Variable temperature neutron diffraction study of crystal structure and transport pathways in oxide ion conductors Bi$_{12.5}$Ln$_{1.5}$ReO$_{24.5}$ (Ln=Lu, Er)

Hervoches, Charles H.; Greaves, Colin

DOI: 10.1016/j.ssi.2013.10.032

License: Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Hervoches, CH & Greaves, C 2014, 'Variable temperature neutron diffraction study of crystal structure and transport pathways in oxide ion conductors Bi$_{12.5}$Ln$_{1.5}$ReO$_{24.5}$ (Ln=Lu, Er)', Solid State Ionics, vol. 254, pp. 1-5. https://doi.org/10.1016/j.ssi.2013.10.032

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 04/06/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Variable temperature neutron diffraction study of crystal structure and transport pathways in oxide ion conductors Bi$_{12.5}$Ln$_{1.5}$ReO$_{24.5}$ (Ln = Lu, Er)

Charles H. Hervoches *, Colin Greaves

School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

Abstract

Samples of highly conducting Bi$_{12.5}$Lu$_{1.5}$ReO$_{24.5}$ and Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$ have been studied by neutron powder diffraction at room temperature for both phases and at 25 °C ≤ T ≤ 500 °C in the case of Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$. Both materials crystallize in the cubic δ-Bi$_2$O$_3$ related system, space group Fm-3m. Changes in the oxygen sublattice at 25 °C ≤ T ≤ 500 °C have been investigated by the Rietveld and maximum entropy methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The high ionic conductor δ-Bi$_2$O$_3$ crystallises in a defect fluorite related structure, space group Fm-3m [1]. Its crystal structure is typically described with cations occupying the 4a (0 0 0) position and oxygens in 8c ($\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$) with some interstitial oxygens shifted towards ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$) [2], however slightly different systems to model the disordered distribution of the oxide ions have been proposed [3,4]. Its high ionic conduction is linked to the presence of ~25% oxygen ion vacancies in the structure [1,5]. The phases exist only above 730 °C, and attempts to stabilise the high oxide ion conductor δ-phase at lower temperature have been the subject of numerous studies [6,7]. Amongst them, the stabilised δ-phase family of compounds with composition Bi$_{12.5}$Ln$_{1.5}$ReO$_{24.5}$ presents very high ionic conductivity at low temperature [8] and their detailed crystal structure characteristics appear to differ from those of Bi$_2$O$_3$ doped with rare-earth only. In these materials, rhenium is apparently tetrahedrally coordinated at the local scale [9], while in the related ordered phase both tetrahedral ReO$_4$ and octahedral ReO$_6$ species are present [10,11]. To date NPD data have been obtained only for T ≤ 25 °C, and indicate significant differences in the O positions compared with conventional lanthane stabilised phases: the interstitial oxygen position is significantly displaced and is thought to be related to the enhanced conductivity [8]. In the present study we investigate the crystal structure of the Bi$_{12.5}$Ln$_{1.5}$ReO$_{24.5}$ (Ln = Lu, Er) system and the change in oxygen sublattice for 25 °C ≤ T ≤ 500 °C in Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$.

2. Experimental

Polycrystalline samples of Bi$_{12.5}$Lu$_{1.5}$ReO$_{24.5}$ and Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$ have been prepared by traditional solid state synthesis from stoichiometric quantities of Bi$_2$O$_3$, Lu$_2$O$_3$/Er$_2$O$_3$, and NH$_4$ReO$_4$. The powders were thoroughly mixed and ground, and subsequently heated in air at 800 °C for 24 h with one intermediate grinding and allowed to cool slowly in the furnace.

X-ray powder diffraction (XRD) data were obtained at room temperature on a Siemens D5000 diffractometer operating in transmission mode (Ge primary beam monochromator giving Cu-Kα$_1$ radiation, wavelength 1.5406 Å). Neutron powder diffraction (NPD) data of the samples were collected on the D2B diffractometer (wavelength 1.5943 Å) at the Institut Laue Langevin, Grenoble, France. Approximately 8 g of each material was loaded in a cylindrical vanadium can of 8 mm diameter for data collection at temperatures of 25 °C, 200 °C, 300 °C, 400 °C, and 500 °C.

