be divided into several subfamilies (Fig. 3).

The presence of Arm repeat proteins in unicellular
eukaryotes, animals and plants suggests that this protein
family has ancient evolutionary origins. One hypothesis is
that Arm family proteins have functions in plants similar
to those in other organisms, and several recent studies
have shown that this suggestion is partly correct. But
plant Arm family proteins have been also discovered to
have novel functions that correlate with the presence of
plant-specific functional groups adjacent to the Arm
repeat domain.

In this review, I outline the known functions of Arm
repeat proteins across kingdoms and speculate on the
functions of the numerous uncharacterized Arm family
members detected in the completed Arabidopsis genome
sequence.

Importin-αααα homologues are conserved in all eukaryotes

Importin-α homologues are conserved across eukaryotic
kingdoms (Fig. 2). The function of importin-α is to
regulate, through nuclear pore complexes, the transport of
proteins into the nucleus (reviewed in ref. [11]). Proteins
containing nuclear localization signals (NLSs) are
recognized by the Arm repeats of importin-α=(reviewed in
ref. [12]). The amino (N)-terminus (non-Arm) region of
importin-α binds to importin-β, which contains HEAT
motifs [13]. Importin-β interacts with the nuclear pore,
allowing translocation of the importin-α/importin-β
heterodimer and its NLS-containing cargo into the
nucleus, where the cargo is then released by the GTP-
bound form of the small GTPase Ran (reviewed in refs
[11,12]).

Notably, importin-α can interact with cytoskeletal
components, suggesting a way in which nuclear import
might be regulated. Immunolocalization studies have
demonstrated that importin-α colocalizes with both
microtubules and actin microfilaments in tobacco
protoplasts [14], and that both tobacco and Drosophila
importin-α associate with the cytoskeleton, but only when
bound to an NLS [14,15]. In addition, the Saccharomyces
cerevisiae importin-α, Srp1p, associates with the actin-
related protein Act2p, which is required for nuclear pore
structure and function [16].

Unicellular Arm family proteins and their homologues

In addition to Srp1p, a second protein with Arm repeats
exists in S. cerevisiae. Vac8p forms a link between
intracellular membranes and the actin cytoskeleton.
Vac8p co-sediments with filamentous actin and is
associated with the vacuole membrane through the lipid
modification of residues located N-terminal to the Arm
domain [17,18]. vac8 mutants cannot target new vacuolar
membrane to the bud site during cell division [17–19].
Vac8p is also a component of inter-organelle junctions
between the nuclear membrane and the vacuole, where it
binds to and is required for the localization of the integral
membrane protein Nvj1p [20]. In addition, Vac8p is
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required for the fusion of vacuolar membranes within the
cell [21,22].

Nd9p, an Arm repeat protein related to Vac8p, exists in
the protozoan Paramecium and is required for regulated
exocxytic membrane fusion between the trichocyst and
plasma membranes [23]. As in Vac8p, the Arm repeat
region in Nd9p is thought to be involved in protein–
protein interactions, whereas the membrane interaction
region lies outside the repeats [23]. Whether Nd9p
interacts with the actin cytoskeleton is unknown.

Recent data suggest that the regulation of the
microtubule cytoskeleton by an Arm family protein is
conserved among organisms as divergent as unicellular
algae and mammals. The unicellular alga
Chlamydomonas requires an Arm repeat protein, PF16,
for cellular motility brought about by the flagellum
[24,25]. The PF16 protein contains eight Arm repeats and
localizes along the length of the C1 microtubule – one of
the central pair of microtubules in the nine-plus-two
arrangement of microtubules found in the flagellum. PF16
is required specifically for the stability of this single type
of microtubule [24,25]. Deletion analysis of PF16 has
shown that all eight Arm repeats are required for its
function and assembly into the flagellum, indicating that
the Arm repeats form a single functional unit [24].

