UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Impact of PD1 and PDL1 immunotherapy on nonsmall cell lung cancer outcomes

Kanabar, Shivani; Tiwari, Abhinav; Soran, Vina; Balendran, Prashanthan; Price, Malcolm; Turner, Alice

DOI: 10.1136/thoraxjnl-2020-215614

License: Creative Commons: Attribution-NonCommercial (CC BY-NC)

Document Version Peer reviewed version

Citation for published version (Harvard):

Kanabar, S, Tiwari , A, Soran, V, Balendran, P, Price, M & Turner, A 2022, 'Impact of PD1 and PDL1 immunotherapy on non-small cell lung cancer outcomes: a systematic review', *Thorax*. https://doi.org/10.1136/thoraxjnl-2020-215614

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This article has been accepted for publication in [Journal, Year] following peer review, and the Version of Record can be accessed online at [insert full DOI eg. http://dx.doi.org/10.1136/thoraxjnl-2020-215614. © Authors (or their employer(s)) 2022. Reuse of this manuscript version (excluding any databases, tables, diagrams, photographs and other images or illustrative material included where a another copyright owner is identified) is permitted strictly pursuant to the terms of the Creative Commons Attribution-Non Commercial 4.0 International (CC-BY-NC 4.0) http://creativecommons.org BMJ Authors Self-Archiving Policy, September 2018 https://creativecommons.org/licenses/by-nc/4.0/

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Thorax

Thorax

The impact of PD1 and PDL1 immunotherapy on non-small cell lung cancer outcomes: a systematic review

Journal:	Thorax
Manuscript ID	thoraxjnl-2020-215614.R4
Article Type:	Original research
Date Submitted by the Author:	10-May-2022
Complete List of Authors:	Kanabar, Shivani; University of Birmingham College of Medical and Dental Sciences, Medical School; University of Birmingham, Institute of Applied Health Research Tiwari, Abhinav; University of Birmingham College of Medical and Dental Sciences, Medical School Soran, Vina; University of Birmingham College of Medical and Dental Sciences, Medical School Balendran, Prashanthan; University of Birmingham College of Medical and Dental Sciences, Medical School Price, Malcolm; University of Birmingham, Institute of Applied Health Research; University Hospitals Birmingham NHS Foundation Trust, NIHR Birmingham Biomedical Research Centre Turner, Alice; University of Birmingham, Institute of Applied Health Research
Keywords:	Lung Cancer, Non-Small Cell Lung Cancer
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

The impact of PD1 and PDL1 immunotherapy on non-small cell lung cancer outcomes: a systematic review

Shivani S Kanabar^{1,2}, Abhinav Tiwari¹, Vina Soran¹, Prashanthan Balendran¹, Malcolm J Price^{2,3}, Alice M Turner²

- 1 University of Birmingham Medical School, Birmingham, UK
- 2 Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- 3 NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

<u>Correspondence</u>: Miss Shivani Kanabar, University of Birmingham Medical School, Birmingham, UK. E-mail: shivani.kanabar@outlook.com

ORCID IDs:

Shivani S Kanabar	0000-0002-3783-2244
Abhinav Tiwari	0000-0001-7611-1397
Vina Soran	0000-0002-1534-8929
Prashanthan Balendran	0000-0001-9112-2748
Malcolm J Price	0000-0002-7352-3027
Alice M Turner	0000-0002-5947-3254

Contents

Abstract		2
Key messages		2
Introduction		3
Methods		3
Results		5
Discussion		10
Contributor Statement		13
Funding Declaration	<u> </u>	13
	<u> </u>	
	<u> </u>	

3778 words

Abstract

Introduction

Despite comprising many cancer diagnoses, few treatments are suitable for patients with advanced non-small cell lung cancer (aNSCLC). Trials suggest blockade of Programmed Death 1 (PD1) or its ligand (PDL1) may be effective for these patients. However, this therapy's impact on outcomes other than survival, and outcomes of patients not in trials, remains largely unknown. Therefore, we compared the effectiveness of PD1 and PDL1 immunotherapy to chemotherapy and placebo across multiple clinical outcomes.

<u>Methods</u>

Six databases were searched on 12-13/10/2019 for randomised controlled trials (RCTs) and observational studies investigating nivolumab, pembrolizumab, atezolizumab or durvalumab. Study selection was performed independently by two reviewers. Data for overall survival, progression-free survival, adverse effects (AEs), and quality of life (QoL) were descriptively and meta-analysed. Factors impacting treatment outcomes, including PDL1 expression, were explored. The similarity between RCT and observational data was assessed.

Results

From 5,423 search results, 139 full texts and abstracts were included. Immunotherapy was associated with a lower risk of death than both comparators. In RCTs, the incidence of treatment-related AEs was approximately 20% lower among patients using immunotherapy compared to chemotherapy. However, no other consistent benefits were observed. Progression-free survival results were inconsistent. Improvements to QoL varied according to the instrument used; however, QoL was not recorded widely. Survival results were similar between study designs; however, AEs incidence was lower in observational studies.

Discussion

Among patients with aNSCLC, immunotherapy improved overall survival and incidence of treatment-related AEs compared to chemotherapy. Benefits to progression-free survival and QoL were less consistent.

(Word count: 249)

Key messages

What is already known on the topic?

In trials, PD1 and PDL1 immunotherapy improves overall survival, but the impact to other clinical outcomes, the extent to which trial data reflect clinical practice, and factors affecting outcomes from this therapy are less well understood.

What this study adds

We present comprehensive systematic review data from 26,581 patients, demonstrating that while this immunotherapy improves overall survival, benefits to progression-free survival and quality of life are less clear. Performance status and presence of metastases had potential influence on survival outcomes.

How this study might affect research, practice, or policy

This study may be used to provide information about multiple clinical outcomes to patients and contribute to understanding factors affecting patient outcomes, to identify those most likely to succeed with this therapy.

Introduction

Globally and in the United Kingdom (UK), lung cancer is a major healthcare problem due to its high incidence and poor associated long-term survival [1-3]. In the UK, just 7.6% of men and 11.3% of women are predicted to survive past ten years [4]. Lung cancer incidence is strongly correlated with smoking, increasing age, and deprivation, suggesting vulnerable individuals are more susceptible [5-8].

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, comprising around 87% of cases [9]. The complex reasons for the poor prognosis associated with NSCLC have been widely studied [10]. One core reason is that many available treatments are unsuitable for patients with advanced NSCLC (aNSCLC), who comprise a large proportion of cases. Therefore, patient prognosis may be improved by identifying more treatments suitable for aNSCLC. Due to the specificity of antigen recognition within the immune system, therapies capitalising on immune checkpoint blockade, particularly Programmed Death 1 (PD1) and Programmed Death Ligand 1 (PDL1) immunotherapy, have potential to improve care of patients with aNSCLC.

PD1 and PDL1 immunotherapy consists of monoclonal antibodies that block the intra-tumoral interactions between PD1 and PDL1, restoring the cytotoxic functionality of anti-tumour immune cells [11, 12]. Based on data assimilated by the National Institute of Health and Care Excellence (NICE) from phase III randomized controlled trials (RCTs), PD1 and PDL1 immunotherapy has been recommended for the treatment of stage IIIB and stage IV NSCLC among patients expressing PDL1 [13].

However, several unanswered questions remain. Firstly, the generalisability of current NICE guidelines is questionable. This is because, by only considering trial data, the guidelines place emphasis on results from a few tightly regulated, relatively well, subsets of the population of NSCLC patients [14-18]. Secondly, available systematic reviews are limited because they focus on a single class effect, mostly related to short-term survival; assimilate data across several cancer types; and largely do not include observational data to assess real-world treatment-related outcomes [19-28]. Therefore, further systematic reviews are needed to provide a more realistic estimate of treatment effect and to investigate outcomes unrelated to survival. We aimed to establish whether PD1 and PDL1 immunotherapy is effective at improving clinical outcomes of NSCLC, compared to chemotherapy or placebo. Both RCTs and observational studies were included to assess data generalisable to a broad population. As a secondary objective, we explored potential patient and disease factors influencing patient prognosis.

Methods

The protocol is registered on PROSPERO (CRD42019153345).

Identification of relevant studies

All searches consisted of synonyms describing NSCLC, and PD1 and PDL1 immunotherapy, with database-specific subject headings where appropriate (see supplement). Studies in any language from inception to 13/10/2019 were included. Six databases were searched: Ovid Medline, Ovid EMBASE, EBSCO CINAHL, Cochrane Library, ClinicalTrials.gov and NICE Evidence Search. To check for relevant studies missed by literature searches, the reference lists of relevant systematic reviews returned from searches were compared against relevant results from title and abstract screening.

Study screening, selection, and data extraction

Eligible studies were required to meet the criteria specified in the protocol (Table 1). Studies were excluded if there were insufficient data for analysis, or if these criteria were not met.

Population	Adults > 18 years old with squamous, large cell, or adenocarcinoma NSCLC in ≥90% of participants, or data presented separately for eligible patients.					
Intervention	monotherapy administ	Nivolumab, pembrolizumab, atezolizumab and durvalumab monotherapy administered by a healthcare professional in a secondary or tertiary healthcare setting.				
Comparator		mmended chemotherapy administered by als in a secondary or tertiary setting.				
Outcomes	Overall survival (OS) Time between initiation of treatment and dea of patient					
	Progression-free survival (PFS)Time between initiation of treatment and worsening of the patient's cancer or death					
	Adverse effects A healthcare problem that arises after initiating treatment					
	Quality of life (QoL)Patient's satisfaction with their standard of living while they are using a treatment					
	Hospitalisations					
Study designs	Randomised Controlled Trials (RCTs)	Those comparing the effectiveness of PD1 and PDL1 immunotherapy to either of the two comparators were eligible. Non-comparative trials were not eligible. Abstracts permitted.				
	Cohort and case control studies	Participant number ≥ 10, receiving PD1 or PDL1 immunotherapy. Abstracts permitted.				
	Case series and case	Case series and case reports were not eligible.				

Table 1 – PICOS criteria

Search results were independently screened for relevance, and data were extracted by at least two reviewers at each stage. The data collected are outlined in the supplementary methods. When relevant data were unavailable, authors were contacted via e-mail.

Risk of bias and quality assessment

Risk of bias was assessed at a study level by one author and checked by SSK using the revised tool for Risk of Bias in randomized trials (RoB2.0) for RCTs, and the 2016 Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) as appropriate. The risk of publication bias was assessed using a funnel plot of the hazard ratios (HRs) for mortality from included RCTs, constructed in Review Manager 5.3[™]. Risk of bias data were visualised using the Risk Of Bias Visualisation Tool (ROBVIS). Additionally, the quality of RCT evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework; the GRADEpro[™] tool was used to produce a Summary of Findings table.

Data analysis

All outcomes were analysed descriptively. Studies were grouped by follow up length for analysis (Table 2).

Reported length of follow up	Follow up classification in review
0 months $\leq x < 18$ months	Short-term follow up
18 months $\leq x < 31$ months	Medium-term follow up

$x \ge 31$ months	Long-term follow up

Table 2 – Classification of length of follow up

x = median follow up reported in study, or minimum follow up if median was unavailable. This classification was used because most primary-analysis studies reported a follow up of just over one year, which would not be a fair comparison against data collected from closer to 24 months follow-up.

Risk of death and risk of progression or death HRs from RCT studies were meta-analysed in Review Manager 5.3[™] using a random effects model. Meta-analysis was precluded in observational studies due to the lack of reported HRs in these largely single arm studies. Median survival times and 95% confidence intervals (CIs) are displayed in the supplement. To aid comparison between studies, we also show the simple arithmetic mean of median survival times ('average survival') in the supplement. These mean estimates are indicative only.

AEs data were directly reported as or were converted to percentage incidence, defined as the proportion of patients within the study arm who had each AE. These data were analysed descriptively and with simple means to provide summary estimates of incidence. Detailed AEs tables are presented in the supplement.

Quality of life (QoL) results were reported directly from included studies. Meta-analysis was precluded because multiple QoL questionnaires were used among the studies.

Subgroup meta-analyses of HRs stratified by PDL1 expression, therapy line, tumour histology, presence of metastases and performance status were performed via the same methods. Where a breakdown of results by therapy line was not reported, studies were grouped into a 'mixed' category for analysis. These analyses were only possible for survival data due to a lack of HRs and stratification of results, particularly in the observational data.

Results

Characteristics of studies

After removing duplicates, 5,423 records were screened by title and abstract. Subsequently, 277 full texts and abstracts were screened. From these, 101 full texts and 38 abstracts were included (Figure 1) [29].

The 28 RCT studies included primary, extended follow up, and comparative subgroup analyses of 12 phase II or III international trials comparing immunotherapy to docetaxel, combination platinum chemotherapy or a placebo. The 111 observational studies included 74 full texts and 37 abstracts. Most observational studies were non-comparative cohort studies of a single intervention used in real clinical practice, typically nivolumab.

Across all RCTs, the total number of patients was 7,727 (range 272-1,274/study). The total number of participants across all observational studies was 18,951 (10-1,588/study). Participants in RCTs and observational studies had similar baseline characteristics (Table 3), though reporting was inconsistent among abstracts. Patients were typically men aged between 58 – 75. In RCTs, most patients were Caucasian; few observational studies reported ethnicity. Participants were recruited internationally, although few patients were from Africa.

Most patients in RCTs had stage III, IV or recurrent NSCLC, and thus had metastatic disease. Similarly, despite recruiting patients with all stages of disease, most patients in observational studies had metastatic disease. Most trials restricted recruitment by NSCLC histology, unlike the observational studies. Across both study designs, most patients had non-squamous

disease. However, unlike the observational studies, all trial patients had an Eastern Co-Operative Oncology Group Performance Status (ECOG PS) between 0 – 1.

Median length of follow up was typically one year, with some extended follow up RCTs reporting outcomes from up to four years.

Several lines of therapy were investigated in both RCTs and observational studies. In some studies, multiple lines were investigated (see supplement).

Patient	Randomised Controlled Trials (RCTs)			Observational		
characteristic	Number of RCTs*	Mean (Range) for intervention	Mean (Range) for comparator	Number of studies*	Mean (Range)	
% male	11	67.1	64.6	86	68.5	
		(52.0 - 82.0)	(53.0 – 81.0)		(19.6 - 90.0)	
% Caucasian	6	79.1	81.8	9	65.1	
		(66.2 – 91.0)	(70.6 – 95.0)		(13.0 – 97.0)	
Median age	11	62.7	63.5	79	66.5	
(yrs)		(60.0 - 64.5)	(60.0 - 66.0)		(58.0 – 75.2)	
Non-squamous	11	65.2	67.8	87	64.6	
histology		(0.0 - 100.0)	(0.0 – 100.0)		(0.0 - 100.0)	

Table 3 – Baseline characteristics of patients

*Not all studies reported all characteristics. Among the RCTs, Spigel et al did not report any baseline characteristics in their abstract [30]. Among the observational studies, absences of data largely originated from observational abstracts.

Risk of bias and quality of evidence

Overall, the risk of bias was relatively low (Figure 2A – C and supplement). Most RCTs and observational full texts were associated with a low risk of bias. The most common sources of bias in RCTs arose in domains relating to randomisation and intervention, attributable to the lack of reported compensatory mechanisms for potential crossover in open-label trials. The main source of bias in observational full texts arose from a lack of adjusting analyses for known confounders. Furthermore, approximately 40% of observational full texts did not report the implications of intervention deviations. The lack of reporting of methods in observational abstracts impacted our ability to assess risk of bias in these studies, which therefore remains unclear.

Funnel plots using HRs for death from RCTs were relatively symmetrical and are therefore unlikely to be subject to significant publication bias (Figure 2D). Our assessment gives no suggestion that conflicts of interest impacted the conduct of any of the studies included.

