Seasonal and short-term variations of bacteria and pathogenic bacteria on road deposited sediments
Wang, Jingshu; Huang, Jinhui Jeanne; Lynch, Iseult

DOI:
10.1016/j.envres.2021.111903

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Citation for published version (Harvard):
https://doi.org/10.1016/j.envres.2021.111903

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 14. Sep. 2023
Seasonal and Short-term Variations of Bacteria and Pathogenic Bacteria on Road Deposited Sediments

Jingshu Wanga, Jinhui Jeanne Huanga,*, and Iseult Lynchb

a College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre on Water and Environmental Safety, Nankai University, 300071, Tianjin, China
b School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

Corresponding author: Jinhui Jeanne Huang \hspace{1cm} ORCID: 0000-0002-5268-1747

Sino-Canada R&D Centre on Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China;
Phone: (86)22-8535-8816; Fax: (86)22-8535-8816; E-mail: huangj@nankai.edu.cn

Jingshu Wang \hspace{1cm} ORCID: 0000-0001-9684-247X

Iseult Lynch \hspace{1cm} ORCID: 0000-0003-4250-4584
Abstract

The bacteria (including pathogenic bacteria) attached to road deposited sediments (RDS) may interrelate with the microbe in the atmosphere, soil and water through resuspension and wash-off, and is of great significance to human and ecological health. However, the characteristics of bacterial communities with different time scale on RDS were unknown to dates. Climate change prolonged the dry days between rain events in many areas, making the varied trend of bacterial communities might be more significant in short term. This study revealed the characteristics of bacterial communities on RDS in urban and suburban areas through seasonal and daily scale. The correlations between other factors (land use, particle size, and chemical components) and the bacterial communities were also analyzed. It was found that the season showed a higher association with the bacterial community diversity than land use and particle size in urban areas. The bacterial community diversity increased substantially throughout the short-term study period (41 days) and the variation of dominant bacteria could be fitted by quadratic function in suburbs. In addition, urbanization notably increased the bacterial community diversity, while the potential pathogenic bacteria were more abundant in the suburban areas, coarse RDS (>75 µm), and in spring. The chemical components on RDS showed special correlations with the relative abundance of dominant bacteria. The research findings would fill the knowledge gap on RDS bacterial communities and be helpful for the future research on the assembly process of bacterial communities.

Keywords: Road deposited sediments (RDS), Bacterial communities, Potential
pathogenic bacteria, Spatiotemporal variations, Environmental factors.

Graphical abstract
1. Introduction

Microorganisms are ubiquitous in nature, with bacteria exceeding 80% of their total abundance\(^1\). Specially, pathogenic bacteria might increase the probability of disease to human\(^2\). Road deposited sediments (RDS) arises from tire wear, brake lining dusts, engine exhaust, urban soil, atmospheric deposition, waterbodies (evaporation and settlement), etc. Meanwhile, the RDS with metals, inorganic salts, and organic compounds, was known to affect the air and water environment through resuspension and dispersion by wind, and wash-off by rain, which have received high attention\(^3\text{--}^5\). However, the bacteria attached to RDS has been ignored to date, despite its role as both source and sink for bacteria in air and water\(^6\text{,}^7\).

The dominant bacteria were highly associated with the specific environment in which they exist\(^8\). Bacteria in aerosol samples were more diverse than those in water samples at all study sites\(^9\). Thus, bacterial communities should be also unique on RDS and need to be investigated. Given the disturbance by meteorological factors such as temperature, wind speed and air quality, the surface-bound microbial communities in aerosols and air particles often varied in short time\(^10\). Therefore, meteorology factors could better explain the community variability of aerosol bacteria than geographical distance in short time reported in previous studies\(^11\text{,}^12\). Airborne bacteria could affect the microbial communities on road surfaces through dry and wet precipitation\(^2\text{,}^13\). Thus, we hypothesized that the bacterial communities on RDS might varied significantly both in seasons (as large temporal scale) and days (as small temporal scale), and a detailed study was conducted. This was vital for designing the sampling method when
comparing the microbial differences between sites.

