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The Toploje Member chert is a Roadian to Wordian autochthonous–parautochthonous silicified peat preserved
within the Lambert Graben, East Antarctica. It preserves a remarkable sample of terrestrial life from high-
latitude central Gondwana prior to the Capitanian mass extinction event from both mega- and microfossil evi-
dence that includes cryptic components rarely seen in other fossil assemblages. The peat layer is dominated by
glossopterid and cordaitalean gymnosperms and contains moderately common herbaceous lycophytes, together
with a broad array of dispersed organs of ferns and other gymnosperms. Rare arthropod–plant and fungal–plant
interactions are preserved in detail, together with a plethora of fungal morphotypes, Peronosporomycetes, ar-
thropod remains and a diverse coprolite assemblage. Comparisons to other Palaeozoic ecosystems show that
the macroflora is of low diversity. The fungal and invertebrate–plant associations demonstrate that a multitude
of ecological interactions were well developed by the Middle Permian in high-latitude forest mires that contrib-
uted to the dominant coal deposits of the Southern Hemisphere. Quantitative analysis of the constituents of the
silicified peat and of macerals within adjacent coal seams reveals that whilst silicified peats provide an unparal-
leled sample of the organisms forming Permian coals, they do not necessarily reflect the volumetric proportions
of constituents within the derived coal. The Toploje Member chert Lagerstätte provides a snapshot of a rapidly
entombed mire climax ecosystem in the closing stages of the Palaeozoic, but prior to the onset of the protracted
crisis that engulfed and overthrew these ecosystems at the close of the Permian.

Crown Copyright © 2014 Published by Elsevier B.V. on behalf of International Association for Gondwana
Research. All rights reserved.
1. Introduction

The Permian was a crucial period in the history of terrestrial life; the
Cisuralian (Early Permian) saw the diachronous demise of the
Carboniferous-style wetland floras that had dominated equatorial
Euramerica during the Carboniferous and Cathaysia during the
Asselian–Kungurian (Knoll, 1984; Hilton et al., 2002; Hilton and Cleal,
2007). In the Southern Hemisphere, the Permian witnessed the
flourishing of glossopterid cool-temperate swamp forests, which domi-
nated southern Gondwana until their extinction at the end of the period
(e.g. White, 1998; McLoughlin, 2011b). Our knowledge of the diversity,
vegetation structure, ecology, biotic interactions, and trophic links within
these ecosystems is unfortunately limited by a paucity of konservat
lagerstätten (sites of exceptional preservation of organisms) in compari-
son to other time periods in Earth history (e.g. Briggs and Gall, 1990;
Selden and Nudds, 2004; Cascales-Miñana, 2011). This preservational
bias has hindered our understanding of the developments in austral
44 121 41 44942.
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terrestrial ecosystems during the Permian. A more detailed picture of
the trophic complexity and inter-relationships between plants, insects
and soil microorganisms would enhance our understanding of how ter-
restrial communities evolved in the wake of the Gondwanan glaciations
up to the end-Permian biotic crisis. The end-Permian mass extinction,
which purportedly eradicated up to 95% of all life (Benton and
Twitchett, 2003), marks the most significant reduction of diversity in
the Phanerozoic. Unlike the Cretaceous/Palaeogene (K/Pg) extinction
event 66 Ma, which was likely precipitated by an instantaneous impact
mechanism (Alvarez et al., 1980; Vajda and McLoughlin, 2007), the ter-
restrial biotic turnover at the end of the Palaeozoic appears to have devel-
oped as a multiphase series of extinctions (Racki and Wignall, 2005; Yin
et al., 2007; de la Horra et al., 2012) that were not necessarily synchro-
nous between disparate regions (Rees, 2002). Evidence from several
sources including brachiopod, bivalve, foraminiferal and plant extinc-
tions, shows that major biotic disruptions began in the Capitanian (al-
though often erroneously referred to as the ‘end-Guadalupian
extinction’) and this was followed by a protracted diachronous decline
in Palaeozoic life throughout the rest of the Permian (Yin et al., 2007;
Bond et al., 2010). Discussion of the timing andproposed causes of the ex-
tinction(s) beginning in the Capitanian can be found in several sources
lf of International Association for Gondwana Research. All rights reserved.
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and include diverse triggers and mechanisms for biotic turnover, such as
the massive outpourings of flood basalts, which now form the Siberian
Traps, climatic warming, increased aridity, loss of coastal habitats, ocean
anoxia or a combination of these mechanisms (Racki and Wignall,
2005; Retallack et al., 2006; Yin et al., 2007; Clapham et al., 2009;
Isozaki, 2009, 2010; Ali, 2010; Bond et al., 2010; de la Horra et al., 2012;
Benton and Newell, 2013; Retallack, 2013).

The Roadian–Wordian-aged Toploje Member chert of the Prince
Charles Mountains (PCMs) preserves, in exceptional three-dimensional
detail, the permineralised remains of a terrestrial mire ecosystem prior
to the biotic decline that began in the Capitanian and continued through
the Lopingian until the Permo-Triassic transition (Retallack et al., 2006;
Yin et al., 2007; Bond et al., 2010; de la Horra et al., 2012; Retallack,
2013). The Toploje Member chert offers a snapshot of the final phases
of ‘stable’ terrestrial life before the crisis that engulfed and overthrew
these ecosystems.

Aside from its significance in recording a key episode in terrestrial
life, the Toploje Member chert also preserves an important in situ com-
munity of macro- and micro-organisms that constituted part of the
high-latitude Glossopteris mire flora that typified vast expanses of
southern Gondwana during the Permian (e.g. Anderson et al., 1999;
Pigg and Nishida, 2006; McLoughlin, 2011b) and contributed to the
Southern Hemisphere's major economic coal resources. The structure
of Gondwanan coal is relatively well understood in terms of maceral
content and distribution (e.g. Navale and Saxena, 1989; Diessel and
Smyth, 1995; Osório et al., 2006; Kalkreuth et al., 2010; Van de
Wetering et al., 2013), but how this relates to the taxonomic represen-
tation of plant constituents and their component parts is less well re-
solved, since the transition from peat to coal involves significant
volumetric and compositional changes due to differential compaction
of plant parts and diagenetic loss of volatiles. Quantitative comparison
of the constituents of the Toploje Member permineralised peat and
coals from the same stratigraphic unit provide a means of evaluating
the original composition of the coal-forming biota and the changes in
coal composition with diagenesis.

The diversity of species in ancient terrestrial ecosystems is inher-
ently difficult to assess. Although not without taphonomic filtering,
marine deposits tend to offer a much richer sampling of the shelly
biota in the environment as a consequence of bioclast persistence
and sedimentary sorting (see Cleal et al., 2012). Therefore, it falls
to the patchy occurrences of terrestrial konservat lagerstätten to
provide a more accurate picture of what life was like at any one
place in time on land. Exceptional preservation occurs elsewhere in
Antarctica during the Late Permian with silicified plant remains
known from two main deposits in the central Transantarctic Moun-
tains. The Skaar Ridge and Collinson Ridge silicified peats of the
Transantarctic Mountains appear to be derived from small lenses or
possibly fluvially rafted mats of peat associated with volcaniclastic
sediments (Taylor et al., 1989; McManus et al., 2002), in contrast to
the laterally extensive Toploje Member chert representing a large
autochthonous mire community preserved in a succession lacking
volcanogenic sediments.

We employ a battery of techniques to elucidate the biotic con-
stituents of a typical peat-forming mire community in Gondwanan
high latitudes during the Middle Permian. Further, we assess the
taphonomy, quantitative representation of components, and evi-
dence of biotic and other physical interactions to elucidate the de-
positional setting and palaeoecology of the coal-forming mires of
the Lambert Graben. We also survey the fossil record of plant–
arthropod interactions across Gondwana to assess the diversity
and importance of disparate herbivory strategies in high-latitude
glossopterid-dominated communities prior to the end-Permian bi-
otic crisis. Finally, we contrast these findings with the results of a
maceral analysis of associated coals to assess whether the petrog-
raphy of the coals provides a meaningful representation of the
original peat community structure.
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
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2. Material and methods

Samples of a range of sizes were collected from multiple localities
along a low ridgeline exposing the Toploje Member chert (Fig. 1). A va-
riety of palaeobotanical techniques were then used to investigate the
contents of the peats; blocks of the chert were sectioned using a Buehler
Isomet 5000 linear precision saw. Following sectioning, acetate peels
were produced from the blocks using the technique outlined by
Galtier and Phillips (1999). The surface of each block was polished and
then submerged in a shallow bath of cold 30% hydrofluoric acid solution
for approximately 90 s in order to etch away the silicamatrix and leave a
thin layer of organic matter standing proud of the surface. Each block
was then rinsed with distilled water, dried, then covered with acetone
before laying a cellulose acetate sheet on the surface to create a peel
that was then studied using a transmitted light microscope. Peels
were found to be inferior to thin sections for the study of fungi,
Peronosporomycetes and coprolites in accordance with the findings of
Taylor et al. (2011) and, where possible, thin sectionswere preferential-
ly produced for the study of these elements. Several samples from a
range of localities across the peat outcrop were selected for bulkmacer-
ation in a cold 30% hydrofluoric acid solution. Samples were left in the
solution for two weeks and then the remaining organic debris was ex-
tracted using a 150 micron nylon sieve. Sieved organic remains were
then placed into a petri dish of distilled water and studied using an op-
tical stereomicroscope. Plant, arthropod and fungal remains were then
picked while hydrated using a fine art brush. Elements of interest
were then mounted on aluminium stubs and sputter-coated with gold
to enhance conductivity for imaging with a Hitachi S-4300 field emis-
sion scanning electron microscope at the Swedish Museum of Natural
History (Naturhistoriska riksmuseet). Several elements of the flora ex-
tracted via bulk maceration were also analysed using synchrotron X-
ray tomographic microscopy. X-ray microtomography was conducted
at the TOMCAT beamline of the Swiss Light Source, Paul Scherrer Insti-
tute, Switzerland (Slater et al., 2011) using the techniques described
by Donoghue et al. (2006). Illustrated material is registered in the
palaeobotany collections of the Swedish Museum of Natural History,
Stockholm (prefixed NRM) and Geoscience Australia (prefixed CPC).

Quantitative analysis of the silicified peat was made by point
counting across 20 randomly selected thin sections at 200 μm incre-
ments for 4000 points. In addition, four thin sections made from
charcoal-rich samples were selected for point counting to analyse vari-
ation in peat composition between regular and wildfire-affected
microfacies within the Toploje Member chert.

The organic petrology of a selected set of Middle to Upper Permian
coal samples from the Bainmedart Coal Measures was carried out by a
commercial coal analytical contractor (Keiraville Konsultants Pty Ltd,
Wollongong, Australia). Results from proximate analyses of these sam-
pleswere presented by Holdgate et al. (2005); only the data onmaceral
proportions in the coals are presented here.
3. Geological setting and palaeogeography

Antarctica occupied a central position within Gondwana through the
late Palaeozoic and early Mesozoic (McLoughlin, 2001; Fig. 1). This loca-
tion endowed Antarctica with a key role in floristic interchange between
the various peripheral regions of the supercontinent (McLoughlin, 2001;
Ryberg, 2010). Outside the Transantarctic Mountains, the only Permo-
Triassic sedimentary succession in East Antarctica is preserved in the
Lambert Graben within the Prince Charles Mountains region. The Lam-
bert Graben has been interpreted to represent the southern extension
of theMahanadiGraben in India in pre-breakuppalaeogeographic recon-
structions of Gondwana (Fedorov et al., 1982; Stagg, 1985; Veevers,
2004; Harrowfield et al., 2005; Boger, 2011; Slater et al., 2011), although
alternative alignmentswith the Godavari Graben have also beenmooted
(Holdgate et al., 2005). Throughout the Early and Middle Permian, the
erstätte: The Permian permineralised peat biota of the Prince Charles
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Fig. 1.Map of Gondwana for the Permian showing the distribution of sedimentary basins of that age (grey) and sites yielding evidence of plant–herbivore interactions (see Appendix 1);
basemap fromMcLoughlin (2001). Insetmap shows the geology of the Radok Lake area, Prince CharlesMountains, with the sites sampled for permineralized peat at the top of the Tolpoje
Member.
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northern Prince Charles Mountains (Fig. 1) occupied a palaeolatitude of
~65–70°S (McLoughlin et al., 1997), similar to its modern position.

The studied chert constitutes the silicified uncompressed upper por-
tion of a coal seam, which forms the uppermost bed of the 303 m thick
Fig. 2. Stratigraphic column of the Permian and Triassic strata in the Prince Charles Mounta

Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
Toploje Member (Fig. 2) of the lower Bainmedart Coal Measures in the
northern Prince Charles Mountains, East Antarctica (McLoughlin and
Drinnan, 1997a). The chert bed is locally up to 40 cm thick and is ex-
posed over a strike length of 3 km (Fig. 1). The Bainmedart Coal
ins (Lambert Graben) showing the position of the Toploje Member chert lagerstätten.

erstätte: The Permian permineralised peat biota of the Prince Charles
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Measures represent the middle unit of the Permian–Triassic Amery
Group (see Fielding and Webb, 1996; McLoughlin and Drinnan, 1997a,
for detailed stratigraphic sections of this unit). The coal measures rest
disconformably or partially unconformably on the Radok Conglomerate
of Kungurian to early Roadian age, and are in turn conformably overlain
by the Flagstone Bench Formation of Triassic age (McLoughlin and
Drinnan, 1997b). The Bainmedart Coal Measures are dominated by
thick cross-bedded sandstones, siltstones and coals deposited in a cyclic
pattern, which has been attributed to the action of Milankovitch-
induced changes to sediment supply (Fielding and Webb, 1996).

The chert bed represents theupper part of a peat profile thatwas im-
pregnated with silica prior to any significant sedimentary loading or
compression, hence the entombed plant remains have avoided coalifi-
cation (Slater et al., 2011). Palynological correlation to the Australian
Didecitriletes ericianus Zone gives a Roadian–Wordian age for the
Toploje Member chert (Lindström and McLoughlin, 2007). Flooding
with mineral-rich lake waters and then permineralisation terminated
the peat-forming process. The conformably overlying Dragons Teeth
Member consists of a series of sideritic shales andminor sandstones de-
posited in a lacustrine setting (Fielding and Webb, 1996).

Data andfindings of this study of the ToplojeMember chert will now
be presented and discussed.

4. Biota

4.1. Composition of the silicified peat

The macrofloral diversity within the silicified peats is relatively low,
being dominated by the constituent dispersed organs of arborescent
glossopterid and cordaitalean gymnosperms. Matted leaves of both
Glossopteris (Glossopteridales) and Noeggerathiopsis (Cordaitales), to-
gether with roots (Vertebraria) and stem wood (Australoxylon) are the
most prominent constituents of the peat (McLoughlin and Drinnan,
1996; Holdgate et al., 2005). However, the cryptic micro- and meso-
fossil components of the peat reveal a much greater biotic diversity in
the mire ecosystem than is evident from the macroscopic remains.
The fossil micro-organism assemblage includes a broad range of fungal
hyphae and reproductive structures together with superficially similar
organisms such as Peronosporomycetes (Slater et al., 2013). Although
arthropod exoskeleton fragments are sparse, disarticulated and frag-
mentary, a rich entomofauna is indicated by the wealth and diversity
of invertebrate feeding traces and coprolite morphotypes, both dis-
persed in the peat matrix and preserved within specific plant organs
(Weaver et al., 1997; Holdgate et al., 2005; Slater et al., 2012; see
Table 1 for a list of the biota found to date in the peats). The preservation
of groups such as saprotrophic Peronosporomycetes (Oomycota) adds
to the sparse, but growing fossil record of these important elements of
terrestrial ecosystems (Schwendemann et al., 2009; Krings and Taylor,
2011; Slater et al., 2013). These, together with a broad diversity of fun-
gal interactions, show that the glossopterid plant was the primary host
of a ‘component community’ of saprotrophs, herbivores and detritivores
at high latitudes until the end-Permian extinction of this plant group.
The roles of soil-inhabiting microorganisms in modern high-latitude
peats are still poorly understood (Tveit et al., 2012), so additional inves-
tigation of fossil occurrences will improve our knowledge of the evolu-
tion of such ecosystems (Adl et al., 2010). The dispersed palynoflora in
the silicified peat has not yet been fully documented but includes a
broad range of fern, sphenophyte, and lycophyte spores and cycado-
phyte and pteridosperm pollen that attest to a much higher floristic
diversity in the immediate vicinity of the mire ecosystem. Diverse
glossopterid pollen morphotypes are also evident within the peat
but significant intraspecific variation of the grains has been recorded
withinArberiella (glossopterid) sporangia from the peat layer (Lindström
et al., 1997) suggesting that apparent levels of glossopterid diversity in
the ecosystem based on dispersed pollen floras are inflated. Although
Paracalamites australis (sphenophyte) axes occur sparsely as impressions
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
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in sediments of the Dragons Teeth Member overlying the Toploje
Member, macrofossils of this group have not yet been identified in
the silicified assemblage. A single undescribed herbaceous lycophyte
taxon has been recorded from the permineralised peat (Holdgate
et al., 2005).

Analysis of the relative abundance of the various organisms and their
constituent organs/tissues contributing to the peat was carried out by
Holdgate et al. (2005) and again in this study using a different set of
thin sections of the Toploje Member chert (Fig. 3A). The new results
largely confirm the gross composition of the peat identified by
Holdgate et al. (2005), although somedifferenceswere noted.Vertebraria
roots form an even larger proportion of the total peat composition than
was found in the previous study. Further, charcoal was found to be pro-
portionally more abundant in this study. It is clear that the peats of the
ToplojeMember chert contain a higher proportion of subterranean com-
ponents, such as roots, compared to subautochthonous canopy elements,
such as leaves and seeds, than is evident in other Permian silicified peats,
such as those of the Bowen Basin, Australia (McLoughlin, 1992). These
differences attest to subtle variations in microfacies within the peat pro-
files that will require further investigation to delineate their composition
and genesis. Our preliminary assessment of compositional variation in
the Toploje Member peats via a series of point counts on thin sections
of specimens rich in charcoal (Fig. 3B) reveals plant assemblages domi-
nated by charcoalified wood. In general, these charcoal-rich microfacies
contained much more woody material (both charcoalified and non-
charcoalified) than is evident in the typical composition of the peat.
4.2. Composition of associated coals

In order to assess whether the Toploje Member's silicified peat bed is
representative of organic accumulations throughout theMiddle and Late
Permian of the Lambert Graben, 13 coal samples from the major coal-
bearing intervals of the Bainmedart Coal Measures were analysed for
theirmaceral content. One of these samples fromoutcrop near Soyuz Sta-
tion on the eastern side of Beaver Lake is not constrained stratigraphically
and is only included for maceral ratio comparisons to coals of other re-
gions. The other 12 samples derive from reconnaissance-scale sampling
of coals throughout the Bainmedart Coal Measures (generally only 1
sample per 100–150 m of stratigraphic section: see Holdgate et al.,
2005, fig. 3). Trace andmajor element results, vitrinite reflectance values
and some petrological data from these samples were presented by
Holdgate et al. (2005). Petrological and coal maturity data were pub-
lished for a few additional samples from the lower part of the Bainmedart
Coal Measures by Bennett and Taylor (1972). Here we elaborate on the
organic petrology of the coal and compare the compositions of the
coals and silicified peat. The ~40 cm of silicified peat is chosen for com-
parison with the coals since it represents a snapshot of the peat before
compaction, diagenesis and coalification.

Vitrinite (humified plant remains) constitutes 5.65–(22.75)–61.44%
of the coal [7.04–(26.89)–65% on a mineral free basis]. This is almost en-
tirely in the formof telocollinite & desmocollinite (Fig. 4). Desmocollinite
(precipitated humic gels) is generally slightly more abundant than
telocollinite (gelified woody and mesophyll tissues). In broad terms
these macerals track the total representation of vitrinite in similar pro-
portions stratigraphically.

Inertinite (oxidised plant remains) forms 19.63–(31.78)–40.49% of
the coal [25.4–(40.79)–50.47% on a mineral free basis]. The three domi-
nant inertinite macerals are inertodetrinite (detrital oxidised compo-
nents), semifusinite (partially oxidised woody tissues) and fusinite
(oxidisedwoody tissues retaining cellular structure);with inertodetrinite
being strongly dominant in the middle and upper Bainmedart Coal
Measures reaching maximum levels of 36.54% on a mineral-free basis
(Fig. 4). Fusinite and semifusinite levels are high in the lowest two sam-
ples (from beds below and just above the silicified peat bed). Funginite
(=sclerotinite; fungal remains) is very sparse.
erstätte: The Permian permineralised peat biota of the Prince Charles
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Table 1
Summary of the biota preserved in the Toploje Member silicified peat.

Species/organism/organ/trace Affinity Occurrence Relative abundance

Singhisporites hystrix Megaspore (heterosporous Lycophyta) Dispersed throughout peat matrix Common; N50 specimens
Duosporites lambertensis Megaspore (heterosporous Lycophyta) Within peat matrix Rare; 2 specimens
Banksisporites antarcticus Megaspore (heterosporous Lycophyta) Within peat matrix Rare; 2 specimens
Herbaceous lycophyte Heterosporous Lycophyta Dispersed throughout peat matrix Common; N40 specimens
Fern sporangia Ferns (several taxa) Dispersed throughout peat matrix Relatively abundant; present in ~50%

of samples
Vertebraria (at least two anatomical types) Roots of the Glossopteris plant Occurs throughout the peatmatrix, commonly

in dense ramifying mats
Abundant; present in almost all
samples

Australoxylon (two species) Wood of the Glossopteris (and possibly
Noeggerathiopsis) plant

Occurs throughout the peat matrix, some
microfacies are clearly rich in wood

Common; present in almost all
samples

Glossopteris (possibly several species) Leaves of the Glossopteris plant Occurs throughout the peatmatrix, commonly
as thick deposits of matted leaves

Abundant; present in almost all
samples

Noeggerathiopsis sp. Leaves of Cordaitales Occurs throughout the peatmatrix, commonly
as thick deposits of matted leaves

Common; present in almost all
samples

Trichome-fringed cuticle Gymnosperm with brachyparacytic
stomata

Occurs sparsely dispersed throughout the peat
matrix

Rare

Seed morphotype 1 Small (~1 mm) spinose seed:
indeterminate gymnosperm

Occurs throughout the peatmatrix, commonly
in deposits rich in matted leaves

Relatively abundant; present in ~40%
of samples

Seed morphotype 2 Small (~1 mm) smooth seed:
indeterminate gymnosperm

Occurs throughout the peatmatrix, commonly
in deposits rich in matted leaves

Relatively uncommon; b10 specimens

Seed morphotype 3 Small (~1 mm) winged seed:
indeterminate gymnosperm

Occurs throughout the peatmatrix, commonly
in deposits rich in matted leaves

Relatively uncommon; b10 specimens

Fungal morphotype 1: non-septate/
aseptate hyphae

Zygomycota Dispersed throughout peat matrix Common; present in almost all
samples

Fungal morphotype 2: septate hyphae Basidiomycota and Ascomycota Dispersed throughout peat matrix Common; present in almost all
samples

Fungal morphotype 3: hyphae with
swellings

Glomeromycota? Occur dispersed throughout peat matrix Common; present in almost all
samples

Fungal morphotype 4: smooth-weakly
ornamented spores

Smallest, smooth forms are probably
chytrid zoosporangia

Occur dispersed throughout peat matrix Common; present in almost all
samples

Fungal morphotype 5: large smooth-
weakly ornamented spores

Glomeromycota? Commonly have small
chytrid fungi adhering to the external
surface

Occur dispersed throughout peat matrix in
samples rich in Vertebraria roots

Common; present in almost all
samples

Fungal morphotype 6: spinose oblong
spores

Ascospores (Ascomycota) Occur dispersed throughout peat matrix
commonly in clusters

Relatively abundant; present in ~50%
of samples

Fungal morphotype 7: fungi within pollen Chytrid? Saprotrophic fungi
(Chytridiomycota?)

