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Review
Armadillo (ARM)-repeat proteins form a large family
with diverse and fundamental functions in many eukar-
yotes. ARM-repeat proteins have largely been character-
ised in multicellular organisms and much is known
about how a subset of these proteins function. The
structure of ARM-repeats allows proteins containing
them to be functionally very versatile. Are the ARM-
repeat proteins in ‘little creatures’ as multifunctional
as their better-studied relatives? The time is now right
to start analysing ARM-repeat proteins in these new
systems to better understand their cell biology. Here,
we review recent advances in understanding the many
cellular roles of both well-known and novel ARM-repeat
proteins.

Armadillo-repeat containing proteins
Armadillo (ARM)-repeat proteins are characterised by
containing a repeating �42 amino acid motif composed
of three a-helices, which was first characterized in the
Drosophila segment polarity protein Armadillo [1]. Several
ARM-repeat protein crystal structures have been solved
[2–11], demonstrating that although ARM-repeat proteins
do not necessarily share a great deal of sequence identity
(e.g. [9,12]), they share a related structure (Figure 1) and
are evolutionarily ancient (Box 1). Tandem ARM-repeat
units fold together as a superhelix, forming a versatile
platform for interactions with many protein partners. For
this reason, many ARM-repeat proteins have more than
one independent cellular role, and eukaryotic ARM-repeat
proteins as a whole have diverse and important functions
[13]. The lack of shared sequence identity and the degen-
erate nature of the repeat sequence (Figure 1) makes
defining cross-species homologues and orthologues of
ARM-repeat proteins problematic, although ARM-repeat
detectionmethods are improving [14]. Several ARM-repeat
proteins have been identified solely based on solution of
their crystal structure (e.g. [6,7,9]), whereas whole-genome
sequencing projects have enabled the annotation of many
putative ARM-repeat protein homologues ripe for study,
throughout the tree of life (Figures 2 and 3; Boxes 2 and 3),
particularly in important unicellular eukaryotes.

The era of large-scale genome sequencing has enabled
identification of many putative ARM-repeat proteins
throughout the tree of life, particularly in unicellular
organisms such as disease-causing protists and algae. This
has provided a goldmine of new data for eukaryotic cell
Corresponding author: Coates, J.C. (j.c.coates@bham.ac.uk).
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biologists, which challenges some old assumptions and
highlights novel systems for future research.

b-catenin/Armadillo: the prototypical ARM-repeat
protein
b-catenin (Armadillo inDrosophila) is a fascinating protein
with many important cellular and developmental func-
tions. The roles of b-catenin are ‘classically’ defined: (i)
as an adhesion protein and (ii) as a signalling protein,
transducing extracellular signals to the nucleus to modify
gene expression. b-catenin hasmany binding partners that
mediate a diverse set of cellular functions, and the protein
probably acts as a ‘hub’ on which many cellular signalling
networks impinge.

b-catenin is a key node inWnt signalling throughout the
animal kingdom [15,16]. Until cells receive aWnt signal, b-
catenin is maintained in an unstable state by the concerted
action of several kinases and scaffold proteins (referred to
as the cytosolic ‘destruction complex’ [15]). Stabilised b-
catenin enters the nucleus where it binds to transcription
factors, including those of the Lymphoid Enhancer Factor/
T-Cell Factor (LEF/TCF) family, and hence turns key
developmental- and cell proliferation genes on or off
[15,16]. The structure of b-catenin is key to its regulation
during Wnt signalling: many b-catenin interaction part-
ners bind to a positively-charged groove in the ARM-repeat
region ([17]; Figure 1).

Mammalian b-catenin was originally discovered as a
component of actin-containing junctions that link cells
together via cadherin proteins. It is now thought that cell
junctions are dynamic structures that regulate actin
dynamics locally to the junction [18]. The cytoplasmic tail
of cadherin molecules binds to the same area of the b-
catenin ARM-repeats as various Wnt signalling com-
ponents, thus providing a means for crosstalk between cell
junctions and cell signalling pathways, since binding of
cadherin and signalling components is mutually exclusive
[17].

b-catenin also interacts with microtubules, including by
localising to centrosomes and regulating their regrowth,
cohesion and separation during mitosis [19–21]. Centro-
some splitting is promoted by Wnt signals [20], thus
demonstrating both a transcriptional and structural role
for Wnt/b-catenin signalling during cell proliferation. b-
catenin also contacts the cytoskeleton indirectly via its
interaction with Adenomatous Polyposis Coli (APC), a
large multi-domain protein that is part of the b-catenin
destruction complex described above [22]. Interestingly,
5.003 Trends in Cell Biology xx (2010) 1–12 1
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Figure 1. Sequences and structures of ARM-repeat proteins. (a) Consensus single ARM-repeat amino-acid sequences for b-catenin [4] and Plakophilin [2]. Note the lack of

conservation at many positions in the repeat, leading to potentially low sequence similarities in different ARM-repeats. +, basic (H,K,R); white square, small hydrophobic

(ACPVT); black square, large hydrophobic (FILMW); two-tone square, any hydrophobic. (b) Conserved structures of the ARM-repeat regions of different ARM-repeat

proteins. Top, ribbon diagrams and bottom, electrostatic surfaces for (from left to right) Human b-catenin (12 ARM-repeats: 1JDH in Protein Data Bank), C. elegans SYS-1 (12

