Risk and resilience of railway infrastructure
Rungskunroch, Panrawee; Jack, Anson; Kaewunruen, Sakdirat

DOI:
10.1007/978-981-16-5543-2_2

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a pre-copyedited version of a contribution published in Sustainable Cities and Resilience: select proceedings of VCDRR 2021, Pal I., Kolathayar S. (eds) published by Springer. The definitive authenticated version is available online via https://doi.org/10.1007/978-981-16-5543-2_2

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Risk and resilience of railway infrastructure: An assessment on uncertainties of rail accidents to improve risk and resilience through long-term data analysis

Panrawee Rungskunroch¹, Anson Jack¹, Sakdirat Kaewunruen¹

¹ School of Engineering, University of Birmingham, Birmingham, B15 2TT, UK
pxr615@student.bham.ac.uk

Abstract. Since the 20th century, the rail network’s growth has been significantly increased worldwide to support passenger demands. One key to success is the safe service from the rail network, which shows a lower number than other public transportations. Nevertheless, many rail authorities have significantly increased safety level and reduced risks for a passenger. The causes of railway accident happened from various factors; however, primary accidents relating to infrastructure failures caused excessive damage to train and people’s lives. All failures, which occurred in multi-parts of rail’s infrastructure (i.e., roadbed, track, rail bridge), could be the primary causes of train collision and derailment. The overall goal of this study is to analysing uncertainties of railway accidents and, evaluating risk and resilience of rail’s infrastructure after occurring an accident. The outcomes are expected to providing safety policies on the railway network. The research precisely conducts long-term global accident data sets, which related to infrastructure failures. The data sets are analysed by using Bayes’ and decision tree methods through Python programming. One practical advantage of the study illustrates that the outcomes can apply to the railway networks’ safety, reliability, and maintenance policies. Also, the research leads to sustainability surge railway’s safety performances from avoiding infrastructure failures problems. As a result, the study reveals that the risk level from infrastructure failures shows at ‘high risk’ level that scored 18 of 32. Therefore, the research provides a practical recommendation to railway authorities to increase the infrastructure’s safety level.

Keywords: Risk and resilience, Railway accident, Infrastructure failures.

1 Introduction

Recently, the reduction of railway accident has become a critical development for railway authorities. It leads to provides sustainability development on the rail network. Based on the UIC’s report, the railway accident has been slightly decreased due to high technologies applied to the system [1]. However, an attempt to make zero accident is a challenge to rail authorities.

The railway infrastructure failures have shown an increasing trend to a railway accident based on the collected long-term accident data set. The fraction of infrastructure failures is changed from 4.19% to 5.14% during 2000-2019; moreover, the severity
level of an accident by infrastructure failures have illustrated at a high level. Also, more than 70% of all accident shows as a train derailment.

The research has created two novelty models through the Python programming language. Firstly, the main problem is that railway risk and resilience contain various uncertainties; therefore, the Bayesian method is taken to understand the uncertainties of railway accident and predict probabilities on each type of accident in the future. Then, the risk-based DT model has been provided to evaluate the risk level. This model offers precisely the risk level based on fatalities and injuries rates. This is a direct benefit for railway authorities to provide an effective plan to combat avoidable accidents.

2 Literature reviews

An attempt to reduce railway accidents has occurred across the railway operators and other related sectors. High technologies and new policies have been applied to the railway operation to eliminate all network risks. As a result, the number of railway accident illustrated slightly decreased in some areas. The European Union agency for railways (ERA) reveals an overall number of Europe’s railway accidents that it has been reduced by almost one-third within five years [2]. The evidence can imply that the safety level on the rail network has been successfully improvement. The research deeply studies the causes of railway accidents. We classified them into seven groups including; driver’s error, signalmen’s error, infrastructure failures, improper maintenance, human’s error, natural causes, and contributing factors. Nevertheless, the cause of infrastructure failures has slightly increased. It has changed from 4.19% between 2000-2010 to 5.14% during 2011-2019.