Occur within or on the surface of bisaccate
pollen

Relatively abundant; present in ~50%
of samples

Fungal morphotype 8: disc-like clusters of
small fungal cells

Chytrid? Saprotrophic fungi
(Chytridiomycota?)

Occur dispersed throughout peat matrix Relatively uncommon; b10 specimens

Fungal morphotype 9: complex fruiting
bodies

Sclerocystis sporocarp? Occur dispersed throughout peat matrix in
samples rich in Vertebraria roots

Relatively uncommon; b10 specimens

Fungal morphotype 10: sclerotia Fungal resting body Occur in isolation and in rows where the peat
is layered

Relatively uncommon; b10 specimens

Combresomyces caespitosus Peronosporomycetes (water moulds) Occurs throughout the peat matrix in
association with a wide range of plant tissues
and organic debris

Common; N50 specimens

Combresomyces rarus Peronosporomycetes (water moulds) Occurs throughout the peat matrix in
association with a wide range of plant tissues
and organic debris

Common; N40 specimens

Fragment of exoskeleton Indeterminate arthropod Within peat matrix Rare; 2 specimens
Coprolites in Vertebraria and Australoxylon
(dark)

Wood-boring arthropod Roots, wood High; N1000 in some slides

Coprolites in Vertebraria and Australoxylon
(light)

Probably oribatid mites Roots, wood High; N1000 in some slides

Coprolites in leaves Possible leaf-mining or detritivorous
arthropod

Between anastomosing veins of Glossopteris
leaves

Relatively common; N10 specimens

Coprolite within fern sporangium Small palynophagous arthropod Inside fern sporangium Single occurrence
Isolated large coprolites Indeterminate arthropod Amongst matted leaf remains Relatively common; N10 specimens
Isolated small coprolites Indeterminate arthropod Isolated in peat matrix, amongst matted leaf

remains
Relatively common; N10 specimens

Coprolites containing fungi Fungivorous arthropod Roots, wood and isolated in the peat matrix Relatively uncommon; b10 specimens
Coprolites containing pollen Palynophagous arthropod Isolated in the peat amongst Glossopteris-

dominated debris
Relatively uncommon; b10 specimens

Coprolites with coarse contents Probably generalist detrivorous arthropod Isolated in the peat matrix Relatively uncommon; b10 specimens
Spirally ornamented coprolite Indeterminate arthropod Isolated in the peat matrix Rare; single specimen
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Liptinite (waxy and resinous plant components) makes up
9.07–(23.97)–34.09% of the coal [9.6–(32.32)–42.49% on a mineral
free basis]. The great majority of this is represented by sporinite
(5.8–42.25% on a mineral free basis), with consistently low levels of
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
cutinite (Fig. 4). Suberinite, resinite, alginite and liptodetrinite are rep-
resented only in trace amounts.

Inertinite and liptinite broadly increase through the Roadian–mid-
Wuchiapingian interval (ToplojeMember–GraingerMember) associated
erstätte: The Permian permineralised peat biota of the Prince Charles
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Fig. 3. Pie charts detailing the relative proportions of organic constituents in: A. typical permineralised peat of the Toploje Member chert taken from 4000 point counts at 200 μm incre-
ments from 20 thin Sections. B. charcoal-rich microfacies of the permineralised peat taken from 1000 point counts at 200 μm increments from 4 thin sections. Small quantities of pyrite
crystals, and the silica matrix that occur in the Toploje Member chert were excluded from the counts.
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with a corresponding decline in vitrinite (Fig. 4). No clear trend is
evident amongst maceral groups for the uppermost Permian (mid-
Wuchiapingian–Changhsingian: McKinnon Member), although both
inertinite and liptinite levels remain high.

5. Palaeoecology

5.1. Vegetation structure

Vegetation stratification is evident in the assemblage of plants pre-
served in the Toploje Member chert. Autochthonous upright stumps
Fig. 4. Plot of the variation in percentages of major macerals in coals f
Detailed stratigraphic positions of coal samples are given by Holdgate

Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
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with a height of 30 cmanddiameter of up to 20 cmare locally preserved
in the chert together with more abundant parautochthonous axes gen-
erally b20 cm in diameter preserved parallel to bedding (Holdgate et al.,
2005). These stumps and stems attest to the presence of abundant arbo-
rescent gymnosperms. Two stem wood morphospecies, Australoxylon
bainii and Australoxylon mondii, were recognised by Weaver et al.
(1997) and clearly correspond to two similar gymnosperms; the most
likely affiliations being with glossopterids or cordaitaleans based on
the co-preserved leaf genera (Glossopteris and Noeggerathiopsis).
Australoxylon mondii stem wood cannot be distinguished anatomically
from Vertebraria (glossopterid) root wood, apart from the absence of
rom the Bainmedart Coal Measures, Lambert Graben, Antarctica.
et al. (2005).
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Fig. 5. Range of biota found in thin sections of the ToplojeMember silicified peat. A. NRM S087800, Vertebraria solid-stele and polyarch roots colonised by fungal spores and hyphae in the
peat matrix, scale= 1mm. B. NRM S088061, young Vertebraria root tip in longitudinal section, scale= 1mm. C. NRM S087847, transverse section through a silicified gymnosperm stem
with fungal pocket rot, scale = 1 cm. D. NRM S089551, large coprolite between matted Glossopteris leaves [similar to that figured by Baxendale (1979), plate 65, figure 1) and akin to
Baxendale's (1979), plate 65, figure 8] ‘type B’ coprolites from Pennsylvanian coal balls, scale = 1 mm. E. NRM S089553, matted Noeggerathiopsis leaves with prominent abaxial
trichome-bearing furrows, scale = 500 μm. F. CPC34952, transverse section through the axis of a herbaceous lycophyte, scale= 500 μm. G. NRM S087932-01-03, pyrite crystals amongst
plant debris embedded in silica matrix, scale = 500 μm.
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schizogenous cavities, suggesting that they likely originated from the
same glossopterid plant (Weaver et al., 1997; McLoughlin, 2011b; see
Bateman and Hilton, 2009). Two morphotypes of Vertebraria roots
were recognised and described from the peats by Neish et al. (1993),
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
categorised as ‘polyarch’ and ‘solid cylinder’ based on their ontogeny
and architecture (Fig. 5A). The polyarch and solid cylinder roots may
correspond to two distinct plant species ormay be functionally different
roots belonging to the same parent glossopterid plant (Neish et al.,
erstätte: The Permian permineralised peat biota of the Prince Charles
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1993). A broad range of dispersed bisaccate, monosaccate, monosulcate
and polyplicate pollen within the peat denotes an additional range of
shrub- to tree-sized gymnosperms in the vicinity of the mire.

Stems and microphylls of diminutive herbaceous lycophytes are
moderately common within the peat and are co-preserved with three
genera and species of megaspore (Slater et al., 2011). These appear to
have been centimetre-scale Paurodendron-like heterosporous lycophytes
that grew on the consistently moist peat surface (Fig. 5F). Roots of these
plants occur sporadically within the leaf debris microfacies of the peat.

Fern sporangia with intact contents are relatively common in
both thin sections and bulk macerations of the Toploje Member
chert, though no leaves or stems of these plants have yet been dis-
covered. The abundance of sporangia and paucity of fern vegetative
remains may be the result of: (1) an extremely delicate nature of
the plants resulting in their low preservational potential; (2) an epi-
phytic habit, with ferns residing high on the stems of Glossopteris
trees and retaining their foliage there until decay; or (3) transport
of sporangia and spores into the mire via wind or water from hinter-
land plant communities. Small epiphytic ferns of Tubicaulis sp. are
known from Early Permian deposits from Chemnitz in Saxony,
Germany (Rößler, 2000). These epiphytes occur among the assem-
blage of plants that grew in close association with a mantle of adven-
titious roots of the well-studied tree-fern Psaronius (Rößler, 2000).
No direct evidence of epiphytes has yet been found associated with
glossopterid remains, though they are a common feature of most
modern moist forest communities (Bartels and Chen, 2012).

Adaptations for the high-palaeolatitude environment include a de-
ciduous habit for glossopterids based on the numerous thick mats
of leaves that occur as compression fossils and in the silicified peat
representing seasonal leaf-shedding events (Retallack et al., 1995;
Krull, 1999; Retallack, 1999; Holdgate et al., 2005; McLoughlin, 2011b).
Such mats of apparently monospecific glossopterid leaves are common
features of the Toploje Member chert (Fig. 5D). Australoxylon bainii and
A. mondii woods found in the peats also have distinct growth rings that
terminate abruptly, indicating a swift transition to winter dormancy
(Weaver et al., 1997; Gulbranson et al., 2012), seasonal water regimes
(Francis, 1986), or both.

Special anatomical adaptations to a waterlogged environment are
expressed in the architecture of the preserved gymnosperm axes.
Vertebraria roots contain large schizogenous chambers (Figs. 5A, B, 6B,
7C–E) that possibly functioned to aid respiration in the anoxic or
dysoxic peat environment (Retallack and Dilcher, 1988; Neish et al.,
1993; Decombeix et al., 2009). Vertebraria is very characteristic of pallid
to dark palaeosols immediately underlying coal seams throughout
Gondwana. These soils developed indysoxicwaterlogged environments
and commonly host great densities of horizontal and low-angle root
(Vertebraria) systems (Schopf, 1982; McLoughlin, 1993; Slater et al.,
2012). Australoxylon mondii also has notable gaps between the ray
cells that may have functioned as an aeration system in the lower
stem wood of the glossopterid plant (Weaver et al., 1997). Dense hori-
zontally extensive Vertebraria root mats may also have helped to stabi-
lise the glossopterid trees in poorly cohesive waterlogged soils by
intermeshing with the roots of neighbouring trees, as occurs in extant
plants that inhabit boggy soils, e.g. Kahikatea (Dacrycarpus dacrydioides)
of New Zealand (Wardle, 1974; Wardle, 1991).

Other adaptations to moist or semi-aquatic environments amongst
the PCM plants include the elaborately ornamented surface of the
most abundant megaspore species, Singhisporites hystrix (Figs. 6I, 7H,
I). Its furcate spines may have functioned to aid dispersal through
hydrochory in saturated environments and to facilitate entrapment of
conspecific microspores in water (Tewari et al., 2009; Slater et al.,
2011). The weakly spinose microspores associated with S. hystrix can
be seen to interlock with the complex ornamentation of the megaspore
in X-ray synchrotron tomographic images (Slater et al., 2011). Lycopsids
were typical of wetland habitats or riparian areas from the Devonian to
present (Falcon-Lang, 2003).
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
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Modern high-latitude forests occupying the Boreal biome are limited
in their distribution primarily by temperature and the proximity of per-
mafrost to the surface, which hampers water and nutrient uptake
(Sayre, 1994). The Glossopteris forests of the mid-Permian would have
been subject to similar light regimes, but ambient temperatures were
probably much higher than at their equivalent modern latitudes
(Angiolini et al., 2009). Hence, permafrost development was unlikely
to have limited water supply for plant growth.

5.2. Fungi and fungi-like organisms

In contrast to the low-diversity macroflora, there is a notably high
diversity of fungi and fungi-like organisms in the Toploje Member silic-
ified peat (Figs. 5A, C, 6D–F). This is consistent with models of modern
high-latitude forests dominated by deciduous trees (Wu et al., 2011),
where the soil can be rich in leaf litter and other plant detritus exploit-
able by fungi. Examples of fungi in the peatmatrix andwithin dispersed
plant organs within the Toploje Member chert include septate and non-
septate hyphae, a range of fungal spores, saprotrophic chytrid fungi,
fungal sclerotia, and possible mycorrhizal associations (Figs. 5A, 6D, E,
F). Regularly (seasonally) distributed pocket rot (Weaver et al., 1997)
occurs within the Australoxylonwood (Fig. 5C). Appositions are evident
in secondary xylem cells of subaerial axes, presumably representing a
plant response to fungal invasion (Bhuiyan et al., 2009). Other fungi-
like microorganisms include two species of Peronosporomycetes or
‘water moulds’ represented by distinctive furcate spinose oogonia,
Combresomyces caespitosus and Combresomyces rarus (Slater et al.,
2013). These were likely saprotrophic rather than parasitic forms, and
such organisms are very common in modern moist terrestrial habitats
(Jobard et al., 2010).

5.3. Plant–animal–fungal interactions

The Toploje Member chert is one of only a few Palaeozoic–Mesozoic
deposits from which a detailed survey of the arthropod–plant interac-
tions has been undertaken (McLoughlin et al., 2011; Slater et al.,
2012) and one of only a small number of assemblages across Gondwana
for which multiple forms of herbivory on Permian plants has been doc-
umented (Fig. 1; Appendix 1). Themajority of past records are examples
of folivory traces on themargins of Glossopteris leaves but a few records
reveal attack on other parts of the Glossopteris plant and on other gym-
nosperms and pteridophytes in the flora (Appendix 1). Most of these
plant–animal interactions have been documented from compression-
impression floras (Appendix 1). Other Palaeozoic and Mesozoic assem-
blages fromwhich invertebrate–plant relationships and coprolite suites
have been extensively documented include those from the Silurian and
Lower Devonian deposits in the Welsh Borderland (Edwards, 1996;
Edwards et al., 2012), the Rhynie Chert (Habgood et al., 2004), the Penn-
sylvanian coal balls of the United States (Baxendale, 1979), the ‘compo-
nent community’ of invertebrate feeders on the Palaeozoic tree fern
Psaronius (Rößler, 2000; D'Rozario et al., 2011a, 2011b), and the
Upper Triassic permineralised peat of Hopen in the Svalbard archipela-
go (Strullu-Derrien et al., 2012). The identification of feeding traces in
the roots (Vertebraria), stems (Australoxylon) and leaves (Glossopteris)
of the arborescent Antarctic glossopterid whole-plant, integrated with
records of feeding traces from other assemblages (see Appendix 1 and
references therein), illustrates that all major organs of the glossopterid
plant were attacked by a community of invertebrates (Slater et al.,
2012). Arthropod coprolites inside fern sporangia show that exploita-
tion of plant food sources was not limited to glossopterids. The herba-
ceous lycophytes of the understorey (Slater et al., 2011) may have also
provided an important source of food or egg-hosting sites for inverte-
brates based on the extra-Gondwanan occurrence of Triassic Isoetites
bearing oviposition scars on their leaves (Moisan et al., 2012).

Small faecal pellets attributed to oribatid mites are the most abun-
dant coprolites in the Toploje Member silicified peat (Fig. 6C). These
erstätte: The Permian permineralised peat biota of the Prince Charles
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small coprolites commonly occur in dense clusters and are dimensional-
ly and morphologically identical to those of extant oribatid mites
(Rusek, 1975; Vegter, 1983; Slater et al., 2012). Molecular dating has
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
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placed the origin of the oribatid mites at 571 ± 37 million years ago
(Schaefer et al., 2010). This predates their first occurrence in the fossil
record by a large ‘mite gap’ of ~130–90 ± ~40 million years (Schaefer
erstätte: The Permian permineralised peat biota of the Prince Charles
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et al., 2010). There must have been significant pre-Devonian radiation
and adaptation of oribatid mites since the groupwas alreadymoderate-
ly diverse by theDevonian (Norton et al., 1988) and complex land based
food webs already existed in the Silurian (Edwards, 1996), including
some mite-like microarthropod coprolites (Hagström and Mehlqvist,
2012). Hence, microcoprolite studies offer the potential to not only
track the early history of some arthropod clades in the absence of
body fossils, but also to assess patterns of food consumption and
guild/trophic complexity.

Alongside being potential early colonisers of the terrestrial environ-
ment, oribatidmites and other soil-dwellingmicroarthropodswere like-
ly important drivers in the development of the soil-based ecosystems in
which Palaeozoic vascular plants thrived. A diverse and abundant inver-
tebrate soil fauna including oribatid mites is known to be important for
macro-vegetation in the recycling of nutrients from decaying plant mat-
ter, and for enhancing soil aeration and water retention through in-
creased porosity (Bardgett, 2005). Recent studies of extant oribatid
mites have revealed that they play a role in dispersing the spores of
ectomycorrhizal fungi within the soil via their faeces and through en-
trapment of spores in the hairs of their exoskeleton (Lilleskov and
Bruns, 2005). The presence of oribatidmites likely also supported a com-
munity of soil micro-predators such as pseudoscorpions, which prey
upon extant mites and also have a fossil record extending to the Devoni-
an (Shear et al., 1989b). The abundance of oribatid mite coprolites in the
ToplojeMember chert attests to their key role in recycling organicmatter
and opening up pathways for fungal decomposers in the plant litter and
deadwood of high-latitude Gondwanan coal-formingmires.Modern bo-
real forests that include a significant proportion of deciduous trees have
been shown to house a high diversity of soil organisms comparable even
to that of tropical rainforests (Wu et al., 2011). The exceptional preserva-
tion in the Toploje Member chert provides an opportunity to assess the
invertebrate diversity and trophic guilds in these mires prior to the
onset of ecosystem decline that began in the Capitanian, and could aid
our understanding of the impact of the end-Palaeozoic floral turnover
on the associated terrestrial invertebrate biota (Anderson et al., 1999;
Labandeira, 2005; Slater et al., 2012).

The remains of animals are probably more common in silicified
plant-bearing deposits than has been generally documented (Smoot
and Taylor, 1985), since it is inherently difficult to identify an arthropod
body fossil in thin section amongst densely packed plant remains, par-
ticularly since plant and arthropod cuticles look similar in thin section
(Bartram et al., 1987). Further, distinctive waxy clitellate annelid egg
cases have not yet been recorded from any Palaeozoic peats, which is
surprising given that these remains are readily recognisable and com-
mon in Mesozoic to modern floodbasin deposits (Manum et al., 1991;
Jansson et al., 2008; Tosolini and Pole, 2010; Bomfleur et al., 2012).
More extensive use of the bulk maceration technique on silicified
peats and other organic-rich sediments offers the potential to extract
more taxonomically informative components of arthropod exoskele-
tons (e.g., wings) and annelid egg capsules.

Sparse trace fossils occur in the Permian–Triassic AmeryGroupfluvi-
al sediments of the Prince Charles Mountains including Planolites trails
and short vertical burrows (McLoughlin et al., 1997) that attest to the
presence of vermiform invertebrates. Permian–Triassic strata elsewhere
in Antarctica host a variety of non-marine arthropod ichnogenera giving
clues to the stream and soil entomofauna; e.g., Diplopodichnus and
Diplichnites myriapod traces were reported from the Permian–Triassic
Fig. 6.Range of biota found in thin sections and bulk-macerations of the ToplojeMember silicifie
a schizogenous cavity of a Vertebraria root, scale = 500 μm. C. NRM S088040, charcoalified woo
small smooth fungal spores, scale=500 μm. E. NRMS087932-01-02,mass of fungal reproductiv
hyphae penetrating Vertebraria root cells, scale= 100 μm. G. NRM S089630, SEM image of arthr
tified but distinctive leaf cuticle bearing prominent marginal trichomes, scale= 100 μm. I. NRM
found in the peat, scale = 100 μm.
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sediments of the central Transantarctic Mountains, together with an
interpreted resting trace of a jumping insect (Briggs et al., 2010).

Tetrapods are currently unknown from Permian strata of the Prince
Charles Mountains as either body fossils or ichnofossils (McLoughlin
et al., 1997). The fossil record of Gondwanan Permian terrestrial verte-
brates is poor beyond the confines of the Karoo Basin in South Africa
(Rubidge et al., 1995; Lucas, 2004). It is possible that macro-herbivores
were relatively sparse in southern high latitudes during the Permian,
particularly in forestmire communities. The deciduous habit of the dom-
inant woody plants, coupled with strongly seasonal climatic fluctuations
at high latitudes, probablymade conditions unfavourable for large popu-
lations of herbivores without special physiological adaptations or the ca-
pacity to migrate long distances (Collinson and Hammer, 2007).

5.4. Energy pathways

Based on the composition of, and interactions between, the fossil
biota, we reconstruct the energy pathways in this Middle Permian mire
ecosystem (Fig. 8). In the absence of tetrapods, we interpret the high-
latitude mire community to have been dominated by a low diversity of
woody gymnosperms and sparse understory ferns and lycophytes that
supported a broad range of invertebrate herbivores and detritivores.
The primary producers were dominantly tree-sized glossopterid gymno-
sperms together with a significant proportion of Noeggerathiopsis
(Cordaitales) of similar stature. Less abundant understorey elements of
the flora included ferns and herbaceous lycophytes (Fig. 8). Detritivores
were dominantly oribatid mites, but other larger forms of generalist-
and specialist-feeding arthropods are evidenced by the diverse range of
coprolites. Fungi and fungi-like organisms appear to have played key
roles in nutrient cycling through saprotrophy, and possibly viamycorrhi-
zal interactions with the plants. The Glossopteris trees themselves appear
to have been the keystone species within the ecosystem, since many
groups of arthropods and fungal saprotrophs fed directly or indirectly
on both the living and decaying tissues of the Glossopteris plant. Based
on the high-latitude setting and evidence of pronounced annual growth
increments in the gymnosperms, the energy flux and consumer activity
in this ecosystem likely varied greatly on a seasonal basis. Abiotic factors
that influenced this ecosystem included consistently saturated substrates
(either high rainfall or groundwater supply) and regular fire events as
evidenced by significant quantities of charcoal commonly occurring in
distinct bands within the peats (Fig. 8).

