Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease

DOI: 10.1371/journal.pgen.1004123

License: Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal
Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

1 Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands, 2Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Università di Monserrato, Monserrato, Cagliari, Italy, 3Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy, 4Division of Medical Genetics, University of Turin, Torino, Italy, 5Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia, 6Department of Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, Washington, United States of America, 7Institute for Genetic Epidemiology, Helmholtz Zentrum Munich, Munich/Neuherberg, Germany, 8Department of Endocrinology, University Hospital Ghent and Faculty of Medicine, Ghent University, Ghent, Belgium, 9Department of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands, 10National Institute for Health and Welfare, Helsinki, Finland, 11Department of Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands, 12Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland, 13Oxford Centre for Diabetes, Endocrinology and Metabolism and NIHR Oxford Biomedical Research Centre, Oxford, UK, 14Chirurgical Hospital, Headington, Oxford, United Kingdom, 15Research Centre for Prevention and Health, Glostrup University Hospital, the Capital Region of Denmark, Glostrup, Denmark, 16Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany, 17Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany, 18Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany, 19Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 20Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany, 21Department of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany, 22National Institute for Health and Welfare, Helsinki, Finland, 23Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland, 24Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany, 25Wellcome Trust Sanger Institute, Hinxton, United Kingdom, 26Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany, 27Department of Biostatistics, University of Washington, Seattle, Washington, United States of America, 28Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany, 29Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany, 30Pathwest Laboratory Medicine WA, Nedlands, Western Australia, Australia, 31Research Unit of Molecular Epidemiology Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany, 32School of Medicine and Pharmacology, the University of Western Australia, Crawley, Western Australia, Australia, 33UWA Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Western Australia, Australia, 34School of Population Health, University of Western Australia, Nedlands, Western Australia, Australia, 35MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, United Kingdom, 36School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia, 37High Performance Computing and Network, CRS4, Parco Tecnologico della Sardegna, Pula, Italy, 38Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America, 39Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, 40Vaasa Health Care Centre, Diabetes Unit, Vaasa, Finland, 41Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia,
Abstract

Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto’s thyroiditis), as well as autoimmune hyperthyroidism (Graves’ disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P < 5 × 10−8) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68–2.81, P = 8.1 × 10−10), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26–1.82, P = 2.9 × 10−7), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66–0.89, P = 6.5 × 10−7). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves’ disease (OR: 1.37, 95% CI 1.22–1.54, P = 1.2 × 10−7 and OR: 1.25, 95% CI 1.12–1.39, P = 6.2 × 10−5). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18–2.10, P = 1.9 × 10−3). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.

Editor: Chris Cotsapas, Yale School of Medicine, United States of America

Received August 22, 2013; Accepted December 3, 2013; Published February 27, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The Asklepios Study was supported by a Fonds voor Wetenschappelijk Onderzoek-Vlaanderen FWO research grant G.0427.03 and G.0838.10N (Asklepios Study). The 1994–5 Busselton Health Survey was funded by Healthway, Western Australia. The Busseton Health Studies are supported by the National Health and Medical Research Council of Australia and the Great Wine Estates of Australia. The CHS research reported in this article was supported by NHLBI contracts HHSN26820010036C, N01HC53239, N01HC55222, N01HC58079, N01HC58080, N01HC58081, N01HC58083, N01HC58086; and NHLBI grants HL60295, HL67652, HL105756 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG03629 from the National Institute on Aging (NIA) and a principal grant at Cedars-Sinai Medical Center was supported in part by the National Center for Research Resources, grant 1UL1RR033176, and is now at the National Center for Advancing Translational Sciences, CTSA grant 1UL1TR000124; in addition to the National Institute of Diabetes and Digestive and Kidney Disease grant DK063491 to the Southern California Diabetes Endocrinology Research Core Center. Additional funding was provided by the Cedars-Sinai Board of Governors’ Chair in Medical Genetics (JIR). The CARLA Study was founded by a grant from the Forschungsmusaeum as part of the Collaborative Research Center 598. “Heart failure in the elderly - cellular mechanisms and therapy” at the Medical Faculty of the Martin-Luther-University Halle-Wittenberg, by a grant of the Wilhelm-Roux-Programme of the Martin-Luther-University Halle-Wittenberg; by the Ministry of Education and Cultural Affairs of Saxony-Anhalt, and by the Federal Employment Office. The Exeter Family Study of Childhood Health (EFSOCH) was supported by South West NHS Research and Development, Exeter NHS Research and Development, the Darlington Trust, and the Peninsula NIHR Clinical Research Facility at the University of Exeter. Genotyping of EFSOCH DNA samples was supported by the Endocrine Research Fund. ATII and BMS are employed as core members of the Peninsula NIHR Clinical Research Facility. RMF is funded by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust grant 085541/2/08/Z). The Health2006 Study is funded by grants from The Velux Foundation; The Danish Medical Research Council, Danish Agency for Science, Technology and Innovation; The Aase and Ejner Danielsens Foundation; ALK-Abello A/S (Hørsholm, Denmark), Timber Merchant Vilhelm Bangs Foundation, MEXOS Laboratories (Denmark); The Health Insurance Foundation, and Research Centre for Prevention and Health, the Capital Region of Denmark, Helsinki Birth Cohort Study has been supported by grants from the Academy of Finland, the Finnish Diabetes Research Society, Finnish Society for Cardiovascular Research, Folkhålsan Research Foundation, Novo Nordisk Foundation, Finska Läkarälskafet, Signe and Ane Gyllenborg Foundation, University of Helsinki, European Science Foundation (EUROSTRESS), Ministry of Education, Ahokas Foundation, Emil Aaltonen Foundation, Juho Vainio Foundation, and Wellcome Trust (grant number WT089062). This work was supported by KORA, which is a research platform initiated and financed by the Helmholtz Center Munich, German Research Center for...
Environmental Health, by the German Federal Ministry of Education and Research and by the State of Bavaria. The work of KORA is supported by the German Federal Ministry of Education and Research (BMBF), in the context of the German National Genome Research Network (NGFN-2 and NGFN-plus). The present research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. Thyroid examinations in KORA-F4 were supported by Sanofi-Aventis in the framework of the Papillon Initiative. Collection and genotyping of the NBS samples was funded in part by the European Commission (POLYGÈNE: LSHC-CT-2005-018828) and a research investment grant of the Radboud University Nijmegen Medical Centre. The work was performed with the National Computing Facilities Foundation (NCF) for the use of supercomputer facilities, with financial support from the NWO. The Thyroid Cancer Program (P.I. Matthew Ringel) at the Ohio State University is supported by grants P30 CA16058 and P01 CA24570 from the National Cancer Institute, USA. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation for Scientific Research NWO Investments (no. 175.010.2005.011; 911.03.002). This study is funded by the Research Institute for Diseases in the Elderly (614-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project no. 050-060-810. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Supply of Health Care (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Educational Committee of the South-Dutch (LUMC), and the Municipality of Rotterdam. The Sardinia study is supported by the Intramural Research Program of the National Institute on Aging (NIA), National Institutes of Health (NIH). The Sardinia (“Progeina”) team was supported by Contract NO1-AG-1-2109 from the National Institute of Child Health and Human Development (NICHD). All other authors have declared that no competing interests exist.

