Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching

Carstea, Elfrida; Baker, Andy; Bieroza, Magdalena; Reynolds, Darren M.; Bridgeman, Jonathan

DOI: 10.1016/j.watres.2014.05.013

License: Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication in Water Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Water Research, DOI 10.1016/j.watres.2014.05.013

Eligibility for repository: checked 22/05/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching

Elfrida M. Carstea, Andy Baker, Magdalena Bieroza, Darren M. Reynolds, John Bridgeman

PII: S0043-1354(14)00358-3
DOI: 10.1016/j.watres.2014.05.013
Reference: WR 10667

To appear in: Water Research

Received Date: 3 March 2014
Revised Date: 26 April 2014
Accepted Date: 10 May 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching

Elfrida M. Carstea1,2*, Andy Baker3, Magdalena Bieroza4, Darren M. Reynolds5, John Bridgeman1

1School of Civil Engineering, University of Birmingham, B15 2TT, UK; e.m.carstea@bham.ac.uk; j.bridgeman@bham.ac.uk
2National Institute of R&D for Optoelectronics, Atomistilor 409, 077125, Magurele, Romania
3Connected Waters Initiative, University of New South Wales, Sydney, NSW 2052, Australia; a.baker@unsw.edu.au
4Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK; m.bieroza@lancaster.ac.uk
5Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, BS16 1QY, UK; Darren.Reynolds@uwe.ac.uk

Abstract

The fluorescence intensity of dissolved organic matter (DOM) in aqueous samples is known to be highly influenced by temperature. Although several studies have demonstrated the effect of thermal quenching on the fluorescence of DOM, no research has been undertaken to assess the effects of temperature by combining fluorescence excitation – emission matrices (EEM) and parallel factor analysis (PARAFAC) modelling. This study further extends previous research on thermal quenching by evaluating the impact of temperature on
the fluorescence of DOM from a wide range of environmental samples, in the range 20°C - 0°C. Fluorescence intensity increased linearly with respect to temperature decrease at all temperatures down to 0°C. Results showed that temperature affected the PARAFAC components associated with humic-like and tryptophan-like components of DOM differently, depending on the water type. The terrestrial humic-like components, C1 and C2, presented the highest thermal quenching in rural water samples and the lowest in urban water samples, while C3, the tryptophan-like component, and C4, a reprocessed humic-like component, showed opposite results. These results were attributed to the availability and abundance of the components or to the degree of exposure to the heat source. The variable thermal quenching of the humic-like components also indicated that although the PARAFAC model generated the same components across sites, the DOM composition of each component differed between them. This study has shown that thermal quenching can provide additional information on the characteristics and composition of DOM and highlighted the importance of correcting fluorescence data collected in situ.

Keywords: fluorescence spectroscopy; thermal quenching; dissolved organic matter; parallel factor analysis; temperature correction
1. Introduction

In recent years, fluorescence spectroscopy has been increasingly applied to the analysis of aqueous dissolved organic matter (DOM). The effectiveness of this technique in water quality analysis has been proven by studies on numerous types of water systems (Drozdowska, 2007; Kelton et al., 2007; Murphy et al., 2008; Ghervase et al., 2012; Kothawala et al., 2012; Carstea et al., 2014). Fluorescence has been correlated with standard parameters such as biological oxygen demand (Reynolds and Ahmad, 1997; Hudson et al., 2008; Hur and Kong, 2008), total organic carbon (Vodacek et al., 1995), nitrogen and chemical oxygen demand (Hur and Cho, 2012; Bridgeman et al., 2013). Due to its potential, researchers have applied fluorescence spectroscopy in studies such as the monitoring of riverine DOM and diesel pollution (Spencer et al., 2007; Carstea et al., 2010), analysis of recycled waters (Henderson et al., 2009), evaluation of drinking water treatment processes (Bieroza et al., 2009; Shutova et al., 2014), monitoring of viral abundance in wastewater (Pollard, 2012), quantification of pesticides (Ferretto et al., in press) or testing of potable waters microbial quality (Cumberland et al., 2012).
The intensive use of fluorescence spectroscopy in water quality analyses arises from its advantages, which include high sensitivity, small quantities of sample needed, very little or no sample preparation and short measuring time (Coble, 1996; Birdwell and Valsargis, 2010). However, the fluorescence signal can be affected by so-called “matrix effects” which include inner filter effects and fluorescence quenching (Lakowicz, 2006; Henderson et al., 2009; Korak et al., 2014). With regard to fluorescence quenching, it has been shown that fluorescence spectroscopy is highly sensitive to temperature variations. An increase in temperature increases the probability of the excited electrons returning to ground state through radiationless decay. Baker (2005) studied temperature quenching on several types of water samples and observed a decrease in fluorescence intensity ranging from 16 % to 48 %, depending on the samples and DOM component analysed. Elliott et al. (2006) observed a decrease in fluorescence of more than 40 % for fluorophores produced by bacterial cultures isolated from river samples and Seredynska-Sobecka et al. (2007) studied thermal quenching on colloids obtaining similar results. However, in each case the researchers did not study the impact of temperature on DOM fluorescence below 10° C, due to condensation which could form on the cuvette walls. Patsayeva et al. (2004) and, more recently, Watras et al. (2011) have analysed thermal quenching to almost 5° C and developed
a correction method for fluorescence spectra but both research
teams concentrated only on marine water samples. Consequently, no research has been made, so far, to study
fluorescence thermal quenching below 5° C on water samples from a wide range of different sources.