6. Taphonomy

6.1. Accumulation model

The plant organs found in the peat lack signs of regular abrasion and
are preserved relatively intact. The organic components of the peat also
lack either imbrication or systematic sortingwith the exception of a few
discontinuous centimetre-scale bands that are enriched in macroscopic
charcoal. The delicate structures preserved on some organs, such as fine
trichomes in the stomatal grooves of Noeggerathiopsis leaves (Fig. 5E),
hirsute leaf margins (Fig. 6H), stomatal guard cells (Fig. 7F), and spines
on lycophyte megaspores and on the oogonia of Peronosporomycetes
(McLoughlin and Drinnan, 1996; Slater et al., 2013) suggest that the
bulk of the detached plant remains had not been transported any signif-
icant distance before incorporation into the peat. Some upright stumps
dpeat. A. NRMS087932, Small seed, scale=500 μm. B. NRM S089550, phytodebris within
d and root fragments surrounded by mite coprolites, scale = 1 mm. D. NRM S088051-01,
e bodies and hyphae set amongst phytodebris, scale=500 μm. F; CPC34952, septate fungal
opod cuticlewith hollow setae, scale= 50 μm.H. NRM S089629, SEM image of an uniden-
S089540, SEM image of megaspore Singhisporites hystrix— themost commonmegaspore
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Fig. 7. Scanning electronmicroscopy images of a range of biota recovered from bulkmacerated samples of the Toploje Member silicified peat. A; NRM S089555, fern spores attributable to
Didecitriletes ericianus within a sporangium. B; NRM S089603, arthropod coprolite containing mixed plant vegetative remains and spores. C; NRM S088043, broken, uncompressed
Vertebraria rootlet showing internal air chambers. D; NRM S088043, enlargement of the central column of a Vertebraria rootlet. E; NRM S088043, enlargement of external surface of
young Vertebraria rootlet. F; NRM S089574, apparently brachyparacytic stoma on the surface of an unidentified trichome-fringed gymnosperm leaf. G; NRM S088062-A, tangential longi-
tudinal sectional of charcoalified wood showing longitudinal tracheids and sections of rays 1–3 cells high. H; NRM S087801-A, elaborately ornamented surface of a Singhisporites hystrix
megaspore. I; NRM S089351, X-ray synchrotron tomographic image of an elaborately ornamented Singhisporites hystrix megaspore with an apparently shrivelled (pale) inner body.
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and intertwined Vertebraria roots in the peat profile denote that at least
some glossopterid remains were preserved in growth position. This
contrasts with some Late Permian silicified peats from the central
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
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Transantarctic Mountains that may represent rafted peat mats pre-
served out of context of the original depositional environment (Taylor
et al., 1989). Rafting of peat loads by rivers and in lakes and by the action
erstätte: The Permian permineralised peat biota of the Prince Charles
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Fig. 8. Schematic representation of energy pathways and nutrient cycling in the Toploje Member chert palaeoecosystem.
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of ice iswell known inmodern environments (Argow et al., 2011), some
organic mats, tussocks and floating islands of vegetation even being
rafted across large marine water bodies (Houle, 1998). Floatation of
peats has even been proposed as a mechanism for the accumulation of
organic matter forming the lower Maastrichtian coals of the eastern
Pyrenees of Catalonia, Spain (Villalba-Breva et al., 2012). The peats pre-
served in the Toploje Member chert are the silicified remains of an in
situmire, since they are laterally extensive (persisting over 3 kmof out-
crop) and preserve few siliciclastic grains (Holdgate et al., 2005; Slater
et al., 2012).

6.2. Silicification and compaction

The silicification process in the uppermost Toploje Member appears
to have occurred before any significant compression of the peats, since
delicate and even hollow structures, such as small seeds and mega-
spores, are preserved in their original three-dimensional form (Slater
et al., 2011). Soft tissues such as phloem are locally preserved, which
suggests a rapid silicification process and inhibition of bacterial degra-
dation. The strongly acidic nature of the original waterlogged peat pro-
file probably suppressed decay prior to silicification. Pyrite is common
through the peat matrix and occurs primarily as small crystals that ap-
pear to have developed contemporaneously with silicification
(Fig. 5G). For the most part, these crystals do not impact on the quality
of preservation of the organic matter and do not show preferential
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nucleation on any particular plant tissues. Some larger cavities within
the peat (e.g., voids within Vertebraria roots) showweakly defined con-
centric infilling by cryptocrystalline silica but little textural or composi-
tional differences between these chalcedony/moganite layers is
apparent. Hand specimens of the chert show very few cross-cutting
mineral veins. These factors suggest that the bulk of the chert's silica
was introduced and precipitated in a short interval rather than in
multiple phases over a longer time period, during which a greater
range of textural and compositional variation would be expected in
the precipitates.

The primary source of silica in the chert remains unresolved. No vol-
canic ash beds or other volcanogenic sediments are preserved in the
Bainmedart Coal Measures, in contrast to silicified peat occurrences in
other Permian strata of eastern Australia and the Transantarctic Moun-
tains (Gould and Delevoryas, 1977; Taylor et al., 1989; McLoughlin,
1992; Pigg andMcLoughlin, 1997). Further, no evidence of strong lateral
or vertical textural or vegetational gradients within the silicified ecosys-
tem is evident in contrast to typical sinter deposits (Trewin, 1994, 1996;
Walter et al., 1998; Trewin et al., 2003; Channing and Edwards, 2004;
Guido et al., 2010). The stratigraphic position of the chert bed immedi-
ately below the lacustrine sideritic shales of the Dragons TeethMember,
suggests that drowning of the peat surface bymineral-charged lakewa-
ters was key to the entombment process. Mineral-charged springs em-
anating from basin-margin faults offer one potential source of silica,
with precipitation around the organic matter of the drowned peat
erstätte: The Permian permineralised peat biota of the Prince Charles
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potentially being facilitated by strongly alkaline conditions in the high-
palaeolatitude lake. The precursor to chert formation, silica gels, have
been reported from some modern lacustrine settings, particularly in
brine rich/saline playa lakes and also lagoonal environments (Peterson
and Von Der Borch, 1965; Colinvaux and Goodman, 1971; Wheeler
and Textoris, 1978; Wells, 1983). Such silica gels form in the sediments
ofmodern lake bedswhen silica, derived fromquartz or other sources, is
dissolved into the lake water due to highly alkaline conditions and then
precipitates out of solutionwhen the pH drops sharply due to increased
acidity because of the decay of plant matter in the lake (Hesse, 1989).
6.3. Wildfire

Abundant micro- and macro-charcoal is evident in some hand spec-
imens and bulk-macerate residues of the ToplojeMember chert (Fig. 3).
Fire plays a significant role in shaping the structure, diversity and eco-
logical succession of many modern plant communities (Crutzen and
Goldammer, 1993).Wildfire has been amajor factor in the environment
since land vegetation produced a highly oxygenated atmosphere in the
Carboniferous (Scott, 1989, 2000). Even earlier evidence of fire in the
form of sparse but dispersed fusain and a few identifiable charcoalified
plant organs extends back to the dawn of terrestrial vascular plant com-
munities (Scott and Glasspool, 2006). Jasper et al. (2013) argued that
fire was a consistent feature of the Gondwanan Permian landscape
and may have played an important role in vegetation overturn across
the supercontinent.

Besides preserving a record of the distribution of wildfires through
time, charcoalification can aid plant preservation by transforming the
cell walls of the plant material into almost pure carbon, which hinders
the decay process and retains anatomical detail. Such charcoalification
of plant tissues occurs in wildfires with a specific temperature range
(240–370 °C), providing insights into the style of wildfire propagation
Fig. 10. Reconstruction of the Lambert Graben Middle Permian Alluvial valley palaeoecos
stratigraphically adjacent strata of the Bainmedart Coal Measures in the Prince Charles Mount
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in palaeoecosystems (Scott and Jones, 1991; Collinson et al., 2007).
The common presence of charcoal in the silicified peats of the PCMs
(measured at 1.2% organic volume by Holdgate et al., 2005, but locally
in much higher proportions in this study: Fig. 3B) means that wildfires
were a frequent feature of the Middle Permian high-latitude mire
environment.

The charcoalification of the PCMs plant material is also of impor-
tance taphonomically (Scott, 2000). Organic remains that have been
charcoalified in the Toploje Member chert include macroscopic frag-
ments of Australoxlyonwood, gymnosperm seeds (Fig. 6A), Glossopteris
leaf midribs, Vertebraria axes (Fig. 7C–E), lycophyte axis fragments and
microphylls, coprolites (Fig. 5D) and arthropod cuticle (Fig. 6G;Weaver
et al., 1997; Holdgate et al., 2005). Some of these organs (e.g. seeds and
lycophytemicrophylls) are otherwise ill-preserved in the peats suggest-
ing a taphonomic bias against their preservation in the absence of wild-
fire charring. The greater cohesion and particle strength endowed by
the charcoalification process aids the recovery of anatomical informa-
tion from delicate plant tissues. Remains of charcoalified Australoxlyon
wood locally exceed 5 cm in diameter (Holdgate et al., 2005). The con-
centration of charcoal in bandswithin some chert samples (Figs. 3B, 7G)
may be related to aqueous sorting of particles or accumulation of char-
coal in ‘fire-pockets’ on the peat surface in the aftermath of burning
events (Staub and Cohen, 1979).
7. Mire type

7.1. Depositional setting

Glossopterid gymnosperms have been documented from a wide
range of terrestrial settings (Cúneo et al., 1993; McLoughlin, 1993).
They ranged from periglacial to warm and intermittently dry tem-
perate climates (Chandra, 1992), and are preserved in a diverse
ystem based on fossil and sedimentological data from the Toploje Member chert and
ains.
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array of deltaic, alluvial valley, lake- and lagoon-margin, and poten-
tially even upland settings (Cúneo et al., 1993; McLoughlin, 1993;
Rigby, 1993; Guerra-Sommer et al., 2008). Indeed the ubiquitous
occurrence of Glossopteris leaves in Permian continental deposits of
Gondwana suggests that they occupied most parts of the fluvial
and deltaic landscapes from levees to floodbasin mires and well-
drained valley fringes, but detailed quantitative studies of the
partitioning of plants within alluvial systems of Gondwana have
yet to be undertaken.

In the context of the Permian deposits of the Prince Charles
Mountains, the Toploje Member was deposited in a narrow but
very long (N1000 km) graben complex (the Lambert Graben) that
developed as part of an incipient rifting phase in central Gondwana
(Harrowfield et al., 2005). Deposition of basin-wide peats occurred
in alternation with pluvial pulses depositing extensive blankets of
channel sandstones within braided river systems (Fielding and
Webb, 1996). We envisage glossopterids occupying predominantly
fluvial levees and raised floobasin mires, but also extending
onto wetter parts of the valley flanks (Fielding and Webb, 1996;
Holdgate et al., 2005).
7.2. Rheotrophic vs ombrotrophic mire

The peats preserved in the Toploje Member chert are interpreted to
represent the product of an ombrotrophic mire as opposed to a
rheotrophic mire (Slater et al., 2012). Ombrotrophic mires obtain their
water and nutrient supply through high levels of precipitation, whereas
rheotrophic (or minerotrophic) mires are supplied with water by
streams or springs (Diessel, 1992). Rheotrophic mires receive a higher
nutrient supply and are characteristically richer in inorganic content
than ombrotrophic mires (Diessel, 1992). The paucity of siliciclastic
grains coupledwith the abundance of fungi and charcoal (and especially
of charcoalified roots) suggests the peat layer was the product of an
ombrotrophic mire (Slater et al., 2012), since such deposits are raised
above the regional water table and are subject to greater aerobic
decay and sporadic burning than rheotrophic systems. Ombrotrophic
mires generally also produce thicker organic accumulations than
rheotrophic systems and this is consistent with the presence of some
seams reaching 11 m thick within the Bainmedart Coal Measures
(McLoughlin and Drinnan, 1997a). Alternatively, there is the possibility
that some of the thicker coal seamsmay be the product of stackedmires
containing several episodes of peat formation. Stacked mires could po-
tentially be identified through the recognition of vertical changes in pal-
ynological content and coal petrography of individual seams (Jerrett
et al., 2011).

Euramerican late Palaeozoic coals that developed under
palaeotropical climates tend to contain high percentages of vitrinite
macerals (Mackowsky, 1975; Fig. 9) — a consequence of enhanced
gelification of organic constituents. High-palaeolatitude Gondwanan
coals, especially those of Permian age, are renowned for their high
inertinite content (Mackowsky, 1975), although this is not always
the case (Diessel and Smyth, 1995). High inertinite concentrations
are considered characteristic of ombrogenous peats, in which the
upper part of the organic profile is subject to oxidation and
regular burning due to a fluctuating water table (Moore, 1989;
Teichmüller, 1989). The high inertinite levels in most coal samples
from the Bainmedart Coal Measures are consistent with proportions
represented in other Gondwanan Permian (glossopterid-derived)
coals (Fig. 9). Further, the low sulphur content (0.38 to 0.81 wt.%:
Holdgate et al., 2005) and dominance of inertodetrinite amongst
the inertinite maceral component is consistent with the interpreta-
tion of the Lambert Graben Permian peat-forming environments as
raised forest mires of alluvial valley settings subject to strongly fluc-
tuating water tables (Tie and Esterle, 1991) and experiencing fine
degradation and oxidation of plant components.
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7.3. Structure (and reconstruction) of a glossopterid mire

Reconstructions of the foodweb, trophic levels and soil ecology of an-
cient forest ecosystems have been attempted in several studies of excep-
tionally preserved fossil assemblages (Habgood et al., 2004; Adl et al.,
2010). Our reconstruction of the Glossopteris-dominated forest mire
within the Lambert Graben valley system (Fig. 10) features the domi-
nance of hygrophilous arborescent glossopterid gymnosperms and sub-
sidiary cordaitaleans. Understorey vegetation within the glossopterid
forests is represented by herbaceous lycophytes and ferns (Fig. 7A).
Sphenophytes, more typical of the lacustrine deposits of the Dragons
Teeth Member, are envisaged to have occupied more open, lake-
margin or disturbed settings similar to the habitats occupied by modern
Equisetum. Abundant deadwood, hosting a range of fungal saprotrophs,
and widespread waterlogged soil habitats would have characterised
the landscape.

The topology of arborescent plants at higher latitudes tends towards
tall tapered forms in order to maximise the collection of light for photo-
synthesis from low-angle solar radiation (Creber and Chaloner, 1985;
McLoughlin, 2011b); thus we reconstruct the dominant trees to have
a conical canopy shape (Fig. 10). Relatively openwoodlands also charac-
terise modern high-latitude woody vegetation, especially those areas
close to the temperature-controlled tree-line (Doležal et al., 2006).
Hence, we interpret these glossopterid communities to represent open
deciduous forests and woodlands sensu many Carboniferous T0 assem-
blages (fossil assemblages representing a geological instant), which re-
veal an open canopy distribution of large plants (Gastaldo et al., 2004;
DiMichele et al., 2009; DiMichele and Falcon-Lang, 2011) rather than
the closed canopy system seen in many angiosperm forests.

The extensive portrayal of wetlands in the reconstruction (Fig. 10)
highlights year-round high moisture levels and is consistent with the
broad representation of hygrophilous elements in theflora and the abun-
dance of moisture-loving micro-organisms (e.g., Peronosporomycetes).
The distal part of the reconstruction (Fig. 10) portrays features represen-
tative of the sedimentology of the lower Bainmedart CoalMeasures. Sed-
imentary facies associations of the Toploje Member are represented by
thick sandstone packages deposited in braided river channels, alternat-
ing with extensive floobasin mudrocks and coals (Fielding and Webb,
1996; McLoughlin and Drinnan, 1997a) within an alluvial valley setting
flanked by fault-delineated valley margins of considerable relief that
were developed in Precambrian crystalline rocks (Boger, 2011).

7.4. Implications for coal geology

There is a notable contrast between some of the coal petrographic
results (Fig. 4) and the composition of the silicified peat obtained via
point counts of transects through various permineralised blocks
(Fig. 3A). In general, the peat appears to contain much lower propor-
tions of obviously oxidised components (charcoal) and waxy material
(spores and cuticle) and higher proportions of non-oxidised woody
and leaf mesophyll components than is registered in the coal.

Charcoalified (oxidised) material typically has greater compactional
resistance than other plant remains, hence its relative volumetric repre-
sentation probably increases through the early stages of coalification.
However, the very high levels of inertinite (up to 50%) in some coal sam-
ples are greater than would be expected from differential compaction
alone. It is possible that the small selection of coal samples examined
were preferentially enriched in charcoal through local fire events. Such
bands in the permineralized peat show comparable levels of N50% char-
coal (Fig. 3B). Further, the preservation of the silicified peat differs from
other organic accumulations in the Bainmedart Coal Measures in that
the peat surface was drowned rapidly by lake waters that saw deposi-
tion of the overlying Dragons Teeth Member. Hence, the upper part of
this peat mound may not have developed to typical maturity or have
been subjected to the prolonged oxidation and degradation by fungi,
microbes and fires that was experienced by other raised peat (coal-
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forming) deposits in this formation. We consider that this hypothesis
best explains the differential representation of oxidised components.

The organic matter in the silicified peat has undergone relatively lit-
tle compression before mineral entombment, whereas the associated
coals of sub-bituminous to high-volatile bituminous rank (Holdgate
et al., 2005) have probably experienced N80% loss of volume through
compaction, gelification and diagenesis (Teichmüller and Teichmüller,
1982). Apart from the loss of pore space, much of this volume reduction
was probably accommodated by compaction, loss of volatiles and
mobilisation of organic gels from unoxidised wood and leaf mesophyll
cellulosic cell walls. We suspect that this accounts for the high propor-
tion of woody and leafy tissues in the silicified peat compared to the rel-
atively modest levels of vitrinite in the coals.

The high proportion of liptinitemacerals in the Bainmedart CoalMea-
sure coals also appears anomalous with respect to the low volumetric
proportion of spores, pollen and sporangia (b2%) in the permineralised
peat (Holdgate et al., 2005). Low degrees of compaction for these
dense waxy materials may account for somewhat higher percentages
in the associated coals but it is unlikely to account for the very high levels
of liptinite (up to 40%) in some coal samples. Holdgate et al. (2005) sug-
gested several other factors that might account for the anomalously high
spore content of the Lambert Graben coals in contrast to the silicified
peat. These included potential misidentification of small cutinite frag-
ments in the coal as sporinite, and the possibility that a considerable pro-
portion of the finely dispersed unidentifiable organic matter in the peat
represents unrecognised sporopollenin or degraded cuticle material.

Cameron et al. (1989) noted that the proportion of liptinite com-
monly increases upwards in domed (ombrogenous) peats together
with oxidised detrital matter. As per the explanation for depleted
oxidised components, the abrupt termination of peat development at
the top of the Toploje Member via flooding may indicate that the silici-
fied peat capping this unit did not reach the optimal domed stage of
other coals in the host formation. In general, high liptinite contents, in
the absence of alginite, might also be diagnostic of coals derived from
high-latitude alluvial valley forest mires dominated by low-diversity
deciduous gymnosperm vegetation with high pollen production. In
this respect, it is notable that Permian coals from the continental-
interior, alluvial valley deposits of the Godavari–Son–Mahanadi Graben
system in India also have relatively high liptinite contents and have the
most similar proportions ofmaceral groups to the Lambert Graben coals
(Navale and Saxena, 1989; Mishra, 1996; Fig. 9).

Quantitative analyses of the permineralised and coalified organic ac-
cumulations in the Bainmedart CoalMeasures indicate that although si-
licified peats provide excellent details of the botanical constituents of
coal-forming deposits, they do not always reflect the ultimate volumet-
ric representation of macerals in the coals. In addition to differences in
the oxidation state at the time of permineralization of silicified peats
versus non-mineralised peats, significant losses of pore space, volatile
components and mobilisation of organic gels during the peatification
and coalification processes may markedly modify the volumetric pro-
portions of some phytoclasts. Furthermore, permineralised peats, coal
balls, and coal itself may not be fully representative of the standing bio-
mass of the peat-forming community, since peats tend to be enriched in
root material compared to subaerial parts of the vegetation (Raymond,
1987; DiMichele and Phillips, 1994).

8. Integrated discussion

The permineralised community represented in the Toploje Member
chert shares many similarities with the Permian and Triassic peats
of the Transantarctic Mountains that occur at marginally higher
palaeolatitudes than those of the Prince CharlesMountains. The Permian
palaeocommunity in the Transantarctic Mountains is also dominated by
glossopterids, evidenced by a range of plant vegetative organs and
megasporophyll and microsporophyll genera (Ryberg et al., 2012a),
but differs in the absence of Noeggerathiopsis, which is common in the
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Toploje Member peats. Other notable shared features with the
permineralized floras of the Transantarctic Mountains include the pres-
ence of herbaceous lycophytes in the Permian (Schwendemann et al.,
2010; Ryberg et al., 2012b) and diverse fungal elements in both the
Permian and Triassic peats (Stubblefield and Taylor, 1986; Krings et al.,
2012).

Vertebraria roots were found to be the dominant component of the
Toploje Member peats alongside significant quantities of matted
Glossopteris and Noeggerathiopsis leaves (Fig. 3A), whilst charcoalified
wood is locally dominant in particular peat microfacies (Fig. 3B). The
paucity of arboreal components of the plants such as stem wood and
fruiting bodies in comparison to the dominance of root tissues leads
us to interpret that there was a taphonomic bias against incorporation
of at least some subaerial organs into the peat profile. Similar propor-
tions of floral elements were found in quantitative analysis of coal ball
vegetation from Late Carboniferous wetland floras of Pennsylvania,
USA, where root tissue was also found to be the dominant component
of the preserved assemblage (Feng, 1989).