Using GRADE, the overall certainty of RCT evidence was moderate to high (Supplementary Results). Among studies investigating nivolumab, pembrolizumab and atezolizumab, time to deterioration in quality of life when assessed by EQ-5D-3L and LCSS ASBI were downgraded due to risk of bias, and risk of progression or death between 0 - 18 months were downgraded due to inconsistency and imprecision.

Overall survival

17 RCT studies reported OS at one- to four-years follow up [31-47]. 48 observational studies with short-term follow up reported OS [48-93]. Heterogeneity in the meta-analyses tended to be low to moderate, except for nivolumab in short-term follow up studies ($I^2 = 71\%$).

Among RCTs with short-term follow up, patients receiving immunotherapy survived longer on average and had a lower risk of death than patients receiving chemotherapy. The pooled HR

Thorax

for death among patients receiving nivolumab, pembrolizumab or atezolizumab compared to chemotherapy was 0.75 (95% CI 0.69 – 0.81, p < 0.00001) (Figure 3A). Typically, average survival was approximately 3 months longer with immunotherapy, with pembrolizumab being associated with longest average OS (13.6 months; Supplementary Figure 1). However, the associated confidence intervals for these data overlap rendering this evidence unclear.

Among RCTs with medium-term follow up, patients receiving immunotherapy survived longer and had a lower risk of death. The pooled HR for death among patients receiving nivolumab, pembrolizumab or atezolizumab compared to chemotherapy was 0.72 (95% CI 0.65 - 0.80, p < 0.00001) (Figure 3B). Typically, average survival was around 5 months longer with immunotherapy compared to chemotherapy. OS was not reached among patients receiving durvalumab (Supplementary Figure 1); the risk of death was 0.68 (99.73% CI 0.47 - 1.00)[43].

RCTs with long-term follow up reported similar results. The pooled HR for death was 0.70 (95% CI 0.59 – 0.82, p < 0.0001) (Figure 4C). Only CheckMate017 and 057 reported OS between three- and four-year follow up. There was no change in median OS in either study arm of these two cohorts [46].

OS in observational studies and RCTs were similar (Supplementary Figure 1). The similarity in OS between observational studies and RCTs was supported by data from observational studies with an unknown length of follow up, and abstracts.

Progression-free survival

17 RCT studies reported PFS from up to three-years patient follow up [31-42, 44, 45, 94-96]. 52 observational studies with short-term follow up reported PFS [48-59, 63-72, 74-76, 78-85, 87-90, 92, 93, 97-104]. Heterogeneity in the meta-analysed studies tended to be high; the I² statistics for short-term follow up studies of nivolumab and pembrolizumab were 69% and 91% respectively.

In RCTs with short-term follow up, patients receiving immunotherapy had a lower risk of progression or death than patients receiving chemotherapy. The pooled HR for progression or death among patients receiving nivolumab, pembrolizumab or atezolizumab compared to chemotherapy was 0.87 (95% CI 0.76 – 0.99, p = 0.03) (Figure 5A). There was no evidence of a difference in average PFS among patients receiving nivolumab, pembrolizumab or atezolizumab and those receiving chemotherapy, albeit with some inconsistency within the results (Supplementary Figure 2) [94].

Among RCTs with medium or long-term follow up, patients receiving immunotherapy did not have a consistent benefit to PFS. At three-year follow up, the risk of progression or death among patients receiving nivolumab or pembrolizumab compared to chemotherapy was 0.82 (95% CI 0.74 – 0.90, p < 0.00001) (Figure 5B). However, there were no clinically significant differences in average PFS between these three agents and chemotherapy in medium or long term follow up studies (Supplementary Figure 2). In PACIFIC, the PFS was 17.3 months (95% CI 13.1 – 23.9) with durvalumab, compared to 5.6 months (95% CI 4.6 –7.7) on placebo [43].

Similar PFS results were reported in observational studies including those with an unknown length of follow up, and abstracts (Supplementary Figure 2).

Adverse effects and hospitalisations

20 RCT studies reported AEs [31-39, 42-44, 47, 94, 95, 105, 106]. 53 observational full texts reported AEs among patients receiving pembrolizumab, nivolumab and atezolizumab, of which 44 investigated nivolumab.

In primary-analysis RCT studies, nivolumab, pembrolizumab and atezolizumab were associated with a lower incidence of treatment-related adverse effects (trAEs) than chemotherapy (Table 4), except one atezolizumab study [69]. Durvalumab was associated with a similar incidence of trAEs [94].

	% incidence – mean (range)			
Drug	Intervention arm, Randomised Controlled Trials (RCTs)	Intervention, observational studies	Chemotherapy arm, RCTs [†]	
Nivolumab	65.2	50.6	87.3	
Nivolulliab	(58.0 – 71.0)	(21.0 - 88.0)	(83.0 – 92.0)	
Pembrolizumab	66.4	48.2	87.0	
	(63.0 – 73.4)	(10.0 – 71.0)	(81.0 – 90.0)	
Atozolizumoh	65.5		87.0	
Atezolizumab	(64.0 - 67.0)		(86.0 – 88.0)	
Overall	65.7	49.4	87.1	
	% incidence			
Drug	Intervention arm, RCT	Intervention, observational studies	Placebo arm, RCT	
Durvalumab*	67.8	•	53.4	

Table 4 – Incidence of trAEs among randomised controlled trials (RCTs) and observational studies

*Only one study reported the incidence of trAEs among patients receiving durvalumab.

[†]Chemotherapy choices were highly variable between RCTs, but typically consisted of docetaxel or platinum-based chemotherapy combinations (see Supplementary Results).

The pattern and incidence of trAEs are summarised in Tables 5 and 6 and the supplementary results. Immune-related AEs were highly variable between studies and agents (see supplement).

Adverse effect	Number of	Mean % incidence		
	trials	Immunotherapy	Chemotherapy [†]	
Fatigue	9	15	27	
Decreased appetite	9	11	21	
Diarrhoea	8	11	15	
Pyrexia	3	11	7	
Nausea	8	10	31	
Rash	6	9	4	
Hypothyroidism	5	9	1	
Asthenia	7	8	12	
Arthralgia	3	7	8	
Constipation	5	6	12	

<u>Table 5 – Top 10 trAEs with the highest mean percentage incidence among patients receiving</u> <u>nivolumab, pembrolizumab, or atezolizumab in primary-analysis randomised controlled trials</u> (RCTs)

[†]Chemotherapy choices were highly variable between RCTs, but typically consisted of docetaxel or platinum-based chemotherapy combinations (see Supplementary Results).

Adverse effect	Number of studies	Mean % incidence
Fatigue/asthenia	24	27
Rash	25	13
Pruritus	12	11

Hypo-/hyperthyroidism	31	10
Nausea/vomiting	12	10
Arthralgia/myalgia	14	9
Diarrhoea	22	8
Neurological symptoms	10	8*
Pneumonitis	27	5
Anaemia	13	5

Table 6 – Top 10 trAEs with the highest mean percentage incidence among patients receiving nivolumab, pembrolizumab, or atezolizumab in observational studies

*The mean percentage incidence for patients experiencing neurological symptoms was heavily positively skewed by one study, which reported a percentage incidence of 63%.

Manrique et al were the only study to report hospitalisations; in this study, 5 out of 188 patients receiving nivolumab (2.7%) were hospitalised due to AEs [107].

Quality of Life

Quality of life (QoL) was reported in 4 RCTs using either EQ-5D (3L or 5L), EORTC-QLQ (LC13 or C30) or LCSS (Table 7).

Reck et al reported no significant differences to benefit in EQ-5D-3L between nivolumab and docetaxel [108]. While patients in both KEYNOTE 024 trial arms improved in EQ-5D-3L, the difference between pembrolizumab and chemotherapy was not significant [109]. Hui et al reported a mean change in EQ-5D-5L of -0.014 (σ 0.177) with durvalumab and 0.012 (σ 0.122) on placebo [110].

The proportion of patients that improved in terms of Lung Cancer Symptom Scale (LCSS) by week 12 was 17.8% with nivolumab (95% CI 13.6% – 22.7%) and 19.7% with docetaxel (95% CI 15.2% – 24.7%) [108]. The time to deterioration in average symptom burden index (ASBI) in the LCSS was prolonged with nivolumab, despite an initial worsening at week 4 [108].

EORTC-QLQ-C30 was used in studies of pembrolizumab, atezolizumab and durvalumab Patients taking pembrolizumab experienced a mean improvement of 6.9 points (95% CI 3.3 – 10.6) between baseline and week 15 [109]. By contrast, patients in the chemotherapy arm experienced mean decline of 0.9 points (95% CI -4.8 – 3.0; p = 0.002) [109]. However, there was no significant difference between atezolizumab and docetaxel or durvalumab and placebo (Table 5) [110, 111].

Beneficial effects on EORTC-QLQ-LC13 score were observed with pembrolizumab and atezolizumab compared to chemotherapy and docetaxel, respectively [109, 111]. There were no clinically important EORTC-QLQ-LC13 between-group differences between patients using durvalumab and placebo [110].

Study	Drug	QoL Tool	QoL Measure	HR	95% CI	p value
Reck et al, 2018 [108]	Nivolumab	EQ-5D-3L [112]	Time to disease- related deterioration	0.90	0.69 – 1.17	0.424
		LCSS ASBI [113]	Time to disease- related deterioration	0.65	0.49 – 0.85	0.002
Brahmer et al, 2017 [109]	Pembrolizumab	EORTC- QLQ-LC13 [114]	Time to deterioration in the composite of cough, chest pain and dyspnoea	0.66	0.44 – 0.97	0.029

	Bordoni et al, 2018 [111]	Atezolizumab	EORTC- QLQ-C30 [115]	Time to deterioration	0.94	0.72 – 1.24	0.6634
			EORTC- QLQ-LC13	Time to deterioration in chest pain	0.71	0.49 – 1.08	0.082
)	Hui et al, 2019 [110]	Durvalumab	EORTC- QLQ-C30	Time to deterioration	0.95	0.72 – 1.26	•

<u>Table 7 – Time to deterioration in quality of life, comparing interventions to chemotherapy and placebo</u>

The time to deterioration was prolonged among patients using an intervention [108-111]. The HRs have been reported directly from the included studies listed in the table.

Patient and disease factors influencing prognosis

Among 9 meta-analysable RCTs, increasing PDL1 expression was associated with a reduced risk of death (Figure 5). However, the CIs overlapped between groups, and there was significant heterogeneity among data from patients with \geq 5% expression. A similar relationship was observed between PDL1 expression and risk of progression or death (Supplementary Figure 5). When considering the current PDL1 expression threshold for accessing immunotherapy, patients with \geq 1% expression has a 6% lower risk of death than patients with <1% expression in these RCTs (Figure 5). However, the CIs between the two groups overlapped. Additionally, in 4 observational studies comparing this threshold among patients with nivolumab, no difference between risk of death for patients with <1% compared to \geq 1% was observed (Supplementary Figure 6). This result is hindered by the fact that one of these studies recruited patients involved in a compassionate access programme [116].

Among 10 RCTs with analysable therapy line data, patients receiving immunotherapy as 2nd line therapy had a 13% lower risk of death and a 12% lower risk of progression or death (Supplementary Figure 7). However, heterogeneity was significant in these subgroups.

No consistent impact to risk of death, or risk of progression or death, was observed when comparing patients with squamous to patients with non-squamous disease in 9 RCTs. This finding was upheld among the 10 observational studies comparing these subgroups.

2 RCT studies reported that patients with CNS and liver metastases receiving immunotherapy had a similar risk of death to patients without [44, 117]. However, the meta-analysed risk of death from 5 observational studies was significantly higher among patients with metastases (HR 1.69, 95% CI 1.23 – 2.32).

Among the 14 observational studies reporting the impact of ECOG PS on risk of death, patients with PS2 were at greater risk of death than patients with PS 0 – 1. The meta-analysed risk of death in 3 observational studies comparing PS2 to PS 0 – 1 was 1.95 (95% CI 1.54 – 2.48).

Discussion

Our results suggest PD1 and PDL1 immunotherapy increases OS and reduces risk of death from aNSCLC, based on numerous RCTs and observational studies with a relatively low risk of bias. This result replicates and builds upon previous reviews by demonstrating the impact of this therapy on OS is consistent both across study designs and at extended periods of follow up.

We extended previous systematic reviews by looking at other outcomes in detail; however, benefits to PFS, AEs and QoL were less clear. While risk of progression or death was reduced by immunotherapy, benefits to average PFS were variable. Additionally, although a benefit to trAE incidence was observed among patients receiving immunotherapy, the overall profile of AEs was similar between immunotherapy and chemotherapy. Furthermore, immune-related AEs were more common among patients using PD1-targeting treatments. Compared to RCTs, the incidence of AEs among patients using immunotherapy in observational studies was lower, although a broader range of AEs was reported in these studies. The impact of PD1 and PDL1 immunotherapy on patient QoL was variable, and highly dependent on the choice of instrument used in each study. There was a notable lack of QoL data, particularly among observational studies.

These results highlight the importance of distinguishing between the biological impact of PD1 and PDL1 immunotherapy and the impact of study design on results. Differentiating these may improve study designs to capture these effects.

The absence of a clear association between OS and PFS could be explained by pseudoprogression, which is a phenomenon in which immune cells infiltrate the primary tumour causing an increase to tumour size that mimics tumour growth [118]. Although there is limited evidence to support this theory, Li et al. found that mice with induced lung tumours exposed to anti-PD1 therapy accumulated tumour-infiltrating-lymphocytes within their tumours [119]. Since the included studies measured progression via the RECIST 1.1 criteria, which relies upon changes in tumour diameter, they were potentially unable to distinguish pseudoprogressions from true disease progression [120]. However, this explanation less probable, given the consistent effect of immunotherapy on the risk of progression or death. More likely, the lack of association may be explained by aspects of study design. Particularly, some of the included trials may be affected by bias introduced by calculating PFS from censored data [121]. Furthermore, many studies recruited patients from multiple therapy lines. Patients receiving later lines are more likely to have a shorter PFS, which may have meant studies investigating these reported lower median survival results.

The variability of AEs between drugs and study designs may also be explained by the effect of study design. Given all four therapies have a similar molecular basis, it is unlikely the differences in AE incidence between drugs are attributable to pharmacological effects. However, the lack of restriction of patients based on ECOG PS in observational studies may have contributed to the broader range of AEs observed, as patients with a higher ECOG PS could have a greater propensity to develop AEs. Furthermore, the retrospective nature of many observational studies may have allowed greater flexibility in detecting AEs compared to RCTs.

The choice of QoL tool impacted QoL results. While EQ-5D, a non-specific tool, was associated with minimal changes to QoL, patients assessed via more lung cancer-specific tools such as LCSS experienced greater benefits, suggesting this therapy may yet impact QoL when the correct tool is used. There is currently little research investigating impact of choice of QoL instrument on results [122]. Some studies have argued that lower AE incidence is indicative of improved QoL. However, given that QoL is a proxy measure of patient experiences with their wellbeing and care, assessments of QoL should reflect this and not rely solely upon the absence of disease.

We also extend current knowledge of factors influencing patient prognosis. Increasing PDL1 expression was associated with a lower risk of death, and risk of progression or death. However, the significance of the current PDL1 threshold for accessing this therapy, ≥1% expression, was unclear. Presence of metastases and ECOG PS2 were associated with worse

survival outcomes, while the impact of therapy line was not clear. It is unsurprising that presence of metastases and ECOG PS, which reflect patient health, were associated with poorer survival outcomes. However, it was more unexpected that having ≥1% expression did not confer a significant survival benefit. A potential reason for this may be that PDL1 expression is known to vary within tumours, and so samples of the tumour may not reflect overall tumour PDL1 expression. Therefore, there may have been insufficient PDL1 expression overall to experience a benefit among some patients, despite having ≥1% expression in their samples. This suggests more research is required to find the optimum threshold by which to stratify patients, or better ways to quantify PDL1 expression.