The mammalian homologue of PF16 is a testis-specific
sperm protein, SPAG6, that interacts with tubulin in vitro
and colocalizes with microtubules in vivo [26,27]. SPAG6
interacts specifically with the central pair of microtubules
in sperm tails, in a manner strikingly similar to that of
PF16 [28]. Male mice lacking the Spag6 gene are infertile
owing to a sperm motility defect, and many Spag6−/−

sperm lack the central pair of microtubules in the
flagellum [28]. An interaction partner of SPAG6 is PF20, a
WD40 repeat protein that is also localized to the central
apparatus of sperm tails. PF20 requires interaction with
SPAG6 for its localization to microtubules when both
proteins are heterologously expressed in COS cells [29].
Chlamydomonas PF20 localizes to the C2 microtubule in
the central pair, and pf20 mutants lack the central pair of
microtubules from the flagellum [30]. Thus, both the
function and the interaction partners of PF16 and SPAG6
seem to have arisen early in evolution.

Other Arm family proteins that interact with microtubules

Although no obvious homologues of PF16 and SPAG6
seem to exist in higher plants, Arabidopsis has three Arm
repeat proteins that are highly likely to interact with
microtubules, because they possess an N-terminal kinesin
domain [31] (Fig. 3). Known plant kinesins have roles in
morphogenesis and development affecting cell division and
cell growth (reviewed in refs [32,33]). Presumably, the
Arm repeat domain of the Arabidopsis kinesin proteins
interacts with target proteins, thereby localizing them to
microtubules.

It is possible that Arabidopsis kinesin Arm proteins
function analogously to a complex of Arm repeat proteins
that interacts with microtubules in mammalian cells.
Mammalian kinesin family proteins interact with an Arm
family protein called SMAP (Smg-GDS-associated
protein), which in turn interacts with Smg-GDS, an Arm

repeat exchange factor for small GTPases [34,35] (Fig. 2).
In addition, the adenomatous polyposis coli (APC) protein
can, through its own Arm repeats, interact with SMAP,
and this interaction is required for microtubule clustering
[36]. Notably, a null mutant in the Dictyostelium Smg-
GDS homologue is defective in chemotaxis and
aggregation, although the mechanism underlying this
defect is unclear [37].

Cytoskeletal functions of ββββ-catenin and related proteins

The first Arm repeat protein to be implicated in
cytoskeletal regulation in multicellular organisms was β-
catenin, a component of adherens junctions in animals.
Adherens junctions are points of intercellular contact,
where cadherin molecules at the plasma membrane are
anchored to the actin cytoskeleton via the adaptor proteins
α- and β-catenin [38]. β-Catenin binds directly to the
intracellular tail of cadherin through its Arm repeats [39];
the N-terminus of β-catenin in turn interacts with α-
catenin [40], which interacts with actin [41]. Desmosomes
– specialized adhesive structures that are prevalent in
tissue types such as epithelia and link keratin
intermediate filaments to desmosomal cadherins – contain
plakoglobin, a close relative of β-catenin [42,43]. It has
been shown that intact adherens junctions containing
Arm, the Drosophila homologue of β-catenin, are
necessary for cellular rearrangements that take place
during morphogenesis [44]. A similar requirement is found
for HMP-2, a β-catenin homologue in Caenorhabditis
elegans [45].

Animals possess other Arm repeat proteins with a
cytoskeletal role similar to that of β-catenin (Fig. 2).
Adherens junctions also contain p120 protein and its
relatives (δ-catenin, plakophilins and p0071) [46].
Desmosomes also contain members of the p120 subfamily
[46]. p120 can affect the activity of Rho family GTPases,
which might regulate the balance between cell motility
and adhesion, via the actin cytoskeleton (reviewed in ref.
[47]). The p120 family of proteins seems to be restricted to
vertebrates and arthropods, suggesting that this subgroup
might have evolved coordinately with the diversification of
specialized types of tissue in complex animals.