Lower-latitude Gondwanan permineralised assemblages, such as
those from the Late Permian Fort Cooper Coal Measures of the Bowen
Basin, Australia (Gould and Delevoryas, 1977; Nishida et al., 2007) are
characterised by slightly higher macrofloral diversity, although those
floras have yet to be fully described. Outside the Gondwanan phytogeo-
graphic province, silicified Permian terrestrial communities differ in
their macrofloral composition; however many of the key microorgan-
ism groups are represented and invertebrate–plant interactions appear
to have been established in a similar ecological structure throughout the
late Palaeozoicworld (Baxendale, 1979; Labandeira, 1998, 2013; Rößler,
2000).

Beyond the Permian, Triassic silicified peat fromHopen Island in the
Svalbard Archipelago and deposited in northern high middle latitudes
contains many of the soil microbe groups preserved in the Toploje
Member chert (Strullu-Derrien et al., 2012); these include a diverse
range of coprolites (Figs. 5D, 6C, 7B) indicating a rich soil entomofauna
and a range of fungal morphotypes and interactions (Figs. 5A, 6D–F).
Equivalent microbial communities, though associated with a more di-
verse macroflora, are evident in Late Triassic permineralised peats
from the Transantarctic Mountains (Schwendemann et al., 2009;
Krings et al., 2012).

Similar communities of microorganisms are also present in the
Upper Pennsylvanian Grand-Croix cherts of France, including a diverse
fungal inventory and examples of Peronosporomycetes (Krings et al.,
2009). The Glossopteris component community of the Toploje Member
chert also closely resembles the structure and resource partitioning ev-
ident in the Psaronius component community preserved in the early
Late Pennsylvanian coal balls of the Illinois Basin (Labandeira, 1998),
the earliest Permian Chemnitz fossil forest (Rößler, 2000), and the
Permian Cathaysian coal measures of southwest China (He et al., 2008;
D'Rozario et al., 2011a) with exploitation of every part of the dominant
host plant by invertebrate herbivores and detritivores (Slater et al.,
2012).

The relatively low diversity of the Prince Charles Mountains
macroflora compared to palaeotropical Euramerican late Palaeozoic
peat assemblages shows that, as is the case today, therewas a latitudinal
diversity gradient in the Permian. Even within Gondwana, greater
floristic diversity at generic level is evident in adpression assemblages
from lower palaeolatitudes of South America and southern Africa
(Archangelsky and Arrondo, 1969; Anderson and Anderson, 1985) com-
pared to higher palaeolatitude regions of eastern Australia and
Antarctica (McLoughlin, 1992, 1994a, 1994b; Cúneo et al., 1993). The
more pronounced seasonal light regime and presumably colder winters
may have inhibitedmany (especially Euramerican) taxa from colonising
the highest latitudes of Gondwana during the Permian.

Cryptic and diminutive faunal elements that occur in similar
permineralised assemblages include freshwater crustaceans known
from the Rhynie Chert/Windyfield cherts and from an EarlyMississippian
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to Middle Pennsylvanian ex situ chert cobble from Yorkshire, UK
(Anderson and Trewin, 2003; Fayers and Trewin, 2003; Anderson et al.,
2004; Stevens et al., 2010; Haug et al., 2012; Womack et al., 2012),
trigonotarbid arachnids known from the Silurian Přídolí Series of Ludford
Lane in Shropshire, UK (Dunlop, 1996) and from the Rhynie Chert (Fayers
et al., 2005), andharvestmendocumented fromtheRhynie Chert (Dunlop
et al., 2004).

The absence of complete body fossils of aquatic crustaceans and
other arthropods may be due to the speed of silicification and the envi-
ronment the assemblages accumulated in. Unlike the Rhynie Chert or
the ex situ Yorkshire cobble, the mode of entombment in the Toploje
Member chert does not appear to be related to very rapid hydrothermal
precipitation of silica that might have killed and preserved free-moving
arthropods in their life positions (Guidry and Chafetz, 2003; Anderson
et al., 2004; Womack et al., 2012). Instead, the Toploje Member peat
represents a long-lived acidic mire environment, into which silica was
subsequently introduced in high concentrations associated with
flooding of the mire surface. Any arthropod remains would likely be
represented by dissociated exoskeletons and exuviae from themoulting
of ecdysozoans that were incorporated into the peat or trapped within
excavations inside woody tissues. Fragments of such arthropod cuticle
with attached setae were recovered by bulk maceration of the Toploje
Member chert (Holdgate et al., 2005; Slater et al., 2012) and are also
known from overlying Triassic sediments (McLoughlin et al., 1997).
These fragments likely represent arthropod cuticle because the setae
are hollow and are collapsed or flattened in places, whereas similar
setae of annelid origin are solid (Orrhage, 1971). The setae may have
served a mechanosensory function in life (Crouau, 1997; Keil, 2012).
The cuticles are unlikely to be of collembolan affinity since the exoskel-
etons of that group are covered in distinctive granule structures of anti-
adhesive function (Nickerl et al., 2013). Beyond this, the arthropod frag-
ments cannot be identified.

Relatively little attention has been directed towards arthropod cuti-
cles extracted from coals, silicified peats and coal balls (Bartram et al.,
1987), perhaps in part because these sediments are generally studied
for their palaeobotanical content. The mode of preservation of such ar-
thropod cuticles in silicified deposits and coals has been the subject of
some debate (e.g. Stankiewicz et al., 1998; Appendix 2). Examples of
scorpion exoskeleton have been described from Pennsylvanian (West-
phalian) coals of Yorkshire, UK (e.g. Bartram et al., 1987) and the Late
Triassic Lower Keuper Sandstone of Bromsgrove, Worcestershire, UK
(Dunlop et al., 2007). Cuticles of possible eurypterid affinity are also
known from the Lower Devonian of Podolia, Ukraine (Filipiak et al.,
2012) and the body of a trigonotarbid was also recovered via HFmacer-
ation from Přídolí shales of Shropshire, UK (Dunlop, 1996). Arthropod
cuticles have also been recovered through HFmaceration of early Siluri-
an (Llandovery) terrestrial strata from Pennsylvania, providing some of
the earliest direct evidence for land or freshwater animals (Gray and
Boucot, 1994). Records of such arthropod cuticle and other invertebrate
remains have been recovered from acid maceration of various sedi-
ments, primarily coals, clays, siltstones and cherts (Appendix 2). Excep-
tionally preserved Palaeozoic arthropods are also known from siderite
concretions, particularly from Carboniferous sites such as Coseley, UK
(Garwood and Sutton, 2010), Mazon Creek, Illinois (Carpenter, 1997)
and the Montceau Lagerstätte, France (Garwood et al., 2012). Arthro-
pods preserved in siderite concretions have increasingly been studied
using X-ray synchrotron microtomography, which unveils exceptional
detail in the fossil (Garwood et al., 2012). However, the maceration of
silicified peats and scanning electron microscopy of residues could po-
tentially yield comparable anatomical information and also be used to
more accurately assess diversity through the comparison of different
cuticle types in coals and other organic-rich lithologies. Several studies
have also used the acetate peel technique to study the cuticle of arthro-
pods such as eurypterids and scorpions in detail (Braun, 1999; Tetlie
et al., 2008). The potential of such fragmentary arthropod cuticle
remains has recently been highlighted by employing a long-used
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palaeobotanical technique to extract animal fossils from Cambrian ma-
rine sediments (Butterfield and Harvey, 2012; Harvey et al., 2012a,
2012b) and this strategy might offer comparable results in unveiling
cryptic arthropod diversity in late Palaeozoic terrestrial ecosystems.
9. Conclusions

The Toploje Member chert in the Bainmedart Coal Measures of
the Lambert Graben, East Antarctica, contains a low-diversity Middle
Permian macroflora dominated by arborescent glossopterids and
subordinate cordaitaleans. A substantially greater floristic diversity
is evident in meso- and palyno-fossil assemblages from the same
bed. The chert preserves part of the profile of an ombrotrophic
mire that was entombed with moderate rapidity by silica precipitat-
ed after flooding of the peat surface by mineral-rich lake waters. Di-
verse fossil micro-organisms and coprolites, together with feeding
traces and sparse exoskeleton fragments attest to a complex biota
of primary producers, arthropod herbivores and saprotrophs
inhabiting the peat-forming ecosystem. The peat deposit represents
primarily autochthonous to parautochthonous accumulation of plant
remains, which due to early silicification, have endured little com-
pression or diagenesis. Fire was a common factor in the Middle
Permian high-latitude mire ecosystem, and is locally evidenced by
discrete charcoal bands within the peat profile. The glossopterid-
dominated mire ecosystem of the Prince Charles Mountains is recon-
structed to occupy valley flanks and floodbasin settings within a
braided river complex in a fault-bound alluvial valley.

The exceptional ultrastructural preservation of the macroflora, the
diverse microorganisms and the complex interactions between the in-
vertebrates, plants and fungi make the Prince Charles Mountains silici-
fied peat an important Permian Lagerstätte and a valuable source of
information on terrestrial ecosystems in southern high latitudes during
the late Palaeozoic. The Toploje Member chert provides a snapshot of a
high-latitudeMiddle Permian terrestrial ecosystemand, thus, elucidates
the composition and ecology of Gondwanan climaxmire forests prior to
the twomajor extinctions (Capitanian and end-Permian) at the close of
the Palaeozoic (Retallack et al., 2006; Bond et al., 2010). Since the plants,
microorganisms and fauna preserved in the Toploje Member chert
inhabited an ombrotrophic mire rather than a sinter-pool habitat or
other mineral-charged spring setting, they provide the opportunity to
study the ecology of the more widespread peat-forming biotas of the
late Palaeozoic in contrast to the specialised thermophilic biotas pre-
served three-dimensionally in hot spring habitats. In light of the discov-
ery of invertebrate–plant–fungal interactions in the Toploje Member
chert, there are significant opportunities for advancing knowledge of
ancient terrestrial arthropod and micro-organism occurrences and tro-
phic relationships through studies of other silicified organic deposits
and via bulk maceration of organic sediments.
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Study Age Formation and locality Damage type

Brongniart, 1830 (C) Kungurian–Wordian or
Lopingian

Barakar or Raniganj Formation, Raniganj
Coalfield

Possible hole feeding or oviposition scars on
Glossopteris indica holotype (although this is not clear
from the illustrations provided by Chandra and
Surange, 1979 or Rigby et al., 1980)

Bunbury, 1861 (C) Permian Unit uncertain; Satpura Basin, Nagpur,
Maharashtra, India

Oviposition scars or small hole-feeding scars on
Glossopteris

Tate, 1867 (C) Permian Ecca Group or Adelaide Subgroup Probable oviposition scars on Rubidgea/
Gangamopteris

Carruthers, 1872 (C) Permian Probably Bowen Basin, Queensland, Australia Possible interveinal slot feeding
Mitchell, 1872 (C) Changhsingian Newcastle Coal Measures, northern Sydney

Basin, New South Wales, Australia
Possible oviposition scars on Glossopteris

Feistmantel, 1880a (C) 1Lopingian
2Kungurian–Wordian

1Raniganj Formation, Raniganj Coalfield, West
Bengal, India;
2Barakar Formation, Talchir Coalfield, Mahanadi
Basin, Orissa, India

1Possible scalloped margin feeding and deep
longitudinal embayed feeding traces in leaves of
Schizoneura gondwanaensis;
2Possible scalloped apical feeding on leaves of Trizygia
speciosa

Feistmantel, 1880b (C) Permian Nagpur, Satpura Basin, Maharashtra, India Possible oviposition scars on Glossopteris
Feistmantel, 1882 (C) ?Kungurian–Wordian ?Barakar Formation, Sohagpur Coalfield, Son

Basin, Madhya Pradesh, India
Possible oviposition scars on Glossopteris

David, 1891 (C) Artinskian Greta Coal Measures, northern Sydney Basin,
New South Wales, Australia

Possible oviposition scars on Gangamopteris

Zeiller, 1896 (C) ?late Sakmarian– late
Artinskian

Probably Vryheid Formation, northern Karoo
Basin, Gauteng, South Africa

Oviposition scars on Glossopteris

Dolianiti, 1953a, 1953b (C) Artinskian Rio Bonito Formation, Bainha, Parana Basin,
Santa Catarina, Brazil

Possible apical and hole feeding on Glossopteris;
possible deeply embayed margin feeding on
Glossopteris or Rhabdotaenia;

Sen, 1955 (C) Kungurian–Wordian Barakar Formation, Sohagpur Coalfield, Son
Basin, Madhya Pradesh, India

Possible piercing and sucking damage, galls or
mineral staining on Glossopteris

Plumstead, 1962, 1963; Melville, 1983a,
1983b (C)

late Sakmarian–late
Artinskian

Vryheid Formation; Breyton Colliery, Karoo
Basin, Mpumalanga, South Africa

Possible isolated gall (Breytenia plumsteadiae)

Menendez, 1962 (C) Cisuralian Bonete Series, Buenos Aires Province, Argentina Possible oviposition scars or sporangial impressions
on glossopterid scale leaf (=Lanceolatus bonairensis)

Plumstead, 1963; Van Amerom, 1966;
Stephenson and Scott, 1992; Scott et al.,
1992; Labandeira, 2002, 2006(C)

late Sakmarian–late
Artinskian

Vryheid Formation; Vereeniging, Karoo Basin,
Gauteng, South Africa

Scalloped and continuous margin feeding on
Glossopteris

Sen, 1963 (C) ?Kungurian Lower Barakar Formation; Pachwara Coalfield,
Bihar, India

Possible gall on Glossopteris midrib

Cridland, 1963 (C) Lopingian Mount Glossopteris Formation; Ohio Range,
Antarctica

Possible hole feeding in glosopterid scale leaf

Maheshwari and Prakash, 1965 (C) Lopingian Permian exposures along Bansloi River,
Rajmahal Hills, Bihar, India

Scalloped leaf-margin feeding on Glossopteris

Maithy, 1965, 1977 (C) Artinskian Karharbari Formation, Giridh Coalfield, Damodar
Basin, Bihar, India

Possible galls, piercement scars or oviposition scars
on indeterminate axis previously assigned to Buriadia
and cf. Cyclodendron

Plumstead, 1970; Bordy and Prevec, 2008
(C)

Lopingian Emakwezini Formation, Lebombo Basin,
KwaZulu-Natal, South Africa

Scalloped marginal feeding traces and oviposition
scars on Glossopteris

Bernardes de Oliveira and Pons, 1975 (C) Sakmarian–Artinskian Ecca Group equivalents, Zambezi Basin,
Mozambique

Possible deeply embayed margin feeding on
Glossopteris

Appert, 1977 (C) Sakmarian–Artinskian Sakoa Series, Sakoa Basin, Madagascar Possible apical feeding on Sphenophyllum; possible
scalloped margin feeding, hole feeding and
oviposition scars on Glossopteris

Bernardes de Oliveira and Pons, 1977 (C) Artinskian Rio Bonito Formation, Bainha, Parana Basin,
Santa Catarina, Brazil

Scalloped apical or marginal feeding on
Noeggerathiopsis

Bose et al., 1977 (C) Changsingian ?lowermost Panchet Group, Ramkola-Tatapani
Coalfield, Madhya Pradesh, India

Possible leaf-margin feeding on Glossopteris

Kovács-Endrödy, 1977 (C) late Sakmarian–late
Artinskian

Vryheid Formation, Vereeniging, Karoo Basin,
Gauteng, South Africa

Scalloped margin feeding on Glossopteris and
associated leaf arching

Srivastava, 1979 (C) Lopingian Raniganj Formation, Auranga Coalfield, Damodar
Basin, Bihar, India

Possible apical feeding on glossopterid scale leaf

Van Dijk et al., 1978, 1979; Van Dijk, 1981
(C)

Lopingian Normandien/Estcourt Formation (Beaufort
Group); Karoo Basin, KwaZulu-Natal, South
Africa

Scalloped leaf-margin feeding and interveinal surface
feeding? on Glossopteris; possible hole feeding on
Lidgettonia sporophylls; leaf crypsis (?homopteran
wings)

Kovács-Endrödy, 1981 (C) late Sakmarian–late
Artinskian

Vryheid Formation equivalent, Hammanskraal,
outlier of northern Karoo Basin, Gauteng, South
Africa

Possible oviposition scars flanking midrib of
Glossopteris angustifolia

Millan and Dolianiti, 1982 (C) Sakmarian Itararé Group, Itapema, Paraná Basin, São Paulo,
Brazil

Scalloped apical feeding on Rubidgea species

Rohn, 1984 (C) ?Changhsingian Serrinha Member, Rio do Rasto Formation,
Dorizon, Paraná Basin, Paraná, Brazil

Scalloped margin feeding, apical feeding on several
Glossopteris species

Appendix 1. List of published records of probable arthropod damage onGondwanan Permian plants. Publicationsmarkedwith (C) document
arthropod damage from compression/impression fossils, those marked with (AP) document arthropod damage from anatomically
preserved specimens
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(continued)

Study Age Formation and locality Damage type

Chauhan et al., 1985 (C) Lopingian Raniganj Formation, Raniganj
Coalfield, West Bengal, India

Margin-feeding on Glossopteris and Belemnopteris
leaves; Coprolites containing leaf cuticle

Anderson and Anderson, 1985 (C) 1late Sakmarian–late
Artinskian; 2Lopingian

1Vryheid Formation, Vereeniging, Karoo Basin,
Gauteng, South Africa;
2Normandien/Estcourt Formation and equiva-
lents (Beaufort Group); Karoo Basin, KwaZulu-
Natal, South Africa

1Possible oviposition scar on Noeggerathiopsis
elongata; Possible apical feeding on Ottokaria
ferrugistratum; scalloped, notched and continuous
margin feeding on several Glossopteris species;
2Scalloped, notched and continuous margin feeding
on several Glossopteris species

Cúneo, 1986 (C) Permian Argentina Leaf crypsis, potential arthropod pollination vector
for conifers

Maheshwari and Tewari, 1986 (C) Artinskian Karharbari Formation, Shahdol district, Madhya
Pradesh, India

Maheshwariella spinicornuta seeds (6 × 2.5 mm)with
0.75 mm long micropylar horns bearing reverse-
orientated epidermal barbs: possible seed transport

Cúneo, 1987 (C) Cisuralian Rio Genoa Formation; Tepuel-Genoa Basin,
Chubut, Argentina

Oviposition or hole feeding on Ginkgoites leaves

Pant and Singh, 1987 (AP) Lopingian Raniganj Coalfield, West Bengal, India Possible arthropod borings (or fungal pocket rot) in
latewood of Catervoxylon

Archangelsky and Cúneo, 1987 (C) Cisuralian Arroyo Totoral Formation, La Rioja Province,
Argentina.

Potential insect-mediated pollination mechanism in
Ferugliocladus

Rohn and Rösler, 1989 (C) Lopingian Rio do Rasto Formation, Reserva-Cândido de
Abreu, Paraná Basin, Brazil

Scalloped marginal or apical feeding on
Ilexoidephyllum leaves

Srivastava, 1988, 1996, 2008; Srivastava and
Agnihotri, 2011; Labandeira, 2006 (C)

?Kungurian Lower Barakar Formation; Raniganj Coalfield,
West Bengal, India

Continuous and isolated scalloped and notched
margin-feeding, hole feeding, vein-parallel surface
feeding, possible galls and/or piercing and sucking
scars, and oviposition scars in various arrangements
on several Glossopteris species; Apical margin feeding
embayments between veins in Noeggerathiopsis

Maheshwari and Bajpai, 1990 (C) Permian Siltstone overlying Lalmatia bottom coal seam,
Hura Coalfield, Rajmahal Basin, Bihar, India

Inferred leaf mines on Saportaea leaf [probably
imprints of burrows in underlying sediment]

McLoughlin, 1990a, 1990b; McLoughlin,
2011a (C)

1late Sakmarian–late
Artinskian; 2Wordian–
Capitanian; 3Wuchiapingian

1Vryheid Formation, Vereeniging, Karoo Basin,
Gauteng, South Africa;
2Ulan coal mine, Cullen Bullen Subgroup,
Illawarra Coal Measures, northwestern Sydney
Basin, New South Wales, Australia;
3Black Alley Shale, southwestern Bowen Basin,
Queensland, Australia

1Galling on Palaeovittaria;
2Galling on Glossopteris;
3Gall or solitary oviposition scar on Glossopteris
midrib; paired oviposition scars adjacent to midrib of
Glossopteris

Chaloner et al., 1991; Scott et al., 1992 (C) Permian (probably
Changhsingian)

Australia (probably Illawarra Coal Measures,
western Sydney Basin)

Continuous scalloped margin and apical feeding

Zavada and Mentis, 1992 (AP) late Sakmarian–
Changhsingian

Vryheid–Normandien/Estcourt formations,
Karoo Basin, South Africa

Arthropod borings in late-season wood of
Agathoxylon (=Dadoxylon). Inferred increase in ver-
tebrate herbivory towards end of Permian based on
reduced size and increased lignin content (vein con-
centrations) of Glossopteris leaves [may alternatively
have been climatically influenced]

Chandra and Singh, 1992 (C) Changhsingian Kamthi Formation, Mahanadi Graben,
Dhenkanal, Orissa, India

Oviposition scars flanking midrib, and possible
scalloped margin-feeding and hole feeding on
Glossopteris

McLoughlin, 1992 (AP) Capitanian–Wuchiapingian McMillan Formation, central Bowen Basin,
Queensland, Australia

Arthropod borings or fungal pocket rot in both early-
and late-season wood of Agathoxylon (=
Araucarioxylon)

McLoughlin, 1994a, 1994b (C) 1Wuchiapingian–
Changhsingian;
2Wuchiapingian;
3Capitanian–Changhsingian
4Wuchiapingian

Central Bowen Basin, Queensland, Australia:
1Burngrove Formation, Rangal Coal Measures,
Bandanna Formation;
2Black Alley Shale, 3McMillan Formation,
Burngrove Formation, Rangal Coal Measures,
4Gyranda Formation, Black Alley Shale,
Burngrove Formation equivalents

Several Glossopteris species with:
1Notched, scalloped, deeply or narrowly embayed
margin feeding,
2Oviposition scars,
3Possible apex-feeding,
4Possible surface interveinal feeding

Guerra-Sommer, 1995 (C) Artinskian Rio Bonito Formation, Parana Basin, Rio Grande
do Sul, Brazil

Scalloped and deeply embayed margin-and ?apical-
feeding on Glossopteris and Rubidgea leaves

Pant and Srivastava, 1995 (C) ?Kungurian Mamal Formation, Mamal Nala Section,
Pahalgam, Kashmir Himalaya, India

Pouch-like galls on Glossopteris leaves

Holmes, 1995 (C) Changhsingian Illawarra Coal Measures;
Western Sydney Basin, New South Wales,
Australia

