Fatigue, psychological and cognitive impairment following transient ischaemic attack and minor stroke
Moran, G. M.; Fletcher, B.; Feltham, M. G.; Calvert, M.; Sackley, C.; Marshall, Tom

DOI:
10.1111/ene.12469

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the accepted version of the following article: Moran, G. M., Fletcher, B., Feltham, M. G., Calvert, M., Sackley, C. and Marshall, T. (2014), Fatigue, psychological and cognitive impairment following transient ischaemic attack and minor stroke: a systematic review. European Journal of Neurology. doi: 10.1111/ene.12469, which has been published in final form at http://dx.doi.org/10.1111/ene.12469. In addition, authors may also transmit, print and share copies with colleagues, provided that there is no systematic distribution of the submitted version, e.g. posting on a listserve, network or automated delivery.

Eligibility for repository : checked 04/06/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Fatigue, psychological and cognitive impairment following transient ischaemic attack and minor stroke: a systematic review

G. M. Moran a, B. Fletcher a,b, M. G. Feltham a, M. Calvert a, C. Sackley c and T. Marshall a

Primary Care Clinical Sciences, University of Birmingham, Edgbaston, Birmingham; a Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford; and c Faculty of Medicine and Health, University of East Anglia, Norwich Research Park, Norwich, UK

Keywords: anxiety, cognitive impairment, depression, fatigue, minor stroke, post-traumatic stress disorder, quality of life, transient ischaemic attack.

Transient ischaemic attack (TIA) and minor stroke are characterized by short-lasting symptoms; however, anecdotal and empirical evidence suggests that these patients experience ongoing cognitive/psychological impairment for which they are not routinely treated. The aims were (i) to investigate the prevalence and time course of fatigue, anxiety, depression, post-traumatic stress disorder (PTSD) and cognitive impairment following TIA/minor stroke; (ii) to explore the impact on quality of life (QoL), change in emotions and return to work; and (iii) to identify where further research is required and potentially inform an intervention study. A systematic review of MEDLINE, EMBASE, PSYCINFO, CINAHL, the Cochrane libraries and the grey literature between January 1993 and April 2013 was undertaken. Literature was screened and data were extracted by two independent reviewers. Studies were included of adult TIA/minor stroke participants with any of the outcomes of interest: fatigue, anxiety, depression, PTSD, cognitive impairment, QoL, change in emotions and return to work. Random-effects meta-analysis pooled outcomes by measurement tool. Searches identified 5976 records, 289 were assessed for eligibility and 31 studies were included. Results suggest high levels of cognitive impairment and depression post-TIA/minor stroke which decreased over time. However, frequencies varied between studies. Limited information was available on anxiety, PTSD and fatigue. Meta-analysis revealed that the measurement tool administered influenced the prevalence of cognitive impairment: Mini-Mental State Examination 17\% [95\% confidence interval (CI) 7, 26]; neuropsychological test battery 39\% (95\% CI 28, 50); Montreal Cognitive Assessment 54\% (95\% CI 43, 66). There is evidence to suggest that TIA/minor stroke patients may experience residual impairments; however, results should be interpreted with caution because of the few high quality studies. Notwithstanding, it is important to raise awareness of potential subtle but meaningful residual impairments.

Introduction

Transient ischaemic attack (TIA) and minor stroke are characterized by short-lasting symptoms [1,2]. These patients are discharged rapidly from hospital and treatment guidelines focus on secondary prevention of stroke [3]. However, there is evidence to suggest that TIA and minor stroke patients may experience residual impairments for which they are not routinely offered treatment. Coutts et al. [4] reported 15\% of a sample of TIA and minor stroke participants (n = 499) were disabled at 90 days as defined by a modified Rankin Scale score ≥2. In addition, Fens et al. [5] found that approximately half of a sample of TIA and minor stroke participants (n = 55) self-reported cognitive and communication difficulties, which was significantly higher (P ≤ 0.001) than angina controls (n = 72). Anecdotal evidence from patient interviews revealed that TIA and minor stroke patients experienced a variety of ongoing residual symptoms including memory and speech difficulties; feeling confused and more emotional; mild limb weakness and numbness [6]. Subtle but meaningful
impairment post-TIA and minor stroke may go undetected. If untreated, these impairments may result in a reduced quality of life (QoL), affect people’s ability to return to work and social activities and may affect behaviour related to future stroke prevention. Fatigue, psychological and cognitive impairments occur post-stroke and are potential sequelae of TIA and minor stroke; therefore, there is a need for a comprehensive systematic review of the literature to investigate these impairments post-TIA/minor stroke.