The cytoskeletal function of β-catenin is conserved in a
multicellular non-metazoan (Fig. 2). The Dictyostelium β-
catenin-related protein Aardvark (Aar) localizes to and is
necessary for the integrity of actin-containing adherens
junctions during the formation of fruiting bodies [48,49]. It
is not known, however, whether Aar interacts with a
cadherin protein, because the only cadherin-related
protein of known function in Dictyostelium, DdCad-1,
lacks a transmembrane domain and thus a conserved
region for interaction with β-catenin [50]. The fact that β-
catenin-like proteins exist both in Dictyostelium and in
metazoa, and that Arm proteins that interact with the
cytoskeleton are present in unicellular organisms, raises
the possibility that Arm repeat proteins have a conserved
cytoskeletal function in all organisms, and that proteins
with similar functions also exist in higher plants.

Plant cells are surrounded by a rigid cell wall and so do
not possess ‘classical adherens junctions’ linking one cell
membrane directly to another. Indeed, plants do not seem
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to possess any close relatives of metazoan adherens
junction proteins other than Arm repeat proteins.
However, adjacent plant cells are linked via membrane-
lined channels, plasmodesmata, which also contain actin
filaments (reviewed in ref. [51]). As yet, it has not been
ascertained to what extent plasmodesmata share
molecular similarities with animal junctions, but it is
tempting to speculate that some plant Arm repeat proteins
might turn out to be plasmodesmatal components.

ββββ-Catenin and Wnt signal transduction

In addition to their cytoskeletal functions, β-catenin and
its homologues act as regulators of gene expression both
during development and throughout adult life. These
proteins can enter the nucleus in response to extracellular
signals and bind to DNA in a complex with T-cell factor
(TCF) transcription factors, thus altering gene expression
(reviewed in ref. [52]).

In essence, cytosolic β-catenin or Arm can be stabilized
by extracellular glycoprotein signals, known as Wnts in
animals, that are transduced by a seven-transmembrane
receptor. This stabilization involves preventing glycogen
synthase kinase-3 (GSK-3) from phosphorylating β-catenin
on N-terminal serines and threonines [53]. In the absence
of Wnt signals, phosphorylation of β-catenin targets it for
degradation by the proteasome via interaction with a
protein complex that includes the F-box/WD40 repeat
protein β-Trcp (Slimb in Drosophila), as well as GSK-3,
Axin and APC [52]. By contrast, stabilized β-catenin is
targeted to the nucleus, where it can affect gene
expression. β-Catenin and TCF transcriptional targets
include regulators of cell proliferation, transcription
factors required during development, and cell adhesion
molecules [52].

Arm repeat proteins have not been shown to have a
function in gene expression or signalling in unicellular
organisms but do have a conserved signalling function in
Dictyostelium. The Dictyostelium β-catenin homologue Aar
is required for the differentiation of prespore and spore
cell types, and for expression of the prespore cell-specific
gene psA [48]. As in animals, the signalling function of
Aar is dependent on Dictyostelium GSK-3 [48]; however, it
is not known whether Aar interacts with TCF-like
proteins during this process. Notably, Aar is more similar
to proteins in Arabidopsis and Oryza than to its metazoan
β-catenin counterparts, both in sequence similarity (by
BLAST) and due to an F-box in Aar and in the plant
proteins that is not present in metazoan β-catenin (Box 1
and see below).

Other metazoan Arm repeat proteins might also have a
dual cytoskeletal and transcriptional role. Mammalian
p120, its relatives and the more distantly related
plakophilins are all detected in cell nuclei, and the nuclear
localization of p120 is regulated by the generation of
alternatively spliced p120 isoforms with or without a
nuclear export signal [54]. In addition, p120 interacts with
Kaiso, a poxvirus and zinc-finger (POZ) transcription
factor [55], which inhibits the interaction between Kaiso
and DNA [56]. Of interest, Arabidopsis possesses a protein
(At5g13060) that comprises Arm repeats and a ‘Broad-
complex Tramtrack Bric-a-brac’ (BTB)/POZ DNA-binding

domain (Fig. 3). Perhaps this protein has an analogous
transcriptional role to that of the p120–Kaiso complex
found in mammalian cells. Similarly, Arabidopsis
At1g08320 contains a basic zipper (bZIP) domain in
addition to Arm repeats (Fig. 3). bZIP domains mediate
both protein dimerization and transcriptional regulation,
suggesting that At1g08320 is also likely to be a
transcription factor or part of a transcriptional complex.

