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a b s t r a c t

We introduce efficient sets, a class of sets inRp inwhich, in each set, no element is greater in all dimensions
than any other. Neither differentiability nor continuity is required of such sets, which include: level sets
of utility functions, quasi-indifference classes associated with a preference relation not given by a utility
function,mean–variance frontiers, production possibility frontiers, and Pareto efficient sets. By Lebesgue’s
density theorem, efficient sets have p-dimensional measure zero. As Lebesgue measure provides an
imprecise description of small sets, we then prove the stronger result that each efficient set in Rp has
Hausdorff dimension at most p − 1. This may exceed its topological dimension, with the two notions
becoming equivalent for smooth sets. We apply these results to stable sets in multi-good pillage games:
for n agents and m goods, stable sets have dimension at most m (n − 1) − 1. This implies, and is much
stronger than, the result that stable sets have m (n − 1)-dimensional measure zero, as conjectured by
Jordan.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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1. Introduction

For x, y ∈ Rp, x ≫ y means xi > yi for all i = 1, . . . , p. Then:

Definition 1.1. A subset E of Rp is an efficient set if it has the
property that, for all x and y in Rp, if x ≫ y then x and y are not
both in E.

Efficient sets1 pervade economics, including as examples: level
sets of continuous utility functions, quasi-indifference classes,2
mean–variance frontiers, production possibility frontiers, Pareto

✩ This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.
✩✩ We are grateful to Bob Anderson, Juan Carlos Candeal, Chris Good, Peter
Hammond, Chiaki Hara, Jim Jordan, Herakles Polemarchakis, Rajiv Sarin and Ron
Smith for their insights, to the seminar audience at the World Congress of the
Econometric Society and SAET 2011, to the ESRC for funding under its World
Economy and Finance programme (RES-156-25-0022) and to two anonymous
referees for their careful remarks. Rowat thanks Birkbeck for its hospitality. An
earlier version of this paper circulated as ‘Stable sets in multigood pillage games
are small’.
∗ Corresponding author. Tel.: +44 121 414 3754.

E-mail addresses: a.f.beardon@dpmms.cam.ac.uk (A.F. Beardon),
c.rowat@bham.ac.uk, c.rowat@espero.org.uk (C. Rowat).
1 Properly, this definesweakly efficient sets; these are larger than the convention-

ally defined efficient sets, which exclude distinct x and y such that xi ≥ yi ∀i. Thus,
our bounds on the size of efficient sets therefore also apply to conventionally de-
fined efficient sets.
2 Let % be a preference relation on the positive orthant, Rp

++ , which need not be
represented by a continuous utility function. Given any point x in Rp

++ , each ray, R,

0304-4068/$ – see front matter© 2013 The Authors. Published by Elsevier B.V. All rig
http://dx.doi.org/10.1016/j.jmateco.2013.04.006
efficient sets, and the efficient frontiers of data envelopment
or stochastic frontier analysis. Furthermore, we have natural
intuitions about the size of such sets. Most obviously, they are
small. More strongly, their dimension is one less than that of their
ambient space, making them subsets of regular curves or surfaces.
This paper proves that these intuitions are correct.

Our first intuition, that efficient sets should be small, is naturally
thought of in the sense of Lebesgue: efficient sets inRp should have
p-dimensional measure zero. We show that this is an immediate
consequence of Lebesgue’s density theorem. Other proofs (with
the additional assumption of measurability) exist in the literature;
Candeal and Induráin (1994), for example, show this in the context
of indifference sets. As a measure theoretic result, it implies the
weaker topological result that efficient sets have empty interior.3

While this establishes the usual understanding of nullity,
Lebesgue measure fails to differentiate between sets which are of
measure zero, but of very different sizes.4 Consequently, it cannot

from the origin is divided into two parts by a unique point, xR , such that x is strictly
preferred to all points on R strictly below xR , while all points on R strictly beyond xR
are strictly preferred to x. The quasi-indifference class for x is the set of such points
xR . In the case of the lexicographic ordering on R2

++
, each quasi-indifference class

is a vertical line (Beardon, 1995).
3 Themost commonversion of this is that locally non-satiated indifference curves

are not thick (Arrow and Hahn, 1971; Diewert, 1973; Mas-Colell et al., 1995).
While topological notions of nullity and genericity are ‘‘less sharp’’ (Mas-Colell,
1985, p. 318) than their measure theoretic equivalents, they are more familiar to
economists.
4 Lebesgue measure is also meaningless if p is infinite, an observation which has

led to interest in concepts like ‘prevalence’ and ‘shyness’ (Mas-Colell, 1985; Hunt
et al., 1992). This is not a concern of the present paper.

ts reserved.
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Fig. 1. Middle third Cantor set.

Fig. 2. von Koch ‘snowflake’ curve.

establish our second natural intuition about efficient sets. For
example, the straight line, the nowhere dense Cantor set formed
by iteratively removing the middle third from line segments (q.v.
Fig. 1), and the infinite length von Koch curve formed by iteratively
augmenting line segments’ middle thirds (q.v. Fig. 2) all have
plane measure zero. Thus, since Hausdorff, showing that a set has
Lebesgue measure zero has simply raised a more basic problem,
namely that of finding the appropriate dimension in which to then
measure the set.