Competing Interests
- E-mail: m.medici@erasmusmc.nl
- These authors contributed equally to this work.
- SS, SN and RPP also contributed equally to this work.

Introduction

Autoimmune thyroid disease (AITD), including Hashimoto's thyroiditis and Graves' disease, is one of the most common autoimmune diseases, affecting 2-5% of the general population [1,2,3]. Thyroid dysfunction has been associated with osteoporosis, depression, atrial fibrillation, heart failure, metabolic syndrome, and mortality [4,5,6,7,8,9,10,11]. High serum antibodies against the enzyme thyroid peroxidase (TPO), which is located in the thyroid and plays a key role in thyroid hormone synthesis, are present in 90% of patients with Hashimoto's thyroiditis [12,13], the most frequent cause of hypothyroidism and goiter. Although TPO antibodies (TPOAbs) are a useful clinical marker for the detection of early AITD, it remains controversial if these antibodies play a causative role in the pathogenesis of Hashimoto's thyroiditis [14,15,16].

Interestingly, TPOAb-positive persons also have an increased risk of developing autoimmune hyperthyroidism (Graves' disease) [17,18], which is caused by stimulating antibodies against the thyroid stimulating hormone (TSH) receptor [19]. Numerous studies have shown that Graves' hyperthyroidism and Hashimoto's thyroiditis show co-inheritance [17,20,21]. Finally, thyroid autoimmunity is the most common autoimmune disorder in women of childbearing age, and TPOAb-positive women have an increased risk of developing pregnancy complications such as miscarriage and pre-term delivery [17,18,22,23,24,25,26].

The prevalence of TPOAb-positivity in the general population ranges from 5-24%, but it is currently unknown why these people develop TPOAbs, nor is it known why not all individuals with thyroid autoimmunity develop clinical thyroid disease [27,28]. It is estimated that around 70% of the susceptibility to develop thyroid autoantibodies is due to genetic factors [29]. In this context it is remarkable to note that little is known about the genetic factors that determine TPOAb-positivity and the risk of AITD.

We therefore performed a genome wide association study (GWAS) meta-analysis for TPOAbs in the general population in 18,297 individuals from 11 populations. Newly identified genetic variants were studied in relation to subclinical and overt hypo- and hyperthyroidism, goiter, thyroid autoimmunity during pregnancy and thyroid cancer risk.

Results

Characteristics of the studied populations are shown in Table 1 and the Supplementary Material S1. Heritability estimates in the family-based cohorts SardiNIA, TwinsUK and Val Borbera were, respectively, 0.65, 0.66, and 0.54 for TPOAb-positivity, and 0.43, 0.66, and 0.30 for TPOAb levels.

Loci associated with TPOAb-positivity and TPOAb levels

See Table 1 and Supplementary Figure S1 for TPOAb measurements and Supplementary Table S1 for genotyping procedures. In most autoimmune diseases, both the presence and the level of autoantibodies are relevant for the disease onset [18,30,31]. Furthermore, different pathophysiological processes may be involved in the initiation and severity of the autoimmune response. We therefore performed a GWAS on TPOAb-positivity (including 1769 TPOAb-positives and 16,328 TPOAb–negatives), as well as a GWAS on continuous TPOAb levels (including 12,353 individuals) in stage 1. See Supplementary Figures S2 and S3 for QQ (quantile-quantile) and Manhattan plots.

In stage 2, we followed-up 20 stage 1 SNPs ($P<5\times10^{-6}$, 13 TPOAb-positivity and 10 TPOAb level SNPs, with 3 SNPs overlapping) in 5 populations, including up to 8,990 individuals for TPOAb-positivity (922 TPOAb-positives and 8068 TPOAb–negatives) and 8,159 individuals for TPOAb level analyses (see Supplementary Material S1). Results of the combined stage 1 and 2...
Author Summary

Individuals with thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune thyroid diseases (AITD), which are common in the general population and associated with increased cardiovascular, metabolic and psychiatric morbidity and mortality. As the causative genes of TPOAbs and AITD remain largely unknown, we performed a genome-wide scan for TPOAbs in 18,297 individuals, with replication in 8,990 individuals. Significant associations were detected with variants at TPO, ATXN2, BACH2, MAGI3, and KALRN. Individuals carrying multiple risk variants also had a higher risk of increased thyroid-stimulating hormone levels (including subclinical and overt hypothyroidism), and a decreased risk of goiter. The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, and the MAGI3 variant was also associated with an increased risk of hypothyroidism. This first genome-wide scan for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. These results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which individuals are particularly at risk of developing clinical thyroid dysfunction.

meta-analyses, including heterogeneity analyses, are shown in Supplementary Tables S2 and S3. Regional association plots are shown in Supplementary Figures S4 and S5. In the combined stage 1 and 2 meta-analyses GWAS significant associations (P<5×10^-8) were observed near TPO (Chr 2p23; rs11675434), at ATXN2 (Chr 12q24.1; rs653178), and BACH2 (Chr 6q15; rs10944479) for TPOAb-positivity, and near TPO (rs11675434), at MAGI3 (Chr 6q15; rs1230666), and KALRN (Chr 3q21; rs2010099) for TPOAb levels (Table 2 and Figure 1). The TPOAb level meta-analysis P-values for the 3 GWAS significant TPOAb-positivity loci were: TPO-rs11675434: P=7.4×10^-14, ATXN2-rs653178: P=1.3×10^-9 and BACH2-rs10944479: P=2.0×10^-4.

As the 3 GWAS significant loci for TPOAb levels also showed associations with TPOAb-positivity (TPO-rs11675434: OR, 1.21 [95% CI, 1.15–1.28]; P=1.5×10^-16; MAGI3-rs1230666: OR, 1.23 [95% CI, 1.14–1.33], P=1.5×10^-6; KALRN-rs2010099: OR, 1.24 [95% CI, 1.12–1.37], P=7.4×10^-5), we subsequently studied the (combined) effects of these 5 SNPs on clinical thyroid disease. Genetic risk scores were calculated as described in the Supplementary Material. The variance explained by these 5 SNPs was 3.1% for TPOAb-positivity and 3.2% for TPOAb levels. Subjects with a high genetic risk score had a 2.2 times increased risk of TPOAb-positivity compared to subjects with a low genetic risk score (P=8.1×10^-5) (Table 3).