This study seeks to characterise the fluorescence properties of DOM, from water samples with different sources, using thermal quenching and the combination of excitation – emission matrices (EEM) and parallel factor analysis (PARAFAC). Several studies have shown that PARAFAC is a powerful tool in separating and analysing DOM components (Ohno et al., 2008; Yamashita and Jaffe, 2008; Gueguen et al., 2011; Meng et al., 2013; Murphy et al., 2014; Sanchez et al., 2014; Yang et al., 2014). Specifically, the aims of this study were: (1) to investigate the response of DOM, from different sources (urban and rural areas), at low temperatures for a better understanding of DOM characteristics; (2) to evaluate the impact of temperature on the most labile fractions of DOM; (3) to assess the potential of applying the Watras et al. (2011) correction tools at temperatures below 5° C; (4) to investigate the use of EEM-PARAFAC tool combined with thermal quenching to improve our understanding of DOM character. To date, EEM-PARAFAC has not been applied to the investigation of thermal quenching of DOM components from water samples and could provide a better understanding of DOM properties.
2. Materials and Methods

2.1 Sample preparation and analysis

Samples were collected from two areas: Birmingham and Buxton, located in the Midlands area, UK (Fig. 1). The sampling sites, with different characteristics, were selected to reflect a gradient from rural to urban areas. In Birmingham, 5 types of water were sampled, hereafter named: brook (Sutton Park), lake (Sutton Park), pond (Edgbaston pond), surface runoff from storm sewers (University of Birmingham campus) and canal (Worcester and Birmingham Canal). Brook and lake samples were collected from Sutton Park, which is a National Nature Reserve and presents a relatively rural, pristine character (http://www.birmingham.gov.uk/suttonpark). Canal, storm sewer and pond samples were collected from an urban zone; however, the pond was located in a small park with lower anthropogenic activity compared to canal and storm sewer. From Buxton, a river water sample was collected. Buxton town is located along the Wye River, within The Peak District National Park, having low anthropogenic impact, according to the Environment Agency (http://www.peakdistrict.gov.uk/microsites/sopr/landscape/river-quality).

Water was sampled in polypropylene bottles, cleaned with 10 % HCl and thoroughly rinsed with deionised water prior to
use. All measurements were performed within 24h from collection. The samples were measured for conductivity, pH, dissolved organic carbon (DOC) and absorbance, from 200 nm to 700 nm. Conductivity and pH were measured using a Myron meter, absorbance measurements were made with a WPA lightwave UV-VIS diode-array S2000 spectrophotometer and DOC with a Shimadzu TOC-Vcpn analyzer.