There are several limitations to the study. Firstly, some relevant abstract and ClinicalTrials.gov protocols could not be included due to the lack of methods and outcome data needed for analysis. Secondly, risk of publication bias among observational studies could not be assessed because too few studies reported HRs to be able to construct a funnel plot. The potential for publication bias limits the extent to which we can be confident results from observational studies represent patients in real clinical practice, as it is unknown whether outcomes of patients who do not benefit are underreported in available literature. Thirdly, the lack of comparative RCTs meant it was not possible to directly compare and confirm survival benefits observed between immunotherapies. Fourthly, it was not possible to meta-analyse the results from single arm observational studies, which prevented us from generating a summary estimate of treatment effectiveness from these studies. Finally, the study is hindered by the heterogeneity of the patient population. While we have explored some factors likely to affect patient outcomes, the variability in reporting the lines of therapy used in each study precluded our ability to fully explore the impact of this important factor. While our study had potential to be limited by comparing this therapy to chemotherapy solely recognised by NICE, we believe this is unlikely because NICE recommends a range of chemotherapy options in line with internationally accepted guidelines and evidence [13, 123, 124].

To conclude, among patients with aNSCLC, immunotherapy improved overall survival and incidence of treatment-related AEs compared to chemotherapy. Benefits to progression-free survival and QoL were less consistent. The variable effectiveness of this therapy to some outcomes and the expenses associated with its use suggest determining patients most likely to benefit is a key topic for future research or evidence syntheses.

Contributor Statement

SSK was the lead author of the study. Roles included: planning study methods; writing the PROSPERO protocol; literature searches; screening study titles and abstracts; checking inclusions and exclusions, and bias assessments of relevant studies; data analysis and writing and editing the submitted manuscript.

The roles of AT were: screening study titles and abstracts, screening relevant studies, extracting data from included studies and completing the primary risk of bias assessments.

The roles of VS and PB were: screening relevant studies, extracting data from included studies and completing the primary risk of bias assessments.

The roles of MJP were: assisting in the editing of figures, assisting in the meta-analysis of data, and editing the submitted manuscript.

AMT was the supervisor of the study. Roles included: planning study methods, editing the PROSPERO protocol, screening study titles and abstracts, and writing and editing the submitted manuscript.

All authors commented on drafts of the article and have approved the final version.

Funding Declaration

SSK received financial support as of February 2020 from the Yorke Williams Bequest, to support the completion of an associated thesis as part of an intercalated BMedSc in Clinical Sciences.

None of the remaining authors received funding related to this project. AMT has current grant funding from the NIHR, Health Foundation, ATS Foundation, Alpha 1 Foundation, CSL Behring, Chiesi and AstraZeneca (unrelated to lung cancer). MJP is supported by the NIHR Birmingham Biomedical Research Centre.

Competing Interests

None to declare. The views expressed are those of the authors and not necessarily those of the NHS, NIHR or the Department of Health and Social Care.

Ethics Statement

Ethical approval was not required for this study, because all data sourced and analysed were previously published anonymised patient data. No human participants were directly involved.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

2. Cancer Research UK. Lung Cancer Incidence Statistics [Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/incidence#heading-Two.

3. Cancer Research UK. Lung Cancer Mortality Statistics 2019 [Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/lung-cancer/mortality#heading-Zero.

4. Broggio J, Wong K, Gildea C, Emmet M, Finnigan S. Cancer survival in England: adult, stage at diagnosis and childhood – patients followed up to 2018. 2019.

5. Caul S, Broggio J. Cancer registration statistics, England: 2017: Office for National Statistics; 2019 [Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsandd iseases/bulletins/cancerregistrationstatisticsengland/2017#main-points.

6. Thomas R. Cancer incidence in Wales, 2001 – 2016: Welsh Cancer Intelligence and Surveillance Unit; 2019 [Available from: www.wcisu.wales.nhs.uk/cancer-incidence-in-wales-1.

7. Northern Ireland Cancer Registry. Lung Cancer. Queen's University Belfast.

8. Information Service Division Scotland. Cancer Incidence and Prevalence in Scotland (to December 2017). 2019.

9. Cancer Research UK. Types of Lung Cancer [Available from: https://www.cancerresearchuk.org/about-cancer/lung-cancer/stages-types-grades/types.

10. Stahel R, Peters S, Baas P, Brambilla E, Cappuzzo F, De Ruysscher D, et al. Strategies for improving outcomes in NSCLC: a look to the future. Lung Cancer. 2013;82(3):375-82.

11. Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol. 2013;94(1):25-39.

12. Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21(3):462-73.

13. National Institute of Health and Care Excellence. Lung cancer: diagnosis and management. NICE guideline [NG122]. London 2019. [cited 2019]. Available from: https://www.nice.org.uk/guidance/ng122/chapter/Recommendations#treatment.

14. National Institute of Health and Care Excellence. Nivolumab for previously treated squamous non-small-cell lung cancer. Technology appraisal [TA483]. 4 – Committee discussion. 2017 [Available from: https://www.nice.org.uk/guidance/ta483/chapter/4-Committee-discussion.

15. National Institute of Health and Care Excellence. Nivolumab for previously treated non-squamous non-small-cell lung cancer. Technology appraisal guidance [TA484]. 4 –

Committeediscussion.2017[Availablefrom:https://www.nice.org.uk/guidance/ta484/chapter/4-Committee-discussion.from:

16. National Institute of Health and Care Excellence. Atezolizumab for treating locally advanced or metastatic non-small-cell lung cancer after chemotherapy. Technology appraisal guidance [TA520]. 3 – Committee discussion. 2018 [

17. National Institute of Health and Care Excellence. Durvalumab for treating locally advanced unresectable non-small-cell lung cancer after platinum-based chemoradiation. Technology appraisal guidance [TA578]. 3 – Committee discussion. 2019 [Available from: https://www.nice.org.uk/guidance/ta578/chapter/3-Committee-discussion.

18.National Institute of Health and Care Excellence. Pembrolizumab for untreated PD-L1-
positive metastatic non-small-cell lung cancer. Technology appraisal guidance [TA531]. 3 –
Committee discussion.2018
[Available from:
https://www.nice.org.uk/guidance/ta531/chapter/3-Committee-discussion.

19. Chen R, Tao Y, Xu X, Shan L, Jiang H, Yin Q, et al. The efficacy and safety of nivolumab, pembrolizumab, and atezolizumab in treatment of advanced non-small cell lung cancer. Discov. 2018;26(143):155-66.

20. Hsu JC, Chen YT, Lo J, Yang SC, Lee YC, Lin PC. Comparative efficacy and safety of immune checkpoint inhibitors for untreated and treated advanced non-small cell lung cancer: Meta-analysis and meta-regression analysis. Pharmacoepidemiology and Drug Safety. 2019;28 (Supplement 2):126.

21. Jiang Q, Xie M, He M, Yan F, Zhang X, Yu S. Anti-PD-1/PD-L1 antibodies versus docetaxel in patients with previously treated non-small-cell lung cancer. Oncotarget. 2018;9(7):7672-83.

22. Huang G, Sun X, Liu D, Zhang Y, Zhang B, Xiao G, et al. The efficacy and safety of anti-PD-1/PD-L1 antibody therapy versus docetaxel for pretreated advanced NSCLC: A metaanalysis. Oncotarget. 2018;9(3):4239-48.

23. Peng TR, Wu TW. Efficacy of PD-1/PD-L1 inhibitors in patients with advanced nonsmall cell lung cancer: A meta-analysis of randomized clinical trials. Thorac Cancer. 2019;10(5):1176-81.

24. Cao D, Xu H, Xu X, Guo T, Ge W. A reliable and feasible way to predict the benefits of Nivolumab in patients with non-small cell lung cancer: a pooled analysis of 14 retrospective studies. Oncolmmunology. 2018;7(11).

25. Bao M, Pan YJ, Wang R, Li SL, Liang J, Yung JM, et al. The efficacy of nivolumab for the treatment of advanced non-small cell lung cancer: A systematic review and meta-analysis of clinical trials. International Journal of Clinical and Experimental Medicine. 2017;10(1):153-61.

26. Chen S, Hu B, Li H. A meta-analysis of nivolumab for the treatment of advanced non-small-cell lung cancer. OncoTargets and Therapy. 2018;11:7691-7.

27. Liu J, Zhong Y, Peng S, Zhou X, Gan X. Efficacy and safety of PD1/PDL1 blockades versus docetaxel in patients with pretreated advanced non-small-cell lung cancer: A metaanalysis. OncoTargets and Therapy. 2018;11:8623-32.

28. Abdel-Rahman O, Oweira H, Giryes A. Health-related quality of life in cancer patients treated with PD-(L)1 inhibitors: a systematic review. Expert Rev Anticancer Ther. 2018;18(12):1231-9.

29. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). PRISMA flow diagram [Available from: http://prisma-statement.org/.

30. Spigel D, de Marinis F, Giaccone G, Reinmuth N, Vergnenegre A, Barrios CH, et al. Impower110: Interim overall survival (OS) analysis of a phase III study of atezolizumab (atezo) vs platinum-based chemotherapy (chemo) as first-line (1L) treatment (tx) in PD-L1–selected NSCLC. European Society of Medical Oncology 2019 Congress Abstracts. 2019.

31. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(2):123-35.

32. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N Engl J Med. 2017;376(25):2415-26.

33. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. New England Journal of Medicine. 2015;373(17):1627-39.

34. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. The Lancet. 2016;387(10027):1540-50.

35. Mok TSK, Wu YL, Kowalski DM, Turna HZ, Laktionov KK, Lubiniecki GM, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. The Lancet. 2019;393(10183):1819-30.

36. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. The Lancet. 2016;387(10030):1837-46.

37. Wu YL, Lu S, Cheng Y, Zhou C, Wang J, Mok T, et al. Nivolumab Versus Docetaxel in a Predominantly Chinese Patient Population With Previously Treated Advanced NSCLC: CheckMate 078 Randomized Phase III Clinical Trial. J Thorac Oncol. 2019;14(5):867-75.

38. Horn L, Spigel DR, Vokes EE, Holgado E, Ready N, Steins M, et al. Nivolumab Versus Docetaxel in Previously Treated Patients With Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). Journal of Clinical Oncology. 2017;35(35):3924-33.

39. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Updated analysis of KEYNOTE-024: Pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. Journal of Clinical Oncology. 2019;37(7):537-46.

40. Fehrenbacher L, von Pawel J, Park K, Rittmeyer A, Gandara DR, Ponce Aix S, et al. Updated Efficacy Analysis Including Secondary Population Results for OAK: A Randomized Phase III Study of Atezolizumab versus Docetaxel in Patients with Previously Treated Advanced Non-Small Cell Lung Cancer. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer. 2018;13(8):1156-70.

 41. Hida T, Kaji R, Satouchi M, Ikeda N, Horiike A, Nokihara H, et al. Atezolizumab in Japanese Patients With Previously Treated Advanced Non-Small-Cell Lung Cancer: A Subgroup Analysis of the Phase 3 OAK Study. Clin Lung Cancer. 2018;19(4):e405-e15.

42. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. The Lancet. 2017;389(10066):255-65.

43. Antonia SJ, Ozguroglu M. Durvalumab in Stage III Non-Small-Cell Lung Cancer. The New England Journal of Medicine. 2018;378(9):869-70.

44. Vokes EE, Ready N, Felip E, Horn L, Burgio MA, Antonia SJ, et al. Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases. Ann Oncol. 2018;29(4):959-65.

45. Herbst RS, Baas P, Perez-Gracia JL, Felip E, Kim DW, Han JY, et al. Use of archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival: An updated analysis of keynote-010 trial. Ann Oncol. 2019;30(2):281-9.

46. Antonia SJ, Borghaei H, Ramalingam SS, Horn L, De Castro Carpeno J, Pluzanski A, et al. Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: a pooled analysis. The Lancet Oncology. 2019;20(10):1395-408.

47. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016;375(19):1823-33.

48. Crino L, Bidoli P, Delmonte A, Grossi F, De Marinis F, Ardizzoni A, et al. Italian Cohort of Nivolumab Expanded Access Program in Squamous Non-Small Cell Lung Cancer: Results from a Real-World Population. Oncologist. 2019.

49. Crino L, Bronte G, Bidoli P, Cravero P, Minenza E, Cortesi E, et al. Nivolumab and brain metastases in patients with advanced non-squamous non-small cell lung cancer. Lung Cancer. 2019;129:35-40.

50. Garassino MC, Crino L, Catino A, Ardizzoni A, Cortesi E, Cappuzzo F, et al. Nivolumab in never-smokers with advanced squamous non-small cell lung cancer: Results from the Italian cohort of an expanded access program. Tumour Biology. 2018;40(11):1010428318815047.

51. Liu J, Li S, Zhang S, Liu Y, Ma L, Zhu J, et al. Systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio can predict clinical outcomes in patients with metastatic non-small-cell lung cancer treated with nivolumab. Journal of Clinical Laboratory Analysis. 2019;(no pagination).

52. Oya Y, Yoshida T, Kuroda H, Mikubo M, Kondo C, Shimizu J, et al. Predictive clinical parameters for the response of nivolumab in pretreated advanced non-small-cell lung cancer. Oncotarget. 2017;8(61):103117-28.

53. Schouten RD, Muller M, de Gooijer CJ, Baas P, van den Heuvel M. Real life experience with nivolumab for the treatment of non-small cell lung carcinoma: Data from the expanded

access program and routine clinical care in a tertiary cancer centre-The Netherlands Cancer Institute. Lung Cancer. 2018;126:210-6.

54. Tiu AC, Potdar R, Djibo DA, Masab M, Dourado C. Clinical outcomes of African American patients with advanced or metastatic non-small cell lung cancer on Nivolumab in a single community-based cancer center. Medical Oncology. 2018;35(7):109.

55. Yoo SH, Keam B, Kim M, Kim SH, Kim YJ, Kim TM, et al. Low-dose nivolumab can be effective in non-small cell lung cancer: Alternative option for financial toxicity. ESMO Open. 2018;3(5).

56. Haratani K, Hayashi H, Chiba Y, Kudo K, Yonesaka K, Kato R, et al. Association of immune-related adverse events with nivolumab efficacy in non-small cell lung cancer. JAMA Oncology. 2018;4(3):374-8.

57. Ksienski D, Wai ES, Croteau N, Fiorino L, Brooks E, Poonja Z, et al. Efficacy of Nivolumab and Pembrolizumab in Patients With Advanced Non-Small-Cell Lung Cancer Needing Treatment Interruption Because of Adverse Events: A Retrospective Multicenter Analysis. Clin Lung Cancer. 2019;20(1):e97-e106.

58. Zhuo M, Chen H, Zhang T, Yang X, Zhong J, Wang Y, et al. The potential predictive value of circulating immune cell ratio and tumor marker in atezolizumab treated advanced non-small cell lung cancer patients. Cancer Biomark. 2018;22(3):467-76.

59. Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, et al. Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol. 2017;28(7):1532-9.

60. Katsura H, Suga Y, Araya T, Kita T, Yoneda T, Tanaka N, et al. Efficacy and safety of nivolumab in patients with advanced non-small-cell lung cancer and poor performance status. Journal of Cancer. 2019;10(10):2139-44.

61. Ravanelli M, Agazzi GM, Milanese G, Roca E, Silva M, Tiseo M, et al. Prognostic and predictive value of histogram analysis in patients with non-small cell lung cancer refractory to platinum treated by nivolumab: A multicentre retrospective study. European Journal of Radiology. 2019;118:251-6.

62. Brustugun OT, Sprauten M, Helland Å. Real-world data on nivolumab treatment of nonsmall cell lung cancer. Acta Oncologica. 2017;56(3):438-40.

63. Dudnik E, Moskovitz M, Daher S, Shamai S, Hanovich E, Grubstein A, et al. Effectiveness and safety of nivolumab in advanced non-small cell lung cancer: The real-life data. Lung Cancer. 2018;126:217-23.