Deeply embayedmargin feeding and possible galls on
Glossopteris

Chandra and Singh, 1996 (C) Asselian–Sakmarian Talchir Formation, Talchir Coalfield, Mahanadi
Basin, Orissa, India

Apical feeding and oviposition scars on
Gangamopteris; Possible see predation on
Cordaicarpus

Rigby, 1996 (C) Kungurian–Roadian Aifam Group, Irian Jaya Scalloped and deeply embayed margin feeding on
Glossopteris

Srivastava and Tewari, 1996 (C) Kungurian–Wordian Barakar Formation, Auranga Coalfield, Bihar,
India

Possible apical feeding on several Glossopteris/
Gangamopteris species

Melchor and Césari, 1997(C) Lopingian Carapacha Formation, Carapacha Basin, La
Pampa, Argentina

Possible embayed margin feeding on Glossopteris

Rohn et al., 1997 (C) Lopingian Teresina Formation, Prudentopólis area, Paraná
Basin, Paraná, Brazil

Hole feeding in Glossopteris

Weaver et al., 1997; Labandeira, 2002 (AP) Wordian Topmost Toploje Member, Bainmedart Coal
Measures, Lambert Graben, East Antarctica

Coprolites containing tracheid fragments in ?
glossopterid stemwood (attributable to oribatidmites)
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(continued)

Study Age Formation and locality Damage type

Banerjee and Bera, 1998 (C) Lopingian Raniganj Formation, Jharia Coalfield, Mohuda
Basin, West Bengal, India

Crater-like galls on Glossopteris

Adami-Rodrigues and Ianuzzi, 2001;Adami-
Rodrigues et al., 2004a, 2004b (C)

1Artinskian; 2Late
Artinskian–Kungurian or
Guadalupian

1Rio Bonito and 2Irati/Serra Alta Formations,
Paraná Basin, Rio Grande do Sul, Brazil

1Continuous irregular margin feeding, deep
embayments, and interveinal hole feeding in
Glossopteris (and possibly Gangamopteris); Possible
leaf mining in Glossopteris; Oviposition scars on
Glossopteris; Possible piercing and sucking damage on
Glossopteris; Possible skeletonization of Glossopteris
lamina; Possible galls on Glossopteris; Hole and
discontinuous margin feeding on Noeggerathiopsis
2Irregular margin and apical feeding on Glossopteris

Singh, 2002 (C) Kungurian–Wordian Barakar Formation, West Bokaro Coalfield,
Damodar Valley, Jharkhand, India

Possible oviposition scars or galls (Bokarospermum
maheshwari) on Glossopteris

Berthelin et al., 2003 (C) late Roadian or early
Wordian

Gharif Formation; Huqf area, Oman Scalloped margin feeding and probable oviposition
scars on Glossopteris

Kellogg and Taylor, 2004 (AP) Changhsingian Buckley Formation; Skaar Ridge, central
Transantarctic Mountains, Antarctica

Coprolites containing tracheid fragments within
borings in ?glossopterid stem wood (attributed to
oribatid mites)

Bolzon et al., 2004 (AP) Late Artinskian–Kungurian
or Guadalupian

Serra Alta Formation; Paraná Basin, Rio Grande
do Sul, Brazil

Borings (or possibly fungal pocket rot) in
gymnosperm wood

McLoughlin et al., 2005 (C) Guadalupian Undefined shale unit at Fossilryggen, Vestfjella,
Dronning Maud Land, Antarctica

Possible notchedmargin feeding onGlossopteris sp. cf.
G. spatulata

Beattie, 2007 (C) Changhsingian Upper Newcastle Coal Measures, Belmont, New
South Wales, Australia

Notched, scalloped and deeply embayed isolated and
continuous margin feeding on Glossopteris;
Oviposition scars on Paracalamites axis

Prevec et al., 2009 (C) Lopingian Clouston Farm, Normandien Formation,
northeastern Karoo Basin, KwaZulu-Natal, South
Africa

22 distinctive damage types on 137 plant organs.
Scallopedmargin feeding onGlossopteris, scale leaves,
lycophyte axis, sphenophyte roots; Apical feeding on
Glossopteris; Hole feedingonGlossopteris, scale leaves,
sphenophyte roots, unidentified axes; Mine-like
strip-feeding on Glossopteris; Skeletonization of
Glossopteris leaves; Surface feeding on Glossopteris,
scale leaves; Galling on Glossopteris; Piercing and
sucking scars on Glossopteris; Oviposition on
Glossopteris, scale leaves and sphenophyte axes

Pal et al., 2010 (C) Changhsingian Maitur Formation (lowermost Panchet Group),
Raniganj Coalfield, Damodar Basin, West Bengal,
India

Possible leaf apex and margin feeding on Glossopteris
retifera

Prevec et al., 2010; Prevec, 2012 (C) Changhsingian Elandsberg
Member, Balfour Formation, Wapadsberg Pass,
southern Karoo Basin, Eastern Cape Province,
South Africa

Rectangular marginal feeding traces and various
oviposition scars on Glossopteris

Cariglino and Gutiérrez, 2011 (C) Wordian–Wuchiapingian Laguna Polina
Member, La Golondrina Formation, La
Golondrina Basin, Santa Cruz, Argentina

Scalloped, deeply embayed and continuous margin-
feeding; hole feeding, oviposition scars on several
Glossopteris species

Césari et al., 2012 (C) Late Pennsylvanian–
Cisuralian

San Ignacio Formation, San Juan, western
Argentina

Coprolites within borings (attributed to mites) in
gymnosperm (Cuyoxylon: possible cordaitalean)
roots and stem wood

McLoughlin, 2012 (C) Mid-Sakmarian–late
Artinskian

Reids Dome beds, GSQ Taroom 11 stratigraphic
bore, south-western Bowen Basin, Queensland,
Australia

Broad area of pitted damage to Glossopteris leaf
(possible arthropod, fungal, physical, or diagenetic
damage)

Pinheiro et al., 2012a, 2012b (C) 1Late Artinskian–early
Kungurian, possibly
Guadalupian;
2,3Sakmarian–Artinskian;
4early Sakmarian

1Irati/Serra Alta formations;
2Siderópolis Member, Rio Bonito Formation;
3Paraguaçu Member, Rio Bonito Formation;
4Taciba Formation, Itararé Group,
southern Paraná Basin, southern, Santa Catarina
and Rio Grande do Sul, Brazil

1Margin feeding on Glossopteris;
2Hole, slot and margin feeding, surficial feeding,
skeletonization, possible mining on Glossopteris; slot
feeding, galls, oviposition scars on Gangamopteris;
Hole feeding on Noeggerathiopsis;
3Scalloped, continuous and deeply embayed margin
feeding, hole and slot/trench feeding on Glossopteris;
margin feeding on Noeggerathiopsis;
4Margin, hole, slot and surficial feeding on
Glossopteris; margin and slot feeding on
Gangamopteris

Slater et al., 2012 (AP) Wordian Upper Toploje Member, Bainmedart Coal
Measures, Lambert Graben, Prince Charles
Mountains, East Antarctica

Coprolites with tracheid fragments in Vertebraria and
Australoxylon (boring and/or saproxylophagy);
Sub-rounded to angular coprolites containing dense-
ly packed mesophyll cell wall fragments in cavities
within Glossopteris mesophyll (leaf mining or
detritivory);
Ovoid coprolite in fern sporangium (palynivory);
Isolated large ellipsoid to spherical coprolites with
amorphous contents in leaf debris (?detritivory);
Isolated small oblong or cylindrical coprolites con-
tainingpollen and spore fragments, cellwalls, fungi in
peat matrix (generalist ?detritivory);
Spherical to ovoid coprolites containing fungal spores
(fungivory);
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(continued)

Study Age Formation and locality Damage type

Squat ellipsoidal to spherical coprolites containing
glossopterid pollen (palynivory);
Spherical to ellipsoidal coprolites containing coarse
constituents (folivory or detritivory);
Oblong spiral ornamented coprolite with amorphous
contents

Labandeira and Currano, 2013 (C) Artinskian Rio Bonito Formation, Bainha, Parana Basin,
Santa Catarina, Brazil

Oviposition scars on glossopterid or Noeggerathiopsis
leaf

Labandeira and Prevec, in press (C) 1Changhsingian;
2Changhsingian

1Elandsberg
Member, Balfour Formation, Wapadsberg Pass,
southern Karoo Basin, Eastern Cape Province,
South Africa;
2Emakwezini Formation, Kwa Yaya, Lebombo
Basin, KwaZulu-Natal, South Africa

1Oviposition scars or surface feeding on Glossopteris
with associated pathogen infection;
2Apical damage, margin feeding, hole feeding,
oviposition scars and galls on Glossopteris spp., all
associated with fungal/bacterial damage

Gallego et al., in press (C) Cisuralian Rio Genoa Formation, Tepuel-Genoa Basin,
Chubut, Argentina

Scalloped and narrowly embayed margin feeding, on
Glossopteris spp.;
Hole feeding on Ginkgoites, Glossopteris spp.;
Circular surface feeding inGinkgoites, Glossopteris and
Noeggerathiopsis spp.;
Strip-like surface feeding in Glossopteris;
Oviposition scars (at least 3 types) on Gangamopteris
and Glossopteris spp.

Publication Age/locality Description

Al-Ameri, 1983 Silurian; Ghadames Basin, Tripolitania, Libya Eurypterid cuticle from borehole macerals
Bartram et al., 1987 Late Carboniferous; Yorkshire Scorpion cuticles
Bartram et al., 1987 Pennsylvanian; Ohio, USA Arthropod cuticle extracted from coal balls
Batten, 1998 Lower Cretaceous; Weald Clay Formation, Surrey, England, UK Insect fragments
Braun, 1997 Rhenish Early Devonian and Late Carboniferous of the Ruhr and the Saar

Basin. Devonian, early Emsian; Waxweiler, Eifel region. Late
Carboniferous; Germany

Various arthropod cuticle remains from coal, clay and siltstones. Near
complete ostracods and mites. Appendages of ostracods, mites and
scorpions. Chelicerata (presumed arachnid) cuticle with sensory organs.
Slit sensilla. Lyriform organs.

Braun, 2004 Various ages and locations:
1Earlyr Devonian, early Emsian; Nellenköpfchen Formation, Alken an der
Mosel, Germany
2Late Carboniferous; Saar, Germany
3Late Carboniferous; Piesberg, near Osnabrück, Germany

1Ventral eurypterid appendage, and setae.
2Near complete mite.
3Front appendages of freshwater ostracod

Butterfield and Harvey, 2012 Various ages and locations:
late early Cambrian, Mount Cap Formation, Northwest Territories,
Canada. late early Cambrian Forteau Formation, Newfoundland. late early
Cambrian Mahto Formation, Alberta, Canada. early middle Cambrian
Hess River Formation, Northwest Territories, Canada. late middle
Cambrian Pika Formation, Alberta, Canada. late middle Cambrian Earlie
Formation, Saskatchewan, Canada

Wiwaxia sclerites, priapulid-like scalids, mollusc radulae

Clarke and Ruedemann, 1912 Devonian; New York State, USA Eurypterid cuticle
Dalingwater, 1973 Silurian; ‘Passage Beds’ at Ludlow, Shropshire, England, UK Eurypterid, Pterygotus (Pterygotus) ludensis, cuticle ultrastructure
Dalingwater, 1975 Silurian; Gotland, Sweden Eurypterid cuticle
Dalingwater, 1980 Silurian; Gotland, Sweden Eurypterid cuticle
Dunlop et al., 2007 Late Triassic; Lower Keuper Sandstone, Bromsgrove, Worcestershire,

England, UK
Scorpion cuticle

Dunlop, 1996 Late Silurian, Přídolí; Welsh borderland, Shropshire, England, UK Entire Trigonotarbid body extracted from shales
Filipiak and Zatoń, 2011 Early Devonian; Southern Poland Arthropod (?eurypterid) cuticle
Filipiak et al., 2012 Early Devonian; Podolia, Ukraine Eurypterid and possible scorpion cuticle
Goodarzi, 1984 Cretaceous-Palaeocene; Anxiety Butte coal zone, Ravenscrag Formation,

Saskatchewan, Canada
Arthropod cuticle extracted from coal

Gray and Boucot, 1994 Early Silurian, Llandovery; Tuscarora Formation, Pennsylvania, USA Terrestrial deposits with fragments of arthropod (?eurypterid);jaw
fragment of annelid

Harvey and Butterfield, 2008 Early Cambrian; Mount Cap Formation, Northwest Territories, Canada Crustacean feeding apparatus
Harvey and Butterfield, 2011 Early-Middle Cambrian; Mount Cap Formation, Northwest Territories,

Canada
Crustacean cuticles, sclerites, radulae

Harvey et al., 2012a Middle Cambrian; Kaili Formation, Guizhou Province, China Assorted cuticle remains includingWiwaxia sclerites, fragments of
chancelloriids, brachiopods, hyolithids and a priapulid−like
scalidophoran

Harvey et al., 2012b Middle to late Cambrian; Deadwood Formation, Saskatchewan and
Alberta, Canada

Assorted crustacean mandibles and articulated limbs of likely
branchiopod, copepod and ostracod affinity

Harvey et al., 2012c Middle to late Cambrian; Deadwood Formation, Saskatchewan and
Alberta, Canada

Range of fragmentary remains of crustaceans, paraconodonts and several
other taxa
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Publication Age/locality Description

Holdgate et al., 2005 Permian, Guadalupian; Prince Charles Mountains, East Antarctica Arthropod fragments
Jaglin and Paris, 2002 Late Silurian; Northwest Libya Eurypterid cuticle from borehole macerals
Jansson et al., 2008; Early Jurassic, Pliensbachian; Eastern Australia Annelid cocoons; arthropod fragments
Jeram, 1990 Early Carboniferous, Dinatian; Limestone, East Kirkton Quarry, West

Lothian, Scotland, UK
Scorpion cuticle, acid-etched to stand proud of the rock with HCL

Jeram et al., 1990 Late Silurian, Přídolí; Welsh borderland, Shropshire, England, UK Trigonotarbid, eurypterid, centipedes, scorpions, millipedes
Kethley et al., 1989 Middle Devonian; Gilboa, New York State, USA Alicorhagiid mite
Labandeira et al., 1988 Early Devonian, Early Emsian. Battery Point Sandstone, Gaspé Peninsula,

Québec, Canada
Head and thorax of a bristletail

Manum et al., 1991 Various post-Triassic strata Annelid cocoons
Manum, 1996 Various post-Triassic strata Annelid cocoons
McLoughlin et al., 1997 Triassic; Prince Charles Mountains, East Antarctica Arthropod fragments
McLoughlin et al., 2002 Early Cretaceous (Valanginian–Hauterivian); lower Strzelecki Group,

Gippsland Basin, Victoria, Australia
Arthropod exoskeleton fragments, coleopterans, arthropod head with
palps/mandibles

McLoughlin et al., 2014 Early Jurassic, Pliensbachian; Eastern Australia Arthropod fragments
Mutvei, 1977 Silurian; Gotland, Sweden Eurypterid cuticle
Rolfe, 1962 Middle Silurian; Scotland, UK Crustacean cuticle
Scott, 1977 Late Carboniferous, Westphalian B; Swillington Brickpit, Yorkshire,

England, UK
Scorpion fragments extracted from coals

Scott, 1978 Late Carboniferous, Westphalian B; Swillington Brickpit, Yorkshire,
England, UK

Scorpion fragments extracted from coals

Scott, 1984 Late Carboniferous, Westphalian B. Swillington Brickpit, Yorkshire,
England, UK

Scorpion fragments extracted from coals

Selden, 1981 Silurian, Gotland, Sweden Eurypterid cuticle
Selden et al., 2008a Devonian; Gilboa and South Mountain localities, New York State, USA Arachnid fragments, spider spinnerets, cheliceral fangs,flagellar structure
Selden et al., 2008b Jurassic, Upper Callovian; Oxford Clay, South Cave Station Quarry,

Yorkshire, UK
Iron Pyrite Replacement specimen, oribatid mite. Not cuticle, but
specimen sieved out from sediments

Selden et al., 2010 Late Carboniferous; eastern Oman. Copepod crustacean fragments
Shear and Bonamo, 1988 Middle Devonian; Gilboa, New York State, USA Centipedes, fragments and complete specimens
Shear and Bonamo, 1990 Middle Devonian; Gilboa, New York State, USA Centipedes, fragments and complete specimens
Shear et al., 1989a Middle Devonian; Gilboa, New York State, USA Spider spinneret
Shear et al., 1989b Middle Devonian; Gilboa, New York State, USA Pseudoscorpion fragments
Slater et al., 2012 Permian, Guadalupian; Prince Charles Mountains, East Antarctica Arthropod fragments
Stankiewicz et al., 1998 Carboniferous; North America Discussion of the molecular taphonomy of arthropod cuticles
Taugourdeau, 1967 Silurian–Devonian; Sahara, Africa Eurypterid cuticle
Tosolini and Pole, 2010 Cretaceous and Cenozoic; Australia and New Zealand Scale insect shields, annelid cocoons
Wilson and Hoffmeister, 1956 Pennsylvanian (Desmoinesian); Croweburg Coal Arthropod fragments
Winslow, 1959 Late Mississippian and Pennsylvanian; Illinois, USA Arthropod cuticle extracted from coal
Wellman, 1995 Early Devonian; Old Red Sandstone, Scotland, UK Possible eurypterid cuticle fragments

Appendix 2 (continued)

23B.J. Slater et al. / Gondwana Research xxx (2014) xxx–xxx
References

Adami-Rodrigues, K., Ianuzzi, R., 2001. Late Paleozoic terrestrial arthropod faunal and
flora successions in the Parana Basin: a preliminary synthesis. Acta Geologica
Leopoldensia 24, 165–179.

Adami-Rodrigues, K., Alves De Souza, P., Iannuzzi, R., Pinto, I.D., 2004a. Herbivoria em
floras gonduânicas do neopaleózoico do Rio Grande do Sul: análise quantitativa.
Revista Brasileira de Paleontologia 7, 93–102.

Adami-Rodrigues, K., Iannuzzi, R., Pinto, I.D., 2004b. Permian plant–insect interactions
from a Gondwana flora of southern Brazil. Fossils and Strata 51, 106–125.

Adl, S., Girard, V., Breton, G., Lak, M., Maharning, A., Mills, A., Perrichot, V., Trionnaire, M.,
Vullo, R., Néraudeau, D., 2010. Reconstructing the soil food web of a 100million-year-
old forest: the case of the mid-Cretaceous fossils in the amber of Charentes (SW
France). Soil Biology and Biochemistry 43, 1–10.

Al-Ameri, T.K., 1983. Acid-resistant microfossils used in the determination of Palaeozoic
palaeoenvironments in Libya. Palaeogeography, Palaeoclimatology, Palaeoecology
44, 103–116.

Ali, J.R., 2010. Comment on “Illawarra reversal: the fingerprint of a superplume that trig-
gered the Pangean break-up and the end-Guadalupian (Permian) mass extinction”
by Yukio Isozaki. Gondwana Research 17, 715–717.

Alvarez, L.W., Alvarez, W., Asaro, F., Michel, H.V., 1980. Extraterrestrial cause for the Cre-
taceous Tertiary extinction. Science 208, 1095–1108.

Anderson, J.M., Anderson, H.M., 1985. Palaeoflora of southern Africa. Prodromus of
South African megafloras Devonian to Lower CretaceousA.A. Balkema, Rotterdam
(423 pp.).

Anderson, L.I., Trewin, N.H., 2003. An Early Devonian arthropod fauna from the
Windyfield cherts, Aberdeenshire, Scotland. Palaeontology 46, 467–509.

Anderson, J.M., Anderson, H.M., Archangelsky, S., Bamford, M., Chandra, S., Dettmann, M.,
Hill, R., McLoughlin, S., Rösler, O., 1999. Patterns of Gondwana plant colonisation and
diversification. Journal of African Earth Sciences 28, 145–167.

Anderson, L.I., Crighton, W.R., Hass, H., 2004. A new univalve crustacean from the Early
Devonian Rhynie chert hot-spring complex. Transactions of the Royal Society of Ed-
inburgh: Earth Sciences 94, 355–369.

Angiolini, L., Jadoul, F., Leng, M.J., Stephenson, M.H., Rushton, J., Chenery, S., Crippa, G.,
2009. How cold were the Early Permian glacial tropics? Testing sea-surface temper-
ature using the oxygen isotope composition of rigorously screened brachiopod shells.
Journal of the Geological Society 166, 933–945.
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
Appert, O., 1977. Die Glossopterisflora der Sakoa in südwest-Madagaskar. Palaeontographica
162B, 1–50.

Archangelsky, S., Arrondo, O.G., 1969. The Permian tafofloras of Argentina, with some
considerations about the presence of ‘northern’ elements and their possible signifi-
cance. In: Amos, A.J. (Ed.), Gondwana Stratigraphy. 1st IUGS Gondwana Symposium,
Buenos Aires, 1967. UNESCO, Paris, pp. 71–89.

Archangelsky, S., Cúneo, R., 1987. Ferugliocladaceae, a new conifer family from the
Early Permian of Gondwana. Review of Palaeobotany and Palynology 51, 3–30.

Argow, B.A., Hughes, Z.J., FitzGerald, D.M., 2011. Ice raft formation, sediment load, and
theoretical potential for ice-rafted sediment influx on northern coastal wetlands.
Continental Shelf Research 31, 1294–1305.

Banerjee, M., Bera, S., 1998. Record of zoocecidia on leaves of Glossopteris browniana
Brongn. from Mohuda Basin, Upper Permian, Indian Lower Gondwana. Indian Biolo-
gist 30, 58–61.

Bardgett, R., 2005. The Biology of Soil: A Community and Ecosystem Approach. Oxford
University Press, New York (256 pp.).

Bartels, S.F., Chen, H.Y.H., 2012. Mechanisms regulating epiphytic plant diversity. Critical
Reviews in Plant Sciences 31, 391–400.

Bartram, K.M., Jeram, A.J., Selden, P.A., 1987. Arthropod cuticles in coal. Journal of the Geo-
logical Society of London 144, 513–517.

Bateman, R.M., Hilton, J., 2009. Palaeobotanical systematics for the phylogenetic age:
applying organospecies, form-species and phylogenetic species concepts in a
framework of reconstructed fossil and extant whole-plants. Taxon 58,
1254–1280.