Fluorescence EEMs were recorded using a Varian Cary Eclipse spectrofluorometer, with the following parameters: excitation wavelength domain 200 – 400 nm, emission wavelength domain 280 – 500 nm, steps of 5 nm and 2 nm for excitation and emission, respectively, and slits of 5 nm. The instrument stability was checked by recording the Raman values (at excitation wavelength 348 nm and emission wavelength 395 nm) before each set of measurements. The average Raman value was 24.38 a.u. with a standard deviation of 0.58. The fluorescence intensity of all spectra were normalized to a maximum value of 1000 a.u. and corrected to the average Raman value. Every set of measurements was made in triplicate in order to check the instrument reproducibility (± 5%).

The temperature was decreased gradually from 20°C to 0°C, by the use of a Peltier temperature controller, recording EEMs at every 0.5°C. Each set of measurements lasted for 90 min, to ensure gentle cooling of the sample. Below 6°C,
condensation usually forms on the cuvette outer walls, but, in this study, it was eliminated by inserting dessicant bags inside the sample chamber. The reduction in condensation was checked by recording fluorescence spectra at periodic time intervals and at the established temperature range. The conditions with no condensation were obtained when silica gel bags had been kept in the sample chamber for 26 hrs. Throughout the experimental period, the dessicant bags were periodically replaced. All samples were filtered with 0.7 µm Whatman GF/C paper filters prior to cooling and analysis.

2.2 PARAFAC analysis

PARAFAC was performed on a set of 697 EEMs (including triplicates) for varying temperatures for the six water sources described above. Although only 6 different water sources have been used in PARAFAC modelling, they provide a good variation in terms of spectral properties and a large number of samples helped to avoid any potential autocorrelation effects during the split-half validation. Prior to modeling, EEMs were pre-processed in Matlab using custom-written functions to remove redundant spectral areas ($\lambda_{ex} < 220$ nm, $\lambda_{ex} > \lambda_{em}$, $2 \lambda_{ex} < \lambda_{em}$, Raman and Rayleigh scatter) (Bieroza et al., 2011). Pre-processed EEMs were normalized to the Raman scatter peak of water using procedure described in Lawaetz and Stedmon (2009). The PARAFAC model was fitted and validated using the DOMFluor toolbox for Matlab.
(Stedmon and Bro, 2008). The final four-component model was chosen based on the percentage of variance explained, core-consistency diagnostic (Bro and Kiers, 2003), the results of the split-half analysis and visual inspection of the excitation and emission loadings (Table 1).

3. Results and Discussion

3.1 Fluorescence properties of DOM

The four fluorescence components identified in the water samples are shown in Fig. 2. Component 1 (λ_{ex} ~225 nm and ~330 nm, λ_{em} ~460 nm) is associated with terrestrial humic substances, being similar to the PARAFAC components found by Stedmon and Markager (2005), Murphy et al. (2008; 2011; 2014), Kowalczuk et al. (2009), Williams et al. (2010), Baghoth et al. (2011), Yamashita et al. (2011), Ishii and Boyer (2012), Kothawala et al. (2012), Maie et al. (2012) and Yamashita et al. (2013). These studies have shown that this component is ubiquitous in water systems, having a primary terrestrial source and a secondary microbial source of DOM. In addition, C1 is dominated by biological production and is partially degraded. According to Fellman et al. (2010) and Ishii and Boyer (2012), C1 has high molecular weight (>1000 Da) and presents a high degree of hydrophobicity and aromaticity.

Component 2 (C2), found at λ_{ex} ~225 nm and ~330 nm, λ_{em} ~410 nm, belongs to the group of humic fluorophores,
based on the studies of Stedmon and Markager (2005), Murphy et al. (2008; 2014), Williams et al. (2010), Yamashita et al. (2011), Ishii and Boyer (2012), Maie et al. (2012). These studies show that C2 is found mostly in DOM dominated by terrestrial sources and is photochemically produced. C2 presents minimal biodegradation and, according to Ohno et al. (2010), has low molecular weight (<665 Da).

The third component, C3, $\lambda_{ex} \sim 225$ and ~ 275 nm, $\lambda_{em} \sim 350$ nm, indicated the presence of a tryptophan-like fraction, in accordance with the results of Stedmon and Markager (2005), Williams et al. (2010), Murphy et al. (2011; 2014), Maie et al. (2012), Yamashita et al. (2013), Shutova et al. (2014). Furthermore, Fellman et al. (2010) and Kothawala et al. (2012) found that this component is a product of autochthonous, microbial processing.