Furthermore, since Peano’s space-filling curve in the late 19th
century, a distinction has been drawn between topological and
measure theoretic notions of dimension.5 The former is better
known to economists due to its applications within general
equilibrium theory (q.v. Debreu, 1970, 1972, 1976): assuming
differentiability, a p − 1 dimensional object in Rp is a p − 1-
dimensional submanifold of Rp. As any point in the submanifold
is locally homeomorphic to Rp−1, it can be described by p −

1 parameters. Application of Sard’s theorem allows conclusions
about solutions’ uniqueness, at least locally.

When local uniqueness is not a desired property, the differen-
tiability requirements of this approach are unnecessarily restric-
tive. In some cases, differentiability may only fail on a null subset

5 See Jordan and Xu (1999), Kehoe et al. (2002) and Nisan and Segal (2006) for
references to space filling curves, such as Peano’s, in the economics literature.
Table 1
Three sets with plane measure zero.

Cantor set line von Koch curve

Lebesgue plane measure 0 0 0
Topological dimension 0 1 1
Hausdorff dimension log 2

log 3 1 log 4
log 3

of a theoretically generated efficient set (e.g. the standard Leontief
indifference curves); in others, such as the frontier of the produc-
tion set in Jouini (1988), the failure is more pervasive. In empir-
ical work, where efficient sets are interpolated from a finite data
set (e.g. data envelopment or stochastic frontier analysis), onemay
wish to know whether one’s results are insensitive to differentia-
bility or continuity conditions imposed by any particular interpo-
lation technique.

More fundamentally, though, topology’s concern is shape,
rather than size. Thus, even on metric spaces, topological
dimension is an unreliable guide to size. A standard example is
the union of the set of rationals and the irrationals on the unit
interval: each has topological dimension zero, yet their union has
dimension one.6 More generally, homeomorphic transformations –
which preserve topological dimension – can be arbitrarily extreme
in their distortion ofmeasure: continuous,monotonemapsmay be
constructed from null sets to sets with full Lebesgue measure.7

Thus, Hausdorff’s measure theoretic understanding of dimen-
sion is used to establish our second intuition. It is, by design, a
more sensitive concept than either Lebesgue measure or topologi-
cal dimension, being defined for any extended non-negative real
number.8 subset E of Rp with p-dimensional Lebesgue measure
zero, the Hausdorff dimension can be any number between 0 and
p, inclusive (Beardon, 1965). Of the above examples, Table 1 illus-
trates that only Hausdorff dimension is capable of discrimination
between all three.

The topological andHausdorff notions of dimension do coincide
for smooth sets. For non-smooth sets, Hausdorff dimension may
exceed topological dimension: any curve that is homeomorphic to
a circle is a one-dimensional manifold, but a sufficiently irregular
curve can have Hausdorff dimension greater than one. This is
the case for the von Koch curve, whose topological dimension
is 1 (Epstein and Śniatycki, 2008). (In contrast to topological
dimension, Hausdorff dimension is only invariant under bi-
Lipschitz transformations.) Furthermore, approximations to the
von Koch curve based on finite iterations of the sort displayed in
Fig. 2 maintain a constant Hausdorff dimension of 1.

Our main result is that the Hausdorff dimension of any efficient
set in Rp is no more than p − 1. This satisfies our intuition that
efficient sets are (subsets of) regular curves or surfaces rather than,
say, thick sets like the von Koch curve. This result derives entirely
from the properties efficient sets, regardless ofwhether or not they
are also sub-manifolds.

Finally, we provide a non-trivial application of the results,
bounding the stable sets of multi-good pillage games. In one-good
pillage games, the stable sets are finite (Jordan, 2006).9 In the

6 More generally, the decomposition theorem states that any set in a separable,
metrizable space with topological dimension ≤p may be decomposed into p + 1
disjoint subsets, each with dimension ≤0 (Hurewicz and Wallman, 1941). In such
spaces, the coincidence theoremstates that Lebesgue covering dimension, inductive
dimension, and large inductive dimension – the three leading notions of topological
dimension – are equivalent.
7 A classic example can be found in Gelbaum and Olmsted (1962, 8.16), which

uses a Cantor function; Mehta (1991) also uses Cantor’s function, in a different
context.
8 When even this is not fine enough, Hausdorff dimension may be defined over

dimension functions (Falconer, 1990; Mattila, 1995).
9 See Kerber and Rowat (2011) and Saxton (2011) for tighter bounds.
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two-good world, Rowat (2009) proved that stable sets have empty
interior, and Jordan has conjectured in personal communication
that they have measure zero. We confirm Jordan’s conjecture
(and its stronger Hausdorff dimension variant) by showing that
we may work equivalently in either of two convenient Euclidean
subspaces: an mn-dimensional allocation space, or an m (n − 1)-
dimensional ‘Edgeworth’ space. While it is straightforward to
demonstrate this, by showing that the projection is bi-Lipschitz,we
are not aware that this has been done before, making it perhaps of
interest in its own right.

Section 2 proves that efficient sets in Rp have p-dimensional
Lebesgue measure zero. Section 3 introduces Hausdorff dimension
and proves that efficient sets have dimension no more than p − 1.
Section 4 introduces multi-good pillage games and applies the
above results to bound their stable sets.

Before proceeding, we note some basic properties of efficient
sets that shall be used throughout:

Lemma 1.2. Let E be an efficient set in Rp. Then:
1. the closure Ē of E is an efficient set;
2. any subset of E is an efficient set;
3. if T is a translation of Rp, then T (E) is an efficient set.