ARM-repeats: 3C2H), Plakophilin 1 (10 ARM-repeats; 1XM9) and importin-a (10 ARM-repeats; 1BK5). The N-terminal end of the protein is at the top in each representation. In

the lower diagram, the accessible surface area is coloured according to electrostatic potential from �10 kBT/e (red) to + 10 kBT/e (blue). The electrostatic potential was

calculated using APBS [139]. The TCF4 peptide (yellow) complexed with human b-catenin is shown in cartoon representation, binding in the positively charged groove in

the ARM-repeats. Note importin-a has very different overall charge distribution but similar structure to the other proteins. Figures were produced using PyMol [140].
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APC itself also contains ARM-repeats, which themselves
interact with various regulators and effectors of small
GTPases that control cell migration via the actin cytoske-
leton [22]. APCalso interacts withmicrotubules via several
different domains ([22]; see below). This enables control of
cell migration (with additional crosstalk to the actin cytos-
keleton), as well as chromosome separation during cell
division [22].

The identified functional repertoire of b-catenin is ever-
growing. It has diverse interaction partners in several
subcellular compartments that bind to its ARM-repeats
(e.g. http://www.stanford.edu/�rnusse/pathways/binding.
html). Various tissue-restricted proteins bind to the
ARM-repeat region of b-catenin to regulate its stability,
including the Wilms’ Tumour suppressor protein WTX
[23], the renal tumour suppressor JADE-1 [24] and the
DNA damage-induced SIAH-1 [25].

b-catenins are thought to function similarly throughout
the animal kingdom. b-catenin signalling and junctional
2

localisation are present in cnidarians, the earliest-evolving
radially symmetrical animals [26], and b-catenins are
present in sponges, the phylogenetically most basally
branching animals [27,28]. The dual adhesion/signalling
functions are proposed to have been present �700 million
years ago, in the last common ancestor of animal b-catenin
[29]. In zebrafish, genome duplication has resulted in two
b-catenins with overlapping but distinct functions [30]. In
Caenorhabditis elegans, the situation is more extreme,
with four highly divergent b-catenins having evolved dis-
tinct roles in adhesion (HMP-2) or signalling (BAR-1,
WRM-1, SYS-1) [31].

Proteins related to b-catenin
Animals possess several proteins related in function to b-
catenin. Vertebrate plakoglobin arose from a b-catenin
gene duplication in the chordate lineage [29]; human b-
catenin and plakoglobin are 69% identical. Plakoglobin
substitutes for b-catenin function in some instances, but

http://www.stanford.edu/~rnusse/pathways/binding.html
http://www.stanford.edu/~rnusse/pathways/binding.html
http://www.stanford.edu/~rnusse/pathways/binding.html


Box 1. Importin-a: fundamental to eukaryotic cells

Importin-a transports cargo proteins into the nucleus and consists

of 10 ARM-repeats downstream of a structurally related importin-b-

binding (IBB) domain ([13]; Figure 3). There are three subclasses of

animal importin-a. Ancestral importin-a genes gave rise to the a1

subclass, which is also present in plants, fungi, amoebae and

choanoflagellates [117]. Animal importin-a2 and -a3 proteins have

acquired unique functions during development and differentiation

processes, particularly during gametogenesis [117–120]. In Droso-

phila, mouse and C. elegans various importin-a genes are

specifically expressed during spermatogenesis or gametogenesis

and the absence of these genes leads to male and female sterility in

Drosophila [119,121]. Similarly in plants, the ancestral importin-a1-

like gene has diversified to give plant-specific importin-a proteins,

some of which have specific cellular roles [122,123].

Is importin-a the oldest and perhaps ancestral ARM-repeat

protein? Importin-a is conserved across all eukaryotes, highlighting

its ancient nature [117,124]. The nucleus defines a eukaryotic cell

and is clearly an ancient organelle, which probably arose from an

endosymbiotic event. Members of the nuclear import and export

machinery are all structurally related to one another and probably

shared a common prokaryotic ancestor, raising interesting ques-

tions about the sequential evolution of the nuclear transport

machinery [124]. It is thought that ARM-repeat proteins evolved

from duplication of a single ARM-repeat structure within an

ancestral protein, and that tandem ARM-repeats were present in

the last eukaryotic common ancestor [125].

It seems possible that other ARM-repeat proteins evolved from

importins or an importin-like ancestor. Like importin-a, many ARM-

repeat proteins are able to enter the nucleus independently of a

nuclear localisation signal [37,53,126]. Additionally, importin-a, like

b-catenin and related proteins, interacts with and possibly regulates

both actin [13] and microtubules [127]. Our searches have

uncovered many unknown proteins simply annotated as ‘importin-

a-like’ in diverse unicellular eukaryotes and ascertaining the

functions of these proteins might shed light onto the evolution of

ARM-repeat proteins and their function.
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has also evolved unique functions: it is a component of
actin-containing cell–cell junctions, but unlike b-catenin, it
is also found in desmosomes, specialised intermediate-
filament-containing junctions that protect tissues from
mechanical stress. Plakoglobin mutations are embryo-
lethal and particularly affect the heart, which is under
particular stress, thus rich in desmosomes. Plakoglobin
also binds to LEF/TCF proteins in the nucleus: whether
plakoglobin acts redundantly with or antagonistically to b-
catenin might depend on the cell type being analysed [32–