In addition, environmental factors, like land use, particle size, urbanization, and other chemical elements, may also show a correlation with the abundance of bacteria and pathogenic bacteria10, 14-16. Similar studies on the dominant bacteria in the atmosphere showed obvious abundance distinctions in hospital, coastal, or city core areas17. \textit{Bacillus}, \textit{Sphingomonas} and \textit{Staphylococcus} were common bacteria identified in residences18. Particle size has also been a crucial factor in microbial diversity and selectivity19-21. Airborne bacteria were more likely to attach to fine particles, such as PM\textsubscript{2.5}, and even smaller particles that have a greater impact on the human body22, 23. However, the size-distribution patterns were distinct under different circumstances24, 25. In the warm season, the bacterial concentration was higher on particles with aerodynamic diameter between 1.1 and 2.1 μm, while bacteria were concentrated on coarse particles (>7 μm) in the cold season26. Due to the lower temperature and higher wind speed in winter, especially in coastal cities, it was supposed that compared with fine particles and single bacteria, the continuous agglomeration of fine particles to form larger particles was more conducive to the survival of bacteria in the atmosphere.

Researchers found that most bacteria were present in the coarser particles in the atmosphere in Sweden27, United States28 and China29. Therefore, the land use and particle size may also account for the bacterial community diversity on RDS which are worth studying.

Urbanization was characterized with the variations of land use, population, green area and demographic shift30. Study has found that urban, accompanied by high
anthropogenic pressures, less green areas and intensive industrial activity, could shape urban microbiomes. And the relative abundance of airborne pathogenic bacteria also increased with urbanization. In addition, it has been demonstrated that the specific bacteria on tree leaf in urban environments differed from those in non-urban environments, and the feedback between urbanization pressures and plant microbiomes might also affect urban microbiomes. Certainly, the bacterial communities on road surfaces should also belong to urban microorganisms. Therefore, we supposed that urbanization would also associate with the bacterial communities on the road surface. Moreover, whether it was in near-surface groundwater, surface water, drinking water, soil, or atmospheric particles, chemical components have been shown different correlations with the microbial communities. Studies also found that chemical components in the road particles would continue to accumulate, and the concentration was high. The maintenance of the green belts on both sides of the road requires periodic fertilization. And the accumulation of nitrogen and phosphorus on the road surface have been proven. Traffic vehicles (brake lining dusts, tire wear, etc.) and business-related activities continue to emit major heavy metals (Cu, Zn, Pb, Cr, Mn, Fe) and organics to the road. Therefore, it is necessary to analyze the correlations between the chemical components and the dominant bacteria on road surface in depth.

In this study, a detailed and comprehensive investigation of bacterial community diversity and abundance on RDS was carried for the first time considering both seasonal scale and daily scale. The primary research included: 1) assess the variation characteristics of dominant bacteria in different seasons and days; 2) identify the
importance of season, land use, urbanization, and particle size on the diversity and abundance of bacteria including pathogenic bacteria; 3) elucidate the correlations among the dominant bacteria, and the correlations between the chemical components and the dominant bacteria. We expect that the study would fill the current knowledge gap in bacterial communities on RDS, and enhance the risk control of potential pathogenic bacteria. This will also help for future research on the interaction and migration process of bacteria among different environments (source and sink).

2. Materials and Methods

2.1 Sampling Methods

RDS were collected in urban and suburban areas of Tianjin, China, a typical megacity in Northern China with more than 15.6 million people. The sampling schedule was divided into two portions according to the study objective. At first, for the purpose of investigating the variation of bacterial communities in season scale, four sites with different land use types in urban area were selected, namely residence area (JM), traffic area (JT), commercial area (SY) and central commercial street (BJ). RDS were collected over an annual cycle from winter 2016 to autumn 2017 (C: spring, S: summer, A: autumn, W: winter). The specific sampling sites are shown in Figure 1 and the detailed characteristics of each sampling site are shown in Table S1. The detailed sampling times are shown in Table S2. Due to the laboratory restrictions, valid samples in the central commercial street were only available in winter and spring. Thus, a total of seventy samples were collected. The exhaustive method for sampling and pretreatment can be seen in the supplementary information (SI).
Fig. 1. A vertical view of the studied regions and sampling sites at different spatial resolutions. Four urban sites and two suburban sites were displayed in the map.

Secondly, another two study sites with obvious regional differences were selected in the suburbs, namely sparse human activity area (SHAA: campus area) and intensive human activity area (IHAA: mixed commercial and residential areas). The regional characteristics were also described in Table S1. After comparing the differences of bacterial community diversity and abundance between urban and suburban areas, suburban areas with less urbanization and external disturbance were selected for further investigating the variation of dominant bacteria in daily scale. The study was carried out in October and November (Autumn) and started immediately at the end of a rain event. The sampling was lasted for 41 days with an interval of 2-3 days, and there was no effective precipitation during the study period. Finally, a total of 24 samples in two sites were obtained.