Proof. Suppose that E is an efficient set, but that its closure Ē is
not. Then there are u and v in Ē with u ≫ v. Since this implies
that there are u′ and v ′ in E with u ≫ u′

≫ v ′
≫ v, this is a

contradiction.
The remaining two properties are trivial. �

2. Efficient sets have measure zero

Let µp be Lebesgue’s p-dimensional measure in Rp. If x and y
are in Rp then we write x =


x1, . . . , xp


; ∥x − y∥ denotes the

Euclidean distance between x and y.
This section’s main result is that each efficient set has measure

zero:

Theorem 2.1. If E is an efficient set in Rp, then µp(E) = 0.

To establish this, we use Lebesgue’s density theorem, which
requires the following definition:

Definition 2.2. The density of a measurable subset A of Rp at a
point a is

ρA (a) ≡ lim
r→0

µp (A ∩ {x : ∥x − a∥ < r})
µp ({x : ∥x − a∥ < r})

,

whenever this limit exists.

Lebesgue’s density theorem is then:

Theorem 2.3 (Corollary 2.14,Mattila, 1995). If A ismeasurable, then
ρA (x) exists and equals one for almost all points x in A. In particular,
if A is measurable and has positive measure, then ρA (x) exists and
equals one at some x in A.

Example 2.4 (Cantor Sets with Positive Measure). Cantor sets
with linear measure arbitrarily close to one while remaining
nowhere dense may also be constructed (Gelbaum and Olmsted,
1962, pp.88-89). Beginwith E0 = [0, 1] and an arbitraryα ∈ (0, 1).
Now let En be the union of 2n mutually disjoint closed intervals of
equal length formed by removing open intervals of length 21−2nα
from the middle of each interval in En−1; for any n, 2n−1 intervals
are removed. Thus, the length removed after n such operations is 1
2 +

1
4 + · · · +

1
2n


α, which converges to α as n converges to ∞.

The ensuing set therefore has linear measure 1 − α.
Fig. 3 illustrates an example in which α =

2
3 , so that µ1 =

1
3 .

Unlike the middle-third Cantor set, the relative length of the
removed segment decreases at each iteration.
Fig. 3. Cantor set when α =
2
3 .

Sets formed this way are also called ‘fat’ Cantor sets, Smith–
Volterra–Cantor sets, or ε-Cantor sets (Edlin and Shannon, 1998;
Aliprantis and Burkinshaw, 1981). As they have positive measure
they must, by the Lebesgue density theorem, contain elements
with density one. Intuitively, these are all the elements that are
not the endpoints of intervals: while there are countably many
endpoints (with density less than one), there are uncountably
many elements that are not endpoints.10

Wemay now state the proof of this section’s main result:

Proof of Theorem 2.1. Let Ē be the closure of E. Now Ē is a closed
(hencemeasurable) and, by Lemma1.2, efficient set. Take any x in Ē
and let B (x, r) be the open ball with center x and radius r . Then, as
U ≡ {y ∈ Rp

: y ≫ x} , L ≡ {y ∈ Rp
: x ≫ y} and Ē are disjoint:

µp (U ∩ B (x, r)) = µp (L ∩ B (x, r)) =
1
2p
µp (B (x, r))

which implies, in turn, that

µp

Ē ∩ B (x, r)


≤


1 −

2
2p


µp (B (x, r)) .

Thus,

lim sup
r→0

µp

Ē ∩ B (x, r)


µp (B (x, r))

≤
2p−1

− 1
2p−1

< 1.

There are therefore no points x in Ē at which ρĒ (x) exists and
equals one, and this implies that µp


Ē


= 0.11 Since E ⊂ Ē, and Ē
has measure zero, it follows from the completeness of Lebesgue’s
measure that E is measurable and has measure zero. �

Candeal and Induráin (1994) derive a similar result by assuming
measurability. Rather than requiring measurability of E, our result
actually proves that E is measurable. In either case, the result is
stronger than the familiar topological result that efficient sets have
empty interior: a non-empty interior forces the existence of a ball
of positivemeasure, so thatmeasure zero sets are (weakly) subsets
of those with empty interior; sets with empty interior but positive
measure, like the Smith–Volterra–Cantor set, make the relation
strict.12

As argued in the Introduction, finding that a set has Lebesgue
measure zero for finite p is a challenge to find the correct
dimension in which to measure the set. To make more precise
observations about such a set, we need the notion of Hausdorff
dimension, which we now introduce.

10 Applying the same reasoning to measure zero Cantor sets, ‘‘almost all’’ points
means ‘‘none’’.
11 Use of U alone yields the weaker bound of (2p

− 1)/2p < 1, which still suffices
for the result.
12 Constructing a meager set – negligible, in the topological sense – with full
measure on the unit interval is a standard exercise in analysis (q.v. Royden,
1988, Chapter 7, Ex. 33).
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3. Measuring thin and highly irregular sets

Figs. 1 and 2 illustrated that Lebesgue measure fails to
distinguish between very different null sets. Hausdorff noted that
a measure zero result indicated that the right dimension for mea-
surement had yet to be found, and defined a set of measures for
real rather than just integer dimensions.

Example 3.1. Consider a disc D lying in the plane. Clearly D has
positive, finite, two-dimensional measure, zero volume and, in
any reasonable sense, infinite linear measure. Thus, denoting the
measure in dimension t by H t , we have

H3(D) = 0 < H2(D) < +∞ = H1(D).

The construction of Hausdorff measures allows us to extend these
ideas to all extended real, positive t . In this case we shall see that
H t(D) = +∞ when t < 2, while H t(D) = 0 when t > 2.