34].
The p120 family of proteins [p120 catenin, d-catenin,

p0071 and Armadillo-Repeat gene deleted in Velo-Cardio-
Facial syndrome (ARVCF)] is found in vertebrates, Droso-
phila and C. elegans [35]. p120 proteins, like b-catenin,
bind to classical cadherins using their ARM-repeats. p120s
facilitate microtubule-based trafficking of cadherins,
stabilise cadherin clusters at the cell surface and also block
cadherin endocytosis and degradation, thus controlling the
strength of cell–cell adhesion by regulating the number of
cadherin molecules at the plasma membrane [35].

p120 catenin (referred to here simply as p120) regulates
the actin cytoskeleton via small GTPases, inhibiting RhoA
activity and activating Rac and Cdc42. p120 binding to
cadherins or RhoA is mutually exclusive as both inter-
actions involve the ARM-repeats. Activation of Rac by p120
antagonises the association of p120 (indirect, involving the
ARM-repeats) with microtubules [36]. Thus p120 could
mediate a balance between motility and adhesion by sev-
eral mechanisms [35].

Like b-catenin and plakoglobin, p120 is present in the
nucleus, where its ARM-repeats interact with the tran-
scription factor Kaiso [37]. This interaction is required for
Xenopus gastrulation, in particular convergent-extension
cell movementsmediated by ‘non-canonical’Wnt signalling
(i.e. Wnt signalling that does not involve b-catenin;
[38,39]). d-catenin, like b-catenin, is subject to phosphoryl-
ation and proteasomal degradation [40].

Importantly, Kaiso also binds to LEF/TCF family tran-
scription factors and inhibits their activity; this inhibition
is relieved by p120. Thus, b-catenin and p120 together
activate at least some ‘canonical’Wnt-induced gene expres-
sion [39,41,42]. Interestingly, some p120/Kaiso-mediated
transcriptional regulation could also involve interaction
between p120 and a nuclear-localised fragment of the E-
cadherin C-terminus [43].

The vertebrate-specific plakophilin family is most clo-
sely related to p120s: human plakophilins are between
25% and 47% identical to human p120 proteins. Plakophi-
lins regulate junctional assembly, strength and crosstalk;
like other ARM-repeat proteins they have multiple inter-
action partners [44,45].

b-catenin-like proteins outside the animal kingdom
Do proteins with the same functions as b-catenin exist
outside multicellular animals? Many proteins and protein
domains associated with animal cell–cell adhesion are
present widely throughout eukaryotes, including in uni-
cells [46], so this seems a reasonable question to pose.
Indeed, there are some candidate proteins that have some
level of shared sequence identity with b-catenin.

The Vac8p protein [47] in the unicellular yeast Sacchar-
omyces cerevisiae (Figure 2) is 22% identical to human b-
catenin. Vac8p has several vacuolar functions, is a com-
ponent of an actin-containing intra-organellar junction
between the vacuole and the nucleus, and has a novel role
in caffeine resistance [13,48]. Vac8p has unique binding
partners for each of its functions, which target Vac8p to
distinct sub-regions of the vacuolar membrane and bind in
a mutually exclusive manner to the ARM-repeat domain
[48]. The Vac8p homologue in Candida albicans, a fungus
that exhibits multicellular (hyphal) growth under
starvation conditions, is required for vacuolar inheritance
and for regulation of hyphal branching frequency, co-ordi-
nating vacuolar inheritance with cell size and the cell cycle
[49,50].

Although Vac8p has a role in actin-containing intra-
cellular junctions, it does not share all the functions of b-
catenin [48]. Vac8p currently has no known cell-signalling
role. However, as with b-catenin, the ARM-repeat region of
Vac8p provides a platform for interaction with many
protein partners, leading to the functional versatility of
Vac8p.

If Vac8p and b-catenin proteins shared a common ances-
tor in the ancestor of animals and fungi (Figure 2) the
proteins have clearly diverged in function to a great degree.
Choanoflagellates are the unicellular organisms most clo-
sely related to animals [51]. No b-catenin has been found in
the choanoflagellate Monosiga (Figure 2); the cadherins of
3



Figure 2. The eukaryotic tree of life. Simplified representation of the eukaryotic tree of life (adapted from [141]) showing the five major kingdoms. Blue: unikonts, green:

green and red algae and plants, pink: rhizaria (no genome sequences available); yellow, chromoalveolates {consisting of two major lineages: (i) alveolates (including

Apicomplexans – Box 2) and (ii) oomycetes, diatoms and brown algae [141]; orange: excavates. Examples of model organisms with sequenced genomes in each group are

shown where applicable. Fundamental cell biological properties for each group (discussed in the main text, i.e. existence of multicellular forms, presence of a flagellum) are

shown where known: +, present; �, absent; �, present in some species only.
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Monosiga lack a b-catenin binding domain [52]. We do not
currently know whether b-catenin was lost from choano-
flagellates, or if it was never present in the ancestor of
choanoflagellates andmulticellular animals. The evolution
of b-catenin might have been a prerequisite for animal
multicellularity, perhaps by providing the necessary ‘miss-
ing link’ between cadherins and the actin cytoskeleton that
enabled stable cell–cell contacts to form.