64. Geier M, Descourt R, Quere G, Corre R, Leveiller G, Lamy R, et al. Real life secondline nivolumab in advanced non-small-cell-lung cancer: Europe observational multicenter study of 259 patients. Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S2427.

65. Grossi F, Crino L, Logroscino A, Canova S, Delmonte A, Melotti B, et al. Use of nivolumab in elderly patients with advanced squamous non-small-cell lung cancer: results from the Italian cohort of an expanded access programme. European Journal of Cancer. 2018;100:126-34.

Thorax

66. Ksienski D, Wai ES, Croteau N, Freeman AT, Chan A, Fiorino L, et al. Pembrolizumab for advanced nonsmall cell lung cancer: Efficacy and safety in everyday clinical practice. Lung Cancer. 2019;133:110-6.

67. Passaro A, Mancuso P, Gandini S, Spitaleri G, Labanca V, Guerini-Rocco E, et al. Gr-MDSC-linked asset as a potential immune biomarker in pretreated NSCLC receiving nivolumab as second-line therapy. Clinical and Translational Oncology. 2019.

68. Sabatier R, Nicolas E, Paciencia M, Jonville-Bera AP, Madroszyk A, Cecile M, et al. Nivolumab in routine practice for older patients with advanced or metastatic non-small cell lung cancer. Journal of Geriatric Oncology. 2018;9(5):494-500.

69. Tournoy KG, Thomeer M, Germonpre P, Derijcke S, De Pauw R, Galdermans D, et al. Does nivolumab for progressed metastatic lung cancer fulfill its promises? An efficacy and safety analysis in 20 general hospitals. Lung Cancer. 2018;115:49-55.

70. Weis TM, Hough S, Reddy HG, Daignault-Newton S, Kalemkerian GP. Real-world comparison of immune checkpoint inhibitors in non-small cell lung cancer following platinum-based chemotherapy. Journal of Oncology Pharmacy Practice. 2019.

71. Tamiya M, Tamiya A, Hosoya K, Taniguchi Y, Yokoyama T, Fukuda Y, et al. Efficacy and safety of pembrolizumab as first-line therapy in advanced non-small cell lung cancer with at least 50% PD-L1 positivity: a multicenter retrospective cohort study (HOPE-001). Investigational New Drugs. 2019.

72. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018-28.

73. Ricciuti B, Genova C, Bassanelli M, De Giglio A, Brambilla M, Metro G, et al. Safety and Efficacy of Nivolumab in Patients With Advanced Non-small-cell Lung Cancer Treated Beyond Progression. Clin Lung Cancer. 2019;20(3):178-85.e2.

74. Ricciuti B, Genova C, De Giglio A, Brambilla M, Bassanelli M, Dal Bello MG, et al. Impact of Immune-Related Adverse Events on Survival in Patients with Advanced Non-Small Cell Lung Cancer Treated with Nivolumab. Journal of Thoracic Oncology. 2018;13 (10 Supplement):S390-S1.

75. Leighl NB, Hellmann MD, Hui R, Carcereny E, Felip E, Ahn MJ, et al. Pembrolizumab in patients with advanced non-small-cell lung cancer (KEYNOTE-001): 3-year results from an open-label, phase 1 study. The Lancet Respiratory Medicine. 2019;7(4):347-57.

76. Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn MJ, et al. Five-Year Overall Survival for Patients With Advanced Non-Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2019;37(28):2518-27.

77. Alama A, Coco S, Genova C, Rossi G, Fontana V, Tagliamento M, et al. Prognostic Relevance of Circulating Tumor Cells and Circulating Cell-Free DNA Association in Metastatic Non-Small Cell Lung Cancer Treated with Nivolumab. J Clin Med. 2019;8(7).

78. Bagley SJ, Kothari S, Aggarwal C, Bauml JM, Alley EW, Evans TL, et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017;106:1-7.

79. Dumenil C, Massiani MA, Dumoulin J, Giraud V, Labrune S, Chinet T, et al. Clinical factors associated with early progression and grade 3-4 toxicity in patients with advanced non-small-cell lung cancers treated with nivolumab. PloS ONE. 2018;13(4).

80. Diem S, Schmid S, Krapf M, Flatz L, Born D, Jochum W, et al. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer. 2017;111:176-81.

81. Garde-Noguera J, Martin-Martorell P, De Julian M, Perez-Altozano J, Salvador-Coloma C, Garcia-Sanchez J, et al. Predictive and prognostic clinical and pathological factors of nivolumab efficacy in non-small-cell lung cancer patients. Clin Transl Oncol. 2018;20(8):1072-9.

82. Kaderbhai CG, Richard C, Fumet JD, Aarnink A, Ortiz-Cuaran S, Perol M, et al. Response to first line chemotherapy regimen is associated with efficacy of nivolumab in non-small-cell lung cancer. Oncolmmunology. 2017;6(9).

83. Lacerenza LG, Messuti L, Deligianni M, Chioni A, Bindi M, Guidi O, et al. Non-small cell lung cancer treated second-line with Nivolumab: Analysis of clinical outcomes and correlation between PD-L1 and response to therapy. Observational register REGNIVO. [Italian]. Giornale Italiano di Farmacia Clinica. 2019;33(2):68-76.

84. Merino Almazan M, Duarte Perez JM, Marin Pozo JF, Ortega Granados AL, Muros De Fuentes B, Quesada Sanz P, et al. A multicentre observational study of the effectiveness, safety and economic impact of nivolumab on non-small-cell lung cancer in real clinical practice. Int J Clin Pharm. 2019;41(1):272-9.

85. Montana M, Garcia ME, Ausias N, Jeanpierre M, Meiffren M, Giorgi R, et al. Efficacy and safety of nivolumab in patients with non-small cell lung cancer: a retrospective study in clinical practice. J Chemother. 2019;31(2):90-4.

86. Naqash AR, Stroud CRG, Butt MU, Dy GK, Hegde A, Muzaffar M, et al. Co-relation of overall survival with peripheral blood-based inflammatory biomarkers in advanced stage non-small cell lung cancer treated with anti-programmed cell death-1 therapy: results from a single institutional database. Acta Oncologica. 2018;57(6):867-72.

87. Passiglia F, Galvano A, Castiglia M, Incorvaia L, Calo V, Listi A, et al. Monitoring blood biomarkers to predict nivolumab effectiveness in NSCLC patients. Therapeutic Advances in Medical Oncology. 2019;11(no pagination).

88. Sekine K, Kanda S, Goto Y, Horinouchi H, Fujiwara Y, Yamamoto N, et al. Change in the lymphocyte-to-monocyte ratio is an early surrogate marker of the efficacy of nivolumab monotherapy in advanced non-small-cell lung cancer. Lung Cancer. 2018;124:179-88.

89. Shamai S, Merimsky O. Efficacy and safety of nivolumab in non-small cell lung cancer patients in tel-aviv tertiary medical center: Facing the reality. Molecular and Clinical Oncology. 2018;9(4):419-22.

90. Kawachi H, Fujimoto D, Morimoto T, Hosoya K, Sato Y, Kogo M, et al. Early depth of tumor shrinkage and treatment outcomes in non-small cell lung cancer treated using Nivolumab. Investigational New Drugs. 2019.

91. Passiglia F, Cappuzzo F, Alabiso O, Bettini AC, Bidoli P, Chiari R, et al. Efficacy of nivolumab in pre-treated non-small-cell lung cancer patients harbouring KRAS mutations. Br J Cancer. 2019;120(1):57-62.

Thorax

92. Lisberg A, Andrew Tucker D, Goldman JW, Wolf B, Carroll J, Hardy A, et al. Treatmentrelated adverse events predict improved clinical outcome in nsclc patients on KEYNOTE-001 at a single center. Cancer Immunology Research. 2018;6(3):288-94.

93. Osorio JC, Ni A, Chaft JE, Pollina R, Kasler MK, Stephens D, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Annals of oncology : official journal of the European society for medical oncology. 2017;28(3):583-9..

94. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377(20):1919-29.

95. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus lpilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med. 2018;378(22):2093-104.

96. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. The New England Journal of Medicine. 2019;28.

97. Gauvain C, Vauleon E, Chouaid C, Le Rhun E, Jabot L, Scherpereel A, et al. Intracerebral efficacy and tolerance of nivolumab in non-small-cell lung cancer patients with brain metastases. Lung Cancer. 2018;116:62-6.

98. Krefting F, Basara N, Schutte W, Spath-Schwalbe E, Alt J, Thiel S, et al. Clinical Experience of Immunotherapy Treatment: Efficacy and Toxicity Analysis of the Compassionate Use Program of Nivolumab in Patients with Advanced Squamous Cell Non-Small Cell Lung Cancer. Oncol Res Treat. 2019;42(5):243-55.

99. Edahiro R, Kanazu M, Kurebe H, Mori M, Fujimoto D, Taniguchi Y, et al. Clinical outcomes in non-small cell lung cancer patients with an ultra-high expression of programmed death ligand-1 treated using pembrolizumab as a first-line therapy: A retrospective multicenter cohort study in Japan. PloS ONE. 2019;14(7).

100. Kanai O, Kim YH, Demura Y, Kanai M, Ito T, Fujita K, et al. Efficacy and safety of nivolumab in non-small cell lung cancer with preexisting interstitial lung disease. Thorac Cancer. 2018;9(7):847-55.

101. Kobayashi H, Omori S, Nakashima K, Wakuda K, Ono A, Kenmotsu H, et al. Response to the treatment immediately before nivolumab monotherapy may predict clinical response to nivolumab in patients with non-small cell lung cancer. Int J Clin Oncol. 2017;22(4):690-7.

102. Kobayashi K, Nakachi I, Naoki K, Satomi R, Nakamura M, Inoue T, et al. Real-world Efficacy and Safety of Nivolumab for Advanced Non-Small-cell Lung Cancer: A Retrospective Multicenter Analysis. Clin Lung Cancer. 2018;19(3):e349-e58.

103. Takeda T, Takeuchi M, Saitoh M, Takeda S. Neutrophil-to-lymphocyte ratio after four weeks of nivolumab administration as a predictive marker in patients with pretreated non-small-cell lung cancer. Thorac Cancer. 2018;9(10):1291-9.

104. Teraoka S, Fujimoto D, Morimoto T, Kawachi H, Ito M, Sato Y, et al. Early Immune-Related Adverse Events and Association with Outcome in Advanced Non-Small Cell Lung Cancer Patients Treated with Nivolumab: A Prospective Cohort Study. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer. 2017;12(12):1798-805.

Thorax

105. Nosaki K, Saka H, Hosomi Y, Baas P, de Castro G, Reck M, et al. Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non-small-cell lung cancer: Pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer. 2019;135:188-95.

106. von Pawel J, Bordoni R, Satouchi M, Fehrenbacher L, Cobo M, Han JY, et al. Longterm survival in patients with advanced non-small-cell lung cancer treated with atezolizumab versus docetaxel: Results from the randomised phase III OAK study. Eur J Cancer. 2019;107:124-32.

107. Manrique MCA, Martinez JM, Gonzalez JG, Afonso FJA, Quintela ML, Nunez NF, et al. Real world data of nivolumab for previously treated non-small cell lung cancer patients: A Galician lung cancer group clinical experience. Translational Lung Cancer Research. 2018;7(3):404-15.

108. Reck M, Brahmer J, Bennett B, Taylor F, Penrod JR, DeRosa M, et al. Evaluation of health-related quality of life and symptoms in patients with advanced non-squamous non-small cell lung cancer treated with nivolumab or docetaxel in CheckMate 057. European Journal of Cancer. 2018;102:23-30.

109. Brahmer JR, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Health-related quality-of-life results for pembrolizumab versus chemotherapy in advanced, PD-L1-positive NSCLC (KEYNOTE-024): a multicentre, international, randomised, open-label phase 3 trial. Lancet Oncol. 2017;18(12):1600-9.

110. Hui R, Özgüroğlu M, Villegas A, Daniel D, Vicente D, Murakami S, et al. Patientreported outcomes with durvalumab after chemoradiotherapy in stage III, unresectable nonsmall-cell lung cancer (PACIFIC): a randomised, controlled, phase 3 study. Lancet Oncol. 2019;20(12):1670-80.

111. Bordoni R, Ciardiello F, von Pawel J, Cortinovis D, Karagiannis T, Ballinger M, et al. Patient-Reported Outcomes in OAK: A Phase III Study of Atezolizumab Versus Docetaxel in Advanced Non-Small-cell Lung Cancer. Clin Lung Cancer. 2018;19(5):441-9.

112. EuroQol Group. EuroQol--a new facility for the measurement of health-related quality of life. Health Policy. 1990;16(3):199-208.

113. Hollen PJ, Gralla RJ, Kris MG, Potanovich LM. Quality of life assessment in individuals with lung cancer: testing the Lung Cancer Symptom Scale (LCSS). Eur J Cancer. 1993;29A Suppl 1:S51-8.

114. Bergman B, Aaronson NK, Ahmedzai S, Kaasa S, Sullivan M. The EORTC QLQ-LC13: a modular supplement to the EORTC Core Quality of Life Questionnaire (QLQ-C30) for use in lung cancer clinical trials. EORTC Study Group on Quality of Life. Eur J Cancer. 1994;30A(5):635-42.

115. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology. JNCI Journal of the National Cancer Institute. 1993;85(5):365-76.

116. Genova C, Boccardo S, Mora M, Rijavec E, Biello F, Rossi G, et al. Correlation between B7-H4 and Survival of Non-Small-Cell Lung Cancer Patients Treated with Nivolumab. J Clin Med. 2019;8(10).

Thorax

117. Gadgeel SM, Lukas RV, Goldschmidt J, Conkling P, Park K, Cortinovis D, et al. Atezolizumab in patients with advanced non-small cell lung cancer and history of asymptomatic, treated brain metastases: Exploratory analyses of the phase III OAK study. Lung Cancer. 2019;128:105-12.

118. Somarouthu B, Lee SI, Urban T, Sadow CA, Harris GJ, Kambadakone A. Immunerelated tumour response assessment criteria: a comprehensive review. Br J Radiol. 2018;91(1084):20170457.

119. Li HY, McSharry M, Bullock B, Nguyen TT, Kwak J, Poczobutt JM, et al. The Tumor Microenvironment Regulates Sensitivity of Murine Lung Tumors to PD-1/PD-L1 Antibody Blockade. Cancer Immunol Res. 2017;5(9):767-77.

120. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47.

121. Fleming TR, Rothmann MD, Lu HL. Issues in using progression-free survival when evaluating oncology products. J Clin Oncol. 2009;27(17):2874-80.

122. Hussain S, Turner AM, Woolhouse I. Determinants of patient experiences during the lung cancer pathway: a systematic review. PROSPERO 2019 CRD42019126574. 2019.

123. Besse B, Adjei A, Baas P, Meldgaard P, Nicolson M, Paz-Ares L, et al. 2nd ESMO Consensus Conference on Lung Cancer: non-small cell lung cancer first-line/second and further lines of treatment in advanced disease. Ann Oncol. 2014;25(8):1475-84.

124. PDQ® Adult Treatment Editorial Board. PDQ Non-Small Cell Lung Cancer Treatment. Bethesda, MD: National Cancer Institute, 2020. [Available at: https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq].

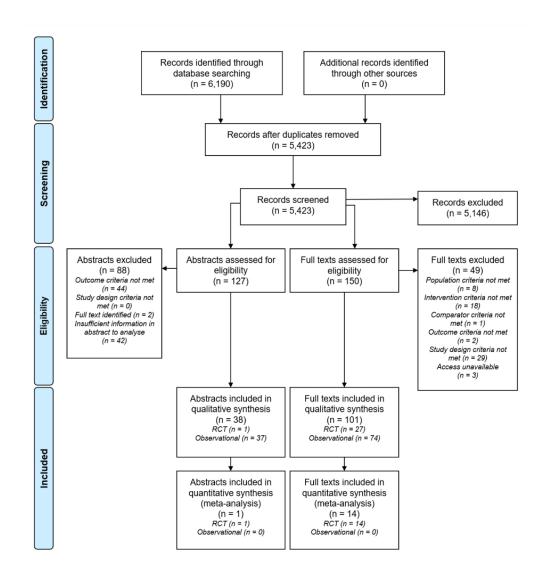
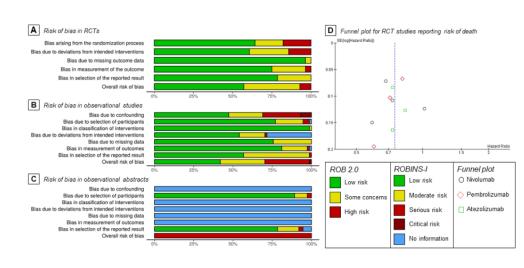



Figure 1 – PRISMA flow diagram of review Adapted from [29].