PHOTOPERIOD RESPONSIVE 1 functions in light and

gibberellin signalling

Recent work by Amador et al. [57] is the first to
demonstrate the movement of Arm repeat plant proteins
into the nucleus in response to extracellular signals. The
PHOTOPERIOD RESPONSIVE 1 (PHOR1) protein of
potato (Solanum tuberosum) possesses seven Arm repeats
located downstream from a U-box motif (also referred to as
a CPI domain [57]). U-box proteins, so called because of
their homology to S. cerevisiae UFD2, are predicted to be
components of the cellular ubiquitination machinery,
which targets proteins for proteolytic degradation
(reviewed in refs [58,59]).

PHOR1 mRNA is upregulated under short-day
conditions, which are required for potato tuberization.
PHOR1 mRNA also undergoes diurnal variation, with
levels increasing after the transition to light. In short
days, a second peak in PHOR1 mRNA expression is seen
at dusk [57]. Inhibition of PHOR1 through the expression
of an antisense construct results in early and increased
tuberization under short-day conditions and also produces
shorter stem height [57].

PHOR1 functions in the gibberellin (GA) hormone
signalling pathway. PHOR1 antisense lines are less
sensitive than wild-type plants to exogenously applied GA,
as measured by both stem elongation and the expression
of GA target genes, whereas plants overexpressing
PHOR1 show an enhanced response to GA application and
reduced sensitivity to an inhibitor of GA biosynthesis [57].
In transformed tobacco cells, a fusion protein of PHOR1
and green fluorescent protein (GFP) is present in both the
nucleus and the cytosol. Notably, the distribution of
PHOR1–GFP changes in response to GA. PHOR1–GFP
translocates to the nucleus transiently in response to
exogenous GA, and is predominantly cytosolic in cells
treated with an inhibitor of GA biosynthesis [57]. Deletion
analysis of PHOR1 domains has shown that nuclear
targeting of PHOR1–GFP requires the Arm repeat
domain, whereas cytosolic localization seems to be
mediated by the U-box motif [57].

ARC1 signalling in the Brassica self-incompatibility response

A protein related to PHOR1, Arm repeat containing 1
(ARC1), has been characterized in Brassica [60]. ARC1
was identified as a specific binding protein for the kinase
domain of Brassica S-locus receptor kinases (SRKs). SRKs
are transmembrane serine/threonine kinases required for
the self-incompatibility (SI) response that prevents a plant
self-fertilizing. arc-1 is expressed specifically in the
stigma, the female part of the plant to which pollen,
containing the male gametes, binds [60]. In vitro binding
of ARC1 to SRKs is dependent on phosphorylation, and
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ARC1 is also phosphorylated by the SRKs themselves [60].
Inhibition of ARC1 through expression of an antisense
construct results in a partial loss of SI [61], which
suggests that it is a positive regulator of the SI response.
ARC1 can enter the nucleus and contains functional
nuclear localization and nuclear export signals [62]. Like
PHOR1, ARC1 contains a U-box.

As mentioned above, U-box proteins are thought to
target proteins for degradation [58,59]. Recent work has
shown that ARC1 functions in vitro as an E3 ubiquitin
ligase that can interact both with the ubiquitination
machinery and with target proteins that become
ubiquitinated [62]. This E3 ligase activity requires the U-
box and is also likely to function in vivo. ARC1 protein
colocalizes with the proteasome in tobacco cells
cotransformed with active SRK; this colocalization
requires the ARC1 U-box.

Brassica pistils (comprising the stigmas and associated
female structures) pollinated with self-incompatible pollen
have increased levels of ubiquitinated proteins as
compared with non-pollinated or compatibly pollinated
controls. This increase in ubiquitination, however, is lost
in plants expressing an ARC1 antisense construct. In
addition, treating pistils with proteasome inhibitors blocks
the SI response, allowing self-incompatible pollen to
germinate and to grow [62]. Thus, the apparent function of
ARC1 in the SI response is to target several proteins for
degradation by the proteasome, specifically on activation
of the SRK. It is likely that these target proteins, which
usually would be required for aspects of fertilization, bind
to the Arm repeats. ARC1 could shuttle some of its target
proteins from the nucleus to the proteasome, or it might
have an additional, independent nuclear function.