Component 4 (C4) ($\lambda_{ex} \sim 240$ and ~ 320 nm, $\lambda_{em} \sim 380$ nm) is linked to the humic substances, as shown by Stedmon and Markager (2005), Murphy et al. (2008; 2011; 2014), Graeber et al. (2012), Kothawala et al. (2012), Maie et al. (2012), Ishii and Boyer (2012) and Yamashita et al. (2013). These studies demonstrate that C4 indicates recent biological production and is often defined as a microbial humic-like component (Murphy et al., 2011; Maie et al., 2012; Yamashita et al., 2013). Ishii and Boyer (2012) report that C4 has an intermediate molecular weight, between C1 and C2.
The mean fluorescence values of component scores and the relative abundance of each component to the total fluorescence intensity are presented in Table 2. C1 and C2 are most abundant at the brook and lake samples, followed by the river and pond samples and are the least abundant at the canal and storm sewer samples. The abundance of C3 and C4 is higher at the canal and storm sewer samples compared to the other samples. A correlation between C1 and C2 was observed ($r_s = 1.00$, $n = 7$, $p < 0.001$), which indicated that all samples contained both high and low molecular weight DOM compounds and with hydrophobic and hydrophilic characters, in almost equal proportions. In addition, a strong correlation between C3 and C4 was calculated ($r_s = 0.93$, $n = 7$, $0.01 > p > 0.005$) showing a close relationship between the tryptophan-like compound and the microbial humic-like fraction. Despite the low degrees of freedom for both correlations (df = 5), given by the replication in the dataset, the correlations were considered significant since the components tendencies were similar.

Based on these results, it was observed that the brook, lake and river samples, which were collected from relatively pristine areas, contained DOM with a strong humic-like character, indicating low anthropogenic contamination. While canal and storm sewer samples showed a high abundance of tryptophan, typically associated with microbial material.
(Kothawala et al., 2012), indicating the presence of anthropogenic-derived matter (Meng et al., 2013; Carstea et al., 2014). The distinction between urban and rural samples is better reflected by the C3/C1 ratio (Table 2): brook, lake and river samples with a rural character had the lowest values, pond sample had an intermediate urban and rural character due to the sampling location in an urban park, and canal and storm sewer with an urban impact showed the highest C3/C1 values. Canal and storm sewer also presented similar values for DOC and absorbance (Table 3). Furthermore, rural samples showed higher DOC and absorbance values compared to the other samples. The highest conductivity values were detected at the canal and pond samples, while the lowest values were seen at the storm sewer sample. The values for pH were recorded within the range of 6.7 and 8.1.

3.2 Thermal quenching of humic-like components

The fluorescence response to temperature variation, between 20°C and 0°C, for the humic-like components C1, C2 and C4 is shown in Figure 3 (a, c and e). All three components exhibit a linear fluorescence increase with temperature decrease. Similar linearity was reported in the studies of Baker et al. (2005), Seredynska-Sobecka et al. (2007) and Watras et al. (2011) on thermal quenching of DOM fluorescence, in the range of 45°C - 5°C. Although, PARAFAC components
showed similar linear trends at all samples, the degree of
temperature impact was highly variable.

Figure 3 (b, d, f) presents the slope of fluorescence
intensity decrease per degree Celsius. C1 shows the highest
slope at the rural samples, lake and brook, followed by the
pond and storm sewer samples, while the lowest values have
been seen at the river and canal samples. Similar sample
variability of slope was observed at C2. The last humic-like
component, C4, presents the highest slope at the urban samples,
storm sewer and canal, whilst the lowest have been seen at the
rural samples. It must be noted that although the PARAFAC
model is consistent across all samples, the degree of thermal
quenching is variable between them. This suggests that each
humic-like PARAFAC component is comprised of more than
one fluorophore.