The social amoeba Dictyostelium (Figure 2) has a b-
catenin-related protein, Aardvark, which localises to actin-
containing cell-cell junctions and affects cell differentiation
[13]. Aardvark is 18% identical to human b-catenin, a
similar level of identity as between human b-catenin
and the C. elegans b-catenin homologue WRM-1 [31].
Aardvark contains an F-box motif, as do the related Ara-
bidillo proteins in the land plant Arabidopsis, which
regulate development, in particular root branching
([13,53]; Figure 3). F-box proteins are components of E3
ubiquitin ligases [54], suggesting a possible protein degra-
dation function for Aardvark and Arabidillos, different
from b-catenin functions, although this has not yet been
confirmed. The Arabidopsis ARM-Repeat Only protein
ARO1 regulates cell growth and actin organisation [55].
ARO1 partially co-localises with F-actin, but is also seen in
nuclei and at the plasma membrane, suggesting that, like
b-catenin, it is a multifunctional protein [55].
4

Other ARM-repeat proteins and the cytoskeleton
The cytoskeleton is a fundamental component of all eukar-
yotic cells. As described above, animal b-catenin and p120
and yeast Vac8p all associate with actin, microtubules or
both. In the next sections we focus on ARM-repeat proteins
with putative homologues throughout the tree of life
(Figures 2 and 3), which could have conserved cytoskeletal
functions awaiting discovery in a variety of important
unicellular eukaryotes.

Kinesin-associated protein 3 (KAP3)

Kinesin-Associated Protein 3 (KAP3) is a multifunctional
ARM-repeat protein within a motor protein complex that
moves cargo along microtubules, particularly in neuronal
axons and flagella [56]. KAP3 participates in MAP-kinase
signalling and chromosome segregation duringmitosis [57]
and interacts with other ARM-repeats, both in APC and in
the nucleotide exchange factor SMG-GDS/VIMAR [13]. In
mammals, KAP3 might control neurotransmitter release
[58,59] and human homologues are implicated in degen-
erative motor neurone diseases [60].

Our similarity searches reveal proteins related to KAP3
encoded in the genomes of Monosiga [61], in unicellular
green algae [62,63], in a diatom [64] and in various chro-
moalveolate and excavate parasites [65–69]. Protein
sequence identity to human KAP3 (GenBank accession



Figure 3. ARM-repeat proteins: functions and conservation. Representation of ARM-repeat proteins discussed in the text that have been identified in more than one species.

The presence of each type of protein in various branches of the eukaryotic tree of life is indicated by coloured boxes: animals (Anim. – dark blue boxes), amoebae (Amoe. –

purple boxes), fungi (light blue boxes), plants (dark green boxes), green/red algae (Algae – light green boxes), Chromoalveolates (Chrom. – yellow boxes,), Excavates (Exc. –

orange boxes) are shown. Proteins are grouped according to function as in the main text. ARM-repeats are shown in mid-green. Protein domain abbreviations: F, F-box; IBB,

importin beta binding; FH1, Formin Homology 1; FH2, Formin Homology 2; DAD, Diaphonous Autoregulatory Domain; NIMA; Never In Mitosis A; MAPKKK, Mitogen

Activated Protein-kinase-kinase-kinase; HECT, Homology to E6 C-terminus; WD40, WD40 repeats; DUF1716, domain of unknown function 1716; SAM, sterile alpha motif;

TIR, Toll-like interleukin receptor; TPR, tetratricopeptide repeats.
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AL121714) ranges from 18% (hypothetical protein in Tri-
chomonas vaginalis, [65]) to 45% (hypothetical protein in
Monosiga brevicollis, [61]). Thus, the KAP3 ancestor could
have been present in the ancestor of all eukaryotes. No
putative KAP3 has been detected in the sequenced gen-
omes of higher plants or Dictyostelium. However, SMG-
GDS is found in Dictyostelium, where it is required for
chemotaxis but not cell division [13]. Dictyostelium (a non-
flagellated organism) might have lost KAP3 [70]. We can
speculate that KAP3 acquired a novel role interacting with
SMG-GDS specifically in the animal lineage. Given its
roles in cell transport and cell division in multicellular
organisms, it will be interesting to ascertain what key
functions KAP3 has in unicells from diverse kingdoms.
5



Box 2. Apicomplexans: parasites with novel ARM-repeat proteins

The Apicomplexa is a phylum comprising over 5000 unicellular

parasites that are important pathogens affecting humans and live-

stock [128]. Notable Apicomplexa include Plasmodium, the causative

agent of malaria; Toxoplasma, causing toxoplasmosis; Cryptospor-

idium, a waterborne diarrhoea-causing pathogen; Theileria, causing

East Coast fever; and Babesia, causing bovine tick fever. Apicomplexa

contain an essential apicoplast, a relic non-photosynthetic plastid

from engulfment and secondary endosymbiosis of a red alga. In

addition all Apicomplexa possess an apical complex at the anterior

end of the cell, which contains specialised vesicles that secrete

enzymes required for host cell invasion.