79x85mm (300 x 300 DPI)

Thorax

<u>Figure 2 – Risk of Bias Assessment Summary</u> A) Risk of bias summary bar chart for all included RCTs full texts and abstracts, assessed by ROB 2.0, B) Risk of bias summary bar chart for all included observational full texts, assessed by ROBINS-I, C) Risk of bias summary bar chart for all included observational abstracts, assessed by ROBINS-I, D) Funnel plot for publication bias, derived from HRs for overall survival at one year follow up from 10 RCTs. A 95% confidence region could not be plotted. This is because calculating a total risk from this data was not appropriate, as the included RCTs tested different interventions.

79x37mm (300 x 300 DPI)

A Short-term follow up

$B_{0}^{(1)} = 12 (205 \\ Barbner 2015 \\ Barbner 2017 \\ Barbner 2015 \\ Barbner 2016 \\ Barbner 2017 \\ Barbner 20$		Hazard Ratio Study or Subgroup Weight IV, Random, 95% Cl Year	Hazard Ratio IV, Random, 95% CI	Risk of Bias A B C D E F
Carbona 2017 8.4% 1.02 (0.50, 1.52) 2017 Subtotal (05%, (C) 4.0% 0.54 (0.54, 0.59) Heterogeneity, Tart = 0.35, (h = 1.0.2, (f = 7.0, 0.2); h = 7.1% Image: the teropeneity, Tart = 0.35, (h = 0.2); h = 7.1% No. 2019 1.5% 0.50 (0.5, 0.58) Heterogeneity, Tart = 0.35, (h = 0.2, 0.5, 0.58) Image: the teropeneity, Tart = 0.05, (h = 2.0, 2.7, e = 0.57); h = 0.56; No. 2019 5.5% 0.57 (0.55, 0.68) Heterogeneity, Tart = 0.05, (h = 0.7, 0.67, 0.68) 0.67 (0.60) Heterogeneity, Tart = 0.05; (h = 0.7, 0.67, 0.68) 0.67 (0.60) Heterogeneity, Tart = 0.05; (h = 0.7, 0.67, 0.68) 0.67 (0.60) Heterogeneity, Tart = 0.05; (h = 0.7, 0.67, 0.68) 0.67 (0.60) Heterogeneity, Tart = 0.05; (h = 0.7, 0.67, 0.68) 0.67 (0.60) Heterogeneity, Tart = 0.05; (h = 0.7, 0.67, 0.68) 0.67 (0.60) Heterogeneity, Tart = 0.05; (h = 0.7, 0.67, 0.68) 0.60 (0.67, 0.68) Heterogeneity, Tart = 0.05; (h = 0.7, 0.67, 0.68) 0.67 (0.60) Heterogeneity, Tart = 0.05; (h = 0.7, 0.67, 0.68) 0.67 (0.60) Heterogeneity, Tart = 0.05; (h = 0.7, 0.68, 0.68) 0.68 (0.67) Heterogeneity, Tart = 0.05; (h = 0.7, 0.68, 0.68) 0.68 (0.67) Heterogeneity, Tart = 0.00; (h = 0.68); (h		1.1.1 Nivolumab Borghaei 2015 10.1% 0.73 [0.59, 0.90] 2015		•?•••?
Switch of Sides (D) 15 Siges (D) 23 (D)				
Subtotal (95% C) 40.7% 0.74 (0.51, 0.99) Heterogenety: Tart = 0.02, 0.76 = 0.02; P = 7.1% Test for overall effect 2 = 2.97 (P = 0.03) Heterogenety: Tart = 0.03, 0.69 (0.41, 0.89) Subtotal (95% C) 1.93%, 0.57 (0.53, 0.97) Heterogenety: Tart = 0.03, 0.76 = 2.94, 0.72 (0.55, 0.89) Heterogenety: Tart = 0.03, 0.76 = 2.94, 0.72 (0.53, 0.10) Subtotal (95% C) 1.93%, 0.73 (0.53, 1.01) Subtotal (95% C) 1.93%, 0.73 (0.53, 1.01) Subtotal (95% C) 1.93%, 0.73 (0.53, 1.01) Total (95% C) 1.00, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.10, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.10, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.10, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.10, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.10, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.10, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.10, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.10, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.00, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.00, 0.76 = 0.78, 0.72 (0.56, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.75, 0.56, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.55, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.75, 0.56, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.75, 0.50, 0.82) Total (95% C) 100.00% 0.72 (0.55, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.75, 0.57, 0.79) Total (95% C) 100.00% 0.72 (0.55, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.75, 0.79) Total (95% C) 100.00% 0.72 (0.55, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.75, 0.79) Total (95% C) 100.00% 0.72 (0.55, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.75, 0.79) Total (95% C) 100.00% 0.72 (0.55, 0.89) Heterogenety: Tart = 0.00, 0.77 (0.75, 0.79) Total (95% C) 100.00% 0.72 (0.55, 0.89) Heterogenety: Tart = 0.77 (0.75, 0.77)			_	
Test for overall effect: $2 = 237$ (P = 0.003) Revel 2016 Revel 2017 Revel 2017 Revel 2017 Revel 2017 Revel 2018 Revel 2017 Revel 2018 Revel 2017 Revel 2018 Revel		Subtotal (95% CI) 40.7% 0.74 [0.61, 0.90]	-	
Perck 2016 4.2% 0.80 (0.41, 0.88) 2016 Mok 2019 16.8% 0.81 (0.71, 0.52, 0.87) Petterogeneity, Tat# = 0.00, Ch# = 2.81, df = 2 (P = 0.25), J = 20% Test for overall effect Z = 4 07 (P < 0.0001)				
Herbst 2016 10.8% 0.71 (b 50, 0.87) 2016 Subbola (195% C) 31.8% 0.75 (b 50, 0.80) 1 Herbst 2016 5.5% 0.73 (b 53, 1.01) 2016 Rittmeper 2017 13.8% 0.85 (b 50, 0.20) 1 Subbola (195% C) 10.0% 0.75 (b 63, 0.81) 1 1 Herbst 2016 5.5% 0.73 (b 53, 1.01) 2016 1 1 0<				
Mok 2019 168% C1 31.8% O.73 (0.55, 0.86) Heterogenehy, Tau" = 0.00, Ch" = 2.29, Jr = 29% Tehterbacher 2016 5.5% 0.73 (0.53, 1.01] 2016 Rittmeyer 2017 13.8% 0.73 (0.52, 0.86] Heterogenehy, Tau" = 0.00, Ch" = 0.79, Jr = 2 (P = 0.87), F = 0% Test for overall effect Z = 4.87 (P < 0.0001) Total (95% C1 100.0% 0.75 (0.65%, 0.81] Heterogenehy, Tau" = 0.00, Ch" = 0.79, Jr = 2 (P = 0.87), F = 0% Test for overall effect Z = 4.87 (P < 0.0001) Test for subgroup Mediptin (M, Random, 95% C1 N = 0 + 0.11), P = 33% Test for overall effect Z = 6.87 (P < 0.0001) Test for subgroup Mediptin (M, Random, 95% C1 N = 0 + 0.11), P = 33% Test for overall effect Z = 6.87 (P < 0.0001) Test for subgroup Mediptin (M, Random, 95% C1 N = 0 + 0.11), P = 33% Test for overall effect Z = 6.87 (P < 0.0001) Test for subgroup Mediptin (M, Random, 95% C1 N = 0 + 0.11), P = 33% Test for overall effect Z = 6.87 (P < 0.0001) Test for subgroup Mediptin (M, Random, 95% C1 N = 0 + 0.11), P = 33% Test for overall effect Z = 6.30 (P < 0.0001) Test for subgroup Mediptin (M, Random, 95% C1 N = 0 + 0.11), P = 33% Test for overall effect Z = 6.30 (P < 0.0001) Test for overall effect Z = 6.30 (P < 0.0001) Test for overall effect Z = 6.30 (P < 0.0001) Test for overall effect Z = 6.30 (P < 0.0001) Test for overall effect Z = 6.30 (P < 0.0001) Test for overall effect Z = 6.30 (P < 0.0001) Test for overall effect Z = 6.30 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test for overall effect Z = 4.28 (P < 0.0001) Test f				
Helerogeneity: Tar# = 0.00; Ch# = 2.61; df = 2.67; e = 0.25; e = 2.95; e =		Mok 2019 16.8% 0.81 [0.71, 0.92] 2019		070000
Test for overall effect $Z = 4.07 (P + 0.0001)$ Hitmendechar 2016 55% 0.73 (0.53, 1.01) 2016 Ritimener 2017 138% 0.73 (0.53, 1.01) 2016 Ritimener 2019 (Abstrad, 95% 0.75 (0.57, 0.68) 2017 Subtolal (95% CI) 100.0% 0.75 (0.59, 0.801) Heterogeneik, Tax ² = 0.00; Chrl= - 0.78, d1 = 0 (P = 0.11), IP = 37% Test for overall effect $Z = 6.87 (P + 0.00001)$ Test for subgroup differences: Chrl= 0.03, df = 2 (P = 0.59), P = 0% Test for overall effect $Z = 6.87 (P + 0.00001)$ Total (95% CI) 100.0% 0.75 (0.59, 0.81] Heterogeneik, Tax ² = 0.00; Chrl= - 0.78, df = 2 (P = 0.59), P = 0% Total (95% CI) 100.0% 0.72 (0.50, 0.80] Heterogeneik, Tax ² = 0.00; Chrl= - 0.78, df = 2 (P = 0.59), P = 0% Total (95% CI) 100.0% 0.72 (0.50, 0.80] Heterogeneik, Tax ² = 0.00; Chrl= - 1.41, df = 2 (P = 0.59), P = 0% Total (95% CI) 100.0% 0.72 (0.50, 0.80] Heterogeneik, Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneik, Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneix, Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneix, Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneix, Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneix, Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneix, Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneix Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneix Tax ² = 0.00; Chrl= - 1.41, df = 1 (P = 0.24), P = 20% Total (95% CI) 100.0% 0.70 (0.59, 0.82] Heterogeneix Tax ² = 0.00; Chrl= - 1.41, df = 0.70 = 0.24); P = 20% Decemeration teroenterieft B Decemeration teroenterieft B Decemeration teroenterieft B Decemeration teroenterieft			•	
Febrenbacher 2015 5.5% 0.73 [0.53, 1.01] 2016 Singlei 2019 (Abstract) 2.2% 0.83 [0.65, 1.07] 2019 Singlei 2019 (Abstract) 2.2% 0.83 [0.65, 1.07] 2019 Singlei 2019 (Abstract) 2.2% 0.83 [0.65, 1.07] 2019 Testfor overall effect Z = 4.39 (P < 0.0001) Testfor overall effect Z = 6.87 (P < 0.0001) Testfor subgroup Weight IV, Random, 95% Cl V, Random, 9				
Rilmsyer 2017 (Abstra (b) 32, 50, 033 (055, 107) (057), P= 0%, Testfor overall effect Z= 4.39 (P < 0.0001)				
Splige 2019 (Abstrach 2.25, 0.37 [0.67, 0.69] Heterogeneity: Tau" = 0.00; Ch" = 0.79, df = 2 (P = 0.67); F = 0% Test for overall effect 2.2 4.39 (P < 0.0001) Test for subgroup differences: Ch" = 0.03, df = 2 (P = 0.99), P = 0% B Medium-term follow up Test for vowrall effect 2.5 & 87 (P < 0.0001) Test for subgroup Weight IV, Random, 95% Cl Heterogeneity: Tau" = 0.00; Ch" = 1.05, df = 2 (P = 0.99), P = 0% B Medium-term follow up Test for vowrall effect 2.2 + 2.0 (P < 0.990), P = 0% B Medium-term follow up				
Heterogeneity: Tau" = 0.01; Ch ^H = 0.73; df = 2 ($P = 0.57$); F = 0% Test for overall effect Z = 4.39 ($P < 0.0001$) Test for subgroup differences: Ch ^H = 0.03; df = 2 ($P = 0.39$), P = 0% B Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition Definition		Spigel 2019 (Abstract) 8.2% 0.83 [0.65, 1.07] 2019		
Test for overall effect $Z = 4.39$ ($P < 0.0001$) Total (95% C) 100.0% 0.75 (0.89, 0.81) Heterogeneiky: Tau ² = 0.01; ChP = 14.31, df = 9 (P = 0.11); P = 37%, Test for overall effect $Z = 6.37$ ($P < 0.0001$) Test for subgroup differences: ChP = 0.03, df = 2 ($P = 0.39$), P = 0% B Mcdium-term follow up Hazard Ratio N, Random, 95% Cl A B C D E F Fehrenbacher 2018 41.4% 0.75 (0.64, 0.88) Hom 2017 46.5% 0.72 (0.62, 0.84) Hom 2017 46.5% 0.72 (0.62, 0.84) Heterogeneiky: Tau ² = 0.00; ChP = 1.05, df = 2 ($P = 0.59$); P = 0% Total (95% Cl) 100.0% 0.72 (0.65, 0.80) Heterogeneiky: Tau ² = 0.00; ChP = 1.05, df = 2 ($P = 0.59$); P = 0% Total (95% Cl) 100.0% 0.72 (0.65, 0.80) Heterogeneiky: Tau ² = 0.00; ChP = 1.05, df = 2 ($P = 0.59$); P = 0% Total (95% Cl) 100.0% 0.72 (0.65, 0.80] Heterogeneiky: Tau ² = 0.00; ChP = 1.05, df = 2 ($P = 0.59$); P = 0% Total (95% Cl) 100.0% 0.72 (0.65, 0.76) Heterogeneiky: Tau ² = 0.00; ChP = 1.04, df = 2 ($P = 0.29$); P = 0% Total (95% Cl) 100.0% 0.72 (0.65, 0.76) Heterogeneiky: Tau ² = 0.00; ChP = 1.41, df = 1 ($P = 0.24$); P = 2% Test for overall effect $Z = 4.28$ ($P < 0.0001$) For use immunotherapy Favours chemotherapy Heterogeneity: Tau ² = 0.00; ChP = 1.41, df = 1 ($P = 0.24$); P = 2% Test for overall effect $Z = 4.28$ ($P < 0.0001$) For use immunotherapy Favours chemotherapy Heterogeneity: Tau ² = 0.00; ChP = 1.41, df = 1 ($P = 0.24$); P = 2% Test for overall effect $Z = 4.28$ ($P < 0.0001$) For use immunotherapy Favours chemotherapy Heterogeneity: Tau ² = 0.00; ChP = 1.41, df = 1 ($P = 0.24$); P = 2% Test for overall effect $Z = 4.28$ ($P < 0.0001$) For use immunotherapy Favours chemotherapy Heterogeneity: Tau ² = 0.00; ChP = 1.41, df = 1 ($P = 0.24$); P = 2% Test for overall effect $Z = 4.28$ ($P < 0.0001$) For use immunotherapy Favours chemotherapy For use immunotherapy Favours chemotherapy For use immunotherapy Favours chemotherapy			•	
Heterogeneity: Tay ² = 0.01; (h ² = 1.4 31; d ² = 0; (P = 0.39); P = 0.8 Testfor subgroup differences: (h ² = 0.03; df = 2 (P = 0.39); P = 0.8 B Medium-term follow up Hazard Ratio Study or Subgroup Weight IV, Random, 95% CI Febrenbacher 2018 41.4% 0.75 [0.64, 0.88] Total (95% CI) 100.0% 0.72 [0.65, 0.80] Heterogeneity: Tay ² = 0.00; Ch ² = 1.05; df = 2 (P = 0.59); P = 0% C Long-term follow up Hazard Ratio Hazard Ratio Hazard Ratio Hazard Ratio Hazard Ratio Hazard Ratio N, Random, 95% CI Heterogeneity: Tay ² = 0.00; Ch ² = 1.05; df = 2 (P = 0.59); P = 0% Heterogeneity: Tay ² = 0.00; Ch ² = 1.05; df = 2 (P = 0.59); P = 0% Heterogeneity: Tay ² = 0.00; Ch ² = 1.05; df = 2 (P = 0.59); P = 0% Heterogeneity: Tay ² = 0.00; Ch ² = 1.05; df = 2 (P = 0.59); P = 0% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity: Tay ² = 0.00; Ch ² = 1.41; df = 1 (P = 0.24); P = 20% Heterogeneity:				
Testfor overall effect Z = 6 87 ($P = 0.00001$) Testfor subgroup differences: Ch ² = 0.03, df = 2 ($P = 0.99$), $P = 0\%$ B Medium-term follow up Study or Subgroup Weight IV, Random, 95% CI Hom 2017 46.5% 0.72 (0.62, 0.84) Hom 2017 46.5% 0.72 (0.62, 0.84) Total (95% CI) 100.0% 0.75 (0.64, 0.89) Hom 2017 146.5% 0.72 (0.65, 0.80) Testfor overall effect Z = 6.30 ($P < 0.0001$) C Long-term follow up Name to the study of Subgroup Weight IV, Random, 95% CI Testfor overall effect Z = 6.30 ($P < 0.0001$) Hazard Ratio Study of Subgroup Weight IV, Random, 95% CI Testfor overall effect Z = 6.30 ($P < 0.0001$) Hazard Ratio N, Random, 95% CI Hazard Ratio N, Random, 95% CI Hazard Ratio N, Random, 95% CI Hazard Ratio N, Random, 95% CI Favours immunotherapy Favours chemotherapy Favours chem			◆	
Testfor subgroup differences: Chi ^p = 0.03, df = 2 (P = 0.99), P = 0% Avous infinitunities provide the notifies provide the			0.5 0.7 1 1.5 2	•
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$			Favours immunotherapy Favours chemotherapy	
Heterogeneity: Tau ² = 0.00; Chi ² = 1.05; df = 2 (P = 0.59); P = 0% Test for overall effect: Z = 6.30 (P < 0.00001) Long-term follow up Hazard Ratio Study or Subgroup Weight IV, Random, 95% CI Year Vokes 2018 31.7% 0.79 [0.61, 1.02] 2018 Heterogeneity: Tau ² = 0.00; Chi ² = 1.41, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001) ROB2: 0 Risk of Bias Provides 100 (Chi ² = 1.41, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001) ROB2: 0 Risk of Bias Prior tau (P = 0.00; Chi ² = 1.41, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001) ROB2: 0 Risk of Bias (P = 0.00; Chi ² = 1.41, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001) ROB2: 0 Risk of Bias (P = 0.00; Chi ² = 1.41, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001) ROB2: 0 Risk of Bias (P = 0.00; Chi ² = 1.41, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001) ROB2: 0 Risk of Bias (P = 0.00; Chi ² = 1.04, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001) ROB2: 0 Risk of Bias (P = 0.00; Chi ² = 1.04, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001) ROB2: 0 Risk of Bias (P = 0.00; Chi ² = 1.04, df = 1 (P = 0.24); P = 29% Test for overall effect: Z = 4.28 (P < 0.0001)		Horn 2017 46.5% 0.72 (0.62, 0.84) Reck 2019 12.1% 0.63 (0.47, 0.84)		
Test for overall effect: $Z = 6.30$ (P < 0.00001) Hazard Ratio Study or Subgroup Weight IV, Random, 95% CI Year Vokes 2018 31.7% 0.79 [0.61, 1.02] 2018 Herbst 2019 68.3% 0.66 [0.57, 0.76] 2019 Hetbergeneity: Tau ² = 0.00; Ch ² = 1.41, df = 1 (P = 0.24); P = 29% Test for overall effect: $Z = 4.28$ (P < 0.0001) ROB2.0 Risk of Bias Pist of Diase Pist of Diase concerne 0 Outcome measurement 0 Outcome measurement 0 Outcome measurement 0 Overall			◆	
Hazard RatioRisk of BiasStudy or SubgroupWeightIV. Random, 95% CIA B C D E FVokes 2018 31.7% 0.79 (0.61, 1.02)2018Herbst 2019 68.3% 0.66 (0.57, 0.76)2019Total (95% CI)100.0% 0.70 (0.59, 0.82)Heterogeneity: Tau ^a = 0.00; Chi ^a = 1.41, df = 1 (P = 0.24); P = 29% 0.5 0.7 Test for overall effect: Z = 4.28 (P < 0.0001)				-
Study or Subgroup Weight IV, Random, 95% CI A B C D E F Vokes 2018 31.7% 0.79 [0.61, 102] 2018 Herbst 2019 68.3% 0.66 [0.57, 0.76] 2019 Total (95% CI) 100.0% 0.70 [0.59, 0.82] Heterogeneily: Tau* = 0.00; Chi* = 1.41, df = 1 (F = 0.24); F = 29%	С	-		
Vokes 2018 31.7% 0.79 [0.61, 1.02] 2018 Herbs1 2019 68.3% 0.66 [0.57, 0.76] 2019 Total (95% CI) 100.0% 0.70 [0.59, 0.82] Hetbrogeneity: Tau* = 0.00; Chi* = 1.41, df = 1 (P = 0.24); P = 29%				
Total (95% CI) 100.0% 0.70 [0.59, 0.82] Heterogeneily: Tau ² = 0.00; Chi ² = 1.41, df = 1 (P = 0.24); l ² = 29% <u>0.5 0.7 1.5 2</u> Favours immunotherapy Favours chemotherapy Favours immunotherapy Favours chemotherapy Favours immunotherapy Favours immunotherapy Favours immunotherapy Favours immunotherapy Favours Favours Favours Favours Favours		Vokes 2018 31.7% 0.79 [0.61, 1.02] 2018		20000
Heterogeneity: Tau ^s = 0.00; Chi ^p = 1.41, df = 1 (P = 0.24); I ^p = 29% Test for overall effect: Z = 4.28 (P < 0.0001)		Herbst 2019 68.3% 0.66 [0.57, 0.76] 2019		
Heterogeneity: Tau ^s = 0.00; Chi ^p = 1.41, df = 1 (P = 0.24); I ^p = 29% Test for overall effect: Z = 4.28 (P < 0.0001)		Total (95% CI) 100.0% 0.70 [0.59, 0.82]	◆	
RoB2.0 Risk of Bias Risk of bias leand • Inp. nat. (A) Randomisation • Some concerns (B) Deviations from intervention • Some concerns (D) Outcome measurement • Low mak (F) Overall • Overall		Heterogeneity: Tau ² = 0.00; Chi ² = 1.41, df = 1 (P = 0.24); l ² = 29%		-
Elist of Linis iscend High risk (A) Fandomisation Bone concerne (B) Deviations from intervention Do some concerne (C) Missing outcome data E low risk (D) Outcome measurement (E) Selection of reported outcomes (F) Overall Verall		Test for overall effect: Z = 4.28 (P < 0.0001)		
Elist of Linis iscend High risk (A) Fandomisation Bone concerne (B) Deviations from intervention Do some concerne (C) Missing outcome data E low risk (D) Outcome measurement (E) Selection of reported outcomes (F) Overall Verall		ROB2.0 Risk of Bias		
(B) Deviations from intervention (C) Missing outcome data (D) Outcome measurement (E) Selection of reported outcomes (F) Overall		Risk of bias legend High risk		
(C) Iffsing outcome data (D) Outcome measurement (E) Selection of reported outcomes (F) Overall		(A) Randomisation (B) Deviations from intervention (B) Deviations from intervention		
(E) Selection of reported outcomes (F) Overall		(C) Missing outcome data		
		(E) Selection of reported outcomes		
		(F) Overall		
ta-analysed risk of death in RCTs A) Meta-analysed risk of death in studies w	to-o	nalveed rick of death in PCTe A) M	eta-analysed rick of death	in studies wit
7, 42, 47]. B) Meta-analysed risk of death in studies with medium-term follow				