2.2 DNA Extraction, PCR Amplification and 16S rRNA Gene Amplicon
Sequencing

PowerSoilR DNA Isolation Kits were used to extract DNA from RDS following the manufacturer’s instruction, using a Vortex-Genie 2. The DNA extracts were kept at ~ 80 °C, and used for the amplification and subsequent sequencing of a region of bacterial 16S rRNA genes. The detailed methods for PCR Amplification and 16S rRNA Gene Amplicon Sequencing were shown in SI. The bacterial communities were analyzed at the phylum level and order level, and the distribution characteristics of potential pathogenic bacteria at the genus level and species level were studied.

2.3 Chemical Analysis

The heavy metals (Fe, Mn, Pb, Zn, Cu, Cr), inorganic salts (NH_3^+-N, NO_3^--N, TP) and total organic carbon (TOC) on RDS (unit: mg/kg) were tested to determine the correlations between the chemical components and the dominant bacteria. The testing process was described in the SI.

2.4 Statistical Analysis

Beta diversity analysis, alpha diversity analysis (Shannon index, Simpson index, chao 1), AMOVA (analysis of molecular variance), ANOSIM (analysis of similarities), Mann-Whitney U test, T-tests and Principal Coordinate Analysis (PCoA) was used to evaluate the differences of community structure. The statistical description was used to analyze the variation of the OUTs number in study areas. The quadratic function was selected to verify whether the variation trend of relative abundance of dominant bacteria at phylum level and order level in short term could be predicted. Canonical Correlation Analysis (CCA) was performed to explore the correlations between the dominant
bacteria and the studied environmental factors (season, land use, chemical elements, etc.). Spearman correlation analysis was used to investigate the correlations among dominant bacteria. The detailed methods for the statistical analysis were shown in SI.

3. Results and Discussion

3.1 The Variation Characteristics of Bacterial Communities on RDS at Seasonal Scale

The microbial data about relative abundance from urban sites was divided into four groups based on the season, then divided into four groups based on the land use, and two groups based on the particle size (1: > 75 μm and 2: < 75 μm). According to the ANOSIM and AMOVA analysis (Tables. S3-S6), the season showed the most remarkable association with the variation of bacterial abundance, followed by the land use and particle size. The significant difference ($p < 0.001*$) of bacterial abundance among seasons also indicated that the season played a critical role (Table S4).
Fig. 2. Seasonal differences in bacterial community among samples by Principal Co-ordinates Analysis (PCoA) based on Unweighted Unifrac (a), boxplot of beta diversity differences based on Unweighted Unifrac (b), and the Unweighted Pair-group Method with Arithmetic Mean (UPGMA) for visualization of the similarity among samples (c).

The similarity of the community structure in different season was displayed according to the Principal Component Analysis (PCoA) and the cluster analysis (UPGMA) (Figure 2). Obviously, the bacterial communities were unique in winter and spring, respectively, which differed from those in summer and autumn at all study sites (Figure 2a and 2c). The number of OTUs (the operational taxonomic units with 97% sequence identity) (Figure S1) and alpha diversity index (Shannon index, Simpson index, chao 1) (Table S7) in summer and autumn was significantly larger than that in...
winter and spring, which indicated a higher bacterial community diversity \((p < 0.001^*, \text{Table S4})\). Moreover, the beta diversity differences (Mann-Whitney U test, \(p < 0.001^*\)) among seasons were shown in Figure 2b, and the boxplot could intuitively display the community similarity within the groups. And a significant community discrepancy within different land uses was observed in spring\(^41\). This was also confirmed by the high difference coefficient between spring and other seasons, as shown in the \(\beta\) diversity index heatmap (Figure S2). It was inferred that the temperature in summer and autumn was much fitter for the microbes, and varied gently during the season transition period, so that a more abundant bacterial community diversity and similar community structure were presented in summer and autumn\(^40\). This was not consistent with the findings from Li et al.\(^30\) who observed that the highest spatial variations of bacterial communities were in summer in Xiamen, China. One of the possible reasons was that the temperature variation in different study areas was not accordant. Xiamen has a high temperature throughout the year, but Tianjin has a large temperature fluctuation in different seasons. Certainly, other anthropogenic activities might also be important influencing factors.

In addition, the OTUs number (Figure S1) and alpha diversity index (Shannon index, Simpson index, chao 1) (Table S8) also showed significant distinctions among different land uses. The largest OTUs number and alpha diversity index in spring, autumn and winter were all in the residential area, while the traffic area had the largest OTUs number and alpha diversity index in summer. The highest bacterial community diversity in the residential area indicated that the bacterial communities were strongly
associated with higher human density and living habits. Moreover, the bacterial community diversity in the commercial area and the central commercial street, with high business activities, was higher in winter than in spring. This might relate to more frequent hand sweeping and effective cleaning practices (i.e., sweeper-washer vehicle) in spring in study sites. Therefore, the accumulated particles on road surface were reduced in spring, consequently reducing the accumulation and diversity of bacteria.