Potential proteasomal functions for other plant Arm family

proteins?

By far the largest Arm repeat protein subgroup in
Arabidopsis is the one containing relatives of PHOR1 and
ARC1, which have a predicted U-box upstream of the Arm
domain. Some relatives were identified by Azevedo et al.
[58,59] and some by Amador et al. [57], but searches of the
Arabidopsis proteome by BLAST and Pfam suggest that
Arabidopsis possesses at least 35 PHOR1- and ARC1-
related proteins (Fig. 3). By analogy to ARC1 and PHOR1,
it is likely that Arabidopsis U-box proteins have diverse
functions and interaction partners, but at least some
might enter the nucleus in response to extracellular
signals or mediate the regulated degradation of target
proteins.

In addition to the large family of proteins with Arm
repeats and a U-box, a few Arabidopsis Arm proteins
contain other domains present in proteins that interact
with the ubiquitination machinery [59]. At5g02880
possesses a predicted ‘homologous to the E6-AP C-
terminus’ (HECT) domain (Fig. 3), and At2g44900 and
At3g60350 both contain a predicted F-box – a motif of 40–
50 amino acids that was originally identified in cyclin F
[63–65]. Known proteins with HECT domains and F-boxes
function as E3 ubiquitin ligases, which target interacting
proteins for ubiquitination and subsequent degradation by
the proteasome. Given that targeted proteasomal

degradation of proteins seems to be integral to plant
physiology and development, for example, in hormone
signalling and responses to light (reviewed in ref. [59]),
and because Arm repeats function as sites of protein–
protein interaction, many Arabidopsis Arm proteins are
likely to have important and diverse roles in targeted
protein degradation throughout the life of the plant.

Potential ‘Wnt-like’ signalling functions for plant Arm family

proteins?

It has been suggested that, other than GSK-3, there are no
Wnt signalling pathway homologues in Arabidopsis
[66,67]. But BLAST searches based on the Dictyostelium
Aar protein sequence have identified two genes,
At2g44900 and At3g60350, that encode proteins with the
most similarity in structure and sequence to Aar, Arm or
β-catenin of any Arabidopsis proteins (Box 1). These two
proteins, for which I propose the names Arabidillo-1 and
Arabidillo-2 (for ‘Arabidopsis Armadillo’) consist of a core
of at least nine Arm repeats, several putative sites for
GSK-3 phosphorylation and an N-terminal F-box (Box 1)
[64,65]. An apparent homologue of Arabidillo-1 and
Arabidillo-2 also exists in Oryza (AAG60190).

The presence of a putative F-box in Aar, Arabidillo-1
and Arabidillo-2 suggests that these proteins might target
other proteins for destruction by ubiquitin-mediated
proteolysis. In addition, there is evidence that F-box-
containing proteins can themselves be degraded
autocatalytically when bound to the ubiquitination
machinery in yeast, animal cells and plants (ref. [68] and
references therein). In metazoa, phosphorylated β-catenin
is targeted for destruction by β-Trcp, a protein that
contains an F-box and WD40 repeats [69]. Aar, Arabidillo-
1 and Arabidillo-2 all possess an integral F-box, which
could perhaps allow them to be targeted to the proteasome
directly in the absence of a stabilizing signal, bypassing
the need for the more complex destruction mechanism
found in animal systems. Arabidopsis does, however, also
possess two F-box/WD40 repeat proteins, At3g52030 and
At5g21040 [64,65,70]. It has yet to be determined whether
Arabidillo-1 and Arabidillo-2 are regulated in a manner
analogous to the regulation of β-catenin – that is, either by
constitutive degradation in the absence of a stabilizing
signal or by GSK-3 phosphorylation.