follow up [30-37, 42, 47]. B) Meta-analysed risk of death in studies with medium-term follow up [38-40]. C) Meta-analysed risk of death in studies with long-term follow up [44, 45].

80x104mm (300 x 300 DPI)

Thorax

A

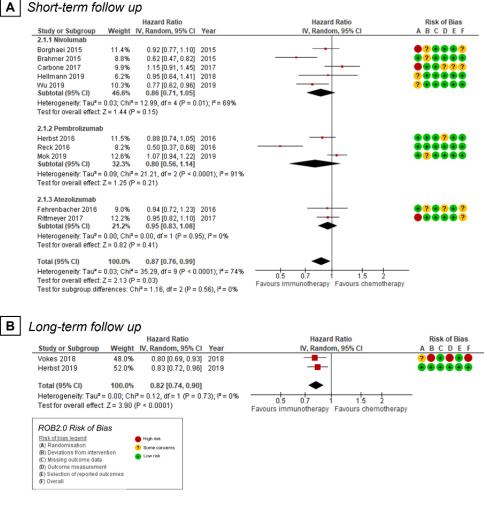


Figure 4 - Meta-analysed risk of progression or death in RCTs A) Meta-analysed risk of progression or death in RCTs with a short-term follow up [31-37, 42, 47, 96]. B) Meta-analysed risk of progression or death in RCTs with a long-term follow up [44, 45].

79x83mm (300 x 300 DPI)

1				
2 3				
4				
5				
6				
7		Hazard Ratio IV, Random, 95% Cl	Hazard Ratio IV, Random, 95% Cl	Risk of Bias A B C D E F
8	10.1.1 <1% expression Brahmer 2015 14.8%			• ? • • • •
9	Fehrenbacher 2016 11.2% Rittmeyer 2017 51.8%		-	
10 11	Wu 2019 22.2% Subtotal (95% Cl) 100.0%		•	? • • • • •
12	Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 3.28 (P			
13	$10.1.2 \ge 1\%$ expression			
14	Borghaei 2015 16.8% Brahmer 2015 8.2%	0.69 [0.45, 1.06]		
15	Fehrenbacher 2016 9.9% Rittmeyer 2017 25.3%	0.74 [0.58, 0.94]		
16	Spigel 2019 (Abstract) 25.1% Wu 2019 14.6% Subtotal (95% Cl) 100.0%	0.62 [0.45, 0.85]		2
17 18	Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 5.87 (P	4.85, df = 5 (P = 0.43); I ² = 0%	•	
19	10.1.3 ≥5% expression			
20	Borghaei 2015 17.1% Brahmer 2015 12.7%		• <u> </u>	
21	Carbone 2017 20.2% Fehrenbacher 2016 13.7%		_ _	
22	Rittmeyer 2017 18.3% Spigel 2019 (Abstract) 18.0%			
23	Subtotal (95% CI) 100.0%		•	
24 25	Test for overall effect: Z = 3.07 (P			
26	10.1.4 ≥10% expression Borghaei 2015 68.5%	0.40 (0.27, 0.59)	_	•?••
27	Brahmer 2015 31.5% Subtotal (95% CI) 100.0%	0.50 [0.28, 0.89]		• ? • • • •
28	Heterogeneity: Tau ² = 0.00; Chi ² = Test for overall effect: Z = 5.10 (P			
29	10.1.5 ≥50% expression			
30	Fehrenbacher 2016 3.4% Herbst 2016 22.7%			
31	Mok 2019 35.4% Reck 2016 13.7%	0.69 (0.56, 0.85) 0.60 (0.41, 0.88)		
32 33	Rittmeyer 2017 11.6% Spigel 2019 (Abstract) 13.2%	0.41 [0.27, 0.62]	<u> </u>	● ● ● ● ● ? ? ● ● ● ? ?
34	Subtotal (95% Cl) 100.0% Heterogeneity: Tau ² = 0.01; Chi ² =	0.58 [0.50, 0.68]	•	
35	Test for overall effect: Z = 7.08 (P			
36		0.2 Eavours in	0.5 1 2 nmunotherapy Favours chemotherap	5
37	Test for subgroup differences: Ch	i ^a = 12.01, df = 4 (P = 0.02), l ^a = 66.7%		
38	ROB2.0 Risk of Bias			
39 40	Risk of bias legend (A) Randomisation	High risk ? Some concerns		
41	 (B) Deviations from intervention (C) Missing outcome data (D) Outcome measurement 	🕢 Low risk		
42	(E) Selection of reported outcomes (F) Overall			
43				
44			· · · · · ·	
in a second s		isk of death by PDL1 expres in included RCTs [30 – 37,		
		uld not be included, because	e a breakdown of su	
48		provided between 1	- 49%.	
49		79x98mm (300 x 3	00 DPI)	
50		(111)	,	
51				
52				
53 54				
55				
56				
57				
58				
59		https://mc.manuscriptcent	ral.com/thoray	
60		https://meananuscriptcent		

The impact of PD1 and PDL1 immunotherapy on NSCLC outcomes: a systematic review (Supplementary Material)

Shivani S Kanabar^{1,2}, Abhinav Tiwari¹, Vina Soran¹, Prashanthan Balendran¹, Malcolm J Price^{2,3}, Alice M Turner²

1 University of Birmingham Medical School, Birmingham, UK

- 2 Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- 3 NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK

<u>Correspondence</u>: Miss Shivani Kanabar, University of Birmingham Medical School, Birmingham, UK. E-mail: shivani.kanabar@outlook.com

Contents	
Supplementary Methods	
Literature Searches	
Data fields collected from included studies	
Supplementary Results	
Characteristics of Included Studies	
Included RCT studies	7
Included RCT studies with breakdown by patient characteristics	19
Included observational studies, intervention only assessed	21
Included observational studies, intervention and comparator assessed	
Included observational abstracts	
Risk of bias assessment	55
ROB 2.0 assessment	
ROBINS-I assessment of observational full texts	57
ROBINS-I assessment of observational abstracts	
GRADE Assessment of RCT Evidence	
Nivolumab, pembrolizumab or atezolizumab compared to chemotherapy for	[.] managing
advanced NSCLC	
Durvalumab compared to placebo for managing advanced NSCLC	60
Supplementary analyses	61
Supplementary Figure 1 – Median OS results	
Supplementary Figure 2 – Median PFS results	
Supplementary Figure 3 – Incidence of trAEs in primary-analysis RCTs	63
Supplementary Figure 4 – Incidence of AEs in observational studies	64
Immune-related adverse effects	65
Supplementary Figure 5	
Supplementary Figure 6	67

2	
3	Supplementary Figure 768
4 5	Supplementary References (continued from main reference list)
5 6	
0 7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 19	
18 19	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53 54	
54 55	
55 56	
50	

Supplementary Methods

Literature Searches

Ovid Medline

1	("Programmed Death 1" or PD1 or PD-1 or "Programmed Death Ligand 1" or PDL1
	or PD-L1).af.
2	(Immunotherap* or "Checkpoint inhibitors").af.
3	(Nivolumab or Pembrolizumab or Atezolizumab or Durvalumab).af
4	exp Lung Neoplasms/
5	((lung or pulmonary or bronchus or bronchial or bronchoalveolar or alveolar or
	"nonsmall cell" or "non small cell" or "non-small cell" or "non-small-cell" or "NSCLC"
	or squamous or "large cell") adj (cancer* or carcinom* or adenocarcinom* or
	malignan* or tumo\$r* or neoplasm* or metasta*)).ti,ab.
6	exp Animals, Laboratory/
7	exp Animal Experimentation/
8	exp Models, Animal/
9	Or/6-8
10	1 or 2
11	4 and 5
12	3 and 10
13	11 and 12
14	13 not 9