We now construct the t-dimensional Hausdorff measure and
apply it to efficient sets.13 A subset of Rp is said to be a δ-set,
where δ > 0, if its diameter, d (·) is at most δ. A δ-covering of
E, C (E, δ), is a countable collection of δ-sets whose union covers
E; we denote the class of δ-coverings of E by C(E, δ). If δ < ρ then
C(E, δ) ⊂ C(E, ρ), so that

inf
Ai∈C(E,ρ)


i

d (Ai)
t
≤ inf

Ai∈C(E,δ)


i

d (Ai)
t ,

and this guarantees that the limit

H t(E) = lim
δ→0


inf

Ai∈C(E,δ)


i

d (Ai)
t


(3.1)

exists. We call H t(E), where t ≥ 0, the t-dimensional Hausdorff
(outer) measure of E. The Hausdorff p-dimensional measure Hp of
a subset E of Rp is related to its Lebesgue measure µp by Hp(E) =

Kp µp(E), where Kp is a (known) quantity which depends on p but
not E. Thus, Hp(E) = 0 if and only if µp (E) = 0.

The key facts about the t-dimensional Hausdorff outer measure
of E are:

1. if H t(E) < +∞ and s > t then H s(E) = 0, and
2. if H t(E) > 0 and s < t then H s(E) = +∞.

It follows that there is a unique non-negative number dim (E),
called the Hausdorff dimension of E,

H t(E) =


0 if t > dim(E),
+∞ if 0 ≤ t < dim(E).

When t = dim(E), the value of H t(E) can be anywhere in
the closed extended interval [0,+∞]. The Hausdorff dimension
may be greater (but not smaller) than the topological dimension
of a manifold. The two definitions agree for sufficiently smooth
manifolds.

The preceding allows us to state this section’s main result,
a counterpart to Theorem 2.1 which establishes the Hausdorff
dimension of an efficient set:

Theorem 3.2. If E is an efficient set in Rp, then dim(E) ≤ p − 1.

The result that dim(E) ≤ p − 1 is stronger than µp(E) = 0 for
it implies that H t(E) = 0 for all t with p − 1 < t ≤ p and not just
for t = p.

13 See Mattila (1995) for a more thorough treatment of the theory of Hausdorff
dimension.
The rest of this section proves the above theorem, by means
of the following steps. First, Lipschitz and bi-Lipschitz maps are
defined; as they control sets’ distortions, this allows presentation
of a known theorem controlling sets’ dimension under such
mappings. In particular, a corollary determines their dimension
relative to that of the unit sphere, S, in Rp. We then present a
lemma that radially projects any bounded efficient set, Ei – possibly
under a translation – onto the strictly positive orthant of the unit
sphere, S ∩ Rp

++; this bounds dim (Ei) ≤ p − 1. Finally, as any
efficient set can be expressed as the countable union of the Ei, an
existing result may be applied to bound dim (E) ≤ p − 1, the
theorem’s result.

Definition 3.3. A map f : A → Rp, where A ⊂ Rp, is Lipschitz on A
if there is a positive number K such that ∥f (x)− f (y)∥ ≤ K ∥x−y∥
for all x and y in A. The number K is called a Lipschitz constant for
f . The map is bi-Lipschitz if both it and its inverse are Lipschitz,
yielding two Lipschitz constants.

Contraction mappings, for which K ≤ 1 in the following
definition, are the best known example of Lipschitz mappings
within economics.

The following result forms the basis of all our results on
Hausdorff dimension. It follows directly from the fact that a δ-
covering {Ai} of the set E is mapped by a Lipschitz map f , with
Lipschitz constant K , to a Kδ-covering {f (Ai)} of the set f (E):

Theorem 3.4 (Theorem7.5,Mattila, 1995). Suppose that f : A → Rp

is Lipschitz, where A ⊂ Rp. Then dim (f (A)) ≤ dim (A).

An important corollary for us is:

Corollary 3.5. If A ⊂ S, where S is the unit sphere in Rp, and if a
Lipschitz f maps A into Rp, then

dim (f (A)) ≤ dim (A) ≤ dim (S) = p − 1. (3.2)

While the Hausdorff dimension of even simple sets may be
difficult to compute (Falconer, 1990, Chapter 2), the Corollary’s
final equality is easily established. Since S is compact, given any
positive r, S canbe coveredby a finite number of openballsB


xj, r


of radius r centered at xj. Let Tj be the tangent space of S at xj;
this is (up to an isometry) Rp−1. If r is sufficiently small then each
S ∩ B


xj, r


can be projected (parallel to the normal of Tj) onto

a ball in Tj, and these projections are bi-Lipschitz. It follows from
Theorem 3.4 (applied to each projection and its inverse) that for
each xj, S∩B


xj, r


has dimension p−1; thus S, covered by a finite

number of objects of dimension p − 1 also has dimension p − 1.
The remaining two lemmas exploit our ability to express any

efficient set E in terms of bounded efficient sets, which may be
translated to lie within the strictly positive orthant.

Lemma 3.6. Suppose that E++ is a bounded, efficient subset of Rp
++.

Then dim (E++) ≤ p − 1.