In general, the dominant bacteria at phylum level included Proteobacteria (30.3%-62.5%), Bacteroidetes (3.2%-51.5%), Firmicutes (2.6%-35%), Actinobacteria (2.7%-22%), Acidobacteria (9%), Fusobacteria (8.7%), Cyanobacteria (6.5%) and Thermomicrobia (6.1%) (Figure S3). No obvious differences were observed in dominant bacteria (top 10) at phylum level among different land uses and seasons, while the relative abundance of Firmicutes and Bacteroidetes were significantly increased in spring (Figure S3). This was consistent with previous study that the dominant bacteria at the phylum level were roughly similar across an urban environment, although the relative abundance varied12,17. However, the significant differences of the dominant bacteria were observed at the order level (T test, \(p < 0.05 \)) (Figures S4 and S5). Rhodocyclales in summer, Burkholderiales in autumn, and Rhodobacterales in winter exhibited higher abundance than other bacteria, and the differences between different seasons (\(p < 0.05 \)) are also displayed in Figure S6. And all of them were classified as Proteobacteria (phylum level). Proteobacteria are Gram-negative bacteria, and their resistance to most antibiotics makes them resilient in the environment42. Burkholderiales, including many potential pathogenic bacteria, bring a great threat to
livestock and human health in autumn. Besides, Bacteroidales in spring which belongs to Bacteroidetes (phylum level) showed higher abundance than other bacteria. Lactobacillales as Firmicutes (phylum level) mainly appeared on RDS in winter. It has been suggested that high temperature was detrimental to the growth of Firmicutes. Furthermore, an interesting phenomenon was that the number of OTUs on coarse particles was greater than that on fine particles. This was contrary to metal and other pollutants where the higher contents were accumulated on fine particles. The pollutant concentration was defined as the pollutant contents in unit mass of particles. The smaller the particle size, the larger the specific surface area, which was more conducive to ion adsorption. Therefore, the concentration of pollutants in fine particles was relatively higher. However, the size of bacteria was larger than ion and molecule, and coarse particles were more beneficial to the enrichment of different types and sizes of bacteria. Although less previous studies have been conducted on bacterial community diversity on RDS, results in this study were similar to the bacterial community diversity observed in air and water particles. The bacterial community diversity on coarse particles (PM$_{10}$-PM$_{2.5}$) was approximately 80% higher than that observed in fine particles (PM$_{2.5}$). Particle-attached bacterial communities in rivers, coastal areas, and open seas were usually more diverse than free-living bacterial community diversity. On the basis of the discussion above, season as a factor explained most variability of the bacterial community diversity and relative abundance on RDS, though significant variation also displayed among different study sites and different size of particles. In addition, this study mainly discussed the impacts of part
deterministic factors on the bacteria communities. However, the bacteria assembly was affected by both deterministic and stochastic processes. This will be further investigated in our future research.

3.2 Effects of Urbanization on Bacterial Communities on RDS

![Graphs showing the effects of urbanization on bacterial communities on RDS.](image)

Fig. 3. a) Box-plot of the number of OTUs determined on RDS collected from urban (UB) and suburban (SU) areas; Differences analysis of bacterial species between groups based on T-test at phylum level b), and order level c).

The effects of urbanization on bacterial communities in urban and suburban areas were further investigated in autumn. It was observed that the number of OTUs (Figure...
and alpha diversity index (Table S9) in urban areas was remarkably higher than that in the suburbs which meant that urbanization notably increased the bacterial community diversity on RDS. Human activities, plants, and industrial activities related to urbanization have been reported to have a prominent association with microbial communities30, 34. Liddicoat et al.49 found that the OTUs showed noteworthy differences in human-altered and natural soil environments. In addition, the bacterial abundance also showed significant differences between the urban and suburban areas according to the ANOSIM analysis ($R = 0.3609$), the AMOVA analysis ($p < 0.001^*$) and the PCoA analysis (Figure S7).