The aims of this systematic review were (i) to establish the prevalence of fatigue, anxiety, depression, post-traumatic stress disorder (PTSD) and cognitive impairment following TIA and minor stroke and to investigate the temporal course of these impairments; (ii) to explore the impact on QoL, change in emotions and return to work; (iii) to identify where further research is required and to potentially inform an intervention study, e.g. a cognitive rehabilitation intervention study, if impaired cognition was observed.

Methods

The full protocol for this systematic review was published as ‘A systematic review investigating fatigue, psychological and cognitive impairment following TIA and minor stroke: protocol paper’ [7]. The methods are summarized in brief below.

Eligibility criteria

Studies that reported the frequency of fatigue, anxiety, depression, PTSD or cognitive impairment, measured by validated tests, after TIA or minor stroke were identified. Studies reporting QoL, change in emotions and return to or performance at work were also included. Studies of mixed populations whereby it was possible to extract TIA or minor stroke data were included. Studies were excluded if they reported participants who had a history of stroke or a stroke during follow-up. All study designs were eligible with the exception of single case series and reviews. If possible, data were extracted from a control group if participants were free of stroke, TIA and minor stroke. There was no limit to the duration of follow-up. Full journal articles, conference abstracts and theses were included. Non-English papers were eligible and were screened for inclusion by research-active translators; however, none met the inclusion criteria.

Search strategy and data extraction

The following electronic databases were searched: MEDLINE, EMBASE, PSYCINFO, CINAHL, DARE, CENTRAL and CDSR. For pragmatic and quality of reporting reasons the search was limited to 20 years; therefore, databases were searched from January 1993 to April 2013. Grey literature was searched including Google Scholar, ProQuest Dissertation Theses Database, thesis.com and Conference Proceedings Citation Index. References from included studies were also checked. A comprehensive search strategy was developed through scoping searches and comprised the following elements: TIA, minor stroke, fatigue, anxiety, depression, PTSD and cognitive impairment (Appendix S1).

Two authors (GM and BF) independently screened titles and abstracts of search results; assessed the full text of relevant studies for eligibility; and completed data extraction and risk of bias assessments for included studies. Information was extracted on study characteristics, participants, controls and outcomes. The risk of bias assessment focused on sampling, measurement of outcomes, attrition
and analysis. This assessment did not generate an overall risk of bias score but a judgement of ‘yes’, ‘no’ or ‘unclear’, as recommended by Cochrane (Fig. S1).

Analysis

To explore the time course of outcomes, studies were grouped into short term (<3 months after TIA/minor stroke), medium term (3–12 months) and long term (over 12 months). Due to the heterogeneity of the measurement tools, it was not appropriate to pool frequencies at these time points as pre-specified. It was deemed appropriate to pool outcomes by measurement tool; therefore, a random-effects meta-analysis pooled studies which used the same measurement tool.

For studies measuring outcomes at more than one time point, the protocol planned exploratory analysis of new cases compared with persistent cases to investigate the natural history of the outcomes. However, this information was only reported by one study. Anecdotal evidence suggests that TIA and minor stroke patients experience residual memory and attention impairments; therefore, an analysis to investigate these specific domains was planned in the protocol. However, not enough studies were included that reported these data to conduct this sub-analysis. Chi-squared and Fisher’s exact tests were used to detect a statistically significant difference in a sub-analysis of studies with a suitable control group and to compare TIA and minor stroke frequencies. All statistical analysis was performed using STATA v12 (College Station, TX, USA). A narrative synthesis of results was also conducted.