Table S4 shows the stage 1 TPOAb-positivity and TPOAb level meta-analyses results for GWAS significant SNPs reported in previous GWAS on thyroid related phenotypes.

Associations with hypo- and hyperthyroidism

The associations between the 5 GWAS significant SNPs and the risk of abnormal thyroid function tests are shown in Table 4. MAGI3- rs1230666 was associated with an increased risk of overt hypothyroidism and increased TSH levels below the Bonferroni threshold (i.e., P=0.05/5 = 0.01). Borderline significant signals were observed at BACH2- rs10944479 with a higher risk of increased TSH levels as well as overt hyperthyroidism (P=0.011 and P=0.012), and at the KALRN-rs2010099 SNP with a lower risk of decreased TSH levels (P=0.010).

Furthermore, a higher genetic risk score was associated with a higher risk of increased TSH levels (Supplementary Table S5). No effects of the genetic risk score on the risk of overt hypothyroidism, hyperthyroidism or decreased TSH levels were observed.

Associations with goiter

Individuals with a high genetic risk score had a 30.4% risk of sonographically-proven goiter, compared to 35.2% in subjects with a low score (P=6.5×10^-5) (Table 5). None of the individual SNPs was significantly associated with goiter risk.

Thyroid autoimmunity during pregnancy

As autoimmunity significantly changes during pregnancy [25], we additionally studied these effects in an independent pregnant population. Pregnant women with a high genetic risk score had a 2.4 times increased risk of TPOAb-positivity compared to women with a low score (10.3% vs 4.8%, P=0.03). These women did not have a higher risk of increased TSH levels. However, a borderline significant signal with a lower risk of increased TSH levels was observed at ATXN2- rs653178 (OR, 0.54 [95% CI, 0.34–0.87], P=0.012).

Associations with thyroid disease in independent populations

a) Graves’ disease. As MAGI3- rs1230666 and BACH2- rs10944479 showed promising associations (i.e., P≤0.05) with hyperthyroidism in our meta-analyses, we tested these SNPs in an independent population of 2478 patients with Graves’ disease and 2682 controls (see Supplementary Material for further details). Both were associated with an increased risk of Graves’ disease (MAGI3- rs1230666: OR, 1.37 [95% CI, 1.22–1.54]; P=1.2×10^-7; BACH2- rs1094479: OR, 1.25 [1.12–1.39]; P=6.2×10^-5).

b) Thyroid cancer. Supplementary Table S6 shows the associations of the 5 GWAS significant SNPs with thyroid cancer. No statistically significant associations were detected, but a borderline significant signal with an increased risk of thyroid cancer was observed at ATXN2- rs653178 (OR, 1.32 [95% CI, 1.02–1.70], P=0.03).

Pathway analyses

Ingenuity Pathway Analyses (IPA; Ingenuity Systems, Ca, USA) and GRAIL analyses [32] were performed to identify potential pathways involved in AITD, the results of which are shown in Supplementary Tables S7 and S8, and Figure S6. The identified top pathways involved cell death, survival, movement, and OX40 signalling.

Discussion

This is the first GWAS meta-analysis investigating the genetics of TPOAbs in the normal population in up to 18,297 individuals from 11 populations with replication in up to 8,990 individuals from 5 populations. We identified 5 GWAS significant loci associated with TPOAb-positivity and/or levels. The most significant hit for both TPOAb-positivity and TPOAb levels was located near the TPO gene itself. TPO is a membrane-bound protein located on the apical membranes of the thyroid follicular cell, catalyzing key reactions in thyroid hormone synthesis [33]. Mutations in TPO have been found in patients with congenital hypothyroidism [34,35]. Although TPOAbs are
Table 1. Population characteristics and serum TPOAb, TSH, and FT4 level measurements specifications.