Ovid EMBASE

Ovic	Ovid EMBASE				
1	("Programmed Death 1" or PD1 or PD-1 or "Programmed Death Ligand 1" or PDL1				
	or PD-L1).af.				
2	(Immunotherap* or "Checkpoint inhibitors").af.				
3	(Nivolumab or Pembrolizumab or Atezolizumab or Durvalumab).af				
4	exp lung tumor/				
5	((lung or pulmonary or bronchus or bronchial or bronchoalveolar or alveolar or				
	"nonsmall cell" or "non small cell" or "non-small cell" or "non-small-cell" or "NSCLC"				
	or "squamous" or "large cell") adj (cancer* or carcinom* or adenocarcinom* or				
	malignan* or tumo\$r* or neoplasm* or metasta*)).ti,ab.				
6	exp experimental animal/				
7	exp animal experiment/				
8	exp animal model/				
9	Or/6-8				
10	1 or 2				
11	4 and 5				
12	3 and 10				
13	11 and 12				
14	13 not 9				

EBSCO CINAHL

S1	TX ("Programmed Death 1 OR PD1 or PD-1 OR "Programmed Death Ligand 1" OR
	PDL1 OR PD-L1)
S2	TX (Immunotherap* OR "Checkpoint inhibitors")
S3	TX (Nivolumab OR Pembrolizumab OR Atezolizumab OR Durvalumab)
S4	MH ("Lung Neoplasms+")
S5	TI (((lung or pulmonary or bronchus or bronchial or bronchoalveolar or alveolar or
	"nonsmall cell" or "non small cell" or "non-small cell" or "non-small-cell" or "NSCLC"
	or "squamous" or "large cell") n2 (cancer* or carcinom* or adenocarcinom* or
	malignan* or tumo\$r* or neoplasm* or metasta*))) OR AB (((lung or pulmonary or
	bronchus or bronchial or bronchoalveolar or alveolar or "nonsmall cell" or "non small
	cell" or "non-small cell" or "non-small-cell" or "NSCLC" or "squamous" or "large cell")
	n2 (cancer* or carcinom* or adenocarcinom* or malignan* or tumo\$r* or neoplasm*
	or metasta*)))
S6	MH ("Animals, Laboratory" OR "Models, Biological" OR "Animal Studies")
S7	S1 OR S2
S8	S4 AND S5
S9	S3 AND S7
S10	S8 AND S9
S11	S10 NOT S6
Clinia	caltrials.gov

Clinicaltrials.gov

Condition or disease	Non-small cell lung cancer		
Other terms	None		
Study type	All studies		
Study results	All studies		
Status	No filters applied to 'Recruitment' or 'Expanded Access'		
Eligibility criteria	 Age group filtered to 'Adult (18 – 64)' and 'Older Adult (65+)' No filters applied to sex 'Accepts Healthy Volunteers' not selected 		
Targeted search	 'Intervention/treatment' defined as 'Nivolumab', 'Pembrolizumab', 'Atezolizumab' or 'Durvalumab' No other search specifications 		
Locations	No filters applied		
Additional criteria	No filters applied		

Cochrane Library

1	("Programmed Death 1" or PD1 or PD-1 or "Programmed Death Ligand 1" or PDL1
	or PD-L1)
2	(Immunotherap* or "Checkpoint inhibitors")
3	(Nivolumab or Pembrolizumab or Atezolizumab or Durvalumab)
4	MeSH descriptor: [Lung Neoplasms] explode all trees
5	(lung or pulmonary or bronchus or bronchial or bronchoalveolar or alveolar or
	"nonsmall cell" or "non small cell" or "non-small cell" or "non-small-cell" or "NSCLC"
	or "squamous" or "large cell"):ti,ab,kw
6	(cancer* or carcinom* or adenocarcinom* or malignan* or tumo\$r* or neoplasm* or
	metasta*):ti,ab,kw
7	#5 and #6
8	MeSH descriptor: [Animals, Laboratory] explode all trees
9	MeSH descriptor: [Animal Experimentation] explode all trees
10	MeSH descriptor: [Models, Animal] explode all trees
11	#8 or #9 or #10
12	#1 or #2
13	#4 and #7
14	#3 and #12
15	#13 and #14
16	#15 not #11
	E Evidence Search
NICE	

NICE Evidence Search

Search terms	Nivolumab, pembrolizumab, atezolizumab or durvalumab
	AND
	Non-small cell lung cancer
Filters	No filters applied on search results
	L.

1	
r	
Z	
3	
л	
2 3 4 5 6 7 8 9 10 11	
5	
6	
0	
7	
Q	
0	
9	
10	
10	
11	
12	
12	
13	
14	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
21	
22	
23	
24	
25	
25	
26	
27	
27	
28	
20	
29	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	
21	
31	
32	
22	
33	
34	
25	
30	
36	
27	
57	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Data fields collected from included studies

PopulationEligibility criteriaPatient criteria, disease criteria, previous interventi criteria, any other relevant criteriaBaseline characteristicsParticipant number, average age (including whether mean or a median was reported), proportion of patients who were male, proportion of patients who were Caucasian or from an ethnic minority, proport of patients with a smoking history, recruitment settiDisease featuresProportion of patients with squamous NSCLC, adenocarcinoma, large cell carcinoma, or undifferentiated carcinoma; stages of disease and proportion of patients with each stage; percentage PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration, person administering drug and whether they were an investigator, administration setting of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also collected. Free text space was used to enable collection of additional	ne
Baseline characteristicsParticipant number, average age (including whether mean or a median was reported), proportion of patients who were male, proportion of patients who were Caucasian or from an ethnic minority, proport of patients with a smoking history, recruitment settiDisease featuresProportion of patients with squamous NSCLC, adenocarcinoma, large cell carcinoma, or undifferentiated carcinoma; stages of disease and proportion of patients with each stage; percentage PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, of ung and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	on ig ne
characteristicsmean or a median was reported), proportion of patients who were male, proportion of patients who were Caucasian or from an ethnic minority, proport of patients with a smoking history, recruitment settiDisease featuresProportion of patients with squamous NSCLC, adenocarcinoma, large cell carcinoma, or undifferentiated carcinoma; stages of disease and 	on ig ne
patients who were male, proportion of patients who were Caucasian or from an ethnic minority, proport of patients with a smoking history, recruitment settiDisease featuresProportion of patients with squamous NSCLC, adenocarcinoma, large cell carcinoma, or undifferentiated carcinoma; stages of disease and proportion of patients with each stage; percentage 	ne
were Caucasian or from an ethnic minority, proport of patients with a smoking history, recruitment settiDisease featuresProportion of patients with squamous NSCLC, adenocarcinoma, large cell carcinoma, or undifferentiated carcinoma; stages of disease and proportion of patients with each stage; percentage PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration, person administering drug and whether they were an investigator, administration setting OutcomesOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	ne
Of patients with a smoking history, recruitment settiDisease featuresProportion of patients with squamous NSCLC, adenocarcinoma, large cell carcinoma, or undifferentiated carcinoma; stages of disease and proportion of patients with each stage; percentage PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration, person administering drug and whether they were an investigator, administration setting of ug and whether they were an investigator, administration setting drug and whether they were an investigator, administration setting of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	ne
Disease featuresProportion of patients with squamous NSCLC, adenocarcinoma, large cell carcinoma, or undifferentiated carcinoma; stages of disease and proportion of patients with each stage; percentage PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	ne
featuresadenocarcinoma, large cell carcinoma, or undifferentiated carcinoma; stages of disease and proportion of patients with each stage; percentage PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
undifferentiated carcinoma; stages of disease and proportion of patients with each stage; percentage PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
proportion of patients with each stage; percentage PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
PDL1 expression, and the proportion of patients in each classificationInterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
each classificationInterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
InterventionDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
administration, duration of drug administration, person administering drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
drug and whether they were an investigator, administration setting, intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
intervention integrityComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	he
ComparatorDrug name, drug dose, drug administration regimen, route of administration, duration of drug administration, person administering drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
administration, duration of drug administration, person administering drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
drug and whether they were an investigator, administration settingOutcomesOS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
Outcomes OS, PFS, AEs, QoL, cost-effectiveness, number of deaths and numb of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	he
of hospitalisations, and progression to metastases. For each outcome the method used to ascertain the outcome and uncertainty was also	
the method used to ascertain the outcome and uncertainty was also	
	,
I collected Free text space was used to enable collection of additional	
relevant but unexpected outcomes.	
Study design For randomised controlled trials For observational studies: Type	of
(RCTs): Method of sampling, dates study, method of patient	
of recruitment period, length of identification, dates of recruitme	nt
recruitment period, randomisation period, length of recruitment,	,
method, method of blinding, methods to prevent bias, length	
methods to prevent bias, length of follow up, method of data analy	
follow up, method of data analysis, analyses to reduce bias	SIS,
analyses to reduce potential for	SIS,
bias such as intention-to-treat	SIS,
analysis	8IS,

Page 36 of 101

Supplementary Results

 Characteristics of Included Studies

Included RCT studies

a a	Author	Trial arms			Po	pulation			Follow up	Outcomes
Trial	Aution	Thai arms	Patients	%male	Age (yrs) ¹	%White	Histology	Stages	(months)	Outcomes
CheckMate 017	Brahmer et al, 2015	Nivolumab 3mg/kg per 2 weeks, 2 nd line	272	82	62 (39-85)	90	Sq ² = 100%	IIIB, IV	11.0 minimum	OS, PFS,
CheckM	[31]	Docetaxel 75mg/m ² per 3 weeks, 2 nd line			64 (42-85)	95				AEs
CheckMate 057	Borghaei et al, 2015 [33] 3mg weel Do 75mg	Nivolumab 3mg/kg per 2 weeks, 2 nd line	582	52	61 (37-84)	91	NSq ³ =	IIIB, IV	13.2	OS, PFS, AEs,
CheckN		Docetaxel 75mg/m ² per 3 weeks, 2 nd line		58	64(21-85)	92	100%		minimum	imum deaths
									4	

- ¹ Median and range unless otherwise specified
- ² Squamous ³ Non-squamous

Page 37 of 101

اھ	Author	Trial arma			Po	oulation			Follow up	Outeermee	
Trial	Author	Trial arms	Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Outcomes	
ate 057	Reck et al,	Nivolumab 3mg/kg per 2 weeks, 2 nd line	582	52	61 (37-84)	91	NSq =	IIIB, IV	Not	QoL, AEs	
CheckMate 057	2018 [108]	Docetaxel 75mg/m ² per 3 weeks, 2 nd line		58	64(21-85)	92	100%	110, 10	specified	specified	
7+057	Horn et al, 2017 [38]	Nivolumab 3mg/kg per 2 weeks, 2 nd line Docetaxel 75mg/m ² per 3 weeks, 2 nd line	854	Reported previously [31, 33] IIIB, I					24.2 minimum	OS, PFS, AEs (2-year outcomes	
CheckMate 017+057	Vokes et al, 2018 [44]	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later Docetaxel	418	Reported previously [31, 33] IIIB, IV			IIIB, IV	36.0 minimum	OS, PFS, AEs (3-year		
		75mg/m ² per 3 weeks, 2 nd line or later								outcomes	

2	
- २	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 37 38 37 38 37 38 37 38 39 30 31 32 33 34 35 36 37 38 36	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
22 24	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	

a	Author	Trial arms			Poj	pulation			Follow up	Outcomes
Trial	Addition		Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Outcomes
CheckMate 017+057	Antonia et al, 2019 [46]	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later Docetaxel 75mg/m ² per 3 weeks, 2 nd line	854	Report	ed previously	y [31, 33]	Sq = 31% NSq = 69% Sq = 32% NSq = 68%	IIIB, IV	51.6 minimum	OS, PFS, AEs (4-year outcomes)
CheckMate 026	Carbone et al, 2017 [32]	Nivolumab 3mg/kg per 2 weeks, 1 st line Investigator's- choice chemotherapy, per 3 weeks, 1 st line	541	68 55	63 (32-89) 65 (29-87)	r Re	Sq = 24% NSq = 76%	IV, recurrent	13.7 median	OS, PFS, deaths, AEs
								0,	4	

Page 39 of 101

٦	A suth a n	Trial arrea			P	opulation			Follow up	0
Trial	Author	Trial arms	Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Outcomes
		Nivolumab								
		3mg/kg per 2		78	60		Sq = 39%			
)78		weeks, 1 st or 2 nd			(27-78)		NSq = 61%		44.0	
CheckMate 078	Wu et al,	line	504					IIIB, IV,	11.2	OS, PFS,
ЖЖ	2019 [37]	Docetaxel	504					recurrent	median, 8.8	AEs
Chec		75mg/m² per 3		81	60		Sq = 40%		minimum	
0		weeks, 1 st – 3 rd		81	(38-78)		NSq = 60%			
		line								
	Hellmann et al, 2018	Nivolumab	793		64		Sc. 20.5%			
		240mg per 2		68.7			Sq = 29.5% NSq = 70.5%	IV,	11.2 minimum	PFS, AEs, deaths
		weeks, 1 st line			(27-85)		NSq = 70.5%			
		Chemotherapy	. 793 .	65.5	64	1	Sa 20.20/	recurrent		
227	[95]	according to			64		Sq = 29.2% NSq = 70.8%			
ate 2		histology, 1 st line			(29-87)		NSQ = 70.8%			
CheckMate 227		Nivolumab			64		Sq = 29.5%			
Che	Hellmann et	240mg per 2		68.7	(27-85)		NSq = 70.5%			
0	al, 2019	weeks, 1 st line	793		(27-00)		10.07	IV,	29.3 minimum	
		Chemotherapy	- 793 -		64		Sq = 29.2%	recurrent		OS, PFS
	[96]	according to		65.5	(29-87)		Sq = 29.2 % NSq = 70.8%			
		histology, 1 st line			(29-07)		10.0%			

ସ	Author	Trial arms			Po	opulation			Follow up	Outcomes
Trial	Addition	maranno	Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Cutoonioo
	Herbst et al, 2016 [34]	Pembrolizumab, 2mg/kg per 3 weeks, 2 nd line or later Pembrolizumab,	1034	62	62 (56-69)	72	Sq = 22% NSq = 70%		13.2 median, 8.0 minimum	OS, PFS,
		10mg/kg per 3 weeks, 2 nd line or later					Sq = 23% NSq = 71%	Advanced		deaths, AEs
Keynote 010		Docetaxel 75mg/m ² per 3weeks, 2 nd line or later		61	62 (56-69)	73	Sq = 19% NSq = 70%			
	Herbst et al, 2019	Pembrolizumab, 2 or 10mg/kg per 3 weeks, 1 st line or later	1033 -	62	63 (20-88)	72	Sq = 23% NSq = 70%	Locally advanced	31.0 median	OS, PFS,
	[45]	Docetaxel 75mg/m ² per 3 weeks, 1 st line or later		61	62 (33-82)	73	Sq = 19% NSq = 70%	and metastatic		AEs