Overall, C1 exhibits a higher slope of fluorescence
intensity decrease compared to C2 and C4, indicating that this
component might be more environmentally impacted.
Seredynska-Sobecka et al. (2007) reported that the humic-like
fraction has high sensitivity to thermal quenching, especially at
the small size fractions (< 0.1 µm). Furthermore, Ohno et al.
proved, by studying the interaction between DOM and metal
ions, that this component was more likely to suffer fluorescence
quenching, compared to the other humic-like components. This
indicated that C1 is more sensitive to environmental changes relative to C2 and C4. Moreover, C2 and C4, which are resistant to further degradation, after photochemical and biological production and degradation (Ishii and Boyer, 2012), are probably less affected by temperature changes. The high slope of C1 could also be associated with the relative abundance of fluorescence intensity, as higher slope has been observed at samples with high abundance. Hence, C1 could be more readily available for thermal quenching compared to C2 and C4.

3.3 Tryptophan-like component behaviour to temperature changes

Tryptophan-like component, C3, shows the same linearity as the humic-like components (Fig. 4a), in accordance with the results of Baker (2005) and Elliott et al. (2006). Furthermore, variable gradients of fluorescence decrease per degree Celsius (slope) have been observed (Fig. 4b). The highest slope has been seen at the storm sewer and canal samples, followed by the lake, pond and river samples, while the lowest has been observed at the brook sample.

In contrast to the humic-like components, C3 slope could be associated to a lesser extent with the relative abundance of fluorescence intensity (Table 2). Although, C3 is more abundant in the canal sample, compared to storm sewer, it shows a lower slope value. According to Baker (2005)
degree of thermal quenching relates to the exposure of the fluorophore to the heat source. These findings suggest that C3, belonging to storm sewer DOM, contains more exposed tryptophan compared to the canal sample. The same assumption could apply to the lake sample C3, which presents a high slope value, despite the low abundance relative to river and pond samples. The results suggest that free tryptophan could be a dominant component in storm sewer and lake samples and is, therefore, more easily quenched with increasing temperature.

The various responses of PARAFAC components scores to temperature fluctuations can have a large impact on in situ fluorescence measurements, especially when comparing experiments from several locations made in different seasons or times of the day. Consequently, the fluorescence spectra need to be corrected for temperature before comparison studies can be made. The temperature correction tool, developed by Watras et al. (2011), uses a temperature coefficient, which is the ratio between the slope of the fluorescence intensity as a function of temperature change, from 20^0C to 5^0C and the intercept, at the reference temperature of 20^0C. However, their studies have been performed on lake water and could not account for variations between different types of water samples. The slope, calculated in the present study, shows the same linear trend of increase below 5^0C, indicating that the temperature correction
tool developed by Watras et al. (2011) can be applied even to fluorescence spectra of samples measured below 5°C.

4. Conclusions

This study presents the first investigation of DOM fluorescence properties, at low temperatures, with EEM-PARAFAC. The impact of temperature on the individual PARAFAC components in DOM, from several water samples, was evaluated by decreasing the temperature from 20°C to 0°C. This analysis extends the fluorescence thermal quenching studies, made by other researchers, in the range of 45°C – 5°C. Results have shown that fluorescence intensity has a linear increase, as temperature decreased from 20°C to 0°C. Thus, the temperature correction tools developed by Watras et al. (2011) can be applied to fluorescence spectra of samples measured at temperatures below 5°C.

It has been found that temperature affects the PARAFAC components associated with the tryptophan-like and humic-like fractions differently, depending on DOM character of each sample. The humic-like components, C1 and C2 present the highest thermal quenching at the rural samples and the lowest at the urban samples, while C4 show opposite results. The data indicate that, while the PARAFAC model is consistent across all samples, the degree of thermal quenching varies between them, suggesting that each humic-like PARAFAC component
is comprised of more than one fluorophore. Furthermore, thermal quenching has shown that, among the humic-like components, C1 is more environmentally impacted but, at the same time, more readily available to quenching compared to C2 and C4. The tryptophan-like component presents the highest slope of fluorescence decrease per degree Celsius in the urban samples and the lowest at the rural samples. Thermal quenching has evidenced that free tryptophan residues, from the tryptophan-like fraction, are dominant at the storm sewer and lake samples, due to the direct exposure of the fluorophore to the heat source.

Considering that a growing body of literature stresses the importance of using fluorescence for in situ measurements, the analysis of temperature effects on DOM is highly important, as the fluorescence signal of each DOM component is variably quenched depending on temperature. Therefore, we recommend correction of the fluorescence spectra recorded at temperatures below 20°C. However, it is necessary to be aware of the potential multi-fluorophoric nature of the PARAFAC humic-like components, which may lead to variable results between sites.