The Apicomplexan life cycle is complex, and has diverged in

different parasites. Cryptosporidium has the simplest life cycle,

invading a single cell type (intestinal epithelium) in a single host

(human). Plasmodium, Theileria and Babesia undergo multiplication

and asexual reproduction in the red blood cells of their vertebrate

host(s) but require an insect vector for their sexual reproduction and

transmission. Plasmodium species affecting mammals are trans-

mitted by the Anopheles mosquito, whereas Plasmodium gallina-

ceum, affecting birds, is transmitted by Aedes. Theileria and Babesia

have a tick vector [129–131].

Because of their medical and veterinary importance the genomes of

several Apicomplexa have recently been sequenced [132]. Genome

sizes vary widely: Plasmodium species have 14 chromosomes and

genomes of 23–30 Mb whereas Theileria and Babesia have four

chromosomes totalling 8–10 Mb [129]. Importantly, some Apicom-

plexan species are genetically tractable (e.g. Plasmodium and

Toxoplasma) and amenable to the study of gene function and cell

biology [133,134].

By mining Apicomplexan genomes using ApiDB and PlasmoDB

[132], we have identified ten putative Apicomplexan ARM-repeat

proteins (Figure I). Half of these proteins are conserved throughout

eukaryotes and their functions are described in the main text.

Interestingly, PF16 appears to be absent from Theileria, Cryptospor-

idium and Babesia (although incomplete genome annotation is

possible). This could be owing to differences in gamete biology:

Plasmodium and Toxoplasma have flagellated male gametes,

whereas Theileria, Cryptosporidium and Babesia lack any flagellated

stage to their life cycle [135,136].

The remaining Apicomplexan ARM-repeat proteins we have found

are novel. The absence of two of these (ACU12396, AAN37153) in

Cryptosporidium could reflect its simpler life cycle and host range.

We hypothesise that Apicomplexan-specific ARM-proteins are im-

portant for key aspects of the biology of these parasites. Thus, these

proteins and their putative signalling pathways are candidates for

novel therapeutic targets in the future.

Figure I. ARM-repeat protein families in Apicomplexans. Domain structures and putative functions for each protein are given. ARM-repeats are shown in green. Protein

abbreviations: IBB, importin-b binding; DUF1716, domain of unknown function 1716; TPR, tetratricopeptide repeats. The five Apicomplexan-specific ARM-repeat

proteins are highlighted with yellow shading. Representative accession numbers are given for Plasmodium falciparum. Note that Toxoplasma might have more than

one close homologue of some of these proteins.
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Diaphonous-related formins: a novel ARM-repeat

structure

Formins are found in animals, plants and fungi, where
they nucleate and bundle actin filaments and stabilise
microtubules during cell growth, adhesion, differentiation,
cytoplasmic motility and cytokinesis [71,72]. Mammalian
Diaphonous-related formins (DRFs) are unique formins
containing ARM-repeats [6,7]. DRFs are activated by
Rho-family GTPases and contain an N-terminal auto-
inhibitory domain upstream of a formin-homology 2
(FH2) domain and an activatory domain (DAD;
Figure 3): the FH2/DAD domains interact with actin.
The auto-inhibitory domain of mammalian Diaphonous
(mDia) is composed of five ARM-repeats (Figure 3) ident-
6

ified by solution of their crystal structure [6,7]. The ARM-
repeat domain binds to both RhoA and to the activatory
domain of mDia, suggesting a mechanism whereby RhoA
binding to the ARM-repeat domain exposes the FH2/DAD,
enabling it to interact with actin [6,7]. mDia isoform-
specific residues within the ARM-repeats determine the
choice of small GTPase binding partner [73]. Interestingly,
mDia binds to APC to regulate microtubule stabilisation,
but this does not require the ARM-repeats of mDia [74].

Flagellar ARM-repeat proteins

A subset of ARM-repeat proteins is specifically associated
with a conserved eukaryotic microtubule-containing struc-
ture, the flagellum (or cilium). The well-studied PF16



Box 3. Going green: algal and plant ARM-repeat proteins

Our searches show that even tiny green algae have a healthy

complement of ARM-repeat proteins compared with other unicells

with similar sized genomes. Higher plants have undergone a larger

expansion in ARM-repeat proteins than any other lineage [94]. The

relatively large number of green algal ARM-proteins partly explains

the large plant ARM-repeat family, because many green algal proteins

have higher plant homologues, indicating direct ancestral relations

(Figure 3; Figure II). The majority of ARM proteins in green algae have

land plant relatives; however, we have identified several groups of

ARM-repeat proteins that are green algal-specific. Conversely, land

plants possess unique domain combinations acquired as the plant

lineage evolved [96]. Importantly, some algal ARM proteins have

animal and/or Chromoalveolate homologues but no land plant

homologues (Figure 3), emphasising that some ancient cellular

functions are conserved across kingdoms but have been lost in the

land plant lineage. Chlamydomonas is a well-established model

organism for genetic and cell biological studies: it is likely that

molecular genetic methods will rapidly develop for other algae with

sequenced genomes, enabling further study of ‘green’ ARM-protein

evolution.

RING-ARM proteins: plant ubiquitin ligase precursors?

The RING (Really Interesting New Gene) domain is structurally

related to, and might have given rise to, the U-box. Both domains are

a hallmark of E3 ubiquitin ligases [137] and are found widely across

eukaryotes. U-box-ARM proteins are unique to land plants [94]. RING-

ARM proteins are found in some green algae [62] and a diatom [138].