<table>
<thead>
<tr>
<th>Study</th>
<th>Ethnic group (origin)</th>
<th>N with TPOAb and GWAS data</th>
<th>N using thyroid medication</th>
<th>N case-control approach (cases/controls)</th>
<th>N continuous approach</th>
<th>Men (%)</th>
<th>Age (yrs) Mean (SD)</th>
<th>TPOAb-positivity (%)</th>
<th>TPOAb-positivity cut off</th>
<th>Assay (Detection range)</th>
<th>TSH Median (IQR)</th>
<th>Assay (normal range)</th>
<th>FT4 Mean (SD)</th>
<th>Assay (normal range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td></td>
</tr>
<tr>
<td>BHS</td>
<td>Caucasian (Australia)</td>
<td>1363</td>
<td>47</td>
<td>1316 (197/1119)</td>
<td>1316</td>
<td>43%</td>
<td>53.0 (17.2)</td>
<td>15.0%</td>
<td>35</td>
<td>Immulite 2000 chemiluminescent immunoassay (5-5000)</td>
<td>1.3 (0.9;1.9) mU/L</td>
<td>Immulite 2000 chemiluminescent immunoassay (0.4 - 4.0 mU/L)</td>
<td>16.9 (2.5) pmol/L</td>
<td>Immulite 2000 chemiluminescent immunoassay (9 – 23 pmol/L)</td>
</tr>
<tr>
<td>CHS</td>
<td>Caucasian (USA)</td>
<td>2024</td>
<td>0</td>
<td>2024 (281/1743)</td>
<td>1817</td>
<td>41%</td>
<td>74.8 (5.1)</td>
<td>13.9%</td>
<td>34</td>
<td>Chemiluminescent immunoassay (5-600)</td>
<td>2.3 (1.5;3.5) mU/L</td>
<td>Chemiluminescent immunoassay (0.27-42 mU/L)</td>
<td>1.2 (0.2) ng/dL</td>
<td>Chemiluminescent immunoassay (0.93–1.7 ng/dL)</td>
</tr>
<tr>
<td>HBCS</td>
<td>Caucasian (Finland)</td>
<td>526</td>
<td>29</td>
<td>497 (75/422)</td>
<td>497</td>
<td>50%</td>
<td>61.0 (2.8)</td>
<td>15.1%</td>
<td>12</td>
<td>Chemiluminescent immunoassay (1-1000)</td>
<td>2.0 (1.2;2.4) mU/L</td>
<td>Chemiluminescent immunoassay (0.4–4.67 mU/L)</td>
<td>14.1 (1.6) ng/dL</td>
<td>Chemiluminescent immunoassay (0.71–1.85 ng/dL)</td>
</tr>
<tr>
<td>KORA</td>
<td>Caucasian (Germany)</td>
<td>1765</td>
<td>49</td>
<td>1475 (74/1401)</td>
<td>1475</td>
<td>45%</td>
<td>60.5 (8.9)</td>
<td>5.0%</td>
<td>200</td>
<td>Chemiluminescent immunoassay (1–3000)</td>
<td>1.5 (0.6;2.5) mU/L</td>
<td>Chemiluminescent immunoassay (0.4–4.3 mU/L)</td>
<td>18.9 (2.6) pmol/L</td>
<td>Chemiluminescent immunoassay (11–25 pmol/L)</td>
</tr>
<tr>
<td>NBS</td>
<td>Caucasian (Netherlands)</td>
<td>1829</td>
<td>26</td>
<td>1829 (287/1542)</td>
<td>1829</td>
<td>50%</td>
<td>61.5 (10.3)</td>
<td>15.7%</td>
<td>12</td>
<td>Fluoro-immunometric assay (2.6–1000)</td>
<td>1.3 (0.9;2.0) mU/L</td>
<td>Fluoro-immunometric assay (0.4–4.0 mU/L)</td>
<td>13.5 (2.4) pmol/L</td>
<td>Fluoro-immunometric assay (8.0–220 pmol/L)</td>
</tr>
<tr>
<td>RS</td>
<td>Caucasian (Netherlands)</td>
<td>1627</td>
<td>50</td>
<td>1577 (137/1440)</td>
<td>210</td>
<td>40%</td>
<td>70.2 (5.6)</td>
<td>8.7%</td>
<td>35</td>
<td>Chemiluminescent immunoassay (5-5000)</td>
<td>1.2 (0.6;2.5) mU/L</td>
<td>Chemiluminescent immunoassay (0.4–4.3 mU/L)</td>
<td>18.4 (2.4) pmol/L</td>
<td>Chemiluminescent immunoassay (11–25 pmol/L)</td>
</tr>
<tr>
<td>SardiNIA</td>
<td>Caucasian (Italy)</td>
<td>4686</td>
<td>154</td>
<td>972 (108/864)</td>
<td>1257</td>
<td>49%</td>
<td>56.9 (12.5)</td>
<td>11.1%</td>
<td>35</td>
<td>Chemiluminescent immunoassay (5-1000)</td>
<td>1.3 (0.8;2.0) mU/L</td>
<td>Chemiluminescent immunoassay (0.4–4.0 mU/L)</td>
<td>1.3 (0.2) ng/dL</td>
<td>Chemiluminescent immunoassay (0.3–2.4 ng/dL)</td>
</tr>
<tr>
<td>SHIP</td>
<td>Caucasian (Germany)</td>
<td>4096</td>
<td>293</td>
<td>3803 (265/3538)</td>
<td>1818</td>
<td>52%</td>
<td>49.3 (16.3)</td>
<td>7.0%</td>
<td>60</td>
<td>Chemiluminescent immunoassay (1–3000)</td>
<td>0.7 (0.4;1.0) mU/L</td>
<td>Chemiluminescent immunoassay (0.3–3.0 mU/L)</td>
<td>12.8 (3.8) pmol/L</td>
<td>Chemiluminescent immunoassay (7.7–23.2 pmol/L)</td>
</tr>
<tr>
<td>SHIP-Trend</td>
<td>Caucasian (Germany)</td>
<td>986</td>
<td>99</td>
<td>887 (36/851)</td>
<td>887</td>
<td>46%</td>
<td>49.5 (13.7)</td>
<td>4.1%</td>
<td>200</td>
<td>Chemiluminescent immunoassay (1–3000)</td>
<td>1.2 (0.8;1.6) mU/L</td>
<td>Chemiluminescent immunoassay (0.36–3.74 mU/L)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TwinsUK</td>
<td>Caucasian (UK)</td>
<td>2455</td>
<td>86</td>
<td>2369 (461/1893)</td>
<td>774</td>
<td>0%</td>
<td>46.9 (12.5)</td>
<td>19.5%</td>
<td>6</td>
<td>Chemiluminescent immunoassay (0.5–1000)</td>
<td>1.3 (0.9;1.8) mU/L</td>
<td>Chemiluminescent immunoassay (0.4–4.0 mU/L)</td>
<td>13.6 (1.9) pmol/L</td>
<td>Chemiluminescent immunoassay (9–19 pmol/L)</td>
</tr>
<tr>
<td>ValBorbera</td>
<td>Caucasian (Italy)</td>
<td>1661</td>
<td>90</td>
<td>1571 (161/1410)</td>
<td>452</td>
<td>46%</td>
<td>54.3 (18.4)</td>
<td>10.2%</td>
<td>60</td>
<td>Two chemiluminescent immunoassays (5.5–3000 ; 6-7500)</td>
<td>1.4 (0.9;2.0) mU/L</td>
<td>Chemiluminescent immunoassay (0.34–5.60 mU/L)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Study</td>
<td>Ethnic group (origin)</td>
<td>N with TPOAb and GWAS data</td>
<td>N using thyroid medication</td>
<td>N case-control approach (cases/controls)</td>
<td>N continuous approach</td>
<td>Men (%)</td>
<td>Age (yrs) Mean (SD)</td>
<td>TPOAb-positivity (%)</td>
<td>TPOAb-positivity cut-off</td>
<td>TPOAb specifications</td>
<td>TSH specifications</td>
<td>FT4 specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemiluminescent immunoassay (5–600)</td>
<td>Chemiluminescent immunoassay (0.3–4.2 mU/L)</td>
<td>Chemiluminescent immunoassay (0.9–1.7 ng/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7 (0.1; 1.7) mU/L</td>
<td>0.4 (0.3– 2.4 ng/dl)</td>
<td>0.9–4.0 mU/L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asklepios</td>
<td>Caucasian (Belgium)</td>
<td>2418</td>
<td>109</td>
<td>2309 (245/2064)</td>
<td>2185</td>
<td>50%</td>
<td>45.9 (5.9)</td>
<td>10.6%</td>
<td>35</td>
<td>Chemiluminescent immunoassay (5–600)</td>
<td>Chemiluminescent immunoassay (0.3–4.2 mU/L)</td>
<td>Chemiluminescent immunoassay (0.9–1.7 ng/dL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARLA</td>
<td>Caucasian (Germany)</td>
<td>1753</td>
<td>270</td>
<td>1483 (186/1297)</td>
<td>1190</td>
<td>60%</td>
<td>64.2 (10.2)</td>
<td>12.5%</td>
<td>28</td>
<td>Chemiluminescent immunoassay (5–600)</td>
<td>Chemiluminescent immunoassay (0.4– 3.8 mU/L)</td>
<td>Chemiluminescent immunoassay (12.8–20.4 pmol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF50CH</td>
<td>Caucasian (UK)</td>
<td>1289</td>
<td>-</td>
<td>1289 (97/1192)</td>
<td>1233</td>
<td>64%</td>
<td>34.2 (5.9)</td>
<td>7.5%</td>
<td>34</td>
<td>Chemiluminescent immunoassay (5–600)</td>
<td>Chemiluminescent immunoassay (0.4–4.5 mU/L)</td>
<td>Chemiluminescent immunoassay (11–24 pmol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health2006 Study</td>
<td>Caucasian (Danish)</td>
<td>3287</td>
<td>-</td>
<td>3287 (204/3083)</td>
<td>3285</td>
<td>45%</td>
<td>49.3 (13.0)</td>
<td>6.2%</td>
<td>100</td>
<td>Chemiluminescent immunoassay (1–3000)</td>
<td>Chemiluminescent immunoassay (0.4–3.7 mU/L)</td>
<td>Chemiluminescent immunoassay (9.8–18.8 pmol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SardiNIA2</td>
<td>Caucasian (Italy)</td>
<td>1387</td>
<td>30</td>
<td>765 (104/661)</td>
<td>375</td>
<td>41%</td>
<td>46.6 (17.4)</td>
<td>13.6%</td>
<td>35</td>
<td>Chemiluminescent immunoassay (5–1000)</td>
<td>Chemiluminescent immunoassay (0.4– 4.0 mU/L)</td>
<td>Chemiluminescent immunoassay (0.3–2.4 ng/dL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Cont.