Regarding the railway accident from infrastructure failures, using high technologies and other monitoring techniques can prevent railway accidents [3-4]. Previous studies state that installing technologies can increase safety infrastructure, such as using sensors on the rail network to prevent hazardous events [5-7]. Also, some studies suggest providing effective maintenance to the network [8-9]. However, the failure in railway infrastructure has occurred from climate change. And, it may lead to an unexpected railway accident. Some scholars study on the cold weather impacts on the railway infrastructure in Sweden [10]. The research aims to provide high quality and secure service for winter climate. As a result, the study finds that the weather condition impacts the safety level and suggests improving maintenance condition. Another research also provides a solution to reduce the accident from infrastructure failures. The study stated that installing on a thermoelectric heater to heat rail pads is purposed to maintain railway infrastructure’s condition [11].

With the aims at evaluating risk among railway network, various methods have been taken to develop risk models. Several studies focus on increasing railway performance by using decision tree (DT) methods [12]. Also, the fuzzy logic and Bayes methods are taken to improve the reliability across the railway industry [13-14]. On the other hand, some authors plan to avoid railway accident by providing safety policies [15]. Similarity, other research applies the analytical hierarchy process (AHP), Maximum absolute weighted residual (MAWR), Maximum entropy method (MEM), fault tree analytic
(FTA) and Petri-net (PT) methods [16-19]. Several studies also focus on accident analysis to predict the accident rate from long-term accident data. Researchers provide methods to reduce the accident rate on a freight train for dangerous products [18,20]. These are rarely analysed in the literature about the different damage size on each accident. Also, only a few studies intend with a number of fatalities and injuries passenger. To fill those research gaps, this study examines two novelty models including:

(i) The prediction model based on Bayesian theorem to understanding uncertainty and forecasting future accident.

(ii) The risk-based DT model to evaluate the risk level from the long-term railway accident data sets.

By analysing through both novelty models, the study’s outcomes show a high accuracy risk score; moreover, the research’s prediction model can update real-time information of railway accidents. Those advantages lead to a high-level evaluation of the risk and resilience of the railway infrastructure.

3 Methodology

3.1 Data availability

This study collected railway accidents from official companies, government and rail authorisations’ reports worldwide. Also, the research focuses on passenger train accidents that occurred during 2011 – 2019 [2, 21-22]. The 1,005 appropriately data sets of infrastructure failures, including injuries and fatalities, are provided in this study.

Table 1. The summary of the infrastructure failures’ sub-cause of railway accident

<table>
<thead>
<tr>
<th>Cause of accident</th>
<th>Sub-cause of accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure failures</td>
<td>Track geometry</td>
</tr>
<tr>
<td></td>
<td>Frogs, switches and track appliances</td>
</tr>
<tr>
<td></td>
<td>Other ways and structure (bridge/design construction)</td>
</tr>
<tr>
<td></td>
<td>Rail joint bar</td>
</tr>
<tr>
<td></td>
<td>Roadbed</td>
</tr>
</tbody>
</table>

There are five main sub-causes of infrastructure failures that are frequently investigated after an accident, as shown in Table 1. The research also classified an effect with train after an accident into three groups including; collision, derailment, and other effects (such as fire, bomb, vandalism).

3.2 An application on the Bayesian network

The Bayesian statistic is a frequently used analytic tool explaining the probability of two events, which relates to prior knowledge. The Bayesian outcome shows a term of
conditional probability. It also can be converted to the likelihood of a single event, as illustrated in equation 1 and 2.

\[
(A | B) = \frac{P(B | A) \cdot P(A)}{P(B)}
\]

(1)

\[
P(B) = \frac{P(B | A) \cdot P(A)}{P(A | B)}
\]

(2)

Given ‘A’ is an effect with train after an accident consists of A1 (Collision), A2 (Derailment) and A3 (Other causes). Given ‘B’ is an infrastructure failure that is one of the causes of a railway accident. Therefore, the posterior probability of train derailment (TD) from railway infrastructure failure (IF) is shown in equation 3, and the probability of infrastructure failure is shown in 4 as follows;

\[
P(TD | IF) = \frac{P(IF | TD) \times P(TD)}{P(IF)}
\]

(3)

\[
P(IF) = \frac{P(IF | TD) \times P(TD)}{P(TD | IF)}
\]

(4)