It is currently unclear whether: (i) U-box-ARM proteins are derived

from an algal ancestor and have subsequently undergone massive

expansion during land plant evolution, or (ii) whether this is an

example of convergent evolution of proteins to achieve the same

function, highlighting the importance of the versatility of ARM-repeat

domains.

Figure II. Proteins shared between green algae and plants. We have identified six protein families with homologues solely in algae and higher plants. Protein structures

are illustrated on the left; green boxes represent ARM repeats; pink boxes represent leucine-rich repeats, other coloured boxes represent domains annotated with a

name. Where protein function has been ascertained in at least one species, a review reference is given; where proteins are of unknown function, a representative higher

plant GenBank accession number is given.
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contains nine ARM-repeats and is evolutionarily ancient,
regulating the motility of flagella and cilia in Chlamydo-
monas, mammals and Trypanosomes by stabilizing the
central pair of microtubules in the 9+2 arrangement
[13,75,76]; Figure 4).

Detection of PF16-related proteins using similarity
searches of sequenced genomes correlates well with the
presence of a flagellum. PF16 homologues are present in
other flagellated green algae, e.g.Micromonas sp. ([63]; 75%
amino acid identity to Chlamydomonas PF16 (GenBank
accession number CRU40057)). A predicted protein in the
early-branching land plant Physcomitrella, which has fla-
gellated male gametes, is 40% identical toChlamydomonas
PF16 [77]. We do not detect putative PF16 homologues in
non-flagellated red/green algae or higher plants, but
proteins related to PF16 exist in various flagellated unicel-
lular chromoalveolate and excavate parasites (Figure 3, Box
2).ForexampleaToxoplasmagondiiprotein is64%identical
toChlamydomonasPF16.Plasmodium sp. possesses amore
divergent protein, 37% identical to Chlamydomonas PF16.
PF16 appears to be absent from diatoms, which although
flagellated lack the central pair of microtubules [78].

Analysis of the Chlamydomonas flagellar proteome has
identified several additional ARM-repeat-containing fla-
gellar proteins [79,80]. We can detect putative homologues
of several of these additional proteins (FAP194, RSP8,
RSP14, FAP69) in other green algae, chromoalveolates
and some animals. Interestingly, the ARM-repeat protein,
ARM94, is found in activated sperm tails of the ascidian
Ciona [81]. ARM94 relatives have not been detected in
Chlamydomonas [79,80], implicating ARM-repeat proteins
in organism-specificmodes of flagellar regulation aswell as
core functions.

Human ARM-repeat-containing protein 6 (ARMC6)
interacts with FUSED kinase (see below) and thus might
function in flagella ([82]; Figures 3 and 4). ARMC6 probably
has multiple roles, being part of the clathrin coat assembly
complex, and binding to a WD40 repeat-containing protein
(WDR8) involved in bone development [82,83]. We can
detect putative ARMC6 homologues in green algae, plants,
animals, some chromoalveolates and some excavates
(Figure 3): determining ARMC6 function in diverse systems
should reveal its conserved and species-specific functions.

ARM-repeat-containing kinases with possible

cytoskeletal functions

Several subfamilies of ARM-repeat proteins also contain a
kinase domain; their functions will be discussed in this
section. Adding the ARM protein–protein interaction
domain to a kinase could have strong evolutionary benefit.
Since some kinases function within a protein complex to
stabilize interactions with target proteins (e.g. [16]), add-
ing a protein–protein interaction domain such as ARM-
repeats to a kinase could potentially enable stable inter-
actionswith target proteinswithout the need for additional
protein partners.

The Fused serine/threonine kinase was originally dis-
covered in Drosophila, as part of the Hedgehog (Hh) devel-
opmental signalling pathway. Most Fused kinases
consist of an N-terminal kinase domain with C-terminal
7



Figure 4. Flagellar ARM-repeat proteins. A cross-section through a eukaryotic

flagellum is shown, with the outer microtubule doublets in grey and the inner central

pair microtubules labelled C1 (red) and C2 (dark blue). ARM-repeat proteins are

shown in green; non-ARM proteins in light blue. PF16 is required for the stability of

the C1 microtubule, whereas PF20 is required for the formation of both central

pair microtubules. PF20 interacts with the Fused kinase, which also interacts with

ARMC6 and the kinesin motor protein KIF7. RSP8 and RSP14 were identified as

radial spoke proteins, presumably functioning between the central pair and the outer

microtubules. FAP194 is a protein of unknown function that is closely related to PF16.

FAP69, FAP28 and FAP296 are ARM-repeat flagellar-associated proteins of unknown

function. Proteins with black outlines and labels are widely conserved across

kingdoms; those with green outlines and labels are plant/algal (FAP194) or

Chlamydomonas-specific (FAP296, FAP28); that with a blue outline and label

(FAP94) has only been identified in Ciona.

Review Trends in Cell Biology Vol.xxx No.x

TICB-706; No. of Pages 12
ARM-repeats: the ARM-repeats are either lost or highly
divergent in Drosophila [84,85] but are conserved in
plants, some green algae and protists ([78,84,85];
Figure 3). Although vertebrate Fused homologues can
regulate Hh signalling in certain cellular contexts
[78,86], mouse fused knock-outs have normal Hh signal-
ling, but defective ciliated tissues [87]. Mammalian Fused
is required to build motile (9+2) cilia and interacts with
KIF7, a kinesin that associates with the central pair of
microtubules [78]. Interestingly, Fused also interacts with
the WD40 protein PF20, which in turn interacts with the
ARM-repeat protein PF16, suggesting a very direct regu-
latory role for multiple ARM-repeat proteins in flagellar
central pair construction (Figure 4).