doi:10.1371/journal.pgen.1004123.t001
valid clinical biomarkers ofAITD, they are generally considered to
be secondary to the thyroid damage inflicted by T-cells.

The FOXE1 gene has been previously associated with hypothy-
roidism [36,37] and is known to regulate transcription of TPO
[38]. In this context it is interesting to note that we did not find any
associations of the variant near TPO with hypothyroidism. Most
genes that have been associated withAITD (predominantly Graves’ disease) by candidate gene and GWAS studies so far are
located in the HLA class I and II regions, or in genes involved in
T-cell (i.e., CTLA-4, PTPN22) or other autoimmune responses
[28,39]. Until now, the TPO gene itself had not been associated
withAITD, except in one recent candidate gene analysis in a small
cohort (n = 188) without replication [40]. A variant near TPO
(rs11675434), which is in LD with rs11675434 (r2 = 0.97 in
HapMap2), has previously been associated with TSH levels by
Gudmundsson et al [41]. However, various other GWAS on
serum TSH and FT4 levels have not found any significant
associations in or near this locus, including a recent similar sized
GWAS by Porcu et al [42].

Three of the four loci identified here are located in or are in
linkage disequilibrium (LD) with genes previously associated with
other autoimmune diseases. Rs1230666 is located in intron 9 of
MAGE3, encoding a protein that modulates activity of AKT/PKB.
AKT/PKB is expressed in the thyroid and regulates apoptosis [43],
which seems to play an important role in the development ofAITD
[44,45]. In addition, rs1230666 is in LD with rs2476601 (r2 = 0.70 in
HapMap2), a variant causing a R620W substitution in PTPN22.
PTPN22 is a lymphoid-specific intracellular phosphatase involved in
the T-cell receptor signaling pathway. Variations in PTPN22, and
specifically R620W, are associated with various autoimmune
disorders including type 1 diabetes, rheumatoid arthritis, systemic
lupus erythematosus and Graves’ disease [46,47,48,49]. The associations of the MAGE3 locus with TPOAb-positivity and Graves’ disease may therefore also be explained by linkage with disease-associated variants in PTPN22 [50]. Of note, the association signal at rs2476601 is one order weaker than that of the top variant rs1230666.

The BACH2 locus has been implicated in the susceptibility to
several autoimmune diseases, including celiac disease, type 1 diabetes, vitiligo, Crolun’s disease, and multiple sclerosis
[46,51,52,53,54]. A recent candidate gene analysis associated the
BACH2 locus with an increased risk ofAITD, including Hashimoto’s thyroiditis and Graves’ disease [55]. However, the
associations were not significant when Hashimoto’s thyroiditis and
Graves’ disease were studied separately. BACH2 is specifically
expressed in early stages of B-cell differentiation and represses
different immunoglobulin genes [56]. Interestingly, BACH2 can
bind to the co-repressor SMRT (silencing mediator of retinoid and
thyroid receptor), which may suggest a more direct effect on
thyroid hormone secretion and action as well.

Polymorphisms in ATXN2 have been associated with multiple
neurodegenerative diseases, including spinocerebellar ataxia and
Parkinson’s disease [57,58,59]. Different epidemiological studies
have associated thyroid dysfunction with cerebellar ataxia [60,61].
Furthermore, the identified SNP in ATXN2 has been previously
associated with renal function, serum urate levels and blood
depression pressure [62,63,64]. However, this SNP is in high LD with
rs3184504 (r2 = 0.873), a variant causing a Trp262Arg substitu-
tion in ATXN2. This is supported by a recent study which showed that
variants in LD with SH2B3, BACH2, and PTPN22 are associated with
TPOAb levels in patients with type 1 diabetes [65].

Whereas the above four loci are located in genes involved in
the immune response or the autoimmune, the KALRN (Kalirin) gene
encodes a multi-domain guanine nucleotide exchange factor for
GTP-binding proteins of the Rho family. The relation of KALRN
with levels of TPOAbs is unclear. This gene has recently been
found to be associated with megakaryopoiesis and platelet
formation [67], which may suggest a function in the immune
system [68]. We furthermore performed pathway analyses on the
stage 1 TPOAb-positivity and TPOAb level lead SNPs, and
identified the cell death, survival and movement pathway as an
important pathway for TPOAbs. This finding is supported by
previous studies, which show an important role for apoptosis in the

Table 2. Newly identified loci associated with TPOAb-positivity and/or serum TPOAb levels reaching genome wide significance.