Arabidopsis possesses ten homologues of GSK-3. Some
of these are expressed in a tissue-specific manner and
some have known developmental functions – for example,
in flower development and hormone signalling (reviewed
in ref. [66]). In addition, the Arabidopsis GSK3 homologue
BIN-2 (also known as UCU1 or DWF-12) regulates the
stability and nuclear localization of BES-1 and BZR-1
proteins in response to brassinosteroid signals, in a
similar manner to the regulation of β-catenin homologues
by Wnt signalling [71–73]. Although BES-1 and BZR-1 are
not members of the Arm repeat family, it remains to be
determined whether plant Arm proteins can be regulated
in the same way.

Concluding remarks

Members of the Arm repeat protein family are present in
all eukaryotic kingdoms. The structure of the Arm repeat
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domain allows these proteins to have many interaction
partners and functions in the cell. Although most
extensively studied in animals, some Arm family members
clearly have non-animal homologues, with functions that
have been conserved throughout evolution.

Recent studies have shown that plants possess many
proteins containing Arm repeats. In Arabidopsis, the
largest subgroup of Arm proteins is that of proteins
containing an associated U-box – a motif associated with
proteasomal functions. This U-box/Arm family seems to be
unique to higher plants as there are no detectable
counterparts in other genomes, and its large number of
members implies great functional diversification. Two
members of the U-box/Arm family have been
characterized. Potato PHOR1 functions in both light and
gibberellin signalling, and Brassica ARC1 is involved in
the ubiquitination of target proteins during the SI
response. Despite having novel functions, plant and non-
plant Arm family members have similarities in their
regulation – for example, their nuclear accumulation in
response to extracellular signals and their regulation by
phosphorylation.

With the large amount of genomic information now
available, it will be possible to discover the role of the
many uncharacterized Arm repeat proteins in various
systems, for example, by investigating their intracellular
localization and their loss-of-function phenotypes. Future
studies of plant Arm repeat proteins are likely to provide
insights into the mechanisms of many aspects of plant cell
biology and development.
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Fig. 1. Arm repeat proteins have a conserved three-dimensional structure. Three-dimensional structures of the Arm repeat regions of mouse β-catenin (left) and

yeast (S. cerevisiae) importin-α (right). Both proteins form a very similar helical bundle of α helices, which are depicted as green cylinders. Importin-α is shown in a

complex with the nuclear localization signal (NLS) peptide from Xenopus Nucleoplasmin (yellow strand), which fits into the groove formed by the superhelix of

helices. Figures  were generated using Cn3D software (http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml) from the structures 3BCT (β-catenin, 457 amino

acids [2]) and 1EE5 (importin-α, 424 amino acids [8]) in the Protein Data Bank (http://www.rcsb.org/pdb/). The N- and C-terminus of each Arm repeat region is

marked.
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Fig. 2. Conservation of Arm repeat proteins in eukaryotes. Shown are the subfamilies of Arm repeat proteins with known functions. Green boxes indicate Arm

repeats, other coloured boxes represent sequences specific to each protein subfamily. Proteins are drawn roughly to scale apart from APC, which varies from 1067

to 2845 amino acids among species. Each Arm repeat is about 42 amino acids. A brief description of the function of each protein is given on the right: functions

known to be not associated with the Arm domain are listed in red; those associated with the Arm domain are listed in blue. Proteins are arranged according to their

presence in various eukaryotic kingdoms: orange background, proteins found in all kingdoms; yellow background, proteins found in both animals and protists or

unicellular algae; blue background, proteins found only in animals; light green background, proteins found only in plants; mauve background, proteins found only in

fungi; grey background, proteins found only in protists. Although no function for importin-α in protists has been reported, there is a distinct homologue of importin-

α in Dictyostelium (EMBL accession code AC116030), which has been included to illustrate the conservation of this protein across all eukaryotic kingdoms.