Fused kinases are present in non-flagellated organisms,
suggesting they have additional cytoskeletal functions.
The Arabidopsis Fused homologue, TIO, controls the final
stages of cell division [84]. TIO protein localizes to the
phragmoplast, a plant-specific structure containing both
microtubules and actin, which controls cell wall deposition
and hence creation of two daughter cells. Drosophila fused
mutants have defective female germline mitosis and
develop ovarian tumours [88], suggesting that a general
role for Fused in eukaryotic cell division might exist.
Targeted knockouts of Fused homologues in a range of
unicells would be highly informative in this respect. In
Dictyostelium, no role for a Fused homologue in cell
division is documented [85]. However,Dictyostelium Fused
8

is required for chemotaxis (directed cell movement) and
correct cell polarity, and localises to the microtubule cytos-
keleton via its ARM-repeat domain [85].

The kinase-ARM protein domain combination has prob-
ably arisen more than once during eukaryotic evolution.
ARM repeat-containing kinases related to Mitogen Acti-
vated Protein-kinase-kinase-kinase-7 (MAPKKK7) control
cell division in Arabidopsis pollen, Dictyostelium amoebae
and Schizosaccharomyces pombe [89–91]. Curiously,
MAPKKK7-ARM proteins affect only one specific type of
cell division in plants, in contrast to their more general role
in fission yeast and Dictyostelium. Perhaps MAPKKK-
ARM proteins only control haploid cell divisions. Testing
this hypothesis requires determining the functions of
MAPKKK7-ARM proteins in other unicellular systems:
we can detect putative homologues in green algae and
chromoalveolates (Figure 3).

Never InMitosis A (NIMA)-kinases regulate cell division
in yeasts andmammals [92]. AnArabidopsisNIMA-kinase,
NEK6, binds to an ARM-repeat-containing protein, ARK1,
to regulate cell morphogenesis via the microtubule cytoske-
leton [93]. Our searches reveal proteins containing both a
NIMA kinase domain and ARM-repeats in some green
algae, some chromoalveolates, Monosiga, and animals
(Figure 3). Generating NIMA-ARM loss-of-function
mutants in both unicells and multicellular species will
determine whether these proteins have conserved
cytoskeletal and cell division functions.

ARM-repeat proteins in protein degradation
A cellular function well-served by ARM-proteins is that of
targeted ubiquitination and subsequent degradation of
proteins. Many ARM-repeat proteins act as E3 ubiquitin
ligases, which interact with, and transfer ubiquitin directly
to, a target protein [54]. ARM-repeat-containing ubiquitin
ligases are most prevalent in land plants and have been
reviewed elsewhere [94,95]; (Box 3). As mentioned pre-
viously, Aardvark and Arabidillo proteins both contain F-
boxes (Figure 3), although whether they are true ubiquitin
ligases is unclear.

ARM-HECT proteins

ARM-HECTproteins are themostwidespreadARM-repeat-
containing ubiquitin ligases in eukaryotes. Their functions
havebeen characterized inArabidopsisandS. cerevisiae but
we can detect putative homologues in green and red algae,
animals, and Dictyostelium (Figure 3). Arabidopsis KAK-
TUS/UPL3 controls DNA replication and regulates tri-
chome (leaf hair) branching in concert with the plant
hormone gibberellin [96]. The yeast ARM-HECT protein
Ubiquitin-Fusion-Degradation 4 (UFD4) is a ubiquitin
ligase during DNA repair [97]. Establishing the function
of ARM-HECT proteins in other species will determine
whether these proteins have any conserved substrates.

Other UFD ARM-repeat proteins

S. cerevisiae UFD3 has 6 ARM-repeats C-terminal to a
WD40 domain. The UFD3 ARM-repeats would not have
been identified without structural analysis [11]. As with
UFD4, UFD3 is an integral part of the yeast protein
degradation process and our searches indicate that
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putative ARM-repeat-containing UFD3 homologues exist
in animals, higher plants, some chromoalveolates and
some excavates (Figure 3). Curiously, another ubiquitin
ligase in the yeast ubiquitin-degradation pathway, the U-
box containing protein UFD2, contains an ‘uneven’ struc-
ture related to ARM-repeats, indicating the prevalence of
this structure in protein degradation processes [10].

ARMC8: a multifunctional degradation and cytoskeletal

regulator?

ARM-repeat-containing protein 8 (ARMC8) is part of the
conserved C-terminal to LisH motif (CTLH) complex. The
CLTHcomplexisinvolvedinbothproteasome/polyubiquitin-
dependent protein degradation and vacuole/lysosome-
mediated protein degradation (via monoubiquitination and
endocytosis of target proteins) in both yeast and human cells
[98–100]. Substrates include yeast fructose-1,6-bisphospha-
tase (in response to glucose availability) and human a-cate-
nin [98,99]. In human cells, the ARM-repeats of ARMC8
potentiate the interaction of membrane/receptor proteins
with a signalling adapter, allowing receptor mono-ubiquiti-
nation and lysosomal degradation [100], perhaps by provid-
ingascaffoldtoassemblestableprotein–proteininteractions.