We prove Lemma 3.6 by means of a radial projection, which
we now construct. First, let x̄∗

≡
1

√
p (1, 1, . . . , 1) ∈ Rp; this

is in S ∩ Rp
++ and let Ω =


y ∈ Rp

: y ≫
1
2 x̄

∗

. By Lemma 1.2,

the translation of an efficient set is efficient; by Theorem 3.4 the
translation (a degenerate bi-Lipschitz map) leaves unchanged the
set’s Hausdorff dimension. Thus, it suffices to prove Lemma 3.6 in
the case when E++ ⊂ Ω . Further, as E++ is bounded, there is a
translation of it that lies inΩ and outside S, allowing:

Lemma 3.7. Let E++ be an efficient set lying outside S in Ω , so that
its radial projection E∗ into S lies inΩ . Then the inverse of the radial
projection map, ψ : E∗

→ E++, is Lipschitz on E∗.
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Fig. 4. The mappings ϕ and ψ between E++ and E∗ .

The proof will use the following notation: given x ∈ E++, its
radial projection onto S ∩ Rp

++ is x∗
= ϕ (x) = x/∥x∥; similarly,

x = ψ (x∗) = ∥x∥x∗ is the inverse image of x∗. Fig. 4 illustrates
these points and mappings.14

Proof of Lemma 3.7. Suppose that u∗ and v∗ are in E∗, and let
ru = ∥u∥, and similarly for v. Then

∥ψ

u∗


− ψ


v∗


∥ = ∥u − v∥

= ∥ruu∗
− rvv∗

∥

≤ ∥ruu∗
− ruv∗

∥ + ∥ruv∗
− rvv∗

∥

= ∥u∥∥u∗
− v∗

∥ +

∥u∥ − ∥v∥
. (3.3)

As E++ is bounded, there is a positive number, K1, such that

∥u∥ ≤ K1. So, finding a positive number, K2, such that
∥u∥ −

∥v∥
 ≤ K2∥u∗

− v∗
∥, therefore establishes that ψ is Lipschitz. To

find such a K2, notice that, for u∗ and v∗ in E∗, we haveu∗

i

v∗

i
− 1

 =
|u∗

i − v∗

i |

v∗

i
< 2

√
p∥u∗

− v∗
∥, i = 1, . . . , p,

with the inequality holding as v∗
∈ Ω , so that v∗

i >
1

2
√
p for all i.

Hence, for each i,
u∗

i

v∗

i
< 1 + 2

√
p∥u∗

− v∗
∥.

As v ≫ u is false, there is some j with uj ≥ vj, and hence
u∗

j ∥u∥ = uj ≥ vj = v∗

j ∥v∥. Thus

∥v∥
∥u∥

≤
u∗

j

v∗

j
< 1 + 2

√
p∥u∗

− v∗
∥, (3.4)

so that

∥v∥ < ∥u∥ + 2
√
p∥u∥∥u∗

− v∗
∥

≤ ∥u∥ + 2
√
pK1∥u∗

− v∗
∥. (3.5)

14 The figure also includes the δ-coverings previously mentioned. An alternative
strategy for deriving a set’s Hausdorff dimension to that pursued here is as follows.
Letting # denote a set’s cardinality, if #C (E, δ)× δt is bounded by a finite constant
as δ → 0, then dim (E) = t .
By symmetry between u and v, we also have

∥u∥ < ∥v∥ + 2
√
pK1∥u∗

− v∗
∥; (3.6)

so that∥u∥ − ∥v∥
 < 2

√
pK1∥u∗

− v∗
∥,

and, with K2 = 2
√
pK1, the proof of Lemma 3.7 is complete. �

As Lemma 3.7 has established the Lipschitz mapping between
E∗ and E++, Corollary 3.5 then establishes Lemma 3.6, for efficient
sets in Rp

++. We may therefore now return to this section’s main
theorem:

Proof of Theorem 3.2 (Conclusion). Any efficient set E ⊂ Rp may
be expressed as the countable union of bounded subsets, Ei :

E = ∪
∞

i=1 Ei. By Lemma 1.2, each of the Ei is also efficient. The
lemma also allows translation of each Ei intoRp

++ so that it satisfies
the requirements of E++ in Lemma 3.7. Lemmas 3.6 and 3.7 then
establish that dim (Ei) ≤ p−1. Finally, as dim∪

∞

i=1 Ei = supi dim Ei
(Mattila, 1995, p.59), the result holds for any efficient set inRp. �

4. Pillage games and stable sets

We now present a non-trivial application of the above results,
allowing us to establish both Jordan’s conjecture that stable sets in
pillage games have measure zero, and its more precise Hausdorff
dimension interpretation.

Pillage games are cooperative games whose dominance oper-
ators are representable by power functions, increasing functions
of both a coalition’s membership and its resource holdings. Thus,
they model power contests independently of game forms (which
may themselves be contested) while allowing externalities be-
tween coalitions both for (intrinsic) reasons and as a result of (ex-
trinsic) resource holdings. They form an uncountable, open set of
games, which typically take the two best known classes of cooper-
ative games (those in characteristic and partition function form)
as boundary points. Jordan (2006) introduced one-good pillage
games; multi-good pillage games, as defined below, were intro-
duced by Rowat (2009).