Results

Electronic database searches identified 5976 records; 4237 remained after duplicate removal; 3954 were excluded on the basis of their titles leaving 289 to be assessed for eligibility and 31 met the inclusion criteria and were subsequently included (Fig. 1).

![Figure 1 Summary of study selection.](image-url)
Study characteristics
The 31 studies included 4109 participants and comprised 26 full text publications, three conference abstracts and two unpublished theses. Study designs were either case series (n = 25) or cohort studies (n = 6). Studies were located in Europe, North America and Asia. The majority (n = 22) recruited from a secondary care setting and 11 out of 15 studies that reported recruitment methods used consecutive recruitment.

Risk of bias
Assessment of the risk of bias revealed that the sampling domain was the weakest; only 10% of studies reported how the sample size was determined and consequently it was unclear if sample sizes were adequate. Furthermore, the presence of any of the outcomes before TIA or minor stroke was measured in under half the studies. The measurement, attrition and analysis domains were generally reported well (Fig. S1).

Prevalence of cognitive impairment
Cognitive impairment was measured in 15 studies [8–22]; 13 reported overall cognitive impairment (Table 1) and five impairment of specific cognitive domains (Table S1). A wide variation in prevalence of cognitive impairment was observed between studies and there was marked variation in frequencies assessed by different measurement tools. The meta-analysis pooled studies by measurement tool: Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA) and neuropsychological test battery when overall cognitive impairment was reported rather than individual tests. The pooled point estimate of the prevalence of cognitive impairment was lowest as estimated by the MMSE at 17% [95% confidence interval (CI) 7, 26] followed by the neuropsychological test battery at 39% (95% CI 28, 50) and MoCA at 54% (95% CI 43, 66) (Fig. 2a). The higher prevalence of cognitive impairment when assessed by MoCA compared with MMSE was confirmed in the two studies that directly compared these tools and observed a significant difference (P ≤ 0.001) [9,17].

An overall decrease in frequency of cognitive impairment with time was observed across studies; however, at individual time points there was variation in frequencies between studies (Fig. 3). In contrast to the overall trend, the two studies that measured cognitive impairment at two time points found no significant difference in prevalence [18,20]. MoCA produced a greater difference in prevalence of cognitive impairment than MMSE when comparing TIA and minor stroke participants to controls, which was significant in two studies (P ≤ 0.01) [12,22]. Significantly higher frequencies of cognitive impairment (P ≤ 0.05) were observed in minor stroke participants compared with TIA participants [8,9,18].

Prevalence of depression
Depression was reported in 10 studies (Table 2) [8,10,23–30]. Prevalence of depression was high within 1 month of TIA or minor stroke and decreased between 6 weeks and 3 months. With the exception of one study [10], the prevalence of depression remained relatively low between 3 and 12 months (Fig. 2b). No significant difference in the prevalence of depression was observed between TIA or minor stroke participants and controls in the two studies that measured this [8,24]. Likewise, one study reported prevalence of depression separately for TIA and minor stroke participants and found no significant difference between these participants [24].
Table 1 Studies measuring cognitive impairment: summary of measurement tool, participants' diagnosis, time point of assessment, sample size and frequencies