Proteobacteria, Actinobacteria and Bacteroidetes were the dominant bacteria at the phylum level in both urban and suburban areas (Figure S8a). The relative abundance of Proteobacteria were greater in urban areas than in suburbs, with significant differences calculated by T-test ($p<0.01$) (Figure 3b). The relative abundance of Cyanobacteria and Deinococcus-Thermus were higher in suburbs. Cyanobacteria was widely distributed, mainly in freshwater and seawater, and also found in soil, tree trunks and leaves50, 51. The higher relative abundance of Cyanobacteria in the suburban areas might be related to the larger green areas around the study sites in the suburbs. Furthermore, Gammaproteobacteria, Pseudomonadales, Micrococcales, Rhodobacterales, Sphingomonadales, and Cytophagales were the dominant bacteria at order level in both study areas (Figure S8b). However, the relative abundance of Cyanobacteria, Deinococcales, Sphingomonadales, Flavobacteriales and Longimicrobiales were greater in suburban areas, while the relative abundance of Alphaproteobacteria,
Frankiales, Corynebacteriales and Myxococcales were higher in urban areas, with significant differences (T-test, $p<0.01$). Therefore, urbanization showed a noteworthy association with the bacterial community diversity and abundance on RDS.

A plausible speculation for the variation of bacterial community diversity and abundance affected by urbanization included human activity, plants, air quality, etc. The size of green area on both sides of the road at the sampling sites in the urban area was small, and the plants were mainly holly and sycamore. While the size of green area at the sampling sites in the suburbs was large (Table S1), and there were many types of plants, including Chinese locust tree, ash tree, phoenix tree, armeniaca mume, and willow trees. Different species of plants and soil environments might have different correlations with the bacterial community diversity on RDS15, 17. The intensive human activity and large traffic flow in urban areas, such as hospitals and shopping malls, might generate a lot of different kinds of garbage and sewage. Thus, the bacterial community diversity and abundance might increase significantly, even it has a higher management level52, 53. The air quality might also play an important role. Studies found that the concentrations of total bacteria and the abundance of bacterial genera increased when air pollution became severe, then might indirectly interfere with the microbial communities on the road surface through wet and dry precipitation42, 54-56. Our previous study found significant differences in bacterial abundance between upper and lower snow samples on road surfaces, confirming that precipitation was an effective route for air-bound bacteria to affect microbes on road surface57. In addition, the distinction in road cleaning and the use of reclaimed water in regions might become key sources for
the bacterial communities on RDS9,53. We supported the idea that the synergistic effects caused by urbanization (i.e., population, traffic volume, human activity, green area, etc.) promoted the transformation of bacterial communities. The contributions of urbanization on the microbial community deserve further study.

3.3 Potential Pathogenic Bacteria at Genus/Species Level on RDS

The enrichment of potential pathogenic bacteria on RDS might induce risks to human health. Potential pathogenic bacteria at genus and species levels were identified according to the “Directory of Pathogenic Microbes Infecting Humans”, formulated by the ministry of health of the People's Republic of China, which has been referred in many studies58-60. The potential pathogenic bacterial communities on RDS exhibited differences between seasons, urbanized areas (\(p<0.01\)) and different sized particles (\(p<0.05\)) (Figure 4a). Potential pathogenic bacteria were most abundant in spring and approximately 5.3\% of all sequences were identified, which was consistent with the conclusion by Yamamoto et al.61. While the relative abundance of potential pathogenic bacteria in summer (2.2\%), autumn (1.8\%), and winter (1.4\%) was less varied. Similar to the analysis of OTUs number, the relative abundance of potential pathogenic bacteria in coarse particles was also greater than that in fine particles. Thus, ensuring effective daily road sweeping can reduce the accumulation of coarse particles, thereby reducing the risk of potential pathogenic bacteria to a certain extent. Compared to urban areas, the relative abundance of potential pathogenic bacteria in suburbs was higher.
Fig. 4. a) Relative abundance of potentially pathogenic bacteria identified in the microbial communities; b) The proportion of each potentially pathogenic bacterial genera in the different seasons. * indicates significant differences between samples at p < 0.05, ** indicates significant differences between samples at p < 0.01 based on AMOVA analysis.

Twenty-four pathogenic bacteria genus were detected on RDS in different seasons.
(Figure 4b), and the top 10 predominant pathogenic bacteria at species level were shown in Table S10. Obviously, the relative abundance of potential pathogenic bacteria varied with seasons. The relative abundance of *Pseudomonas* (58%) and *Fusobacterium* (21%) were higher in spring than in summer (20%, 3%), autumn (21%, 8%) and winter (10%, 0.2%). *Actinobacillus* (42%) and *Clostridium* (14%) were the predominant pathogen genera in winter. *Acinetobacter* (35%), *Bacillus* (28%) and *Pseudomonas* (20%) in summer, and *Acinetobacter* (46%) and *Pseudomonas* (21%) in autumn were the predominant pathogenic bacteria genus. *Acinetobacter* and *Pseudomonas* were often detected in atmospheric particles in previous studies\(^\text{41, 42}\).