8

TRENDS in Cell Biology 

Kinesin

C2

β-catenin-like

U-box

Importin-α

HECT

BTB/POZ

 

Kinase

bZIP

Patatin/lipaseLRR

At4g02150
At5g03070
At5g49310
At5g52000

At2g23140
At2g28830
At2g35930
At3g07360
At3g18710
At3g19380
At3g46510
At3g47820
At3g49810
At3g52450
At3g54790
At3g54850

At3g09350
At3g20170
At3g26600
At3g53800
At4g12710
At4g16490
At4g31890
At4g33940
At4g34940

At1g02690
At1g09270
At3g05720
At3g06720

At1g01950
At1g12430
At3g54870

At1g10560
At1g20780
At1g23030
At1g24330
At1g27910
At1g29340
At1g60190
At1g66160
At1g67530
At1g68940
At1g71020
At1g76390

At5g02880

At5g13060

At1g50230

At1g08320

At1g61850

At1g01830
At1g23170
At1g51350
At1g61350
At2g05810
At2g45720
At2g25130
At3g01400
At3g03440

At2g44900
At3g60350

At1g44120
At1g77460
At2g22130 (no C2 domain)

At4g21350
At4g36550
At5g01830
At5g09800
At5g40140
At5g42340
At5g62560
At5g64660
At5g65200
At5g65920
At5g67340

At4g36030
At4g38610
At5g50900
At5g14510
At5g19330
At5g37290
At5g58680
At5g66200

Fig. 3. Arm repeat proteins in Arabidopsis. Putative genes encoding proteins with tandem Arm repeats have been compiled from the Arabidopsis genome.

Arabidopsis Arm repeat proteins can be subdivided on the basis of their homology with each other and with proteins from other organisms. Orange background,

importin-α family; yellow background, proteins with a kinesin domain; light blue background, predicted U-box-containing proteins similar to PHOR1/ARC1; dark

blue background, proteins with similarity to Arm, β-catenin or Aar; grey background, proteins containing a predicted motif in addition to the Arm repeats – namely,

a HECT domain (Pfam PF00632), a BTB/POZ domain (PF00651), a serine/threonine kinase domain (PF00069), a bZIP domain (PF00170), a leucine-rich repeat (LRR)

domain (PF00560) and a patatin-like phospholipase domain (PF01734); mauve background, proteins with about 20 Arm repeats (two of which also have a C-terminal

C2 domain); light green background, proteins containing Arm repeats but no other recognizable protein motifs. In the different categories of protein, green boxes

indicate Arm repeats and other coloured boxes represent additional domains. This collection of proteins is the result of BLASTP and PSI-BLAST searches

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) done using Aar, β-catenin, Arm and Vac8p protein sequences to identify similar proteins in Arabidopsis, combined

with searches of the Pfam database (http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF00514). All proteins have been cross-referenced with the MATDB database

(http://mips.gsf.de/proj/thal/db/search/search_frame.html) to ascertain gene accession codes.
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 Aardvark         45 FDIFLIPTEMLVHLLSFLSANDLWRISLTCKRIWYIV-DVFKFWEL-L 354
 Arabidillo-1     38 VDWISLPYDTVLQLFTCLNYRDRASLASTCKT-WRCLGASSCLWTS-L 90
 Arabidillo-2     313 VNWTSLPYDTVFHLFTRLNYRDRASLASTCRT-WRSLGASSFLWSS-L 83
 Consensus         FSLLDLPDDLLLEILSRLDPKDLLRLSLVSKR-WRSLVDSLKLWFKKL 47
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Aardvark      -VFKFWELLFEQTCPRIYYAMQFNSRWSNPTSFQSKMILCYIDR-LPTDNYKNFDKSDES 407
Arabidillo-1 NPEGLDDFWLNEGAALLLNLMQSSQEDVQERSATGLATFVVVDDENASIDCGRAEAVMKD 438
Arabidillo-2 

Aardvark 
Arabidillo-1
Arabidillo-2 
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Aardvark 
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Arabidillo-2 

Aardvark 
Arabidillo-1
Arabidillo-2 

Aardvark 
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Arabidillo-2 

Aardvark 
Arabidillo-1
Arabidillo-2 

NSQGLNDFWLNQGATLLLSLMQSAQEDVQERAATGLATFIVVDDENASIDCGRAEAVMRD 429

GQIKKIIGVMNENLHNPMILRETCYILKRLSYRQRKEDEHESLIARYGGISLILQAMKNH 467
 GGIRLLLELAKSWREG--LQSEAAKAIANLSVN----ANIAKSVAEEGGIKILAGLAK-- 490
 GGIRLLLELAKSWREG--LQSEAAKAIANLSVN----AKVAKAVAEEGGISVLADLAK-- 481