Proteins in the CLTH complex (apart from ARMC8)
possess a LisH/CLTH domain, which is found in proteins
that regulate microtubule dynamics and cell division,
suggesting that ARMC8 might also have a cytoskeletal
function. Accordingly, the CLTH complex associates with
microtubules and CLTH domains bind to ARMC8 [98].

We can detect possible ARMC8 homologues in Dictyos-
telium, green algae and land plants (Figure 3), which are
20–24% identical to human ARMC8 (GenBank accession
BC032661). Given the key importance of protein degra-
dation in plant development and environmental responses,
analysis of plant and algal ARMC8-like proteins could
yield particularly interesting data.

New research avenues?
Our searches identify some ARM-repeat proteins about
which relatively little is known, which show cross-kingdom
conservation of domain combinations, suggesting that these
protein families have important functions that should be the
target of further analysis in a variety of species.

DUF1716-ARM proteins

The human protein CTNNBL1 (Catenin Beta-Like 1) is an
evolutionarily conserved and multifunctional nuclear
protein that contains a DUF1716 domain and ARM-repeats
[101]. CTNNBL1 interacts with the splicing machinery and
also controls class-switching (hypermutation) to generate
immunoglobulin diversity [102]. CTNNBL1 also interacts
with Osteopontin (OPN), which has been implicated in bone
formation and integrin-linked cell adhesion during embryo
development and tumour formation [103]. We can detect
CTNNBL-like proteins in Arabidopsis (38% identical to
human CTNNBL1; GenBank accession AL023804), the
green alga Ostreococcus tauri (33% identity) and Plasmo-
dium (24% identity) (Figure 3). Clearly CTNNBL1 has
evolved animal-specific functions in immunity and bone
formation; ascertaining its functions inunicells will uncover
possible ancestral cellular functions.
RCD1-related proteins

Regulator of Cell Differentiation 1 (RCD1) proteins have 6
ARM-repeats and form dimers [104]. They are transcrip-
tional cofactors that might act as cellular stress sensors in
yeast and as components of a steroid hormone-induced cell
differentiation pathway in mammals; they also degrade
RNA [105–107]. We detect putative RCD1 homologues in
most eukaryotic organisms tested (Figure 3), suggesting
that they could regulate cell differentiation in response to
environmental stimuli across kingdoms: this is an inter-
esting area for future investigation.

ARM-TIR-SAM proteins: conserved adapter proteins in

defence signalling?

The Toll-Interleukin-Receptor (TIR) domain is found in
proteins that mediate signalling in the immune system
[108]. The Sterile Alpha Motif (SAM) domain was origin-
ally characterized in S. cerevisiae pheromone signalling
[109]. Animal ARM-TIR-SAM proteins are defence-signal-
ling adaptors. One such protein, mammalian SARM, func-
tions in stress-induced neuronal cell death and could
modulate the inflammatory response in a localized area
to prevent damage. Interestingly, the ARM-domain associ-
ates with mitochondria [110,111]. The C. elegans SARM
orthologuemediates innate immunity and pathogen resist-
ance in the worm, in part by controlling the production of
antimicrobial peptides, and also has a non-immune func-
tion localising odourant receptors to the correct olfactory
neurons [112].

We can identify ARM-TIR-SAM proteins in unicellular
green algae (Figure 3). Because other SAM proteins med-
iate signals between two cells or between cells and their
environment, it will be exciting to ascertain whether ARM-
TIR-SAM proteins play a defensive role in algae.

TPR-ARM-repeat proteins: molecular chaperones?

Proteins containing both Tetratricopeptide (TPR)-repeats
and ARM-repeats appear to have arisen several times in
eukaryotes. TPR repeats form versatile protein–protein
interaction domains, and a subset of TPR proteins act as
molecular chaperones [113]. The best-characterized TPR-
ARM protein is animal UNC45, which regulates the
assembly of muscle myosin filaments [114]. Mutations in
one human UNC45 isoform are associated with cardiac
myopathies, whereas UNC45-related proteins in unicellu-
lar fungi are required for cell division and vesicle transport
[114]. A second TPR-ARM protein present in animals is
TTC12/TPARM, which is hypermethylated in certain leu-
kaemias and could be associated with alcohol- and drug-
dependence in humans [115,116].

We can detect the TPR-ARM or ARM-TPR domain
combination in several taxonomic groups (Figure 3; Box
2). We believe that the TPR-ARM structure has arisen
several times, because different TPR-ARM proteins have
very little amino acid similarity with one another.

ARM-repeat proteins: future directions and open
questions
ARM-repeat proteins are found throughout eukaryotes
and are evolutionarily ancient (Box 1). The versatile
ARM-repeat structure enables diverse essential cellular
9
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functions. The recent and ongoing sequencing of genomes
from throughout the eukaryotic tree of life means that it is
timely for us to extend our functional studies of these
exciting proteins to new systems in addition to the animals,
fungi and plants where the majority of ARM-protein
characterisation has taken place so far. This will enhance
our understanding of how this multifunctional protein
family evolved its key cell biological roles.
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