Acinetobacter, as an important opportunistic pathogen that causing nosocomial infections, could induce respiratory infections, sepsis, wounds and skin infections. *Pseudomonas* is also one of the main pathogenic bacteria causing nosocomial infections.

Besides, the major potential pathogenic bacteria species in spring included *Fusobacterium mortiferum* (20.7%), *Pseudomonas veronii* (36.9%) and *Pseudomonas fragi* (14.8%). *Acinetobacter lwoffii* were the predominant pathogenic species in summer (44.1%) and autumn (31.5%), followed by *Fusobacterium mortiferum* (8.3%) and *Bacillus aryabhattai* (20%), respectively. According to the directory of pathogenic microorganisms, the harmfulness of *Acinetobacter lwoffii* belonged to the third category (total of three categories and the first category is the most pathogenic microorganisms). In winter, the predominant pathogenic bacteria species on RDS were *Pseudomonas stutzeri* (46.8%) and *Actinobacillus minor* (15%). In addition, *Acinetobacter* (44%) and *Flavobacterium* (43%) were the predominant pathogenic
bacteria genera at suburban sites (Figure S9). *Flavobacterium* is opportunistic pathogen that could cause pneumonia. *Acinetobacter lwoffii* (42.5%) and *Flavobacterium johnsoniae* (18.7%) were detected as the predominant pathogenic bacteria species at suburban sites. In this context, different types of potential pathogenic bacteria could enrich in areas with different urbanization gradients, which deserves further research.

3.4 The Variation of Bacterial Communities at Daily Scale

Considering that the bacterial community diversity might alter in a continuous short-term period, the bacterial communities was observed more than 40 consecutive dry weather days in autumn. Two study sites with distinctive characteristics (Figure 1) were selected in the suburbs. The bacterial communities exhibited significant differences between the two study areas according to the AMOVA analysis (*p* < 0.001*). After a heavy rain, most of particles accompanied with pollutants and microorganisms were washed away by runoff and only a small part of them remained on the road surface. Thus, the sampling started immediately after a rain event, and with the accumulation of dry days, the number of OTUs at the two study sites increased gradually (Figure 5). Therefore, it could be concluded that the bacterial community diversity raised at daily scale. Especially at the IHAA site with intensive human and commercial activities, the variations were even more prominent. This could be confirmed according to the variation range of OTUs number in the study period (Table S11). This might be driven by different pollution sources from the surrounding environment, including human, plants, animals, vehicles, atmosphere, soil, etc. In
a previous study, bacterial community diversity was higher in parks due to the large green areas, while in this study, the IHAA site with intensive human activities was observed to have higher bacterial community diversity than the SHAA site with large green areas.

Fig. 5. The variation of the OTUs number on RDS with cumulative time at the sparse human activity area (SHAA) (a) and the intensive human activity area (IHAA) (b) in the suburban areas.

The variations of the dominant bacteria at phylum level and order level were fitted to the quadratic function to determine if the observed abundance patterns varied predictably with time (Figures 6 and S10). The relative abundance of Proteobacteria and Bacteroidetes displayed roughly opposing patterns over time at the two study sites. Proteobacteria decreased slowly at the SHAA site, but decreased rapidly at the beginning and then followed a seemingly rising trend at the IHAA site, which was the opposite inclination as the Bacteroidetes. The decrease of the relative abundances of Proteobacteria and Bacteroidetes might be related to the increase in bacterial community diversity at the two study sites over time. It was also possible that Bacteroidetes were more sensitive to environmental variations (decreasing temperature as autumn progressed). The Actinobacteria and Deinococcus-Thermus first increased
and then decreased over time at the SHAA site. At the IHAA site, the Actinobacteria appreciably increased with time, while the Deinococcus-Thermus fluctuated throughout the study period with no significant trend. The Cyanobacteria and Firmicutes populations enlarged over time at both study sites.

Fig. 6. Temporal variability of the relative abundances of dominant bacteria at phylum level over 41 days where the lines represents the best-fit quadratic function to the data from the SHAA site a) and the IHAA site b).

The quadratic function noted above could also be used to describe the major changes of predominant bacteria at order level over time during the study period (Figure...
The dominant bacteria (>1%) at two suburban study areas were significantly different. The relative abundances of Burkholderiales and Cytophagales declined consistently at both study sites. Burkholderiales, with the highest relative abundance at both study sites, contains many potential pathogenic bacteria, and its variation over time in the short-term period were noteworthy. The Sphingomonadales and Deinococcales at the SHAA site increased, while Sphingobacterales and Rhodobacterales were stable over time. The relative abundance of dominant bacteria at order levels at the IHAA site, including Rhodobacterales, Micrococcales and Bacillales, increased constantly during the study period. Bacillus could form a dormant stage, enabling it to survive in harsh environmental conditions. Increased relative abundance of Bacillales, containing many potential pathogenic bacteria, also increased the potential risks to human health from the RDS. The relative abundance of Pseudomonadales decreased initially and then increased over time. Therefore, the relative abundance of various bacteria could vary considerably even within a short-term period. However, there was less literature on the characteristics of microbial communities on RDS in short term.