<table>
<thead>
<tr>
<th>TPOAb-positivity</th>
<th>Alleles</th>
<th>Stage 1 + 2 meta-analysis: up to 2691 cases and 24,596 controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP</td>
<td>Chr.</td>
<td>Position (Build 36)</td>
</tr>
<tr>
<td>rs11675434</td>
<td>2</td>
<td>1386822</td>
</tr>
<tr>
<td>rs653178</td>
<td>12</td>
<td>110492139</td>
</tr>
<tr>
<td>rs10944479</td>
<td>6</td>
<td>90937114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TPO Ab levels</th>
<th>Alleles</th>
<th>Stage 1 + 2 meta-analysis: up to 20,512 subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP</td>
<td>Chr.</td>
<td>Position (Build 36)</td>
</tr>
<tr>
<td>rs11675434</td>
<td>2</td>
<td>1386822</td>
</tr>
<tr>
<td>rs1230666</td>
<td>1</td>
<td>113974933</td>
</tr>
<tr>
<td>rs2010099</td>
<td>3</td>
<td>125782947</td>
</tr>
</tbody>
</table>

Chr., chromosome
aRisk allele frequency: Weighted mean frequency of the risk allele across all included cohorts.
bAdjusted for age and gender

Expression in sd of natural logarithm transformed serum TPOAb level, adjusted for age and gender

DOI: 10.1371/journal.pgen.1004123.T002

PLOS Genetics | www.plosgenetics.org 7 February 2014 | Volume 10 | Issue 2 | e1004123
development ofAITD [44,45]. Another top pathway involved was the OX40 signalling pathway, and it is of interest to note that OX40 is a T-cell activator promoting the survival of CD4+ T-cells at sites of inflammation [69].

Our results have potential clinical relevance for several reasons. Genetic risk scores based on these novel common (risk allele frequencies: 9–40%) TPOAb-associated SNPs enabled us to identify a large subgroup in the general population with a two-fold
increased risk of TPOAb-positivity (10.4% vs 5.4%). These individuals also have a higher risk of increased TSH levels and a lower risk of goiter, suggesting an advanced stage of destruction of the thyroid due to autoimmune processes. Furthermore, pregnant women with high genetic risk scores had a 2.4 times increased risk of TPOAb-positivity during pregnancy. In this context it is interesting to note that TPOAb-positive pregnant women have an increased risk of miscarriages and preterm births independent of thyroid function [70].

Associations with thyroid disease were also found on an individual SNP level. The MAGI3 SNP was associated with a substantially increased risk of hypothyroidism, and the BACH2 SNP showed a borderline significant association (P = 0.011) with a higher risk of increased TSH levels, which includes subjects with subclinical and overt hypothyroidism. Furthermore, both loci were significantly associated with an increased risk of Graves’ hyperthyroidism in an independent population. To predict which patients with first or second degree relatives with documented Hashimoto’s or Graves’ disease will develop clinical thyroid disease, a clinical algorithm has been developed (i.e., the THEA score) [18]. Future studies should analyze if these genetic markers increase the sensitivity of the THEA score.

The prevalence of TPOAb-positivity in the general population is high (5–24%), but it is currently unknown why part of the individuals with thyroid autoimmunity develop clinical thyroid disease whereas others do not [27,28]. In this context it is interesting to note that the TPOAb-associated SNPs located in TPO and ATXN2 were not associated with clinical thyroid disease. This suggests that the TPOAbs in these individuals may be of less clinical relevance, providing insight into why TPOAb-positive individuals do or do not eventually develop clinical thyroid disease.

Our study has some limitations. The validity of the results is restricted to individuals from populations of European ancestry. Future GWASs in populations from non-European descent will be required to determine to which extent our results can be generalized to other ethnic groups. Secondly, we did not perform conditional analyses to further identify secondary association signals within the identified loci, nor did we perform functional studies for the identified variants. Further research is therefore needed to unravel the exact biological mechanism behind the observed associations. The fact that various TPOAbs assays were used across the participating cohorts could lead to bias. We
Table 5. Newly identified TPOAb associated loci, genetic risk scores and the risk of goiter.

<table>
<thead>
<tr>
<th>Nearby gene</th>
<th>SNP</th>
<th>Risk allele</th>
<th>Other allele</th>
<th>OR (95% CI)*</th>
<th>P value</th>
<th>GRS Quartile</th>
<th>% Goiter (N cases/total)</th>
<th>OR (95% CI)*</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPO</td>
<td>rs11675434</td>
<td>T</td>
<td>C</td>
<td>0.95 (0.88–1.02)</td>
<td>0.17</td>
<td>1 (reference)</td>
<td>35.2% (588/1669)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ATXN2</td>
<td>rs653178</td>
<td>C</td>
<td>T</td>
<td>0.95 (0.88–1.03)</td>
<td>0.22</td>
<td>2</td>
<td>33.7% (570/1691)</td>
<td>0.92 (0.79–1.06)</td>
<td>0.21</td>
</tr>
<tr>
<td>BACH2</td>
<td>rs10944479</td>
<td>A</td>
<td>G</td>
<td>0.94 (0.85–1.05)</td>
<td>0.28</td>
<td>3</td>
<td>31.6% (530/1675)</td>
<td>0.84 (0.72–0.98)</td>
<td>0.03</td>
</tr>
<tr>
<td>MAGI3</td>
<td>rs1230666</td>
<td>A</td>
<td>G</td>
<td>0.90 (0.81–1.00)</td>
<td>0.05</td>
<td>4</td>
<td>30.4% (517/1702)</td>
<td>0.77 (0.66–0.89)</td>
<td>6.5 × 10^-4</td>
</tr>
<tr>
<td>KALRN</td>
<td>rs2010099</td>
<td>C</td>
<td>T</td>
<td>0.93 (0.81–1.05)</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Adjusted for age, gender, and body surface area.

GRS, genetic risk score (based on rs11675434, rs653178, rs10944479, rs1230666, rs2010099).

Table 5.

Novel Thyroid Antibody and Disease Loci

Therefore used TPOAb-positivity cut-off values as provided by the respective assay manufacturer, instead of using one fixed cut-off value. This is also of clinical importance as in clinical practice most institutions rely on the TPOAb-positivity cut-off as provided by the assay manufacturer. Furthermore, we did not detect heterogeneity in our results, supporting the fact that results obtained with different assays can be combined across cohorts using the z-score based meta-analysis. Finally, as AITD coincides with other autoimmune diseases, our results could be driven by indirect associations with autoimmune diseases. However, AITD is the most common autoimmune disease in the general population. The heritability of TPOAb in our results, supporting the fact that results obtained with different assays can be combined across cohorts using the z-score based meta-analysis. Finally, as AITD coincides with other autoimmune diseases, our results could be driven by indirect associations with autoimmune diseases. However, AITD is the most common autoimmune disease in the general population. The heritability of TPOAb in our results, supporting the fact that results obtained with different assays can be combined across cohorts using the z-score based meta-analysis. Finally, as AITD coincides with other autoimmune diseases, our results could be driven by indirect associations with autoimmune diseases. However, AITD is the most common autoimmune disease in the general population. The heritability of TPOAb in our results, supporting the fact that results obtained with different assays can be combined across cohorts using the z-score based meta-analysis. Finally, as AITD coincides with other autoimmune diseases, our results could be driven by indirect associations with autoimmune diseases. However, AITD is the most common autoimmune disease in the general population.
correcting for relatedness in studies with family structure. See Supplementary Table S1 for the software used for these analyses.