Let there bem goods, each with unitary aggregate endowment,
and a finite set I = {1, . . . , n} of agents, where n ≥ 2. Agent i ranks
allocations according to a continuous, strictly convex, strongly
monotone preference relation %i defined on Rm

+
; denote strict

preference by ≻i and indifference by ∼i. Agent i’s allocation is
xi = (x1i, . . . , xmi), where 0 ≤ xji ≤ 1 for each i and j. An allocation
of the goods is a vector x = (x1, . . . , xn), and the set of allocations
is

A =


(x1, . . . , xn) :


i

x1i = · · · =


i

xmi = 1,

0 ≤ xji ≤ 1


⊂ (Rm)n,

which we identify in a natural way with a subset of Rmn.
A coalition is any (possibly empty) set of agents (that is, a subset

of I). A coalition’s power is given by a power function:

Definition 4.1. A power function is a function π : 2I
× A → R

which, for all subsets C and C ′ of I , and all allocations x and y,
satisfies

(WC) if C ′
⊃ C then π(C ′, x) ≥ π(C, x);

(WR) if yi ≥ xi when i ∈ C , then π (C, y) ≥ π (C, x);
(SR) if C ≠ ∅, and yi > xi when i ∈ C , then π (C, y) > π (C, x).
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These axioms – weak coalitional monotonicity, weak resource
monotonicity, and strict resource monotonicity – extend those
in Jordan (2006) from the one good to the m-good environ-
ment.15 Given allocations x and y, we let Cx≻y be the coalition of
agents who strictly prefer x to y.16

Definition 4.2. An allocation y dominates an allocation x, written
y x, if π


Cy≻x, x


> π


Cx≻y, x


or, equivalently, if the coalition

who strictly prefers y to x has more power with allocation x than
does the coalition who strictly prefers x to y.

Definition 4.3. Given allocations u and v, the associated balance of
power locus is the set

B(u, v) = {x ∈ A : π (Cu≻v, x) = π (Cv≻u, x)} .

When Cu≻v = Cv≻u = ∅, B (u, v) = A. The requirement that
both Cu≻v and Cv≻u be empty is equivalent to ui ∼i vi for all i ∈ I .
The set of u and v satisfying this condition holds all agents to their
indifference curves. Similarly, when Cu≻v ≠ ∅ but Cv≻u = ∅, a
move from v to u is Pareto improving. As shall be seen in the proof
of Theorem 4.7, this need not imply that u v.

See Jordan (2006) for a motivation of stable sets as the
appropriate solution concept:

Definition 4.4. A set S ⊆ A of allocations is

1. internally stable if no allocation in S dominates another
allocation in S;

2. externally stable if each y in A \ S is dominated by some x in S;
3. stable if it is both internally and externally stable.

The preceding and one more set of definitions will allow us
to represent internally stable sets as subsets of more tractable
objects:

Definition 4.5.

B+(u, v) ≡ {x ∈ A : π(Cu≻v, x) > π(Cv≻u, x)};
B−(u, v) ≡ {x ∈ A : π(Cu≻v, x) < π(Cv≻u, x)} = B+(v, u);
B ≡ {B (u, v) : u, v ∈ A; Cu≻v, Cv≻u ≠ ∅} ;

B̄ ≡ {B (u, v) : u, v ∈ A; Cu≻v ∪ Cv≻u ≠ ∅} .

Thus, B is the set of balance of power loci, excluding those
generatedwhen at least one of Cu≻v or Cv≻u is empty; its cardinality
is 3n

−2n+1
+1 (Kerber and Rowat, 2011). Similarly, B̄ is the set of

balance of power loci for which nomore than one of Cu≻v and Cv≻u
is non-empty; its cardinality is 3n

− 1.
It follows that no two allocations in an internally stable set can

lie on the same side of the balance of power locus that they induce:

Lemma 4.6. An internally stable set cannot contain two allocations,
u, v ∈ A, such that either u, v ∈ B+(u, v) or u, v ∈ B−(u, v) for
some B (u, v) in B̄ .

Proof. Suppose that a stable set S contains two allocations u and v
that are in B+(u, v). Then, by definition, π(Cu≻v, v) > π(Cv≻u, v),
so that u dominates v. This is impossible, since u and v are in S, and
S is stable. Similarly, S cannot contain two allocations u and v that
are in B+(v, u), which is B−(u, v). �

15 Axiom (WR) implies that π(∅, x) is independent of x, and that, from (WC), this
common value is the smallest value taken by π . This motivates the assumption that
C ≠ ∅ in (SR). Yet π(C, x) = π(∅, x) does not imply that C = ∅: under the wealth
is power function, the leading example in Jordan (2006), a coalition’s power is the
aggregate quantity of the single good held by its members; if every i ∈ C holds zero
quantities of the good, then π(C, x) = π(∅, x).
16 In Jordan (2006), the sets Cx≻y and Cy≻x are identified asW and L.
In the one-good world, the lemma implies the basis for the
result that stable sets are finite (Jordan, 2006): no stable set can
contain a sequence of four allocations, x1, . . . , x4 over which one
coalition of agents always prefers xk+1 to xk and an opposing,
disjoint coalition always prefers the reverse.

This allows us to establish the representation of an internally
stable set:

Theorem 4.7. Any internally stable set, S, is a subset of the union of
a finite number of each of: balance of power loci, isolated allocations,
and allocations over which all agents are indifferent.

Proof. Index the balance of power loci in B̄ by j = 1, . . . , ∥B̄∥.
Any x ∈ A may be located relative to the balance of power locus
induced by uj, v j as follows:

x ∈


B−


uj, v j

B

uj, v j

B+

uj, v j

 ⇒ βj (x) =


−1
0
1


.