Rietveld refinements were carried out using GSAS [12] with EXPGUI graphical user interface [13]. The nuclear density distribution was obtained by the maximum entropy method (MEM)/MEM-based pattern fitting (MPF) method using the program PRIMA [14] with 128 × 128 × 128 pixels in conjunction with Rietan-FP software [15].
Crystal structures and nuclear density distribution representations were drawn with VESTA [16].

For electrical measurements, dense sintered pellets of approximately 8 mm diameter and 2 mm thickness were prepared and silver electrodes painted on both surfaces. Conductivity was measured over the temperature range 200–600 °C by a.c. impedance spectroscopy with a Solartron SI 1260 impedance analyzer in the frequency range 1 Hz to 10⁶ Hz.

3. Results and discussion

XRD data confirmed the phase purity of the samples. As with other lanthanide doped bismuth rhenium oxides, they both adopt the cubic Fm-3m space group, lattice parameter $a = 5.5592(1)$ Å and 5.5687(1) Å for Bi₁₂₅Lu₁.₅ReO₂₄.₅ and Bi₁₂₅Er₁.₅ReO₂₄.₅ respectively at 25 °C.

Conductivity measurement (Fig. 1) demonstrated the high conductivity of the materials with values close to the ones previously reported [8]. Both materials have conductivity higher than conductivity of the materials with values close to the ones doped Bi₂O₃ by Boyapati et al. [17] and Y-doped Bi₂O₃ by Abrahams et al. [18]; while in the Bi₃Ta₁.₅O₇ crystal structure as a starting model. The direct oxide-ion diffusion pathway along the b-axis is observed for Y₀.₇₈₅Ta₀.₂₁₅O₁.₇₁₅ [23], as opposed from straight pathway is explained by the repulsion of anion to maintain a reasonable distance. However, a straight pathway is observed for Y₀.₇₈₅Ta₀.₂₁₅O₁.₇₁₅ [23], as is the case for the present material. This suggests that Ta and Re cations might play a similar role in these systems.

The direct oxide-ion diffusion pathway along the $<100>$ direction is visible at 400 and 500 °C, with coherent scattering length of 0.21 f. Å⁻³ at the 24d (0.5, 0.25, 0.25) site (distances cation – 24d site = 1.99 Å). Some density “bulges” from the tetrahedral volume covering the 8c and 32f sites pointing toward the $<111>$ direction and the 24e (0.33 0 0) site, are also present. This suggests a possible supplementary curved conduction path along the $<110>$ direction going through the 8c/32f 24e 8c/32f sites around the cation (distances cation – 24e site = 1.86 Å). Reducing the coherent scattering length to 0.11 f. Å⁻³ allows visualising the pathway (Fig. 6).

Fig. 1. Arrhenius plot of total conductivity for Bi₁₂₅Lu₁.₅ReO₂₄.₅ and Bi₁₂₅Er₁.₅ReO₂₄.₅.

Fig. 2. Evolution of lattice parameter with temperature for Bi₁₂₅Lu₁.₅ReO₂₄.₅ and Bi₁₂₅Er₁.₅ReO₂₄.₅.

It is interesting to note that the different nuclear densities associated to anion distribution at (i) 200–300 °C and (ii) 400–500 °C appear to reflect the non linear behaviour of atomic parameter variation with temperature. Non linear evolution of lattice parameter.
with temperature in Bi$_{3}$Ta$_{0.50}$Nb$_{0.50}$O$_{7}$, resulting in slightly higher than expected cell volume at higher temperature, has been explained by the increased occupancy at the 24d position – which is interstitial to the cubic closed packed (ccp) fluorite lattice – at elevated temperatures [19]. Since in the present materials nuclear densities are observed at the 24d site at 400 and 500 °C only, this explanation can also be applied to the present case.