Before meta-analysis, SNPs with a minor allele frequency (MAF) <1% or a low imputation quality were excluded (Supplementary Material). After which the results of each GWAS were combined in a population size weighted z-score based meta-analysis using METAL [71]. Genomic control was applied to individual studies if λ > 1.0.

In stage 2, we followed up stage 1 GWAS significant SNPs, as well as promising SNPs not reaching GWAS significance, in an attempt to reach GWAS significant associations by increasing sample size (Supplementary Material). Results from stage 1 and 2 were combined in a population size weighted z-score based meta-analysis using METAL [71]. A z-score based meta-analysis was used to reduce bias that might be induced by different assays. As this method does not provide betas, and we wanted to provide a rough estimate of the actual effect sizes for convenience, we calculated betas using the fixed effects (inverse variance based) meta-analysis method. Heterogeneity was tested, applying bonferroni based P-value thresholds of P = 0.004 for the TPOAb-positivity analyses and P = 0.005 for the TPOAb level analyses.

All studies assessed and, if present, corrected for population stratification using principal-component analysis (PCA) and/or multidimensional-scaling (MDS), with the exception of SardiNIA and ValBorbera where the high isolation substantiates a lack of stratification (Table S1) [72,73]. Lambda values were all ~1, indicating that population stratification was overall properly accounted for (Table S1). To fully remove residual effects, we applied genomic correction to studies were lambda was >1. The final meta-analyses reported a lambda of 1.01 for both the TPOAb-positivity and the TPOAb level GWAS, thus no genomic correction was applied.

The variances explained by the GWAS significant SNPs were calculated. We subsequently studied the individual as well as the combined effects of the GWAS significant SNPs on the risk of clinical thyroid disease, as specified in the Supplementary Material. In short, to study combined effects, a genetic risk score was calculated. We subsequently studied the individual as well as the combined effects of the GWAS significant SNPs on the risk of clinical thyroid disease, as specified in the Supplementary Material, after which the results of each GWAS were combined in a population size weighted z-score based meta-analysis using METAL [71]. The results of each study were combined in a population size weighted z-score based meta-analysis using METAL [71]. Various bioinformatic tools were searched for evidence for functional relevance of the GWAS significant SNPs and pathway connections (where each locus is plotted in a circle, where significant associations are drawn spanning the circle). Analyses were based on the 20 stage 1 TPOAb-positivity and TPOAb level GWAS, thus no genomic correction was applied.

The variances explained by the GWAS significant SNPs were calculated. We subsequently studied the individual as well as the combined effects of the GWAS significant SNPs on the risk of clinical thyroid disease, as specified in the Supplementary Material. In short, to study combined effects, a genetic risk score was calculated. We subsequently studied the individual as well as the combined effects of the GWAS significant SNPs on the risk of clinical thyroid disease, as specified in the Supplementary Material, after which the results of each GWAS were combined in a population size weighted z-score based meta-analysis using METAL [71]. Various bioinformatic tools were searched for evidence for functional relevance of the GWAS significant SNPs and pathway analyses were performed on the Stage 1 lead SNPs (see Supplementary Material).

Supporting Information

Figure S1 TPOAb level distributions in persons with detectable TPOAb levels in stage 1 and 2 populations. (PPTX)

Figure S2 Quantile-quantile (QQ) plots for the TPOAb-positivity and TPOAb level stage 1 meta-analyses. (PPTX)

Figure S3 Manhattan plots for stage 1 meta-analyses for TPOAb-positivity (a) and TPOAb levels (b). SNPs are plotted on the x-axis according to their chromosomal position against TPOAb-positivity (a) or TPOAb levels (b) (shown as $-\log_{10} P$ value) on the y-axis. The horizontal grey line indicates the threshold for genome-wide statistical significance ($P<5\times10^{-8}$). Genome-wide significant associations were observed near TPO (Chr 2p25; $P=1.5\times10^{-12}$), at ATXN2 (Chr 12q24.1; $P=1.6\times10^{-8}$) and near HCP5 (Chr 6p21.3; $P=4.1\times10^{-5}$) for TPOAb-positivity, and near TPO (Chr 2p25; $P=5.4\times10^{-18}$) and at ATXN2 (Chr 12q24.1; $P=1.1\times10^{-35}$) for TPOAbs levels. (PPTX)

Figure S4 Regional association plots of stage 1 lead loci for TPOAb-positivity (panels a-m). The y-axis on the left indicates the $-\log_{10} P$ value for the association with TPOAb-positivity. SNPs are plotted on the x-axis according to their chromosomal position. The most significant stage 1 SNP is indicated in purple. The combined stage 1 and 2 result of this SNP is indicated in yellow. The SNPs surrounding the most significant SNP are color-coded to reflect their LD with this SNP. Symbols reflect functional genomic annotation, as indicated in the legend. The blue y-axes on the right of each plot indicate the estimated recombination rates (based on HapMap Phase II); the bottom of each panel shows the respective annotated genes at the locus and their transcriptional direction. Mb, megabases. (PPTX)

Figure S5 Regional association plots of stage 1 lead loci for TPOAb levels (panels a-j). The y-axis on the left indicates the $-\log_{10} P$ value for the association with TPOAb levels. SNPs are plotted on the x-axis according to their chromosomal position. The most significant stage 1 SNP is indicated in purple. The combined stage 1 and 2 result of this SNP is indicated in yellow. The SNPs surrounding the most significant SNP are color-coded to reflect their LD with this SNP. Symbols reflect functional genomic annotation, as indicated in the legend. The blue y-axes on the right of each plot indicate the estimated recombination rates (based on HapMap Phase II); the bottom of each panel shows the respective annotated genes at the locus and their transcriptional direction. Mb, megabases. (PPTX)

Figure S6 GRAIL results for the stage 1 TPOAb-positivity and TPOAb level lead SNPs. GRAIL circle plot of locus connectivity where each locus is plotted in a circle, where significant connections ($P<0.05$) based on PubMed abstracts are drawn spanning the circle. Analyses were based on the 20 stage 1 TPOAb-positivity and TPOAb level lead SNPs. (PPTX)

Table S1 Study sample genotyping, quality control and association analyses for stage 1 populations. (DOCX)

Table S2 Associations of stage 1 lead SNPs with serum TPOAb-positivity in stage 1 and 2. (DOCX)

Table S3 Associations of stage 1 lead SNPs with serum TPOAb levels in stage 1 and 2. (DOCX)

Table S4 Stage 1 TPOAb-positivity and TPOAb level meta-analyses results for GWAS significant SNPs reported in previous GWAS on thyroid related phenotypes. (XLSX)

Table S5 Genetic risk score and the risk of increased TSH levels. (DOCX)

Table S6 Newly identified TPOAb associated loci and the risk of thyroid cancer. (DOCX)
Table S7 Top IPA-associated canonical pathways for the Stage 1 TPOAb-positivity and TPOAb level SNPs.