Case 1: if βj (x) = 0 for some x in S and j in

1, . . . , ∥B̄∥


, then

x belongs to one of the 3n
−1 balance of power loci in B̄, consistent

with the theorem.
Case 2: now consider those x in S for which βj (x) ≠ 0 for all

j in

1, . . . , ∥B̄∥


. Thus, (β1(x), . . . , βB̄(x)) takes on one of 23n−1

values, a finite number. By Lemma 4.6, there cannot also be a y in
S such that βj(y) = βj(x) for all j in


1, . . . , ∥B̄∥


; were there, one

of x and y would dominate the other, violating internal stability.
Thus, there are at most 23n−1 allocations that do not lie on one of
the balance of power loci in B̄, consistent with the theorem.

Case 3: the last case to consider is thatwhen x and y in S are such
that both the sets Cx≻y and Cy≻x are empty. In this case, x∼i y for all
i in I , the indifference loci in the theorem’s statement. Suppose that
there exists a second pair, x′ and y ′ in S, such that x′

∼i y ′ for all i in
I . To show that only finitely many such indifference intersections
arise, consider two further subcases:

Case 3a: if x∼i x′
∼i y ′

∼i y for all i in I then x′ and y ′ lie on the
same intersection of indifference loci, consistentwith the theorem.

Case 3b: otherwise, without loss of generality, there exists at
least one agent i in I for whom x�i x′, so that at least one of Cx≻x′

and Cx′≻x is non-empty. Then, for each of x and x′, if there exists
a j in


1, . . . , ∥B̄∥


such that βj (x) or βj


x′


equals zero, case 1,

above, applies. Otherwise case 2 applies, and we are done. �

Thus, Jordan’s conjecture can be settled if the elements
identified by the theorem can be bounded: the isolated allocations,
as countable sets, havemeasure and dimension zero; Theorems 2.1
and 3.2 bound the indifferent allocations; the balance of power loci
have not yet been bounded. Before bounding them, thus settling
the conjecture, note that they belong to a measure zero subset of
allocation space, A ⊂ Rmn, but the natural domain of Jordan’s
conjecture is what we shall define as Edgeworth space, E ⊂

Rm(n−1). As these two spaces are different, Theorems 2.1 and 3.2
cannot be immediately applied to bound balance of power loci. We
therefore first show that E can be identified with A in such a way
that null sets in one of these spaces correspond to null sets in the
other.

Before proceeding, we fix concepts in the familiar two-good
two-agent Edgeworth box. Here the allocation space lies in R4, but
the Edgeworth box lies in R2. It was Pareto (1906) who made the
appealing geometric observation that each point in the unit square
[0, 1]2 in R2 represents the allocation to the first agent, and the co-
ordinates of this same point relative to a new origin taken at (1, 1)
(and all co-ordinate directions reversed) give the allocation to the
second agent. The essential feature is that the Edgeworth box lies
in a lower dimensional space than does the set of allocations.
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Fig. 5. The Edgeworth map, E, for a single good when n = 3.

To proceed beyond this dominant case, consider the special case
in which a unit endowment of a single good is shared between the
agents in I . Then the allocation space reduces to

A1
=


(x1, . . . , xn) ∈ Rn

: xj ≥ 0, x1 + · · · + xn = 1

, (4.1)

where xj is the allocation to agent j. As xn is completely determined
by the other allocations via xn = 1−(x1+· · ·+xn−1), it is sufficient
to consider the corresponding Edgeworth space

E1
= {(x1, . . . , xn−1) ∈ Rn−1

: x1, . . . , xn−1 ≥ 0,
x1 + · · · + xn−1 ≤ 1}. (4.2)

Thus E1
⊂ Rn−1 whereas A1

⊂ Rn. However, it is convenient
to embed Rn−1 in Rn by identifying it with the subset {xn = 0},
yielding

E1
= {(x1, . . . , xn−1, 0) ∈ Rn

: x1, . . . , xn−1 ≥ 0,
x1 + · · · + xn−1 ≤ 1}.

In these circumstances, the Edgeworth map, E, is the vertical
projection map of Rn onto Rn−1

× {0} given by E(x1, . . . , xn) =

(x1, . . . , xn−1, 0). Thus, E maps A1 bijectively onto E1.
The case of n = 3 is illustrated in Fig. 5. In this case, A1 is the

triangle in R3 with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), and E1

is the triangle in R2 with vertices (0, 0), (0, 1) and (1, 0). If we
identify E1 with a subset of the plane x3 = 0, thenwe can regard E1

as the triangle in R3 with vertices (0, 0, 0), (0, 1, 0) and (1, 0, 0),
and A1 projects vertically downwards onto E1.

This reasoning extends to the case of n agents andm goods, each
with unit aggregate. The allocation and Edgeworth spaces are now
the spaces

A ≡ A1
× · · · × A1

⊂ Rmn,

E ≡ E1
× · · · × E1

⊂ Rm(n−1),
(4.3)

respectively, where each product has m factors. As above, we can
identify E with a subset of Rmn in which n of the co-ordinates are
zero. Then:

Definition 4.8. The Edgeworth map E of A onto E is the map
obtained by applying the map E to each factor of A.

Theorem 4.9. The Edgeworth map E of A onto E satisfies

∥E (x)− E (y) ∥ ≤ ∥x − y∥ ≤ 2mn ∥E (x)− E (y) ∥. (4.4)
Proof. Since

E(x1, . . . , xm) =

(x1,1, . . . , x1,n−1), . . . ,

(xm,1, . . . , xm,n−1)

;

(x1, . . . , xm) =

(x1,1, . . . , x1,n−1, x1,n), . . . ,
(xm,1, . . . , xm,n−1, xm,n)


;

the first inequality in (4.4) is clear.
To verify the second inequality, recall that xj,n = 1 −

xj,1 + · · · + xj,n−1

. Further, for all u and v in Rp, ∥u − v∥1 ≤

p∥u − v∥ ≤ p∥u − v∥1, where ∥ · ∥1 is the taxicab metric,

∥u − v∥1 ≡

p
j=1

uj − vj
 .