4. Conclusions

Both Bi$_{12.5}$Lu$_{1.5}$ReO$_{24.5}$ and Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$ crystallise in the cubic 6-β-Bi$_2$O$_3$ type system. New information on the evolution with temperature in the oxygen sublattices of the highly disordered Bi–Ln–Re–O system has been collected. At 500 °C, an oxide ion diffusion pathway along $<100>$ is clearly observed. Contrarily to most Bi$_2$O$_3$-

Table 1

Final atomic positions for Bi$_{12.5}$Lu$_{1.5}$ReO$_{24.5}$ (BiLu) and Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$ (BiEr) from Rietveld refinement. Space group Fm-3m (225); all cations in 4a $(0,0,0)$, O(1) in 8c $(1/4,1/4,1/4)$, O(2) in 32f (x,x,x). Cations occupancies Bi/Ln/Re = 0.8333/0.1/0.0667.

<table>
<thead>
<tr>
<th></th>
<th>BiLu-25°C</th>
<th>BiEr-25°C</th>
<th>BiEr-200°C</th>
<th>BiEr-300°C</th>
<th>BiEr-400°C</th>
<th>BiEr-500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>5.559(1)</td>
<td>5.569(1)</td>
<td>5.586(2)</td>
<td>5.594(2)</td>
<td>5.612(2)</td>
<td>5.631(3)</td>
</tr>
<tr>
<td>x 3f</td>
<td>0.364(1)</td>
<td>0.368(1)</td>
<td>0.359(1)</td>
<td>0.356(1)</td>
<td>0.354(1)</td>
<td>0.354(1)</td>
</tr>
<tr>
<td>Occ O(1)</td>
<td>0.592(5)</td>
<td>0.586(5)</td>
<td>0.578(5)</td>
<td>0.568(5)</td>
<td>0.554(5)</td>
<td>0.554(6)</td>
</tr>
<tr>
<td>Occ O(2)</td>
<td>0.060(1)</td>
<td>0.053(1)</td>
<td>0.053(1)</td>
<td>0.053(1)</td>
<td>0.061(1)</td>
<td>0.066(1)</td>
</tr>
<tr>
<td>Usio cations</td>
<td>4.55(4)</td>
<td>3.92(4)</td>
<td>3.33(2)</td>
<td>5.63(3)</td>
<td>6.21(4)</td>
<td>7.01(4)</td>
</tr>
<tr>
<td>Usio oxygens</td>
<td>11.5(1)</td>
<td>10.2(1)</td>
<td>11.7(1)</td>
<td>11.8(1)</td>
<td>11.9(1)</td>
<td>12.6(1)</td>
</tr>
<tr>
<td>χ^2 (47 var.)</td>
<td>2.409</td>
<td>2.780</td>
<td>3.478</td>
<td>3.304</td>
<td>2.887</td>
<td>2.696</td>
</tr>
<tr>
<td>Rwp</td>
<td>0.0246</td>
<td>0.0237</td>
<td>0.0274</td>
<td>0.0268</td>
<td>0.0251</td>
<td>0.0243</td>
</tr>
</tbody>
</table>

Fig. 3. Final Rietveld plot of a) Bi$_{12.5}$Lu$_{1.5}$ReO$_{24.5}$ and b) Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$ at room temperature.
fluorite related systems, the pathway in the \(<100> \) direction is not curved but straight. An additional pathway in the \(<110> \) direction passing through the \(24e \) \((0.33 0 0)\) site is also suggested. These features would explain the enhanced oxide ion conductivity observed in these materials.

Acknowledgments

We thank EPSRC for financial support. We are grateful to Emmanuelle Suard at ILL for help with the collection of neutron diffraction data.

References

Fig. 5. 3D nuclear-density distribution of Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$ at a) 25 °C, b) 300 °C, c) 500 °C.

Fig. 6. Nuclear-density distribution on the (110) plane of Bi$_{12.5}$Er$_{1.5}$ReO$_{24.5}$ at 500 °C. Saturation level 0 – 5%, with contours lines in the range 0.1 to 2 f Å$^{-3}$ (0.2 f Å$^{-3}$ step). Arrows indicate apparent oxide ion diffusion paths along the 100 and 110 directions.