PYDAGVQEDACGALGNLTCDSPNNMGLYSNDNYLSVVEQGGIQLILQAMKNHMMN-PGVQ 526
SMNRLVAEEAAGGLWNLSVGEEHKN---------AIAQAGGVKALVDLIFRWPNGCDGVL 541

 SMNRLVAEEAAGGLWNLSVGEEHKN---------AIAQAGGVNALVDLIFRWPHGCDGVL 532

YNTSFVLRNLARNDVSESKVAIEGGIQSIATAMKNHPNHIGIQTQGCGALRNLGCNDSNK 586
ERAAGALANLAADDKCSMEVAKAGGVHALVMLARNCK-YEGVQEQAARALANLAAHGDSN 600
ERAAGALANLAADDKCSMEVARAGGVHALVMLARNCK-YEGAQEQAARALANLAAHGDSN 591

VLSAKEGGIGLILRAMRSFSS--HPDLQLNGCGALRNLARNEDNKNMISRQNGIQLVLGA 644
NNNAAVGQEAGALEALVQLTKSPHEGVRQEAAGALWNLSFDDKNRESISVAGGVEALVAL 660
GNNAAVGQEAGALEALVQLTQSPHEGVKQEAAGALWNLAFDDKNRESIAAFGGVEALVAL 651

MSNHPDDPDVQDEGCA-ALINLAYQDEANEETIAREGGINLILKAMRNHPFHSGVQMQGR 703
AQSCSNASTGLQERAAGALWGLS-VSEANSVAIGREGGVPPLIALAR--SEAEDVHETAA 717
AKSSSNASTGLQERVAGALWGLS-VSEANSIAIGHEGGIPPLIALVR--SEAEDVHETAA 708

GALKNLSCNPKNKLTIARSGGIELMNIAMQNHPNFANRFLELSRILQVALEDGNI 757
GALWNLAFNPGNALRIVEEGGVPALVHLCSSSVSKMARFMAALALAYMFD----- 767
GALWNLSFNPGNALRIVEEGGVVALVQLCSSSVSKMARFMAALALAYMFD-----
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Box 1. Arabidopsis possesses proteins related to Aar, Arm and ββββ-catenin

Arabidopsis proteins At2g44900 and At3g60350 (named Arabidillo-1 and Arabillo-2, respectively) show similarity to Dictyostelium Aar (PSI-

BLAST first iteration score, 10−17), β-catenin and Arm (10−10 to 10−9). A representation of these proteins is shown in Figure Ia, where green boxes

represent Arm repeats, yellow circles represent putative sites for GSK-3 phosphorylation ([S/T]-x-x-x-[S/T], where S is serine, T is threonine and

x is any amino acid), and grey rectangles represent predicted F-boxes.

Below this representation (Fig. Ib) is an alignment of the three F-box sequences, done first by ClustalW [74] and followed by slight

refinement by eye. The amino acid positions of the sequences in the full-length proteins are shown. The Pfam F-box consensus sequence is

shown, and residues required for F-box function [63] are highlighted in grey. Residues identical to the consensus are shaded in red, conserved

changes in blue. Residues that are conserved between Aar, Arabidillo-1 and Arabidillo-2 but are not the same as in the consensus sequence are

shown in yellow.

Below the F-boxes (Fig. Ic) is an alignment of the nine Arm repeats of Arabidillo-1 and Arabidillo-2 and repeats 2–10 of Dictyostelium Aar

done by ClustalW as above. The amino acid positions of the sequences in the full-length protein are shown. Each repeat is outlined in green,

and the positions of the three α helices (H1, H2, H3) in each Arm repeat [2] are indicated by black lines above the alignment. Identical residues

between proteins are shaded in red, conserved residues are shaded in blue.