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Measure (cut-off score)</th>
<th>Diagnosis</th>
<th>Time point (weeks)</th>
<th>Sample size</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakker et al. (2004) [8]</td>
<td>Neuropsychological test battery (\geq 2 SD worse than norm score in \geq 2 tasks)</td>
<td>TIA</td>
<td><6</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td>Blackburn et al. (2013) [9]</td>
<td>MMSE (<27)</td>
<td>Minor stroke</td>
<td><2</td>
<td>47</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>MoCA (<26)</td>
<td>TIA</td>
<td>13</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor stroke</td>
<td>37</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Carlsson et al. (2003) [10]</td>
<td>MMSE (NR)</td>
<td>Minor stroke</td>
<td>52</td>
<td>75</td>
<td>8</td>
</tr>
<tr>
<td>Dong et al. (2012) [11]</td>
<td>Neuropsychological test battery (impaired on \geq 1 domain but no dementia)</td>
<td>TIA</td>
<td>13-26</td>
<td>46</td>
<td>22</td>
</tr>
<tr>
<td>Guyomard et al. (2011) [12]</td>
<td>MoCA (<26)</td>
<td>TIA</td>
<td>1-3</td>
<td>68</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>68</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harnadek et al. (2010) [13]</td>
<td>MMSE (<24-29)</td>
<td>Both</td>
<td>78/156</td>
<td>137</td>
<td>21</td>
</tr>
<tr>
<td>Narasimhalu et al. (2011) [15]</td>
<td>MMSE (NR)</td>
<td>Minor stroke</td>
<td><1</td>
<td>84</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>MoCA (<26)</td>
<td>TIA</td>
<td>142</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls</td>
<td>107</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Pendlebury et al. (2011) [18]</td>
<td>MMSE (baseline score \geq 2 points lower than the 1 month follow-up score)</td>
<td>TIA</td>
<td><1</td>
<td>84</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls</td>
<td><1</td>
<td>38</td>
<td>16</td>
</tr>
<tr>
<td>Radman et al. (2012) [20]</td>
<td>Neuropsychological test battery (below 2 SD on \geq 1 domain)</td>
<td>TIA</td>
<td><4</td>
<td>122</td>
<td>27</td>
</tr>
<tr>
<td>Wilson et al. (2012) [22]</td>
<td>MoCA (<26)</td>
<td>TIA</td>
<td>52</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controls</td>
<td>99</td>
<td>34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSM-IV-R, Diagnostic and Statistical Manual of Mental Disorders III-R; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders IV; ICD-10, International Classification of Diseases 10; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; NR, not reported; TIA, transient ischaemic attack.

Prevalence of fatigue

Three studies measured fatigue, all between 6 and 12 months following TIA or minor stroke; however, each study administered a different fatigue questionnaire (Table 3) [20,31,32]. Prevalence estimates were similar for all studies (Fig. 2c). One study found no significant difference in prevalence of fatigue ($P = 0.741$) measured at 6 and 12 months [20]. This was the only study to investigate the natural history of fatigue and found that two-thirds of the participants who reported fatigue at 6 months remained fatigued at 12 months. One study found that minor stroke participants reported a significantly higher prevalence of fatigue compared with TIA participants ($P = 0.008$) [32].

Prevalence of anxiety

Two studies measured anxiety. One observed anxiety frequencies of 52% and 65% for TIA and minor stroke participants respectively at 14 days; these frequencies were significantly different ($P \leq 0.005$) compared with controls (23%) [24]. The other study found a prevalence of anxiety in 24% of minor stroke participants at 12 months [25]. Both these studies administered the anxiety questions of the Hospital Anxiety and Depression Scale (HADS-A); however, two different cut-off scores of >4 [24] and >8 [25] were used to define anxiety.
Figure 2 Prevalence of cognitive impairment, depression and fatigue after transient ischaemic attack (TIA) and minor stroke: (a) random-effects meta-analysis pooled estimates for the proportion of cognitive impairment as assessed by Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA) and neuropsychological test battery; (b) proportion of depression; (c) proportion of fatigue.
Prevalence of PTSD

Only one study reported PTSD, finding a prevalence of 31% at 12 months after minor stroke [25]. This study used the Impact of Events Scale with a cut-off score of 30 and had a small sample size (n = 49).

Secondary outcomes

Quality of life (QoL) was measured by six studies and there was considerable variation in the measurement tools administered and how the results were reported (Table S2) [33–38]. Muss et al. [38] reported that 43% of TIA and minor stroke participants had a worse QoL at 12 months compared with pre-stroke QoL. Return to work was reported in three studies between 6 and 12 months post-minor stroke. The definition of return to work varied between the studies but high frequencies of non-return, between 55% and 66%, were observed [10,20,33]. Two studies reported change in emotions following minor stroke; emotional lability was found in 38% of participants at 12 months [10] and irritable mood in 22% of participants at 6 months [33].