The prediction model has created bases on the Bayesian concept through the Python programming language. The causes and effects with a train after an accident are predicted based on the conditional probability through prediction model. The result leads to estimate damage’s size of railway accident by infrastructure failures.
3.3 Research framework

Figure 1 shows a whole research framework. The research collected long-term secondary accident data sets from railway companies, authorities and official report. All the recorded data sets are cleaned and verified. Only the accident data set that occurs from infrastructure failures accidents is taken in the pre-processing stage. Then, the development of the prediction model is provided. In this part, there are two involved with data sets, including; the prior belief and likelihood. At the end of this section, the prediction model at 95% efficiency level has been created.

Next, the prediction model has taken to estimate railway accident rate that happens from infrastructure failures. After that, the novelty risk based-decision tree model has been provided to evaluate the risk level. The model involves injuries and fatalities numbers, and the outcome shows in the range 1-32 that score 1-8 means low risk, score 9-16 means moderate risk, 17-24 means high risk and 25-32 means too high risk.
3.4 Risk prediction model

The risk and resilience of train accident are hard to predict due to it relates to many external factors and contains with uncertainties. This study characterise different aspects of a train after accident into three groups including; collision, derailment and other effects. And, each effect with train after an accident causes differ damage’s size.

Therefore, the risk prediction model has been created to evaluate the future’s railway accident risks. The outcome leads to precisely prevent accidents. Within this case, the prediction model adopts the Bayes’ theory by using two data sets, including prior knowledge and collected data. The novelty prediction model has been developed through Python. This study found that using posterior distribution at 4:4:1 has provided the highest efficiency prediction result. Also, it has been qualified with FRA’s data set at 95% effective level to verify this model’s effect.

Figure 2 shows the comparison on the posterior distribution among train collision, derailment, and other effects with train, and the outcome shows probability at 0.279, 0.651 and 0.070, respectively. The result can interpret that the rail’s infrastructure failures have a high effect on train derailment.

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>se</th>
<th>bpd_2.5%</th>
<th>bpd_97.5%</th>
<th>mce_mean</th>
<th>mce_sd</th>
<th>esa_mean</th>
<th>esa_sd</th>
<th>esa_bulk</th>
<th>esa_tail</th>
<th>r_hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision</td>
<td>0.279</td>
<td>0.074</td>
<td>0.142</td>
<td>0.423</td>
<td>0.002</td>
<td>0.002</td>
<td>1301.0</td>
<td>1179.0</td>
<td>1331.0</td>
<td>1161.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Derailment</td>
<td>0.651</td>
<td>0.076</td>
<td>0.508</td>
<td>0.795</td>
<td>0.002</td>
<td>0.001</td>
<td>1302.0</td>
<td>1302.0</td>
<td>1321.0</td>
<td>1333.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Other</td>
<td>0.070</td>
<td>0.039</td>
<td>0.010</td>
<td>0.146</td>
<td>0.001</td>
<td>0.001</td>
<td>1938.0</td>
<td>1896.0</td>
<td>1819.0</td>
<td>1225.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fig. 2. An analysis of railway risk from infrastructure failures

4 Evaluating risk level through DT models

The DT, which is a non-supervised tool, is widely applied to classify complex decision rules [23]. Within this study, the risk-based DT model is provided to evaluate the risk level. Five essential factors of this research consist of fatalities and injuries rate, probabilities of collision (A1), derailment (A2) and other causes (A3). All factors have been placed as a decision node to design a useful decision tree into the complex decision rules.
Regarding the decision nodes, the research places fatalities rate at 12 people per accident, and injuries rate at 66 people per accident as the main decision nodes. With those threshold number has been provided by the average number of global railway accident between 2000 – 2019. Next, A1, A2, and A3’s probabilities are placed as a threshold by comparing with the global average A1, A2 and A3 values. As shown in Figure 3, the outcomes are classified at DT’s leaves into 32 scales of risk levels, which the small number means low risk and large number means high risk.