Table S8 Top IPA-associated canonical pathways for the Stage 1 TPOAb-positivity and TPOAb level SNPs.

Text S1 Supplementary methods.

Acknowledgments

We thank all study participants, volunteers and study personnel that made this work possible.

The Asklepios study is indebted to Femke van Hoek, Bianca Leydens, and Caroline van Daele, and the residents and general practitioners of Erpe-Mere and Nieuwerkerken for their help in completing the study.

The Rotterdam Study thanks Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS database, and Karol Estrada and Maxi K. Struchalin for their support in creation and analysis of imputed data. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. We would like to thank Karol Estrada, Dr. Fernando Rivadeneira, Dr. Tobias A. Knoch, Anis Abusirius, Luc V. de Zeeuw, and Rob de Graaf (Erasmus MC Rotterdam, The Netherlands), for their help in creating GRIMP, and BigGRIND, MedigRIND, and Services@MedigRIND/D-Grid for access to their grid computing resources. We would like to thank Symen Ligthart for his help with the IPA and GRIMP pathway analyses.

The SardiNIA study thanks the many individuals who generously participated in this study, Monisignore Pesciali, Bishop of Ogliastra, the mayors and citizens of the Sardinian towns (Lanusei, Ilbono, Arzana, and Elini), and the head of the Public Health Unit ASLA for their cooperation and teamwork; the team also thanks the physicians, Marco Orru, Maria Grazia Pilia, Liana Ferreli, Francesco Lai, Stefano Angius, nurses Paola Monacelli, Monica Lai and Anna Cau who carried out participant physical exams, and the recruitment personnel Susanna Murino. We thank Francesco Cucca, PI of the SardiNIA study.

The SHIP study is grateful to the contribution of Florian Ernst, Anja Weichert and Astrid Petermann in generating the SNP data.

The SHIP-Trend study is grateful to Mario Stanke for the opportunity to use his Server Cluster for the SNP imputation as well as to Holger Prokisch and Thomas Mettinger (Helmholz Zentrum Munchen) for the genotyping of the SHIP-TREND cohort.

TwinsUK thanks the staff from the Genotyping Facilities at the Wellcome Trust Sanger Institute, UK, for sample preparation, quality control, and genotyping; Le Centre National de Génotypage, France, for genotyping; Duke University, NC, USA, for genotyping; and the Finnish Institute of Molecular Medicine, Finnish Genome Center, University of Helsinki. We thank the volunteer twins who made available their time.

The United Kingdom (UK) Graves’ disease cohort would like to thank all principle investigators (Ami Allahabadi, Northern General Hospital; Sheffield, UK; Mary Armitage Royal Bournemouth Hospital, Bournemouth, UK; Kristina V. Chatterjee, University of Cambridge, Aldenbrookes Hospital, Cambridge, UK; John H. Lazarus Centre for Endocrine and Diabetes Sciences, Cardiff University, Cardiff, UK; Simon H. Pearce, Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, Newcastle, UK and Bijay Vidyarthi, Royal Devon and Exeter Hospital, Exeter, UK), doctors and nurses for recruiting AITD subjects into the AITD National Collection.

Val Barbera thanks the inhabitants of the Val Borbera for participating in the study, the local administrations and the ASL-Novigolfo for support and Fiannmetta Viganò for technical help. We also thank Prof. Clara Camaschella, Prof Federico Caligaris-Cappio and the MDs of the Medicine Dept. of the San Raffaele Hospital for help with clinical data collection.

Author Contributions

Conceived and designed the experiments: MM SJF RAR AA HJG ER JIR HH LC DT BV TD M T JGE BMP AHo DS HW AAdc TMF AL KR LAK AGU JPW KS EW McE MeH MtHJJ TDS SGW HV AC DTo SS SN RR. Performed the experiments: MM EP GP AT LC SJF RAR GLR GLR TSP SHV JL M JS LNLH RMF BMS CG YSA AL TJV SS SN RR. Analyzed the data: MM EP GP AT SJF RAR RR GLR TSP SHV JL M JS LNLH RMF SLA BMS DP LC LB CG TC TE BT YET AAA MsA MdL CMA TEG MT NP YSA Adlc RTNM SCLG JMK AL JWS Fr MHS RR. Contributed reagents/materials/analysis tools: MM RR GLR TSP SHV JL M JS LNLH RMF BN MG CSA UV JBR FCS TIMK WEV ATH AL F JLC AHA WL GH ML SN MS MC MN Csp AR MH EML ER PjL SLA MV GA EwAd PA AdP DhwP DhwP JBM AT TE AJ HH HP EER FjF HP JIR JK DR GLS EB HH JAF BV TD M T JGE PCO ARH BMT TI AhO HW Adlc RTNM SCLG HmAs TMF AL FR AGU JPW CMe TJS TDS SGW HV AC DTo RR. Wrote the paper: MM AT LCJ TJV SGW AC SS SN RR.

References

20. Brix TH, Hegedus L (2011) Twins as a tool for evaluating the influence of

fusion variant of PTEN/MMAC is associated with reduced risk of systemic lupus
codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LTP) gene is a major determinant of Graves' disease. J Clin Endocrinol Metab 89: 5862–5865.
DNA pooling for whole-genome association scans in complex disease: empirical
Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 42: 1118–1125.
Genetic risk and a primary role for cell-mediated immune mechanisms in
associations for hypothyroidism include known autoimmune risk loci. PLoS One 7:e34442.
decades of screening for congenital hypothyroidism in The Netherlands: TPO
34. Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM, et al. (2009)
Variants near FOXE1 are associated with hypothyroidism and other thyroid
Identifying relationships among genomic disease regions: predicting genes at
importance of genetic and environmental effects for the early stages of thyroid
28. Weetman AP (2011) Diseases associated with thyroid autoimmunity: explana-
20. Brix TH, Hegedus L (2011) Twins as a tool for evaluating the influence of
Thyroid 17: 975–979.