Table 2: Studies measuring depression: summary of measurement tool, participants’ diagnosis, time point of assessment, sample size and frequencies

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Measure (cut-off score)</th>
<th>Diagnosis</th>
<th>Time point (weeks)</th>
<th>Sample size</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberi et al. (2012) [25]</td>
<td>DSM-IV</td>
<td>Minor stroke</td>
<td>4</td>
<td>105</td>
<td>42</td>
</tr>
<tr>
<td>Böckler et al. (2009) [8]</td>
<td>VROPSOM (NR)</td>
<td>Both</td>
<td><2</td>
<td>73</td>
<td>11</td>
</tr>
<tr>
<td>El Hassani et al. (2012) [26]</td>
<td>PHQ-8 (>10)</td>
<td>TIA</td>
<td>13</td>
<td>291</td>
<td>12</td>
</tr>
<tr>
<td>Luijten et al. (2011) [27]</td>
<td>DSM-IV</td>
<td>TIA</td>
<td>198 (mean)</td>
<td>325</td>
<td>8</td>
</tr>
<tr>
<td>Rochette et al. (2011) [28]</td>
<td>BDI-II (NR)</td>
<td>Minor stroke</td>
<td>6</td>
<td>177</td>
<td>24</td>
</tr>
<tr>
<td>Sturhahn et al. (2009) [29]</td>
<td>HADS-D (>8)</td>
<td>TIA</td>
<td>6–8</td>
<td>113</td>
<td>12</td>
</tr>
<tr>
<td>Wu et al. (2010) [30]</td>
<td>TDQ (>9)</td>
<td>TIA</td>
<td>NR</td>
<td>295</td>
<td>18</td>
</tr>
</tbody>
</table>

BDI-II, Beck Depression Inventory II; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders IV; HADS-D, Hospital Anxiety and Depression Scale – Depression; HDRS, Hamilton Rating Scale for Depression; NR, not reported; PHQ-8, Patient Health Questionnaire; TDQ, Taiwanese Depression Questionnaire; TIA, transient ischaemic attack; VROPSOM, Dutch version of the Depression Adjective Check Lists. *TIA participants with no history of depression.
Table 3 Studies measuring fatigue: summary of measurement tool, participants' diagnosis, time point of assessment, sample size and frequencies

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Measure (cut-off score)</th>
<th>Diagnosis</th>
<th>Time point (weeks)</th>
<th>Sample size</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbison et al. (2009)</td>
<td>FSS (>4)</td>
<td>TIA</td>
<td>4-26</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Radman et al. (2012)</td>
<td>FAI (>4)</td>
<td>Minor stroke</td>
<td>26</td>
<td>109</td>
<td>34</td>
</tr>
<tr>
<td>Winward et al. (2009)</td>
<td>Chalder fatigue scale (>3)</td>
<td>TIA</td>
<td>26</td>
<td>74</td>
<td>30</td>
</tr>
</tbody>
</table>

FAI, Fatigue Assessment Instrument; FSS, Fatigue Severity Scale; TIA, transient ischaemic attack.

Discussion

This comprehensive systematic review explored the prevalence of fatigue, psychological and cognitive impairments after TIA and minor stroke. The findings provided evidence of residual impairments in this patient group which supports other studies that reported ongoing impairment post-TIA/minor stroke [4,5]. Both cognitive impairment and depression have relatively high prevalence following TIA and minor stroke which decreases over time. However, the findings are limited as few high quality studies are currently available, the reported prevalence was variable and the studies varied in methodology and case mix.