3.5 Chemical Components and Interspecific Relationships Affected the Bacterial Abundance

The correlations between the relative abundance of dominant bacteria (top 20) at order level and the considered environmental factors were obtained by Canonical Correlation Analysis (CCA), and are shown in Figure 7. The interpretation rates of the first and second sorting axes were 36% and 39.2% at urban (Figure 7a) and suburban (Figure 7b) study sites, respectively. The season factor presented the highest
explanation (18.2 %) to the bacterial relative abundance in urban areas (In the CCA, the values of 1, 2, 3, 4 were assigned to spring, summer, autumn and winter in sequence). This showed positive correlations between winter and the relative abundance of Pseudomonadales, Rhodobacterales, Propionibacterales and Corynebacteriales, while negative correlations were between winter and the relative abundance of Sphingomonadales, Xanthomonadales and so on. The land use (11.9%) also showed strong correlations with the relative abundance of Sphingomonadales, Clostridiales, Bacteroidales and Rhizobiales. Among the chemical components, the explanation of Fe, Mn, and Cu (35.8%) was higher to the bacterial relative abundance, followed by NO₃⁻, NH₃-N and Pb (22.7%). In particular, a strong positive correlation was revealed between the metals (Fe, Mn, Cu and Pb) and the relative abundance of Rhodobacterales, Propionibacterales and Corynebacteriales. The fact that the four metals were interlinked may be related to the preferential association of Pb and Cu with the oxides of Fe and Mn, which have been noticed by researchers in the past⁶⁵. Compared with suburbs, urban areas have more traffic and commercial activities. Therefore, the cumulative concentration of metals in the RDS may be higher⁶⁶, which may have a greater association on the microbial community diversity. Other chemical components (TOC, Cr, TP and Zn) had little difference in explaining the bacterial relative abundance, and were relatively low. In particular, TOC showed strong correlations with the relative abundance of Rhizobiales, Rhodospirillales, Deinococcales, Frankiales, Micrococcales, Sphingobacteriales and Burkholderiales. In addition, the bioavailability of metals is one important aspect in considering the toxicity for bacteria which needs more efforts to
investigate in the future. This could help us to better understand the impact of metal pollution level on the microbial communities.

Fig. 7. The CCA analysis between relative abundance of bacteria at order level and chemical composition in the RDS in urban areas a) and suburban areas b).

There was a strong correlation between Zn, Cr, Cu as group 1, and Pb, Fe, Mn and NO$_3$-N as group 2 in the suburbs, which had positive correlations with the relative abundance of Rhodobacterales, Micrococcales, Bacillales, Lactobacillales and Deinococcales, and negative correlations with Burkholderiales, Cytophagales, and Sphingobacteriales (Figure 7b). However, the higher explanation for the bacterial
relative abundance was NO$_3$-N (27.7%), TP (14%), and NH$_3$-N (4.5%). The TOC, TP and NH$_3$-N on the RDS showed positive correlations with the relative abundance of Sphingobacteriales, Cellvibrionales, Sphingomonadales, Enterobacteriales, Frankiales, Clostridiales, Rhodospirillales, Xanthomonadales, Propionibacteriales, and Rhizobiales. This might be associated with the surrounding soil and plants being the sources of these bacteria. The green areas around the sampling sites in the suburbs were comparatively large, so that nitrogen and phosphorus were needed for maintenance. The relative abundance of Rhizobiales was directly related to the plants67. Given this, the chemical components may have important associations with the microbial communities on RDS.
Fig. 8. Spearman correlation matrices between dominant bacterial orders (top 10) on RDS from urban a) and suburban b) areas.