Batten, D.J., 1998. Palaeoenvironmental implications of plant, insect and other organic-
walled microfossils in theWeald Clay Formation (Lower Cretaceous) of southeast En-
gland. Cretaceous Research 19, 279–315.

Baxendale, W., 1979. Plant-bearing coprolites from North American Pennsylvanian coal
balls. Palaeontology 22, 537–548.

Beattie, R., 2007. The geological setting and palaeoenvironmental and palaeoecological re-
constructions of the Upper Permian insect beds at Belmont, New South Wales,
Australia. African Invertebrates 48, 41–57.

Bennett, A.J.R., Taylor, G.H., 1972. Coals from the vicinity of the Prince Charles Mountains.
In: Adie, R.J. (Ed.), Antarctic Geology and Geophysics. Universitetsforlaget, Oslo,
pp. 591–598.

Benton, M.J., Newell, A.J., 2013. Impacts of global warming on Permo-Triassic terrestrial
ecosystems. Gondwana Research. http://dx.doi.org/10.1016/j.gr.2012.12.010.
erstätte: The Permian permineralised peat biota of the Prince Charles
016/j.gr.2014.01.004

http://dx.doi.org/10.1016/j.gr.2014.01.004


24 B.J. Slater et al. / Gondwana Research xxx (2014) xxx–xxx
Benton, M.J., Twitchett, R.J., 2003. How to kill (almost) all life: the end-Permian extinction
event. Trends in Ecology and Evolution 18, 358–365.

Bernardes de Oliveira, M.E.C., Pons, D., 1975. Taphoflora of Karroo in the Zambezi Basin
(Tete region, Mozambique). Boletim Instituto de Gêociencias, Instituto de
Geociencias, USP 6, 33–53.

Bernardes de Oliveira, M.E.C., Pons, D., 1977. Algumas Observaçóes sobre cordaitófitas da
formação Rio Bonito, Grupo Tubarão, Bacia do Paraná, Brasil. Primer Congreso
Geologico Chileno (2–7 Agosto 1976), Santiago, pp. L21–L81.

Berthelin, M., Broutin, J., Kerp, H., Crasquin-Soleau, S., Platel, J.-P., Roger, J., 2003. The
Oman Gharif mixed paleoflora: a useful tool for testing Permian Pangea reconstruc-
tions. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 85–98.

Bhuiyan, N.H., Selvaraj, G., Wei, Y., King, J., 2009. Role of lignification in plant defense.
Plant Signalling and Behaviour 4, 158–159.

Boger, S.D., 2011. Antarctica — before and after Gondwana. Gondwana Research 19,
335–371.

Bolzon, R.T., Azevedo, I., Machado, L.G., 2004. Registro da atividade de organismos en um
caudle do Permiano do Rio Grande do Sul, Brasil. Arquivos doMuseu Nacional, Rio de
Janeiro 62, 513–518.

Bomfleur, B., Kerp, H., Taylor, T.N., Moestrup, Ø., Taylor, E.L., 2012. Triassic leech cocoon
from Antarctica contains fossil bell animal. Proceedings of the National Academy of
Sciences of the United States of America 109, 20971–20974.

Bond, D.P.G., Hilton, J., Wignall, P.B., Ali, J.R., Stevens, L.G., Sun, Y., Lai, X., 2010. The Middle
Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Re-
views 102, 100–116.

Bordy, E.M., Prevec, R., 2008. Sedimentology, palaeontology and palaeo-environments of
the Middle (?) to Upper Permian Emakwenzini Formation (Karoo Supergroup,
South Africa). South African Journal of Geology 111, 429–458.

Bose, M.N., Banerji, J., Maithy, P.K., 1977. Some fossil plant remains from Ramkola–
Tatapani Coalfield, Madhya Pradesh. The Palaeobotanist 24, 108–117.

Braun, A., 1997. Vorkommen, untersuchungsmethoden und bedeutung tierischer
cuticulae in kohligen sedimentgesteinen des devons und karbons. [Occurrence, in-
vestigation methods and significance of animal cuticle in Devonian and Carbonifer-
ous coal-bearing sedimentary rocks]. Palaeontographica, Abteilung A: Palaozoologie
— Stratigraphy 245, 83–156.

Braun, A., 1999. The use of acetate peels in paleontological research on arthropods: op-
portunities and limitations. Neues Jahrbuch fur Geologie und Palaontologie–
Monatshefte 3, 179–185.

Braun, A., 2004. Prospective lithologies, techniques and chances for microscopic paleon-
tology at the Vendian/Cambrian boundary. Gondwana Research 7, 675–684.

Briggs, D.E.G., Gall, J.-C., 1990. The continuum in soft-bodied biotas from transitional en-
vironments: a quantitative comparison of Triassic and Carboniferous konservat-
lagerstatten. Paleobiology 16, 204–218.

Briggs, D.E.G., Miller, M.F., Isbell, J.L., Sidor, C.A., 2010. Permo-Triassic arthropod trace fos-
sils from the Beardmore Glacier area, central Transantarctic Mountains, Antarctica.
Antarctic Science 22, 185–192.

Brongniart, A., 1830. Histoire des végétaux fossiles ou recherches botaniques et
géologiques sur les végétaux renfermés dans les diverses couches du globe, 1. G.
Dufour and E. D'Ocagne, Paris 209–248.

Bunbury, C.J.F., 1861. Notes on a collection of fossil plants from Nagpur, central India.
Quarterly Journal of the Geological Society of London 17, 325–346.

Butterfield, N.J., Harvey, T.H.P., 2012. Small carbonaceous fossils (SCFs); a newmeasure of
early Paleozoic paleobiology. Geology 40, 71–74.

Cameron, C.C., Esterle, J.S., Palmer, C.A., 1989. The geology, botany and chemistry of select-
ed peat-forming environments from temperate and tropical latitudes. International
Journal of Coal Geology 12, 105–156.

Cariglino, B., Gutiérrez, P.R., 2011. Plant–insect interactions in a Glossopteris flora from the
La Golondrina Formation (Guadalupian–Lopingian), Santa Cruz province, Patagonia,
Argentina. Ameghiniana 48, 103–112.

Carpenter, F.M., 1997. Insecta. In: Shabica, C.W., Hay, A.A. (Eds.), Richardson's Guide
to the Fossil Fauna of Mazon Creek. Northeastern Illinois University, Chicago,
pp. 184–193.

Carruthers, W., 1872. Notes on fossil plants from Queensland, Australia. Quarterly Journal
of the Geological Society of London 28, 350–360.

Cascales-Miñana, B., 2011. New insights into the reading of Paleozoic plant fossil record
discontinuities. Historical Biology 23, 115–130.

Césari, S.N., Busquets, P., Méndez-Bedia, I., Colombo, F., Limarino, C.O., Cardó, R.,
Gallastegui, G., 2012. A late Paleozoic fossil forest from the southern Andes,
Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 333–334,
131–147.

Chaloner, W.G., Scott, A.C., Stephenson, J., 1991. The evolutionary interaction of animals
and plants. Philosophical Transactions: Biological Sciences 333, 177–186.

Chandra, S., 1992. Changing patterns of the Permian Gondwana vegetation. The
Palaeobotanist 40, 73–100.

Chandra, S., Singh, K.J., 1992. The genus Glossopteris from the Late Permian beds of
Handapa, Orissa, India. Review of Palaeobotany and Palynology 75, 183–218.

Chandra, S., Singh, K.J., 1996. Plant fossils from the type locality of Talchir Formation and
evidence of earliest plant–animal activity in Gondwana of India. In: Ayyasami, K.,
Sengupta, S., Ghosh, R.N. (Eds.), Gondwana Nine, vol. 1. A.A. Balkema, Rotterdam,
pp. 397–414.

Chandra, S., Surange, K.R., 1979. Revision of the Indian species of Glossopteris. Monograph,
2. Birbal Sahni Institute of Palaeobotany, Lucknow (291 pp.).

Channing, A., Edwards, D., 2004. Experimental taphonomy: silicification of plants in
Yellowstone hot-spring environments. Transactions of the Royal Society of
Edinburgh: Earth Sciences 94, 503–521.

Chauhan, D.K., Tiwari, S.P., Misra, D.R., 1985. Animal and plant relationship during Carbo-
Permian period of India. Bionature 5, 5–8.
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
Clapham, M.E., Shen, S.Z., Bottjer, D.J., 2009. The double mass extinction revisited:
reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis
(Late Permian). Paleobiology 35, 32–50.

Clarke, J.M., Ruedemann, R., 1912. The Eurypterida of New York. New York State Museum
Memoirs 14, 1–439.

Cleal, C.J., Uhl, D., Cascales-Miñana, B., Thomas, B.A., Bashforth, A.R., King, S.C., Zodrow,
E.L., 2012. Plant biodiversity changes in Carboniferous tropical wetlands. Earth-
Science Reviews 114, 124–155.

Colinvaux, P.A., Goodman, D., 1971. Recent silica gel from saline lake in Galapagos Islands.
Bulletin of the American Association of Petroleum Geologists 35, 263–296.

Collinson, J.W., Hammer, W.R., 2007. Migration of Triassic tetrapods to Antarctica. In:
Cooper, A.K., Raymond, C.R., et al. (Eds.), Antarctica: A Keystone in a Changing
World — Online Proceedings of the 10th ISAES X, USGS Open-File Report 2007-
1047, Extended Abstract, 047 (3 pp.).

Collinson, M.E., Steart, D.C., Scott, A.C., Glasspool, I.J., Hooker, J.J., 2007. Episodic fire, runoff
and deposition at the Palaeocene–Eocene boundary. Journal of the Geological Society
164, 87–97.

Creber, G.T., Chaloner, W.G., 1985. Tree growth in theMesozoic and Early Tertiary and the
reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology
52, 35–60.

Cridland, A.A., 1963. Glossopteris flora from the Ohio Range, Antarctica. American Journal
of Botany 50, 186–195.

Crouau, Y., 1997. Comparison of crustacean and insect mechanoreceptive setae. Interna-
tional Journal of Insect Morphology and Embryology 26, 181–190.

Crutzen, P.J., Goldammer, J.G., 1993. Fire in the environment: the ecological, atmospheric,
and climatic importance of vegetation fires. Dahlem Konferenz (15–20 March 1992,
Berlin), ES13. Wiley, Chichester (400 pp.).

Cúneo, R., 1986. Ecología de las floras neopaleozoicas Argentinas. Actas IV Congreso
Argentino Paleontología y Bioestratigrafía 1, Mendoza, pp. 195–204.

Cúneo, R., 1987. Sobre presencia de probable Ginkgoales Permico Inferior de Chubut,
Argentina. VII Actas de Simposio Argentino de Paleobotanica y Palynología, Buenos
Aires, pp. 47–50.

Cúneo, R., Isbell, J., Taylor, E.L., Taylor, T.N., 1993. The Glossopteris flora from Antarctica:
taphonomy and paleoecology. Comptes Rendus XII ICC-P, Buenos Aires 2, 13–40.

Dalingwater, J.E., 1973. The cuticle of a eurypterid. Lethaia 6, 179–185.
Dalingwater, J.E., 1975. Further observations on eurypterid cuticles. Fossils and Strata 4,

271–279.
Dalingwater, J.E., 1980. Observations on the cuticles of some chelicerates. 8th Internation-

al Arachnology Congress Vienna 1980, pp. 285–289.
David, T.W.E., 1891. Note on the occurrence of Glossopteris in a remarkable state of pres-

ervation in the Greta Coal Measures at Richmond Vale, near Maitland. Proceedings of
the Linnean Society of New South Wales, series 2, 5, p. 424.

de la Horra, R., Galán-Abellán, A.B., López-Gómez, J., Sheldon, N.D., Barrenechea, J.F.,
Luque, F.J., Arche, A., Benito, M.I., 2012. Paleoecological and paleoenvironmental
changes during the continental Middle–Late Permian transition at the SE Iberian
Ranges, Spain. Global and Planetary Change 94–95, 46–61.

Decombeix, A.-L., Taylor, E.L., Thomas, N., Taylor, 2009. Secondary growth in Vertebraria
roots from the Late Permian of Antarctica: a change in developmental timing. Inter-
national Journal of Plant Sciences 170, 644–656.

Diessel, C.F.K., 1992. Coal-bearing Depositional Systems. Springer, Berlin (721 pp.).
Diessel, C.F.K., Smyth, M., 1995. Petrographic constituents of Australian coals. In: Ward,

C.R., Harrington, H.J., Mallett, C.W., Beeston, J.W. (Eds.), Geology of Australian Coal Ba-
sins. Geological Society of Australia Incorporated Coal Geology Group, Special Publi-
cation, 1, pp. 63–81.

DiMichele, W.A., Falcon-Lang, H.J., 2011. Pennsylvanian ‘fossil forests’ in growth position
(T0 assemblages): origin, taphonomic bias and palaeoecological insights. Journal of
the Geological Society (London) 168, 585–605.

DiMichele, W.A., Phillips, T.L., 1994. Paleobotanical and paleoecological constraints on
models of peat formation in the Late Carboniferous of Euramerica. Palaeogeography,
Palaeoclimatology, Palaeoecology 106, 39–90.

DiMichele, W.A., Nelson, W.J., Elrick, S., Ames, P.R., 2009. Catastrophically buried middle
Pennsylvanian Sigillaria and calamitean sphenopsids from Indiana, USA: what kind
of vegetation was this? Palaios 24, 159–166.

Doležal, J., Šrutek, M., Hara, T., Sumida, A., Penttilä, T., 2006. Neighborhood interactions
influencing tree population dynamics in nonpyrogenous boreal forest in Northern
Finland. Plant Ecology 185, 135–150.

Dolianiti, E., 1953a. A flora do Gondwana inferior em Santa Catarina I. O genero
Glossopteris. Notas Preliminares e Estudos 60, 1–7.

Dolianiti, E., 1953b. A flora do Gondwana inferior em Santa Catarina II. O genero
Taeniopteris. Notas Preliminares e Estudos 61, 1–7.

Donoghue, P.C.J., Bengtson, S., Dong, X., Gostling, N.J., Huldtgren, T., Cunningham, J.A., Yin,
C., Yue, Z., Peng, F., Stampanoni, M., 2006. Synchrotron X-ray tomographic microsco-
py of fossil embryos. Nature 442, 680–683.

D'Rozario, A., Sun, B., Galtier, J.,Wang, S.-J., Guo,W.-Y., Yao, Y.-F., Li, C.-S., 2011a. Studies on
the Late Permian permineralized tree fern Psaronius housuoensis sp. nov. fromYunnan
Province, Southwest China. Review of Palaeobotany and Palynology 163, 247–263.

D'Rozario, A., Labandeira, C., Guo, W.-Y., Yao, Y.-F., Li, C.-S., 2011b. Spatiotemporal
extension of the Euramerican Psaronius component community to the Late
Permian of Cathaysia: in situ coprolites in a P. housuoensis stem from Yunnan
Province, southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology
306, 127–133.

Dunlop, J.A., 1996. A trigonotarbid arachnid from the Upper Silurian of Shropshire.
Palaeontology 39, 605–614.

Dunlop, J.A., Anderson, L.I., Kerp, H., Haas, H., 2004. A harvestman (Arachnida: Opiliones)
from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the
Royal Society of Edinburgh: Earth Sciences 94, 341–354.
erstätte: The Permian permineralised peat biota of the Prince Charles
016/j.gr.2014.01.004

http://dx.doi.org/10.1016/j.gr.2014.01.004


25B.J. Slater et al. / Gondwana Research xxx (2014) xxx–xxx
Dunlop, J.A., Kamenz, C., Scholtz, G., 2007. Reinterpreting the morphology of the Jurassic
scorpion Liassoscorpionides. Arthropod Structure and Development 36, 245–252.

Edwards, D., 1996. New insights into early land ecosystems: a glimpse of a lilliputan
world. Review of Palaeobotany and Palynology 90, 159–174.

Edwards, D., Selden, P.A., Axe, L., 2012. Selective feeding in an Early Devonian terrestrial
ecosystem. Palaios 27, 509–522.

Falcon-Lang, H.J., 2003. Late Carboniferous tropical dryland vegetation in an alluvial-plain
setting, Joggins, Nova Scotia, Canada. Palaios 18, 197–211.

Fayers, S.R., Trewin, N.H., 2003. A new crustacean from the Early Devonian Rhynie chert,
Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sci-
ences 93, 355–382.

Fayers, S.R., Dunlop, J.A., Trewin, H.T., 2005. A new Early Devonian trigonotarbid arachnid
from the Windyfield Chert, Rhynie, Scotland. Journal of Systematic Palaeontology 2,
269–284.

Fedorov, L.V., Ravich, M.G., Hofmann, J., 1982. Geologic comparison of southeastern pen-
insular India and Sri Lanka with a part of East Antarctica (Enderby Land,
MacRobertson Land, and Princess Elizabeth Land). In: Craddock, C. (Ed.), Antarctic
Geoscience. University of Wisconsin Press, Madison, pp. 73–78.

Feistmantel, O., 1880a. The fossil flora of the Gondwana System. The Flora of the Damuda
and Panchet Divisions (1st Part). Memoirs of the Geological Survey of India,
Palaeontologia Indica, Series 12, 3(2), pp. 1–77.

Feistmantel, O., 1880b. The fossil flora of the Gondwana System. The Flora of the Damuda
Panchet Divisions (Conclusion). Memoirs of the Geological Survey of India,
Palaeontologia Indica, Series 12, 3(2), pp. 78–149.

Feistmantel, O., 1882. The fossil flora of the Gondwana system. The fossil flora of the
South Rewa Gondwana Basin. Memoirs of the Geological Survey of India,
Palaeontologia Indica, Series 12 4(1), 1–52.

Feng, B.-C., 1989. Paleoecology of an UpperMiddle Pennsylvanian coal swamp fromwest-
ern Pennsylvania, USA. Review of Palaeobotany and Palynology 57, 299–312.

Fielding, C.R., Webb, J.A., 1996. Facies and cyclicity of the Late Permian Bainmedart Coal
Measures in the northern Prince Charles Mountains, MacRobertson Land,
Antarctica. Sedimentology 43, 295–322.

Filipiak, P., Zatoń, M., 2011. Plant and animal cuticle remains from the Lower Devonian of
southern Poland and their palaeoenvironmental significance. Lethaia 44, 397–409.

Filipiak, P., Zatoń, M., Szaniawski, H., Wrona, R., Racki, G., 2012. Palynology and
microfacies of Lower Devonian mixed carbonate-siliciclastic deposits in Podolia,
Ukraine. Acta Palaeontologica Polonica 57, 863–877.

Francis, J.E., 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and
their palaeoclimatic implications. Palaeontology 29, 665–684.

Gallego, J., Cúneo, R., Escapa, I., 2014. Plant–Insect Interactions in Gymnosperm Leaves
from the Early Permian of Patagonia. Geobios, Argentina. http://dx.doi.org/10.1016/
j.geobios.2014.01.002.

Galtier, J., Phillips, T.L., 1999. The acetate peel technique. In: Jones, T.P., Rowe, N.P. (Eds.),
Fossil Plants and Spores: Modern Techniques. The Geological Society, London,
pp. 67–70.

Garwood, R.J., Sutton, M.D., 2010. X-ray micro-tomography of Carboniferous stem-
Dictyoptera: new insights into early insects. Biology Letters 6, 699–702.

Garwood, R., Ross, A., Sotty, D., Chabard, D., Charbonnier, S., Sutton, M., Withers, P.J., 2012.
Tomographic reconstruction of neopterous Carboniferous insect nymphs. PLoS ONE
7, 1–10.

Gastaldo, R.A., Stevanovic-Walls, I.M., Ware, W.N., Greb, S.F., 2004. Community heteroge-
neity of early Pennsylvanian peat mires. Geology 32, 693–696.

Goodarzi, F., 1984. Chitinous fragments in coal. Fuel 63, 1504–1507.
Gould, R.E., Delevoryas, T., 1977. The biology of Glossopteris: evidence from petrified seed-

bearing and pollen-bearing organs. Alcheringa 1, 87–399.
Gray, J., Boucot, A.J., 1994. Early Silurian nonmarine animal remains and the nature of the

early continental ecosystem. Acta Palaeontologica Polonica 38, 303–328.
Guerra-Sommer, M., 1995. Fitofagia em Glossopterídeas na paleoflora da Mina do Faxinal

(Formação Rio Bonito, Artinskiano, Bacia do Paraná). Pesquisas 22, 58–63.
Guerra-Sommer, M., Cazzulo-Klepzig, M., Jasper, A., Kalkreuth, W., Menegat, R., Barboza,

E.G., 2008. Paleoecological patterns at the coal–roof shale transition in an outcrop
of the Permian Brazilian Gondwana. Revista Brasileira de Paleontologia 11, 11–26.

Guido, D.M., Channing, A., Campbell, K.A., Zamuner, A., 2010. Jurassic geothermal land-
scapes and fossil ecosystems at San Agustín, Patagonia, Argentina. Journal of the Geo-
logical Society (London) 167, 11–20.

Guidry, S.A., Chafetz, H.S., 2003. Anatomy of siliceous hot springs: examples from Yellow-
stone National Park, Wyoming, USA. Sedimentary Geology 157, 71–106.

Gulbranson, E.L., Isbell, J.L., Taylor, E.L., Ryberg, P.E., Taylor, T.N., Flaig, P.P., 2012. Permian
polar forests: deciduousness and environmental variation. Geobiology 10, 479–495.

Habgood, K.S., Hass, H., Kerp, H., 2004. Evidence for an early terrestrial food web: copro-
lites from the Early Devonian Rhynie chert. Transactions of the Royal Society of Edin-
burgh: Earth Sciences 94, 371–389.

Hagström, J., Mehlqvist, K., 2012. The dawn of terrestrial ecosystems on Baltica: first report
on land plant remains and arthropod coprolites from the Upper Silurian of Gotland,
Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology 317–318, 162–170.

Harrowfield, M., Holdgate, G., Wilson, C., McLoughlin, S., 2005. Tectonic significance of the
Lambert Graben, East Antarctica: reconstructing the Gondwanan rift. Geology 33,
197–200.

Harvey, T.H.P., Butterfield, N.J., 2008. Sophisticated particle-feeding in a large Early Cam-
brian crustacean. Nature 452, 868–871.

Harvey, T.H.P., Butterfield, N.J., 2011. Great Canadian Lagerstätten 2.Macro- andmicrofos-
sils of the Mount Cap Formation (Early andMiddle Cambrian, Northwest Territories).
Geoscience Canada 38, 165–174.