Frequency of cognitive impairment following TIA and minor stroke was influenced by the measurement tool used. This could be expected as a neuropsychological test battery is considered the gold standard but MMSE and MoCA were developed as cognitive screening tools for dementia [39] and mild cognitive impairment [40] respectively. Low levels of cognitive impairment were observed when assessed with MMSE and high levels with MoCA. This suggests that TIA and minor stroke patients may experience mild cognitive impairment, rather than dementia, which was not detected by MMSE. Indeed, MMSE has been shown to be insensitive to mild cognitive impairment in stroke patients [41], no better than chance in detecting cognitive impairment [42] and has an apparent ceiling effect [43]. Therefore, MMSE may not be a suitable screening tool for TIA and minor stroke patients. In addition, the cognitive profile of vascular cognitive impairment, which would be expected following stroke, shows prominent attentional and executive deficits [44]. MoCA detects more deficits in these domains compared with MMSE [45]. Therefore, frequency estimates of cognitive impairment as assessed by MMSE may be unreliable.

Across all studies, a relatively high level of cognitive impairment post-TIA and minor stroke was observed which decreased over time. However, cohort studies with two time points did not support this trend. A non-significant decrease in frequency of cognitive impairment was observed by Pendlebury et al.[18] and Radman et al.[20] between <1 and 1–4 weeks and 6 and 12 months respectively. Likewise, stroke studies have reported cognitive impairment to remain constant over 3 [46] and 14 years [47]. Our systematic review found frequencies of cognitive impairment were variable at the same time point even for studies using the same measurement tool. This is probably caused by the heterogeneity between studies. A systematic review of post-stroke dementia found 93% of the variance in dementia rates to be explained by study design and inclusion criteria [48].

It is important to determine if cognitive impairment observed in TIA and minor stroke patients is greater than age-related cognitive decline. The three MoCA studies with a control group showed a significant or near significant difference in cognitive impairment between TIA or minor stroke
participants and controls [12,17,22]. However, when MMSE was used a non-significant difference was observed [17,21]. Given the previous discussion, it could be speculated that TIA and minor stroke patients experience mild cognitive impairment which is not detected by MMSE. However, these results should be interpreted with caution: only two control groups were age and sex matched and one used a memory clinic cohort as a control group which was obtained from a different study to the TIA participants. Also, none of the studies detailed if assessors were blinded to the participants’ diagnosis which may introduce bias.

Depression appeared to be relatively high in the acute stage after TIA and minor stroke followed by an overall decrease in frequency over time across all studies. This trend is supported by Verbraak et al. [49] who reported that frequency of depression in TIA and minor stroke participants at 1 month had halved by 6 months; however, a fifth of this sample had a history of stroke. In contrast, the one study in our review to measure depression at two time points found no difference in prevalence [26]. A non-significant difference was also observed between prevalence of depression in TIA or minor stroke participants and controls in two studies [8,24]. Again, our findings should be interpreted with caution. The influence of confounding variables must be considered. For instance, only two studies excluded people with a history of depression. Furthermore, the average age across studies varied between 51 and 72 years, half of the studies had over 60% male participants and there were seven different measurement tools administered across the studies. Limited information was available for anxiety and PTSD and further research is required to provide reliable estimates of the prevalence of these outcomes after TIA and minor stroke.

Prevalence of fatigue post-TIA and minor stroke was measured by three studies between 6 and 12 months. Fatigue prevalence appears to be consistent within this time period following TIA and minor stroke. One study measured fatigue at an individual level and found two-thirds of participants with fatigue at 6 months remained fatigued at 12 months. Constant fatigue status over time (either fatigued or not fatigued) was observed in 72% [50] and 83% [51] of stroke participants in longitudinal stroke studies. This supports the trend that fatigue is stable at an individual level. None of the fatigue studies included in our review had a comparator group. Fatigue has been found in the elderly in the absence of physical or psychological explanation and is more prominent in females [52]. Therefore, age and sex matched controls are required to differentiate TIA or minor stroke induced fatigue.

Despite being important patient-centred outcomes, there were few studies available that measured return to work and emotionalism post-minor stroke and none post-TIA. In addition, the information on QoL for this patient group could not be meaningfully interpreted without a comparator group.