Except for chemical components, the correlations between the dominant bacteria at the order level (top 10) was assessed using the Spearman's rank correlation coefficient method (Figure 8). This could identify these dominant bacteria with the same or opposite abundance variations. The result analysis will help future research on
the assembly process of bacterial communities. Compared with the suburbs, the dominant bacteria in urban areas showed more negative correlations with other species. There were significant negative correlations between each of the pairs: Rhodobacterales and Bacteroidales, Cytophagales and Lactobacillales, Lactobacillales and Burkholderiales in the urban areas. In the suburban sites, significant negative correlations were displayed between Burkholderiales and Micrococcales, Rhodobacterales, Bacillales; Rhizobiales and Bacillales. Sphingomonadales had negative correlations with Bacillales, Pseudomonadales and Micrococcales in both urban and suburbs. The negative correlations between the pairs of bacterial species might attribute to the adaptive ability to the environmental conditions, or the competition between them. For example, Micrococcales were concentrated in autumn (Figure S5), and the relative abundance in autumn increased significantly (Figure S10). Sphingomonadales were mainly concentrated in winter, and the relative abundance in autumn were stable. Therefore, the different adaptability to seasons made them show a negative correlation with one another. However, Pseudomonadales were also mainly concentrated in winter, and there might be a competitive relationship between Sphingomonadales and Pseudomonadales.

In addition, Clostridiales and Bacteroidales, Burkholderiales and Micrococcales showed significant positive correlations in urban areas. Micrococcales and Rhodobacterales, Deinococcales and Bacillales, Sphingomonadales and Rhizobiales showed clear positive correlations in the suburbs. Moreover, Pseudomonadales and Bacillales, Burkholderiales and Cytophagales had significant positive correlations in
both urban and suburban sites. The positive correlations between the bacterial species indicated that their susceptibility to environmental factors may be consistent, or that there were symbiotic relationships between them. Many strains of Pseudomonadales and Bacillales were hosted in plants as beneficial bacteria. Studies have demonstrated that the regulatory mechanism of coexistence of Pseudomonadales and Bacillales, and also hinted at their possible coexistence in the natural environment68. However, the symbiotic and competitive relationships between microbial communities on RDS requires further study to verify it. This study proposed the hypotheses for the variations in the microbial communities, and provided a strong basis for future research.

4. Conclusions

This study verified that the diversity and abundance of bacteria (including potential pathogenic bacteria) on RDS varied with the season, land use, urbanization, particle size and chemical components. The bacterial abundance at seasonal scale displayed the most significant variations than land use and particle size. The bacterial community diversity raised substantially at daily scale and the variation of dominant bacteria could be fitted by quadratic function. Urbanization notably increased the bacterial community diversity, while the potential pathogenic bacteria were more abundant in the suburban areas. The bacterial community diversity on coarse particles was greater than that on fine particles. In addition, the chemical components on RDS showed special correlations with the relative abundance of dominant bacteria. This study provided a deep and comprehensive understanding on the bacterial communities on RDS, and provided a solid basis on which to fill the knowledge gap. This helps to
further study the influence of the bacteria on RDS on that in nearby waters and air. It is of great significance for studying the source and sink process. In addition, it was worth noting that the abundance results in this study were based on relative values, and further research are needed in the future by using qPCR to quantify the absolute abundance.

Data Availability

The authors declare that all the data supporting the findings of this study are available within the article and its SI Appendix.

Acknowledgments

This work was supported by the National Water Pollution Control and Treatment Science and Technology Major Project of China (2017ZX07106001). IL acknowledges financial support from the UoB Institute of Global Innovation emerging theme on Environmental Pollution Solutions (project no. 2076). The Nankai-UoB Joint Research Institute on Green Growth is acknowledged for support of staff exchange and discussions.
References

7. Sterk, A.; Schijven, J.; de Roda Husman, A. M.; de Nijs, T., Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface

14. Ancion, P.-Y.; Lear, G.; Lewis, G. D., Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded

22. Kawanaka, Y.; Tsuchiya, Y.; Yun, S.-J.; Sakamoto, K., Size Distributions of Polycyclic Aromatic Hydrocarbons in the Atmosphere and Estimation of the

25. Wei, M.; Xu, C.; Xu, X.; Zhu, C.; Li, J.; Lv, G., Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM1.0) and fine (PM2.5) particles. Ecotoxicology and Environmental Safety 2019, 171, 37-46.

29. Li, M.; Qi, J.; Zhang, H.; Huang, S.; Li, L.; Gao, D., Concentration and size

31. Laforest-Lapointe, I.; Messier, C.; Kembel, S. W., Tree Leaf Bacterial Community Structure and Diversity Differ along a Gradient of Urban Intensity. mSystems 2017, 2, (6), e00087-17.

34. Huang, L.; Bai, J.; Wen, X.; Zhang, G.; Zhang, C.; Cui, B.; Liu, X., Microbial resistance and resilience in response to environmental changes under the higher intensity of human activities than global average level. Global Change Biology 2020, n/a, (n/a).

83, 85-95.