Harvey, T.H.P., Ortega-Hernández, J., Lin, J.-P., Yuanlong, Z., Butterfield, N.J., 2012a. Burgess
Shale-typemicrofossils from themiddle Cambrian Kaili Formation, Guizhou Province,
China. Acta Palaeontologica Polonica 57, 423–436.
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
Harvey, T.H.P., Vélez, M.I., Butterfield, N.J., 2012b. Exceptionally preserved crustaceans
from western Canada reveal a cryptic Cambrian radiation. Proceedings of the Nation-
al Academy of Sciences of the United States of America 109, 1589–1594.

Harvey, T.H.P., Vélez, M.I., Butterfield, N.J., 2012c. Small carbonaceous fossils from the
Earlie and Deadwood Formations (Middle Cambrian to Lower Ordovician) of south-
ern Saskatchewan. Saskatchewan Geological Survey Summary of Investigations 1,
1–8.

Haug, C., Haug, J.T., Fayers, S.R., Trewin, N.H., Castellani, C., Waloszek, D., Maas, A., 2012.
Exceptionally preserved nauplius larvae from the DevonianWindyfield chert, Rhynie,
Aberdeenshire, Scotland. Palaeontologia Electronica 15, 42.

He, X.H., Wang, S.J., Hilton, J., Tian, B.L., Zhou, Y.L., 2008. Anatomically preserved
marattialean plants from the Upper Permian of southwestern China: the trunk of
Psaronius panxianensis sp. nov. Plant Systematics and Evolution 272, 155–180.

Hesse, R., 1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-
Science Reviews 26, 253–284.

Hilton, J., Cleal, C.J., 2007. The relationship between Euramerican and Cathaysian tropical
floras in the Late Palaeozoic: palaeobiogeographical and palaeogeographical implica-
tions. Earth-Science Reviews 85, 85–116.

Hilton, J., Wang, S.J., Zhu, W.Q., Tian, B., Galtier, J., Wei, A.H., 2002. Callospermarion ovules
from the Early Permian of northern China: palaeofloristic and palaeogeographic sig-
nificance of callistophytalean seed-ferns in the Cathaysian flora. Review of
Palaeobotany and Palynology 120, 301–314.

Holdgate, G.R., McLoughlin, S., Drinnan, A.N., Finkelman, R.B., Willett, J.C., Chiehowsky,
L.A., 2005. Inorganic chemistry, petrography and palaeobotany of Permian coals in
the Prince Charles Mountains, East Antarctica. International Journal of Coal Geology
63, 156–177.

Holmes, W.B.K., 1995. The Late Permian megafossil flora from Cooyal, New South Wales,
Australia. In: Pant, D.D. (Ed.), Global Environment and Diversification of Plants
Through Geological Time. Birbal Sahni Centenary Volume. South Asian Publishers, Al-
lahabad, pp. 123–152.

Houle, A., 1998. Floating islands: a mode of long-distance dispersal for small and
medium-sized terrestrial vertebrates. Diversity and Distributions 4, 201–216.

Isozaki, Y., 2009. Illawarra reversal: the fingerprint of a superplume that triggered
Pangean breakup and the end-Guadalupian (Permian) mass extinction. Gondwana
Research 15, 421–432.

Isozaki, Y., 2010. Reply to the comment by J.R. Ali on “Illawarra reversal: the fingerprint of
a superplume that triggered Pangean breakup and the end-Guadalupian (Permian)
mass extinction” by Yukio Isozaki. Gondwana Research 17, 718–720.

Jaglin, J.C., Paris, F., 2002. Biostratigraphy, biodiversity and palaeogeography of late Siluri-
an chitinozoans from A1-61 borehole (north-western Libya). Review of Palaeobotany
and Palynology 118, 335–358.

Jansson, I.-M., McLoughlin, S., Vajda, V., 2008. Early Jurassic annelid cocoons from eastern
Australia. Alcheringa 32, 285–296.

Jasper, A., Guerra-Sommer, M., Abu Hamad, A.M.D., Bamford, M., Bernardes-de-Oliveira,
M.E.C., Tewari, R., Uhl, D., 2013. The burning of Gondwana: Permian fires on the
southern continent—a palaeobotanical approach. Gondwana Research 24, 148–160.

Jeram, A.J., 1990. Book-lungs in a Lower Carboniferous scorpion. Nature 343, 360–361.
Jeram, A.J., Selden, P.A., Edwards, D., 1990. Land animals in the Silurian: arachnids and

myriapods from Shropshire, England. Science 250, 658–661.
Jerrett, R.M., Davies, R.C., Hodgson, D.M., Flint, S.S., Chiverrell, R.C., 2011. The significance

of hiatal surfaces in coal seams. Journal of the Geological Society 168, 629–632.
Jobard, M., Rasconi, S., Sime-Ngando, T., 2010. Diversity and functions of microscopic

fungi: a missing component in pelagic food webs. Aquatic Sciences 72, 255–268.
Kalkreuth, W., Holz, M., Mexias, A., Balbinot, M., Levandowski, J., Willett, J., Finkelman, R.,

Burger, H., 2010. Depositional setting, petrology and geochemistry of Permian coals
from the Paraná Basin: 2. South Santa Catarina Coalfield, Brazil. International Journal
of Coal Geology 84, 213–236.

Keil, T.A., 2012. Sensory cilia in arthropods. Arthropod Structure and Development 41,
515–534.

Kellogg, D.W., Taylor, E.L., 2004. Evidence of oribatid mite detritivory in Antarctica during
the late Paleozoic and Mesozoic. Journal of Paleontology 78, 1146–1153.

Kethley, J.B., Norton, R.A., Bonamo, P.M., Shear, W.A., 1989. A terrestrial alicorhagiid mite
(Acari: Acariformes) from the Devonian of New York. Micropaleontology 35,
367–373.

Knoll, A.H., 1984. Patterns of extinction in the fossil record of vascular plants. In: Nitecki,
M. (Ed.), Extinctions. University of Chicago Press, Chicago, IL, pp. 21–65.

Kovács-Endrödy, É., 1981. Notes on Glossopteris angustifolia Brongniart. The Palaeobotanist
28–29, 53–62.

Krings, M., Taylor, T.N., 2011. The fossil record of the Peronosporomycetes (Oomycota).
Mycologia 103, 445–457.

Krings, M., Taylor, T.N., Galtier, J., 2009. An enigmatic microorganism from the Upper
Pennsylvanian Grand-Croix cherts (Saint-Etienne Basin, France). Zitteliana A 48/49,
171–173.

Krings,M., Taylor, T.N., Dotzler, N., Persichini, G., 2012. Fossil fungiwith suggested affinities
to the endogonaceae from the Middle Triassic of Antarctica. Mycologia 104, 835–844.

Krull, E.S., 1999. Permian palsa mires as paleoenvironmental proxies. Palaios 14, 530–544.
Labandeira, C.C., 1998. Plant–insect associations from the fossil record. Geotimes 43,

18–24.
Labandeira, C.C., 2002. The history of associations between plants and animals. In:

Herrera, C.M., Pellmyr, O. (Eds.), Plant–Animal Interactions: An Evolutionary Perspec-
tive. Blackwell, London, pp. 26–74 (248–261).

Labandeira, C.C., 2005. Invasion of the continents: cyanobacterial crusts to tree-inhabiting
arthropods. Trends in Ecology and Evolution 20, 253–262.

Labandeira, C.C., 2006. Silurian to Triassic plant and hexapod clades and their associa-
tions: new data, a review, and interpretations. Arthropod Systematics and Phylogeny
64, 53–94.
erstätte: The Permian permineralised peat biota of the Prince Charles
016/j.gr.2014.01.004

http://dx.doi.org/10.1016/j.gr.2014.01.004


26 B.J. Slater et al. / Gondwana Research xxx (2014) xxx–xxx
Labandeira, C.C., 2013. Deep–time patterns of tissue consumption by terrestrial arthropod
herbivores. Naturwissenschaften 100, 355–364.

Labandeira, C.C., Currano, E.D., 2013. The fossil record of plant-insect dynamics. Annual
Review of Earth and Planetary Sciences 41, 287–311.

Labandeira, C.C., Prevec, R., 2014. Plant paleopathology and the roles of pathogens and in-
sects. International Journal of Paleopathology. http://dx.doi.org/10.1016/j.ijpp.2013.
10.002 (in press).

Labandeira, C.C., Beall, B.S., Hueber, F.M., 1988. Early insect diversification: evidence from
a Lower Devonian bristletail from Quebec. Science 242, 913–916.

Lilleskov, E.A., Bruns, T.D., 2005. Spore dispersal of a resupinate ectomycorrhizal fungus,
Tomentella subliacina, via soil food webs. Mycologia 97, 762–769.

Lindström, S., McLoughlin, S., 2007. Synchronous palynofloristic extinction and recovery
after the end-Permian event in the Prince Charles Mountains, Antarctica: implica-
tions for palynofloristic turnover across Gondwana. Review of Palaeobotany and Pal-
ynology 145, 89–122.

Lindström, S., McLoughlin, S., Drinnan, A.N., 1997. Intraspecific variation of taeniate
bisaccate pollen within Permian glossopterid sporangia, from the Prince Charles
Mountains, Antarctica. International Journal of Plant Sciences 158, 673–684.

Lucas, S.G., 2004. A global hiatus in the Middle Permian tetrapod fossil record. Stratigra-
phy 1, 47–64.

Mackowsky, M.Th., 1975. Comparative petrography of Gondwana and Northern Hemi-
sphere coals related to their origin. In: Campbell, K.S.W. (Ed.), Gondwana Geology.
Australian National University Press, Canberra, pp. 195–220.

Maheshwari, H.K., Bajpai, U., 1990. Trace fossils from Permian Gondwana of Rajmahal
Hills. Geophytology 20, 45–47.

Maheshwari, H.K., Prakash, G., 1965. Studies in the Glossopteris flora of India — 21. Plant
megafossils from the Lower Gondwana exposures along Bansloi River in Rajmahal
Hills, Bihar. The Palaeobotanist 13, 115–128.

Maheshwari, H.K., Tewari, R., 1986. Maheshwariella spinicornuta, a new gymnospermous
seed from the Karharbari Formation. The Palaeobotanist 35, 69–72.

Maithy, P.K., 1965. Studies in the Glossopteris flora of India – 20. Noeggerathiopsis and al-
lied remains from the Karharbari Beds, Giridih Coalfield, India. Palaeobotanist 13,
94–100.

Maithy, P.K., 1977. Revision of some fossil plants from the Karharbari Formation, Giridh
Coalfield, Bihar. The Palaeobotanist 23, 220–222.

Manum, S.B., 1996. Clitellate cocoons. In: Jansonius, J., McGregor, D.C. (Eds.), Palynology:
Principles and Applications, vol. 1. American Association of Stratigraphic Palynolo-
gists Foundation, College Station, Texas, pp. 361–364.

Manum, S.B., Bose, M.N., Sawyer, R.T., 1991. Clitellate cocoons in freshwater deposits since
the Triassic. Zoologica Scripta 20, 347–366.

McLoughlin, S., 1990a. Some Permian glossopterid fructifications and leaves from the
Bowen Basin, Queensland, Australia. Review of Palaeobotany and Palynology 62,
11–40.

McLoughlin, S., 1990b. Late Permian glossopterid fructifications from the Bowen and Syd-
ney Basins, eastern Australia. Geobios 23, 283–297.

McLoughlin, S., 1992. Late Permian plant megafossils from the Bowen Basin, Queensland,
Australia: part 1. Palaeontographica Abteilung B 228, 105–149.

McLoughlin, S., 1993. Plant fossil distributions in some Australian Permian non-marine
sediments. Sedimentary Geology 85, 601–619.

McLoughlin, S., 1994a. Late Permian plantmegafossils from the Bowen Basin, Queensland,
Australia: part 2. Palaeontographica Abteilung B 231, 1–29.

McLoughlin, S., 1994b. Late Permian plant megafossils from the Bowen Basin, Queens-
land, Australia: part 3. Palaeontographica Abteilung B 231, 31–62.

McLoughlin, S., 2001. The breakup history of Gondwana and its impact on pre-Cenozoic
floristic provincialism. Australian Journal of Botany 49, 271–300.

McLoughlin, S., 2011a. New records of leaf galls and arthropod oviposition scars in Perm-
ian–Triassic Gondwanan gymnosperms. Australian Journal of Botany 59, 156–169.

McLoughlin, S., 2011b. Glossopteris— insights into the architecture and relationships of an
iconic Permian Gondwanan plant. Journal of the Botanical Society of Bengal 65,
93–106.

McLoughlin, S., 2012. The status of Jambadostrobus Chandra and Surange (Glossopteridales).
Review of Palaeobotany and Palynology 171, 1–8.

McLoughlin, S., Drinnan, A.N., 1996. Anatomically preserved Permian Noeggerathiopsis
leaves from east Antarctica. Review of Palaeobotany and Palynology 92, 207–227.

McLoughlin, S., Drinnan, A.N., 1997a. Revised stratigraphy of the Permian Bainmedart
Coal Measures, northern Prince Charles Mountains, East Antarctica. Geological Maga-
zine 134, 335–353.

McLoughlin, S., Drinnan, A.N., 1997b. Fluvial sedimentology and revised stratigraphy of
the Triassic Flagstone Bench Formation, northern Prince Charles Mountains, East
Antarctica. Geological Magazine 134, 781–806.

McLoughlin, S., Lindström, S., Drinnan, A.N., 1997. Gondwanan floristic and sedimentological
trends during the Permian–Triassic transition: new evidence from the Amery Group,
northern Prince Charles Mountains, East Antarctica. Antarctic Science 9, 281–298.

McLoughlin, S., Tosolini, A.-M., Nagalingum, N., Drinnan, A.N., 2002. The Early Cretaceous
(Neocomian) flora and fauna of the lower Strzelecki Group, Gippsland Basin, Victoria,
Australia. Association of Australasian Palaeontologists Memoirs 26, 1–144.

McLoughlin, S., Larsson, K., Lindström, S., 2005. Permian plant macrofossils from
Fossilryggen, Vestfjella, Dronning Maud Land. Antarctic Science 17, 73–86.

McLoughlin, S., Slater, B., Hilton, J., Prevec, R., 2011. New vistas on animal–plant–fungal
interactions in the Permian–Triassic of Gondwana. GFF 133, 66–67.

McLoughlin, S., Jansson, I.-M., Vajda, V., 2014. Megaspore and microfossil assem-
blages reveal diverse herbaceous lycophytes in the Australian Early Jurassic
flora. Grana 53, 000 -000. http://dx.doi.org/10.1080/00173134.2013.848234.

McManus, H.A., Taylor, E.L., Taylor, T.N., Collinson, J.W., 2002. A petrified Glossopteris flora
from Collinson Ridge, central Transantarctic Mountains; Late Permian or Early Trias-
sic? Review of Palaeobotany and Palynology 120, 233–246.
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
Melchor, R.N., Césari, S.N., 1997. Permian floras from Carapacha Basin, central Argentina.
Description and importance. Geobios 30, 607–633.

Melville, R., 1983a. Two new genera of Glossopteridae. Botanical Journal of the Linnean
Society 86, 275–277.

Melville, R., 1983b. Glossopteridae, Angiospermidae and the evidence for angiosperm or-
igins. Botanical Journal of the Linnaean Society 86, 279–323.

Menendez, C.A., 1962. Hallazgo de una fructificacion en la flora de Glossopteris de la
Provincia de Buenos Aires (Lanceolatus bonariensis sp. nov.), con consideraciones
sobre la nomenclatura de fructificaciones de Glossopteris. Ameghiniana 2, 175–182.

Millan, J.H., Dolianiti, E., 1982. Sobre a presença do género Rubidgea no eogondwana de
Cerquilho, Subgroupo Itararé de São Paulo. Boletim Instituto de Gêociencias,
Universidade de São Paulo 13, 56–65.

Mishra, H.K., 1996. Comparative petrological analysis between the Permian coals of India
and Western Australia: paleoenvironments and thermal history. Palaeogeography,
Palaeoclimatology, Palaeoecology 125, 199–216.

Mitchell, J., 1872. Note on the fructification of Glossopteris. Proceedings of the Linnean So-
ciety of New South Wales 7, 377–378.

Moisan, P., Labandeira, C.C., Matushkina, N.A., Wappler, T., Voigt, S., Kerp, H., 2012.
Lycopsid–arthropod associations and odonatopteran oviposition on Triassic herba-
ceous Isoetites. Palaeogeography, Palaeoclimatology, Palaeoecology 344–345, 6–15.

Moore, P.D., 1989. The ecology of peat-forming processes: a review. In: Lyons, P.C., Alpern,
B. (Eds.), Peat and Coal: Origin. Facies, and Depositional Models. International Journal
of Coal Geology, 12, pp. 89–103.

Mutvei, H., 1977. SEM studies of arthropod exoskeletons. 2. Horseshoe crab Limulus poly-
phemus (L.) in comparison with extinct eurypterids and recent scorpions. Zoologica
Scripta 6, 203–213.

Navale, G.K.B., Saxena, R., 1989. An appraisal of coal petrographic facies in Lower Gond-
wana (Permian) coal seams of India. International Journal of Coal Geology 12,
553–588.

Neish, P.G., Drinnan, A.N., Cantrill, D.J., 1993. Structure and ontogeny of Vertebraria from
silicified Permian sediments in East Antarctica. Review of Palaeobotany and Palynol-
ogy 79, 221–244.

Nickerl, J., Helbig, R., Schulz, H.-J., Werner, C., Neinhuis, C., 2013. Diversity and potential
correlations to the function of Collembola cuticle structures. Zoomorphology 132,
183–195.

Nishida, H., Pigg, K.B., Kudo, K., Rigby, J.F., 2007. New evidence of reproductive organs of
Glossopteris based on permineralized fossils from Queensland, Australia. I. Ovulate
organ Homevaleia gen. nov. Journal of Plant Research 120, 539–549.

Norton, R.A., Bonamo, P.M., Grierson, J.D., Shear, W.A., 1988. Oribatid mite fossils from a
terrestrial deposit near Gilboa, New York. Journal of Paleontology 62, 259–269.

Orrhage, L., 1971. Light and electron microscope studies of some annelid setae. Acta
Zoologica 52, 157–169.

Osório, E., Gomes, M., Vilela, A., Kalkreuth, W., de Almeida, M., Borrego, A., Alvarez, D.,
2006. Evaluation of petrology and reactivity of coal blends for use in pulverized
coal injection (PCI). International Journal of Coal Geology 68, 14–29.

Pal, P., Srivastava, A.K., Ghosh, A.K., 2010. Plant fossils of Maitur Formation: possibly the
ultimate stage of Glossopteris flora in Raniganj Coalfield, India. The Palaeobotanist
59, 33–45.

Pant, D.D., Singh, V.K., 1987. Xylotomy of some woods from Raniganj Formation (Perm-
ian), Raniganj Coalfield, India. Palaeontographica Abteilung B 203, 1–82.

Pant, D.D., Srivastava, P.C., 1995. Lower Gondwana insect remains and evidence of insect–
plant interaction. In: Pant, D.D., Nautiyal, D.D., Bhatnagar, A.N., Bose, M.D., Khare, P.K.
(Eds.), Proceedings of the International Conference on Global Environment and Di-
versification of Plants Through Geological Time. Society of Plant Taxonomists, Allah-
abad, pp. 317–326.

Peterson, M.N.A., Von Der Borch, C.C., 1965. Chert: modern inorganic deposition in a
carbonate-precipitating locality. Science 149, 1501–1503.

Pigg, K.B., McLoughlin, S., 1997. Anatomically preserved Glossopteris leaves from the
Bowen and Sydney basins, Australia. Review of Palaeobotany and Palynology 97,
339–359.

Pigg, K.B., Nishida, H., 2006. The significance of silicified plant remains to the understand-
ing of Glossopteris-bearing plants: a historical review. Journal of the Torrey Botanical
Society 133, 46–61.

Pinheiro, E.R.S., Iannuzzi, R., Tybusch, G.P., 2012a. Specificity of leaf damage in the Perm-
ian “Glossopteris Flora”: a quantitative approach. Review of Palaeobotany and Paly-
nology 174, 113–121.

Pinheiro, E.R.S., Tybusch, G.P., Iannuzzi, R., 2012b. New evidence of plant–insect interac-
tions in the Lower Permian from Western Gondwana. The Palaeobotanist 61, 67–74.

Plumstead, E.P., 1962. Possible angiosperms from Lower Permian coal of the Transvaal.
Nature 194, 594–595.

Plumstead, E.P., 1963. The influence of plants and environment on the developing animal
life of Karoo times. South African Journal of Science 59, 147–152.

Plumstead, E.P., 1970. Recent progress and the future of palaeobotanical correlation in
Gondwanaland. In: Haughton, S.H. (Ed.), Proceedings 2nd IUGS Symposium on Gond-
wana Stratigraphy and Palaeontology. Council for Scientific and Industrial Research
South Africa, Pretoria, pp. 139–144.

Prevec, R., 2012. The life of coal: ancient forests that power our nation. Quest 8 (4), 26–31.
Prevec, R., Labandeira, C.C., Neveling, J., Gastaldo, R.A., Looy, C.V., Bamford, M., 2009. Por-

trait of a Gondwanan ecosystem: a new Late Permian fossil locality from KwaZulu-
Natal, South Africa. Review of Palaeobotany and Palynology 156, 454–493.

Prevec, R., Gastaldo, R.A., Neveling, J., Reid, S.B., Looy, C.V., 2010. An autochthonous
glossopterid flora with latest Permian palynomorphs and its depositional setting in
the Dicynodon Assemblage Zone of the southern Karoo Basin, South Africa.
Palaeogeography, Palaeoclimatology, Palaeoecology 292, 391–408.

Racki, G., Wignall, P.B., 2005. Chapter 10. Late Permian double-phased mass extinction
and volcanism: an oceanographic perspective. In: Over, D.J., Marrow, J.R., Wignall,
erstätte: The Permian permineralised peat biota of the Prince Charles
016/j.gr.2014.01.004

http://dx.doi.org/10.1016/j.gr.2014.01.004


27B.J. Slater et al. / Gondwana Research xxx (2014) xxx–xxx
P.B. (Eds.), Understanding Late Devonian and Permian–Triassic Biotic and Climatic
Events: Towards an Integrated Approach. Elsevier, Amsterdam, pp. 263–297.