Thus,

∥x − y∥ ≡

 m
j=1

n
i=1

(xj,i − yj,i)2

≤ ∥x − y∥1

≡

m
j=1

n
i=1

|xj,i − yj,i|

= ∥E(x)− E(y)∥1 +

m
j=1

|xj,n − yj,n|

≤ ∥E(x)− E(y)∥1 +

m
j=1

n−1
i=1

|xj,i − yj,i|

= 2∥E(x)− E(y)∥1

≤ 2mn∥E(x)− E(y)∥. �

The theorem thus establishes that the Edgeworth map E is bi-
Lipschitz, so that null sets in A correspond to null sets in E , and
conversely.Wemay now resolve the question of bounding balance
of power loci:

Lemma 4.10. Given u and v in A, the balance of power locus B(u, v)
has m (n − 1)-dimensional measure zero.

Even with Theorem 4.9, Theorem 2.1 cannot yet be directly
applied as the aggregate endowment constraint prevents x ≫ y
for any allocations x and y. The proof therefore relies on ameasure-
preserving orthogonal map.

Proof. Take three allocations u, v and x in A ⊂ Rmn with x =

(x1, . . . , xn) such that xi = (x1i, . . . , xmi) ∈ Rm. Now define a map
σ : Rmn

→ Rmn by

σ (x1, . . . , xn : u, v) ≡

x̂1, . . . , x̂n


,

where

x̂i ≡


xi if i ∈ Cv≻u
−xi if i ∉ Cv≻u.

Obviously σ depends parametrically on u and v; for simplicity, we
omit this dependence in the notation.

We now establish that σ (B (u, v)) is an efficient set in Rmn

(although not in the positive orthant). Were it otherwise, there
would exist allocations x and y in B (u, v) such that σ (x) ≫ σ (y).
In turn, as this sets xi ≫ yi for all i ∈ Cv≻u and yi ≫ xi for all other
agents, SR implies

π (Cv≻u, x) > π (Cv≻u, y) = π (Cu≻v, y) > π (Cu≻v, x) ; (4.5)

so that x ∉ B (u, v), a contradiction proving that σ (B (u, v)) is an
efficient set.
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Fig. 6. An internally stable set in E1
× E1 with n = 2.

By Theorem 2.1, µmn (σ (B (u, v))) = 0. By Theorem 4.9, its
projection into the Edgeworth space is also null,µm(n−1)(E(σ (B(u,
v)))) = 0. As σ is an orthogonal map, it preserves Euclidean
distances, and therefore measures. This completes the proof. �

The preceding establishes Jordan’s conjecture:

Theorem 4.11. A stable set, S in A has m (n − 1)-dimensional mea-
sure zero.

Appealing to Theorem 3.2 instead of Theorem 2.1 bounds
the Hausdorff dimension of balance of power loci, establishing a
stronger and more natural interpretation of Jordan’s conjecture:

Theorem 4.12. A stable set, S, in A has dimension less than or equal
to m(n − 1)− 1.

We conclude by illustrating the preceding arguments in a two-
good, two-agent Edgeworth box, depicted in Fig. 6. The power
function is an extension of Jordan’s wealth is power function,
πW (C, x) ≡


i∈C [αx1i + (1 − α) x2i] for some α ∈ (0, 1).17 The

dashed line denotes the balance of power locus, B

t1, t2


, where t i

is agent i’s tyrannical allocation, granting it the whole endowment.
By SR, agent 1 is strictly more powerful than agent 2 for allocations
to its northeast, and vice versa. The indifference curve for each
agent tangent to the balance of power locus is labeled as ∼i. The
interval of allocations lying between the two tangencies forms an
internally stable set as, for any x and y along that locus, agents 1 and
2 are opposed in interests, but equally powerful. Adding {t1, t2} to
this set leaves it internally stable, while making it externally stable
as well. Consistent with Theorem 4.7, it is a subset of a balance of
power locus, B


t1, t2


, and the isolated tyrannical allocations; it

has zero area, and is a curve of Hausdorff dimension one, a stronger
claim.

This example illustrates both the finite bound on stable sets in
the one-good world (Jordan, 2006), and how it must be modified
for multiple goods. Simulate a single good by considering only

17 SeeRowat (2009) for amore detailed presentation. The power function depicted
sets α > 1

2 .
allocations ordered by ≫ for agent i. Then, an internally stable
set may contain a sequence of three allocations, t11 ≫ y1 ≫ t21 ,
where y ∈ B


t1, t2


lies between the tangencies; Lemma 4.6

prevents addition of a fourth ordered allocation to a stable set.
However, with two goods, an internally stable, infinite sequence
xk for k = 1, . . . such that agent 1 prefers each xk+1 to each xk,
and agent 2 the reverse, can be constructed by using allocations
in the interval of the balance of power locus. Intuitively, multiple
goods break the monotonicity in Jordan (2006) between utility
and power, maintaining stability by holding the middle allocation
of Jordan’s sequence fixed in power space, while ‘stretching’ it in
utility space.
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