Fig. 3. The created risk-based decision tree framework
5 Result and discussions

The analysis result through the DT model shows that the severity level of infrastructure failures equal to 18, which is at a high-risk level, as shown in Figure 4. Based on the collected data, the accident by infrastructure failures bring an average number of fatalities and injuries at 12 and 66 people per accident. The severity of an accident compared with other causes of the accident is high. Moreover, the posterior probability of other effects is above the global rate. Therefore, all factors turn the risk level of infrastructure failures into ‘high risk’ level.

Our finding on the risk-based DT states that the railway accident by infrastructure failures should not be neglected. Infrastructure is the most important part of the rail network. The infrastructure failures have occurred from many reasons such as poor design, lack of maintenance, global warming, natural disaster, etc. Hence, its defect is possible to show in ‘high risk’ level. This study provides practical recommendations to avoid future railway accidents as follows;

- **Providing an effective maintenance plan:**
 Most of the railway accident by infrastructure failures have occurred from lack of maintenance. As mentioned, attempting to repair outdated infrastructure is a challenge for a civil engineer [24-26]. It is because some of the railway infrastructures have been built since 1800s such as London underground. Moreover, this study finds that an adequate proper maintenance plan is needed to prevent unexpected railway accident.

- **Increase the safety level on the rail track:**
 Due to uncertainty events that can occur during the operation, such as natural disaster, the rail track’s increasing safety level is needed as a critical operation plan. Some issues should be deeply concerned about, such as landslide, drainage flow. Adequate safety and earthwork plans can lead to preventing long-term railway accident.
- **Maintain operational performance:**
As mentioned, the railway accident contains uncertainties, which can be occurred by external factors such as a natural disaster [27-28]. Therefore, the fundamental improvement is to maintain operational performance into normal conditions. In some cases, installing new equipment on rail’s infrastructure is required to re-operate the system. The research recommends the rail authorities to combines high-technologies with an effective schedule maintenance plan. By following these solutions, they should decrease the accident by infrastructure failures.

6 **Conclusion and Future work**

With the dramatical growth of railway infrastructure, the evaluation of the railway’s risk and resilience has played an essential role in maintaining the safety level. Rail authorities have provided various policies to reduce the number of a railway accident. Also, the new technologies, equipment and strategies have been addressed along with the network. However, railway accident contains uncertainties, especially from external factors. Hence, this research generates two new novelty models including; (i) the prediction model that uses for estimating future accident. The model is adopted long-term accident data sets and combined with Bayes’ theorem. The prediction rate is more than 95%. It becomes a direct benefit to rail authorities to precisely prevent an accident. (ii) the risk-based DT model to evaluate risk level that shows severity level of accident. The model uses long-term data to measure the severity level of an accident by infrastructure failures. The result shows the severity level is scored at 18 of 32, which can be interpreted at ‘high risk’. The main conclusion that can be drawn is that the rail accident by infrastructure failures are harmful to a passenger, and it should be eliminated to make the network reach safety level. This study’s prediction model illustrates high accuracy outcomes. The model can also be up-to-date, based on real-time railway accidents. Future research should consider the effect of railway accident by infrastructure more carefully, for example; the study on the maintain to normal conditions. Also, the research relates to high-technologies with rail’s infrastructure to prevent severe natural disasters. These can lead to sustainable development on a rail network.

Acknowledgement

The first author gratefully acknowledges the Royal Thai Government for the PhD scholarship at the University Of Birmingham, United Kingdom and the RISEN funding for one year at University of California, Berkeley. The first author also thanks to the second and third authors for giving recommendation during studying PhD at UOB. The third author acknowledges the Australian Academy of Science (AAS) and the Japan Society for the Promotion of Sciences (JSPS), for the JSPS Invitation Fellowship for Research (Long-term), Grant No. JSPS-L15701, at the Railway Technical Research Institute (RTRI) and the University of Tokyo, Japan. The authors are sincerely grateful to the European Commission for the financial sponsorship of the **H2020-RISEN** Project No. 691135 “RISEN: Rail Infrastructure Systems Engineering Network”, which
enables a global research network that tackles the grand challenge of railway infrastructure resilience and advanced sensing in extreme environments (www.risen2rail.eu).

References

nets to analyse the railway system dependability’, Safety Science. doi: 10.1016/j.ssci.2018.08.017.