Acknowledgements

The work of E.M. Carstea was partly supported by the European Commission Framework Programme 7, through a
Marie Curie Intra-European Fellowship (PIEF-GA-2012-329962).

References

Meng, F., Huang, G., Yang, X., Li, Z., Li, J., Cao, J., Wang, Z., Sun, L., 2013. Identifying the sources and fate of anthropogenically...

Figure captions

Fig. 1 Map with the sampling points from Birmingham and Buxton (Map of UK adapted from © OpenStreetMap contributors, CC BY-SA, Open Database License 2010).

Fig. 2. Excitation and emission matrices of the four PARAFAC components.

Fig. 3 Linear relationship between PARAFAC scores and temperature, and the slope: (a) and respectively (b) component 1, (c) and (d) component 2, (e) and (f) component 4.

Fig. 4 Linear relationship between PARAFAC scores and temperature (a) and the slope (b) for component 3.
Table 1. A summary of the PARAFAC models fitted to fluorescence dataset with the following constraints: sample mode – non-negativity, excitation and emission modes – non-negativity and unimodality

<table>
<thead>
<tr>
<th>Number of components</th>
<th>Convergence (Yes, No)</th>
<th>Sum of squares of errors</th>
<th>Total variance explained (%)</th>
<th>Core-consistency (%)</th>
<th>Split-half analysis validation (Yes, No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>27056</td>
<td>96</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>23183</td>
<td>96</td>
<td>-87</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>5540</td>
<td>99</td>
<td>41</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>4860</td>
<td>99</td>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>4124</td>
<td>99</td>
<td>6</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>4021</td>
<td>99</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>3669</td>
<td>99</td>
<td>1</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 2. DOM fluorescence results of the water samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Mean value of component scores (a.u.) (SD)</th>
<th>Relative abundance of fluorescence intensity (%)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Brook</td>
<td>30.9</td>
<td>20.0</td>
</tr>
<tr>
<td>Lake</td>
<td>23.0</td>
<td>16.5</td>
</tr>
<tr>
<td>River</td>
<td>9.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Pond</td>
<td>14.9</td>
<td>11.7</td>
</tr>
<tr>
<td>Storm Sewer</td>
<td>13.6</td>
<td>11.5</td>
</tr>
<tr>
<td>Canal</td>
<td>6.6</td>
<td>4.9</td>
</tr>
<tr>
<td>Blank</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

*SD – standard deviation

**Calculated according to Yamashita and Jaffe (2008) as percentage of the total fluorescence.
Table 3. Standard data for the analysed water samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>DOC (mg/L)</th>
<th>pH</th>
<th>Conductivity (µS/cm)</th>
<th>Absorbance at 350 nm (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brook</td>
<td>7.75</td>
<td>8.1</td>
<td>413</td>
<td>0.089</td>
</tr>
<tr>
<td>Lake</td>
<td>8.71</td>
<td>6.8</td>
<td>288</td>
<td>0.078</td>
</tr>
<tr>
<td>River</td>
<td>5.55</td>
<td>6.7</td>
<td>340</td>
<td>0.021</td>
</tr>
<tr>
<td>Pond</td>
<td>2.96</td>
<td>7.3</td>
<td>687</td>
<td>0.023</td>
</tr>
<tr>
<td>Storm Sewer</td>
<td>4.96</td>
<td>7.0</td>
<td>98</td>
<td>0.035</td>
</tr>
<tr>
<td>Canal</td>
<td>4.79</td>
<td>6.8</td>
<td>747</td>
<td>0.039</td>
</tr>
</tbody>
</table>
Component 1

Component 2

Component 4

(a) (b) (c) (d) (e) (f)
Component 3

(a) PARAFAC Scores vs Temperature (°C)

(b) Component 3 Slope (a.u./°C)
We investigated DOM fluorescence properties, at low temperatures, with EEM-PARAFAC. Fluorescence intensity increases linearly as temperature decreases from 20°C to 0°C. DOM PARAFAC components are variably quenched and this is sample specific. Each humic-like PARAFAC component might be comprised of more than one fluorophore.