Raymond, A., 1987. Interpreting ancient swamp communities: can we see the forest in
the peat? Review of Palaeobotany and Palynology 52, 217–231.

Rees, P.M., 2002. Land plant diversity and the end-Permian mass extinction. Geology 30,
827–830.

Retallack, G.J., 1999. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic
paleosols in the Sydney Basin, Australia. Bulletin of the Geological Society of America
111, 52–70.

Retallack, G.J., 2013. Permian and Triassic greenhouse crises. Gondwana Research. http://
dx.doi.org/10.1016/j.gr.2012.03.003.

Retallack, G.J., Dilcher, D.L., 1988. Reconstructions of selected seed ferns. Annals of the
Missouri Botanical Garden 75, 1010–1057.

Retallack, G.J., Krull, E.S., Robinson, S.E., 1995. Permian and Triassic paleosols and
paleoenvironments of southern Victoria Land, Antarctica. Antarctic Journal of the
United States 30, 33–36.

Retallack, G.J., Metzger, C.A., Greaver, T., Jahren, A.H., Smith, R.M.H., Sheldon, N.D., 2006.
Middle–Late Permian mass extinction on land. Bulletin of the Geological Society of
America 118, 1398–1411.

Rigby, J.F., 1993. Review of the Early Permian flora of the Nychum Volcanics north of
Chillagoe, north Queensland. In: Findlay, R.H., Unrug, R., Banks, M.R., Veevers, J.J.
(Eds.), Gondwana Eight: Assembly, Evolution and Dispersal. A.A. Balkema, Rotter-
dam, pp. 241–247.

Rigby, J.F., 1996. The significance of a Permian flora from Irian Jaya (West New Guinea)
containing elements related to coeval floras of Gondwanaland and Cathaysialand.
The Palaeobotanist 45, 295–302.

Rigby, J.F., Maheshwari, H.K., Schopf, J.M., 1980. Revision of the plants collected by J.D.
Dana during 1839–1840 in Australia. Geological Survey of Queensland Publication
376. Palaeontological Paper, 47, pp. 1–25.

Rohn, R., 1984. Glossopteris da Formação Rio do Rasto no sul do estado do Paraná. Anais do
XXXIII Congresso Brasileiro de Geologia, Rio de Janeiro, pp. 1.047–1.061.

Rohn, R., Rösler, O., 1989. Folhas denteadas da Formação Rio do Rasto (Bacia do Paraná,
Permiano Superior) e seu possível significado paleoclimático. Boletim Instituto de
Gêociencias, Universidade de São Paulo Publicação Especial 7, 127–137.

Rohn, R., Rösler, O., Pennatti, J.-R.R., Czajkowski, S., Iannuzzi, R., Mendonca, E., Ferreira,
A.R., Pereira, S.C.A., Quitério, L., 1997. Plant megafossil occurrences in the Teresina
and Rio do Rasto Formations (Upper Permian of the Paraná Basin) in the southern re-
gion of the Paraná state, Brazil. Revista Universidade Guarulhos — Geociências II (no

especial), pp. 58–68.
Rolfe, W.D.I., 1962. The cuticle of some Middle Silurian ceratiocaridid Crustacea from

Scotland. Palaeontology 5, 30–51.
Rößler, R., 2000. The Late Palaeozoic tree fern Psaronius, an ecosystem unto itself. Review

of Palaeobotany and Palynology 108, 55–74.
Rubidge, B.S., Johnson, M.R., Kitching, J.W., Smith, R.M.H., Keyser, A.W., Groenewald, G.H.,

1995. An introduction to the biozonation of the Beaufort Group. In: Rubidge, B.S.
(Ed.), Reptillian Biostratigraphy of the Permian–Triassic Beaufort Group (Karoo Su-
pergroup). SACS Biostratigraphic Series, 1, pp. 1–2.

Rusek, J., 1975. Die bodenbildende function von Collembolen und Acarina. Pedobiologia
15, 299–308.

Ryberg, P.E., 2010. Lakkosia kerasata gen. et sp. nov., a permineralized megasporangiate
glossopterid structure from the central Transantarctic Mountains, Antarctica. Interna-
tional Journal of Plant Sciences 171, 332–344.

Ryberg, P.E., Taylor, E.L., Taylor, T.N., 2012a. Antarctic glossopterid diversity on a local
scale: the presence ofmultiplemegasporophyll genera, Upper Permian, Mt. Achernar,
Transantarctic Mountains, Antarctica. American Journal of Botany 99, 1531–1540.

Ryberg, P.E., Taylor, E.L., Taylor, T.N., 2012b. Permineralized lycopsid from the Permian of
Antarctica. Review of Palaeobotany and Palynology 169, 1–6.

Sayre, A.P., 1994. Taiga. Twenty-First Century Books, New York.
Schaefer, I., Norton, R.A., Scheu, S., Maraun, M., 2010. Arthropod colonization of land—

linking molecules and fossils in oribatid mites (Acari, Oribatida). Molecular Phyloge-
netics and Evolution 57, 113–121.

Schopf, J.M., 1982. Forms and facies of Vertebraria in relation to Gondwana coal. Antarctic
Research Series 36, 37–62.

Schwendemann, A.B., Taylor, T.N., Taylor, E.L., Krings, M., Dotzler, N., 2009.
Combresomyces cornifer from the Triassic of Antarctica: evolutionary stasis in the
Peronosporomycetes. Review of Palaeobotany and Palynology 154, 1–5.

Schwendemann, A.B., Decombeix, A.-L., Taylor, E.L., Taylor, T.N., 2010. Collinsonites schopfii
gen. et sp. nov., a herbaceous lycopsid from the Upper Permian of Antarctica. Review
of Palaeobotany and Palynology 158, 291–297.

Scott, A.C., 1977. Coprolites containing plant material from the Carboniferous of Britain.
Palaeontology 20, 59–68.

Scott, A.C., 1978. Sedimentological and ecological control of Westphalian B plant assem-
blages from West Yorkshire. Proceedings of the Yorkshire Geological Society 41,
461–508.

Scott, A.C., 1984. Studies on the sedimentology, palaeontology and palaeoecology of the
Middle Coal Measures (Westphalian B, Upper Carboniferous) at Swillington, York-
shire. Part 1 Introduction. Transactions of the Leeds Geological Association 10, 1–16.

Scott, A.C., 1989. Observations on the nature and origin of fusain. International Journal of
Coal Geology 12, 443–475.

Scott, A.C., 2000. The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology,
Palaeoecology 164, 297–345.

Scott, A.C., Glasspool, I.J., 2006. The diversification of Paleozoic fire systems and fluctua-
tions in atmospheric oxygen concentration. Proceedings of the National Academy of
Sciences of the United States of America 103, 10861–10865.

Scott, A.C., Jones, T.P., 1991. Fossil charcoal: a plant-fossil record preserved by fire. Geolo-
gy Today 7, 214–216.
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
Scott, A.C., Stephenson, J., Chaloner, W.G., 1992. Interaction and coevolution of plants and
arthropods during the Palaeozoic and Mesozoic. Philosophical Transactions of the
Royal Society of London B 355, 129–165.

Selden, P.A., 1981. Functional morphology of the prosoma of Baltoeurypterus
tetragonophthalmus (Fischer) (Chelicerata: Eurypterida). Transactions of the Royal
Society of Edinburgh: Earth Sciences 72, 9–48.

Selden, P.A., Nudds, J.R., 2004. Evolution of Fossil Ecosystems. Manson, London (304 pp.).
Selden, P.A., Shear, W.A., Sutton, M.D., 2008a. Fossil evidence for the origin of spider spin-

nerets, and a proposed arachnid order. Proceedings of the National Academy of Sci-
ences of the United States of America 105, 20781–20785.

Selden, P.A., Baker, A.S., Phipps, K.J., 2008b. An oribatid mite (Arachnida: Acari) from the
Oxford clay (Jurassic: Upper Callovian) of South Cave Station Quarry, Yorkshire, UK.
Palaeontology 51, 623–633.

Selden, P.A., Huys, R., Stephenson, M.H., Heward, A.P., Taylor, P.N., 2010. Crustaceans from
bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods.
Nature Communications 1, 50. http://dx.doi.org/10.1038/ncomms1049.

Sen, J., 1955. A Glossopteris bearing sori-like structures. Nature 176, 742–743.
Sen, J., 1963. A glossopteridean fructification from India. Nature 200, 1124.
Shear, W.A., Bonamo, P.M., 1988. Devonobiomorpha, a new order of centipedes

(chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phy-
logeny of centipede orders. American Museum Novitates 2927, 1–30.

Shear, W.A., Bonamo, P.M., 1990. Fossil centipedes from the Devonian of New York State,
USA. In: Minelli, A. (Ed.), Proceedings of the 7th International Congress of
Myriapodology. Brill, Leiden, pp. 89–96.

Shear, W.A., Palmer, J.M., Coddington, J.A., Bonamo, P.M., 1989a. A Devonian spinneret:
early evidence of spiders and silk use. Science 246, 479–481.

Shear, W.A., Schawaller, W., Bonamo, P.M., 1989b. Record of Palaeozoic pseudoscorpions.
Nature 341, 527–529.

Singh, S.M., 2002. Seeds, fructifications, bracts and calamitalean axes from the Karanpura
and Bokaro group of coalfields. The Palaeobotanist 51, 73–79.

Slater, B.J., McLoughlin, S., Hilton, J., 2011. Guadalupian (Middle Permian) megaspores
from a permineralised peat in the Bainmedart Coal Measures, Prince Charles Moun-
tains, Antarctica. Review of Palaeobotany and Palynology 167, 140–155.

Slater, B.J., McLoughlin, S., Hilton, J., 2012. Animal–plant interactions in a Middle
Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles
Mountains, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology
363–364, 109–126.

Slater, B.J., McLoughlin, S., Hilton, J., 2013. Peronosporomycetes (Oomycota) from Middle
Permian permineralized peats of the Bainmedart Coal Measures, Prince Charles
Mountains, Antarctica. PLoS ONE 8 (8), e70707.

Smoot, E.L., Taylor, T.N., 1985. Paleobotany: recent developments and future research di-
rections. Palaeogeography, Palaeoclimatology, Palaeoecology 50, 149–162.

Srivastava, A.K., 1979. Studies in the Glossopteris flora of India — 44. Raniganj plant
megafossils and miospores from Auranga Coalfield, Bihar. The Palaeobotanist 26,
72–94.

Srivastava, A.K., 1988. Lower Barakar flora and insect/plant relationship. The Palaeobotanist
36, 138–142.

Srivastava, A.K., 1996. Plant/animal relationship in Lower Gondwanas of India. In:
Ayyasami, K., Sengupta, S., Ghosh, R.N. (Eds.), Gondwana Nine, vol. 1. A.A. Balkema,
Rotterdam, pp. 549–555.

Srivastava, A.K., 2008. New trends in Gondwana palaeobotany. Earth Science India 1,
160–166.

Srivastava, A.K., Agnihotri, D., 2011. Insect traces on Early Permian plants of India. Paleon-
tological Journal 45, 200–206.

Srivastava, A.K., Tewari, R., 1996. Plant fossils from the Barakar Formation, Auranga Coal-
field, Bihar. Geophytology 26, 83–88.

Stagg, H.M.J., 1985. The structure and origin of Prydz Bay and MacRobertson Shelf, East
Antarctica. Tectonophysics 114, 315–340.

Stankiewicz, B.A., Scott, A.C., Collinson, M.E., Finch, P., Mösle, B., Briggs, D.E.G., Evershed,
R.P., 1998. Molecular taphonomy of arthropod and plant cuticles from the Carbonif-
erous of North America: implications for the origin of kerogen. Journal of the Geolog-
ical Society 155, 453–462.

Staub, J.R., Cohen, A.D., 1979. The Snuggedy Swamp of South Carolina; a back-barrier es-
tuarine coal-forming environment. Journal of Sedimentary Research 49, 133–143.

Stephenson, J., Scott, A.C., 1992. The geological history of insect-related plant damage.
Terra Nova 4, 542–552.

Stevens, L.G., Hilton, J., Rees, A.R., Rothwell, G.W., Bateman, R.M., 2010. Systematics, phy-
logenetics and reproductive biology of Flemingites arcuatus, sp. nov., an exceptionally
preserved and partially reconstructed Carboniferous arborescent lycopsid. Interna-
tional Journal of Plant Sciences 171, 783–808.

Strullu-Derrien, C., McLoughlin, S., Philippe,M., Mørk, A., Strullu, D.G., 2012. Arthropod in-
teractions with bennettitalean roots in a Triassic permineralized peat from Hopen,
Svalbard Archipelago (Arctic). Palaeogeography, Palaeoclimatology, Palaeoecology
348–349, 45–58.

Stubblefield, S.P., Taylor, T.N., 1986. Wood decay in silicified gymnosperms from
Antarctica. Botanical Gazette 147, 116–125.

Tate, R., 1867. On some secondary fossils from South Africa. Quarterly Journal of the Geo-
logical Society 23, 139–175.

Taugourdeau, P., 1967. Débris microscopiques d'euryptéridés du Paléozoïque Saharien.
Revue de Micropaleontologie 10, 119–127.

Taylor, E.L., Taylor, T.N., Collinson, J.W., 1989. Depositional setting and palaeobotany of
Permian and Triassic permineralized peat from the central Transantarctic Mountains,
Antarctica. International Journal of Coal Geology 12, 657–679.

Taylor, T.N., Krings, M., Dotzler, N., Galtier, J., 2011. The advantage of thin section prepa-
rations over acetate peels in the study of late Paleozoic fungi and other microorgan-
isms. Palaios 26, 239–244.
erstätte: The Permian permineralised peat biota of the Prince Charles
016/j.gr.2014.01.004

http://dx.doi.org/10.1016/j.gr.2014.01.004


28 B.J. Slater et al. / Gondwana Research xxx (2014) xxx–xxx
Teichmüller, M., 1989. The genesis of coal from the viewpoint of coal petrology. In: Lyons,
P.C., Alpern, B. (Eds.), Peat and Coal: Origin, Facies, and Depositional Models. Interna-
tional Journal of Coal Geology, 12, pp. 1–87.

Teichmüller, M., Teichmüller, R., 1982. The geological basis of coal formation, In: Stach, E.,
Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D., Teichmüller, R. (Eds.),
Stach's Textbook of Coal Petrology, 3rd edition. Gebrüder Borntraeger, Berlin, pp. 5–86.

Tetlie, O.E., Brandt, D.S., Briggs, D.E.G., 2008. Ecdysis in sea scorpions (Chelicerata:
Eurypterida). Palaeogeography, Palaeoclimatology, Palaeoecology 265, 182–194.

Tewari, R., Mehrotra, N.C., Meena, K.L., Pillai, S.S.K., 2009. Permian megaspores from
Kuraloi area, Ib-River Coalfield, Mahanadi Basin, Orissa. Journal of the Geological So-
ciety of India 74, 669–678.

Tie, Y.L., Esterle, J.S., 1991. Formation of lowland peat domes in Sarawak, Malaysia. Pro-
ceedings of the International Symposium on Tropical Peatland. Kuching, Sarawak,
pp. 81–90.

Tosolini, A.-M.P., Pole, M., 2010. Insect and clitellate annelid traces in mesofossil assem-
blages from the Cretaceous of Australia. Alcheringa 34, 397–419.

Trewin, N.H., 1994. Depositional environment and preservation of biota in the Lower De-
vonian hot-springs of Rhynie, Aberdeenshire, Scotland. Transactions of the Royal So-
ciety of Edinburgh: Earth Sciences 84, 433–442.

Trewin, N.H., 1996. The Rhynie Cherts: an Early Devonian ecosystem preserved by hydro-
thermal activity. CIBA Foundation Symposia 202, 131–149.

Trewin, N.H., Fayers, S.R., Kelman, R., 2003. Subaqueous silicification of the contents of
small ponds in an Early Devonian hot-spring complex, Rhynie, Scotland. Canadian
Journal of Earth Sciences 40, 1697–1712.

Tveit, A., Schwacke, R., Svenning, M.M., Urich, T., 2012. Organic carbon transformations in
high-Arctic peat soils: key functions and microorganisms. ISME Journal 7, 299–311.

Vajda, V., McLoughlin, S., 2007. Extinction and recovery patterns of the vegetation across
the Cretaceous–Palaeogene boundary — a tool for unravelling the causes of the end-
Permian mass-extinction. Review of Palaeobotany and Palynology 144, 99–112.

van Amerom, H.W.J., 1966. Phagophytichnus ekowskii nov. ichnogen. & nov. ichnosp., eine
Missbildung infolge von Insektenfrass, aus dem spanischen Stephanien (Provinz
Léon). Leidse Geologische Mededelingen 38, 181–184.

Van deWetering, N., Esterle, J., Baublys, K., 2013. Decoupling δ13C response to palaeoflora
cycles and climatic variation in coal: a case study from the Late Permian Bowen Basin,
Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 386,
165–179.

Van Dijk, D.E., 1981. A study of the type locality of Lidgettonia africana Thomas 1958.
Palaeontologia Africana 24, 43–61.

Van Dijk, D.E., Hobday, E.E., Tankard, A.J., 1978. Permo-Triassic lacustrine deposits in the
Eastern Karoo Basin, Natal, South Africa. Special Publication of the International Asso-
ciation of Sedimentology 2, 115–139.

Van Dijk, D.E., Gordon-Gray, K.D., Reid, C., Lacey, W.S., 1979. Contributions to knowledge
of the Lower Beaufort (Upper Permian) flora of Natal, South Africa. In: Laskar, B., Raja
Rao, C.S. (Eds.), Proceedings of the Fourth International Gondwana Symposium, Cal-
cutta, India, 1977. Hindustan Publishing Corporation, (India) Dehli, pp. 109–121.
Please cite this article as: Slater, B.J., et al., A high-latitude Gondwanan lag
Mountains, Antarctica, Gondwana Research (2014), http://dx.doi.org/10.1
Veevers, J.J., 2004. Gondwanaland from 650–500 Ma assembly through 320 Mamerger in
Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and ra-
diometric dating. Earth-Science Reviews 68, 1–132.

Vegter, J.J., 1983. Food and habitat specialisation in coexisting springtails (Collembola,
Entomobryidae). Pedobiology 25, 253–262.

Villalba-Breva, S., Martín-Closas, C., Marmi, J., Gomez, B., Fernández-Marrów, M.T., 2012.
Peat-forming plants in the Maastrichtian coals of the Eastern Pyrenees. Geologica
Acta 10, 189–207.

Walter, M.R., McLoughlin, S., Drinnan, A.N., Farmer, J.D., 1998. Palaeontology of De-
vonian thermal spring deposits, Drummond Basin, Australia. Alcheringa 22,
285–314.

Wardle, P., 1974. The Kahikatea (Dacrycarpus dacrydioides) forest of SouthWestland. Pro-
ceedings of the New Zealand Ecological Society 21, 62–71.

Wardle, P., 1991. Vegetation of New Zealand. Cambridge University Press, Cambridge
(672 pp.).

Weaver, L., McLoughlin, S., Drinnan, A.N., 1997. Fossil woods from the Upper Permian
Bainmedart Coal Measures, northern Prince Charles Mountains, East Antarctica.
AGSO Journal of Australian Geology and Geophysics 16, 655–676.

Wellman, C.H., 1995. Phytodebris from Scottish Silurian and Lower Devonian continental
deposits. Review of Palaeobotany and Palynology 84, 255–279.

Wells, N.A., 1983. Carbonate deposition, physical limnology and environmentally con-
trolled chert formation in Palaeocene–Eocene Lake Flagstaff, central Utah. Sedimenta-
ry Geology 35, 263–296.

Wheeler, W.H., Textoris, D.A., 1978. Triassic limestone and chert of playa origin in North
Carolina. Journal of Sedimentary Petrology 48, 765–776.

White, M.E., 1998. The Greening of Gondwana, 3rd edition. Kangaroo Press, East Roseville,
New South Wales (256 pp.).

Wilson, L.R., Hoffmeister, W.S., 1956. Plant microfossils of the Croweburg Coal. Oklahoma
Geological Survey Circular 32, 1–57.

Winslow, M., 1959. Upper Mississippian and Pennsylvanian megaspores and other plant
fossils from Illinois. Bulletin of the Illinois Geological Survey 86, 7–102.

Womack, T., Slater, B.J., Stevens, L.G., Anderson, L.I., Hilton, J., 2012. First cladoceran fossils
from the Carboniferous: palaeoenvironmental and evolutionary implications.
Palaeogeography, Palaeoclimatology, Palaeoecology 344–345, 39–48.

Wu, T., Ayres, E., Bardgett, R.D., Wall, D.H., Garey, J.R., 2011. Molecular study of worldwide
distribution and diversity of soil animals. PNAS 108, 17720–17725.

Yin, H., Feng, Q., Lai, X., Baud, A., Tong, J., 2007. The protracted Permo-Triassic crisis and
multi-episode extinction around the Permian–Triassic boundary. Global and Plane-
tary Change 55, 1–20.

Zavada, M.S., Mentis, M.T., 1992. Plant–animal interaction: the effect of Permian
megaherbivores on the glossopterid flora. American Midland Naturalist 127,
1–12.

Zeiller, M.R., 1896. Etude sur Quelques plantes fossiles en particulier Vertebraria et
Glossopteris des environs de Johannesburg (Transvaal). Bulletin de la Societe
Geologique de France 24, 349–378.
erstätte: The Permian permineralised peat biota of the Prince Charles
016/j.gr.2014.01.004

http://dx.doi.org/10.1016/j.gr.2014.01.004

	A high-�latitude Gondwanan lagerstätte: The Permian permineralised peat biota of the Prince Charles Mountains, Antarctica
	1. Introduction
	2. Material and methods
	3. Geological setting and palaeogeography
	4. Biota
	4.1. Composition of the silicified peat
	4.2. Composition of associated coals

	5. Palaeoecology
	5.1. Vegetation structure
	5.2. Fungi and fungi-like organisms
	5.3. Plant–animal–fungal interactions
	5.4. Energy pathways

	6. Taphonomy
	6.1. Accumulation model
	6.2. Silicification and compaction
	6.3. Wildfire

	7. Mire type
	7.1. Depositional setting
	7.2. Rheotrophic vs ombrotrophic mire
	7.3. Structure (and reconstruction) of a glossopterid mire
	7.4. Implications for coal geology

	8. Integrated discussion
	9. Conclusions
	Acknowledgements
	Appendix 1. List of published records of probable arthropod damage on Gondwanan Permian plants. Publications marked with (C...
	References