The main strength of this review is that it was designed and conducted according to Cochrane [53] and the Centre for Reviews and Dissemination (CDR) guidelines [54]. Furthermore, it is free of language bias and, to reduce publication bias, conference abstracts and theses of unpublished studies were included and grey literature was searched. Two reviewers worked independently to reduce human error and increase reliability. A limitation of the review is that authors of included studies were not contacted to obtain missing information. At an individual study level there were many limitations which impacted on the reliability and generalizability of the results. Studies were heterogeneous in methodology and case mix and there were a small number of studies for some of the outcomes. An important consideration is the lack of comparator group for most studies.
Consequently, it was not possible to determine if prevalence of the outcomes in TIA or minor stroke patients is higher than prevalence for age and sex stratified subjects in the general population. In addition, the prevalence of the outcomes pre-TIA or minor stroke was unknown for most of the included studies.

Conclusion

The findings of this systematic review are relevant to primary healthcare professionals as TIA and minor stroke patients are discharged rapidly from hospital. Although the results are inconclusive, it is important to raise awareness of the potential subtle but meaningful residual impairments following TIA and minor stroke. These can be missed in patients who appear to have functionally recovered but may struggle with more complex activities affecting daily activities and social, work and family responsibilities.

Our results are most relevant to inform future research. Future research should comprise a cohort study with age and sex matched controls. Studies must adjust for confounding variables and measure or estimate the presence of the outcome(s) pre-TIA or minor stroke to produce reliable results. In addition, choice of measurement tool should be carefully considered in the context of the population. It is reasonable to advise that a neuropsychological test battery should be used to measure cognitive impairment in TIA and minor stroke patients and, when this is not feasible, MoCA is preferred over MMSE. Future studies should investigate the natural history of outcomes as well as the time course.

Overall, the results of this systematic review are limited as the evidence in the literature is weak. There is some evidence to suggest that TIA and minor stroke patients may experience residual impairments which appear to reduce in prevalence over time, but these findings should be interpreted with caution. Notwithstanding, this review is valuable to provide a platform to generate hypotheses and inform future trial design in the context of the limitations in the available literature.

Acknowledgements

This work forms part of Ms Moran’s PhD which is funded by the National Institute for Health Research School for Primary Care Research (NIHR SPCR). Dr Feltham is funded by the NIHR’s Primary Care Research Network. Prof. Calvert is an investigator in the MRC Midland Hub for Trials Methodology Research, University of Birmingham, UK (MRC Grant ID G0800808). Prof. Sackley is in receipt of an NIHR Senior Investigator award. Dr Marshall is partly funded by the NIHR through the Collaborations for Leadership in Applied Health Research and Care for Birmingham and the Black Country (CLAHRC-BBC) programme. The views expressed in this publication are not necessarily those of the NIHR, the Department of Health, NHS Partner Trusts, MRC, the University of Birmingham or the CLAHRC-BBC Management Group. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Disclosure of conflicts of interest

Dr Calvert reports grants from the National Institute for Health Research School for Primary Care Research and grants from the Medical Research Council during the conduct of the study. Dr Feltham
Supporting Information
Additional Supporting Information may be found in the online version of this article: Figure S1. Risk of bias graph for sampling, measurement, attrition and analysis.

Table S1. Studies measuring individual cognitive domains: summary of measurement tool, participants’ diagnosis, time point of assessment, sample size and frequencies.

Table S2. Studies measuring QoL: summary of measurement tool, participants’ diagnosis, time point of assessment, sample size and results reported.

Appendix S1. Search strategy for MEDLINE (via Ovid) 1993 to April 2013.

References
17. Pendlebury ST, Markwick A, de Jager CA, Zamboni G, Wilcock GK, Rothwell PM. Differences in cognitive profile between TIA, stroke and elderly memory research subjects: a comparison of the MMSE and...
46. Liman T, Schlaug G, Endres M, FiEoel A, Schwab S, Kolominsky-Rabas P. Changes in cognitive