Page 41 of 101

al	Author	Trial arms			Po	opulation			Follow up	Outcomer
Trial	Author	Thai arms	Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Outcomes
	Reck et al, 2016 [47]	Pembrolizumab 200mg per 3 weeks, 1 st line Investigator's choice chemotherapy, 1 st	305	59.7 62.9	64.5 (33-90) 66.0 (38-85)		Sq = 18.8% NSq = 81.2% Sq = 17.9% NSq = 82.1%	IV	11.2 median	OS, AEs
Keynote 024	Reck et al, 2019 [39]	line Pembrolizumab 200mg per 3 weeks, 1 st line Investigator's choice chemotherapy, 1 st line	305	59.7 62.9	64.5 (33-90) 66.0 (38-85)	R	Sq = 18.8% NSq = 81.2% Sq = 17.9% NSq = 82.1%	IV	25.2 median	OS, deaths, AEs (2-year outcomes
	Brahmer et al, 2017 [109]	Pembrolizumab 200mg per 3 weeks, 1 st line Investigator's choice chemotherapy, 1 st line	305	Reported previously [47] Advanced				6.0 minimum	QoL, deaths	

al	Author	Trial arms			Po	opulation			Follow up	Outcomes
Trial			Patients %male Age (yrs) %White Histology Stages		Stages	(months)	Outcomes			
		Pembrolizumab, 200mg per 3 weeks, 1 st line		71	63.0 (57-69)		Sq = 38% NSq = 62%		12.8 minimum	
Keynote 042	Mok et al, 2019 [35]	Carboplatin (5- 6mg/mL/min) + Paclitaxel (200mg/m ²) OR Pemetrexed (500mg/m ²), 1 st line	1274	71	66.0 (38-85)		Sq = 39% NSq = 61%	Locally advanced and metastatic		OS, PFS, AEs deaths
OAK	Rittmeyer et al, 2017 [42]	Atezolizumab 1200mg per 3 weeks, 2 nd or 3 rd line Docetaxel 75mg/m ² per 3	850	61	63.0 (33-82) 64.0	71	Sq = 26% NSq = 74% Sq = 26%	IIIB, IV	21.0 median	OS, PFS, AEs, deaths for ITT850
		weeks, 2 nd or 3 rd		61	(34-85)	70	NSq = 74%			population

Page 43 of 101

Thorax

al	Author	Trial arma			Р	opulation			Follow up	Outcome
Trial	Autrior	Trial arms	Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Outcomes
		Atezolizumab								
		1200mg per 3 weeks, 2 nd		61.8	63.0 (25-84)	71.5	Sq = 26.3% NSq = 73.7%		21.0	OS, PFS AEs,
	Fehrenbacher	line or later	1225					Advanced	minimum, 26.0 median	deaths for ITT1225 population
	et al, 2018 [40]	Docetaxel 75mg/m ² per 3 weeks, 2 nd	4	64.0 (34-85)	70.6	Sq = 26.1% NSq = 73.9%				
		line or later			(0.00)					
		Atezolizumab								
\checkmark		1200mg per 3								
OAK		weeks, 2 nd						Locally		
	Bordoni et al,	line or later	050		Demented		advanced			
	2018 [111]	Docetaxel	850		Reported	previously [and		QoL	
		75mg/m² per						metastatic		
		3 weeks, 2 nd								
		line or later								
		Atezolizumab	64					Locally	19.4	
	Hida et al,	1200mg per 3	efficacy,	52.8	63.5	0	Sq = 22.2%	advanced	minimum,	OS, PFS
	2018 [41]	weeks, 2 nd	101	52.0	(33-77)	U	NSq = 77.8%	or	21.0	AEs
		line or 3 rd line	safety					metastatic	median	

Docetaxel 75mg/m ² per 3 weeks, 2 nd line or 3 rd line	67.9	58.5 (34-79)	0	Sq = 21.4% NSq = 78.6%		
3 weeks, 2 nd line or 3 rd line						

Page 45 of 101

Thorax

Author	Trial arms			Г	opulation			Follow up	Outcomes
Author		Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	
	Atezolizumab								
	1200mg per 3		62.4	63.5		Sq = 28.3%			
	weeks, 2 nd or		02.4	(33-82)		NSq = 71.7%			
Gadgeel et al,	3 rd line	850						21.0	OS, AEs
2019 [117]	Docetaxel	0.00						median	
	75mg/m ² per		62.3	64.0		Sq = 28.1%			
	3 weeks, 2 nd		02.5	(34-95)		NSq = 71.9%			
	or 3 rd line		19	/					
	Atezolizumab								
	1200mg per 3		65.0	62.0		Sq = 34%		14.8	
	weeks, 2 nd or		00.0	(42-82)	•	NSq = 66%		median	OS, PFS
Fehrenbacher	3 rd line								AEs,
et al, 2016 [36]	Docetaxel	201					·		deaths
	75mg/m² per		53.0	62.0		Sq = 34%		15.7	douino
	3 weeks, 2 nd		00.0	(36-84)	•	NSq = 66%		median	
	or 3 rd line								
	2019 [117] Fehrenbacher	Image: Provide a state in the state in th	1200mg per 3 weeks, 2 nd or 3 rd line8502019 [117]Docetaxel 75mg/m² per 	Atezolizumab 1200mg per 3 weeks, 2 nd or 3 rd lineAtezolizumab 85062.4Gadgeel et al, 2019 [117]Docetaxel 75mg/m² per 3 weeks, 2 nd or 3 rd line62.3Atezolizumab 1200mg per 3 weeks, 2 nd or 3 rd line62.3Fehrenbacher et al, 2016 [36]Docetaxel 75mg/m² per 3 weeks, 2 nd or 3 rd line65.0Fehrenbacher or 3 rd line3 weeks, 2 nd or 3 weeks, 2 nd 65.0	Atezolizumab Atezolizumab 62.4 63.5<	Atezolizumab 1200mg per 3 62.4 63.5 63.5 1000000000000000000000000000000000000	Atezolizumab Atezolizumab Atezolizumab 3^{rd} line 62.4 63.5 $3.62.4$ 63.5 $3.62.4$ 850 850 850 62.4 63.5 3.820 850 850 850 62.4 63.5 $(33-82)$ 850 850 850 850 62.4 63.5 $(33-82)$ 850 850 850 850 850 62.4 63.5 $(33-82)$ 850 850 850 850 850 850 62.4 63.5 $(33-82)$ 850	Atezolizumab Atezolizumab Sq = 28.3% Gadgeel et al, 3^{rd} line 850 $(33-82)$ $NSq = 71.7\%$ Jocetaxel $75mg/m^2 per$ 62.4 (63.5) $Sq = 28.3\%$ $75mg/m^2 per$ 3^{rd} line 62.3 64.0 $Sq = 28.1\%$ $3 weeks, 2^{nd}$ 62.3 64.0 $Sq = 28.1\%$ $75mg/m^2 per$ 62.3 64.0 $Sq = 28.1\%$ $1200mg per 3$ 850 62.0 $Sq = 34\%$ $1200mg per 3$ $weeks, 2^{nd}$ or 850 62.0 $Sq = 34\%$ $1200mg per 3$ $weeks, 2^{nd}$ or 287 65.0 62.0 $Sq = 34\%$ $1200mg per 3$ $weeks, 2^{nd}$ or 3^{rd} line 287 65.0 62.0 $Sq = 34\%$ 3 weeks, 2^{nd} or 3^{rd} line 53.0 62.0 $Sq = 34\%$ $NSq = 66\%$ 3 weeks, 2^{nd} or 3^{rd} line 53.0 62.0 $Sq = 34\%$ $NSq = 66\%$	Atezolizumab 1200mg per 3 weeks, 2 nd or 3 rd line Asia 1200mg per 3 weeks, 2 nd or 3 rd line Asia BS0 Calculation (Galgeel et al, 2019 [117] Atezolizumab TSmg/m ² per 3 weeks, 2 nd or 3 rd line Asia BS0 Gala 62.4 Gala 63.5 ((3-82) Sq = 28.3% NSq = 71.7% Sq = 28.1% median Atezolizumab 1200mg per 3 weeks, 2 nd or 3 rd line Atezolizumab 1200mg per 3 weeks, 2 nd or 3 rd line Atezolizumab 287 Gala 65.0 Gala 62.0 Sq = 34% NSq = 66% 14.8 median Fehrenbacher et al, 2016 [36] Docetaxel 75mg/m ² per 3 weeks, 2 nd or 3 rd line 287 Gala 62.0 Gala 62.0 Sq = 34% NSq = 66% 14.8 median 53.0 Gala Sq = 34% (36-84) NSq = 66% 15.7 median

al	Author	Trial arms			P	opulation			Follow up	Outcomes
Trial	Addition	inai anns	Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Outcomes
		Atezolizumab								
		1200mg per 3								
10	Spigel et	weeks, line not								
ver1	al, 2019	reported	572		Not	reported		IV	15.7	OS, AEs
MPower110	(abstract)	Chemotherapy	46						median	
N	[31]	according to								
		histology, line not		101-						
		reported		0						
		Durvalumab								
		10mg/kg per 2		70.0	64.0	66.2	Sq = 43.0%			
	Antonia et	weeks, 2 nd line or		70.0	(23-39)	00.2	NSq = 57.0%		14.5	
	al, 2017	later	713					IIIA, IIIB	median	PFS, AEs
<u>0</u>	[94]	Placebo per 2			64.0		Sq = 47.1%		modian	
PACIFIC		weeks, 2 nd line or		70.2	(31-84)	70.8	NSq = 52.9%			
ΡA		later			(31-04)		1004 - 02.970			
	Antonia et	Durvalumab								OS, PFS,
	al, 2018	10mg/kg per 2	713	70.0	64.0	66.2	Sq = 43.0%	IIIA, IIIB	25.2	AEs
		weeks, line not	113	70.0	(23-39)	00.2	NSq = 57.0%	IIIA, IIID	median	(2-year
	[43]	specified								outcomes)

				· ~	PrR	evier			
Hui et al, 2019 [110]	10mg/kg per 2 weeks, line not specified Placebo per 2 weeks, line not specified	713		Reported	previously [94]	IIIA, IIIB	25.2 median	QoL
	Placebo per 2 weeks, line not specified Durvalumab		70.2	64.0 (31-84)	70.8	Sq = 47.1% NSq = 52.9%			

al	Author	Trial arma			P	opulation			Follow up	Outcomos
Ξ	Aution	That arms	Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Outcomes
Keynote 010+024+042	Author Nosaki et al, 2019 [105]	Trial arms Pembrolizumab 2 or 10mg/kg or 200mg per 3 weeks, patients ≥75yrs, 1 ^{st-} 3 rd line Pembrolizumab 2 or 10 mg/kg or 200mg per 3 weeks, patients <75yrs, 1 ^{st-} 3 rd line Platinum-based chemotherapy, patients ≥75yrs,	Patients 3510	%male 67.1 65.1 63.5		-	Histology Sq = 36.9% NSq = 61.1% Sq = 28.0% NSq = 68.6% Sq = 24.3% NSq = 70.4%	Stages		Outcomes OS, AEs, deaths, comparing outcomes of elderly to younger patients
		1 ^{st –} 3 rd line Platinum-based chemotherapy, patients <75yrs. 1 ^{st –} 3 rd line		67.2	62.0 (20-74)	70.7	Sq = 30.9% NSq = 66.0%		J.	

Included RCT studies with breakdown by patient characteristics

Page 49 of 101

al	Author	Trial arma			Р	opulation			Follow up	Outeemaa
Trial	Author	Trial arms	Patients	%male	Age (yrs)	%White	Histology	Stages	(months)	Outcomes
		Atezolizumab								
		1200mg per 3		51.0	63.0	71.0	Sq = 16%			
		weeks, ⁴⁵ , 2 nd or		51.0	(35-81)	71.0	NSq = 84%			
		3 rd line								
		Atezolizumab								
		1200mg per 3		66.0	64.0	74.0	Sq = 30%		(months) 28.0 median, 26.0 minimum	
	Von Pawel	weeks, non-LTS,		00.0	(33-82)	74.0	NSq = 70%			OS, PFS, AEs (2-year
Ϋ́	et al, 2019	2 nd or 3 rd line	774					IIIB, IV		
OAK	[106]	Docetaxel	_ //4					111 D , 1V		
	[100]	75mg/m² per 3		58.0	62.0	68.0	Sq = 16%			outcomes
		weeks, LTS, 2 nd		56.0	(41-84)	00.0	NSq = 84%			
		or 3 rd line							median, 26.0	
		Docetaxel	-							
		75mg/m² per 3		62.0	64.0	73.0	Sq = 30%			
		weeks, LTS, 2 nd		02.0	(34-85)	73.0	NSq = 70%			
		or 3 rd line			(0100)					

⁵ LTS = Long-term survivors, defined as patients who lived \geq 24 months from randomisation

3
4
5
6
7
7 8
9
10
11
12
13
14
15
16
17
18
19
20
21 22
23
24
25
26
27
28 29
29
30
31
32 33
33 34
34 35
36
30 37
38
39
40
41
42
43
44
45

1 2

Included observational studies, intervention only assessed

	Study				Population				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Alama et al, 2019 [77]	Cohort study	89	70.8	67.0 (44-86)	Italy, 1 centre	Sq = 28.0%, Ad = 70.8%	Advanced	Nivolumab 3mg/kg per 2 weeks, 1 st line or later		OS, deaths, impact of circulating tumour cells and cfDNA
Bagley et al, 2017 [78]	Cohort study	175	46	68.0 (33-88)	USA, 1 centre	Sq = 24%, NSq = 76%	Advanced, previously treated	Nivolumab 3mg/kg per 2 weeks, 1 st line or later	-	OS, PFS, AEs
Bins et al, 2018 [128]	Cohort study	161	67	64, σ 8.1 ⁶	Holland, 2 centres	Sq = 29%, Ad ⁷ = 60%, LC ⁸ = 9%, Ud ⁹ = 1%	Previously untreated	Nivolumab 3mg/kg per 2 weeks, 1 st line or later	~4.2	AEs, deaths, impact of SNPs
⁶ Mean (stand	dard devia	tion)	1	1					1/2	

⁶ Mean (standard deviation)
 ⁷ Adenocarcinoma
 ⁸ Large cell carcinoma
 ⁹ Undifferentiated

Page 51 of 101

	Study				Population				Follow up	Repor
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcor
Brustugun et al, 2017 [62]	Cohort study	58	48.3	64.6 (32-88)	Norway, 1 centre	Sq = 41.4%, Ad = 55.2%, LC = 1.7%	Metastatic	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	15.6 median	OS, A
Crinò et al, 2019a [49]	Cohort study	1588	65	66.0 (27-89)	Italy, 153 centres	NSq = 100%	Stages IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 1 st line or later	6.1 median	OS, P deaths, impac CNS metasta
Crinò et al, 2019b [48]	Cohort study	371	80	68.0 (33-88)	Italy, 96 centres	Sq = 100%	Stages IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	7.1 median	OS, PI deaths, impact ECOG and metasta
Diem et al, 2017 [80]	Cohort study	52	56	66.2 (45.5- 88.2)	Switzer- land, 1 centre	Sq = 35%, Ad = 58%	Metastatic, previously treated	Nivolumab 3mg/kg per 2 weeks, 1 st line or later	0 – 14 (range only)	OS, P death impac NLR a PLF

	Study				Population				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Dudnik et al, 2018 [63]	Cohort study	260	68	67.0 (41-99)	Israel, 5 centres	Sq = 23%, NSq = 70%, NOS ¹⁰ = 6%	Advanced, mostly stage IV or recurrent	Nivolumab 3mg/kg per 2 weeks, 2 nd line	8.4 median	OS, PFS, deaths, AE impact of ECOG PS o OS
Dumenil et al, 2018 [79]	Cohort study	67	69	68.5 (60-77)	France, 2 centres	Sq = 25%, Ad = 70%, NOS = 5%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 1 st or 2 nd line		OS, PFS, AEs, histology, metastases and ECOG PS
Dusselier et al, 2019 [134]	Cohort study	59	75	59.3 (30.3- 87.3)	France, 2 centres	Sq = 20%, NSq = 80%	Advanced, pre-treated	Nivolumab 3mg/kg per 2 weeks, 2 nd line		Impact of tumour histology, NLR, ALC and ANC

¹⁰ Not otherwise specified

https://mc.manuscriptcentral.com/thorax

Page 53 of 101

 Thorax

	Study				Population				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	
Edahiro et al, 2019 [99]	Cohort study	149	83.2	71.0 (39-87)	Japan, 11 centres	Sq = 23.5%, NSq = 76.5%	Stage III or IV	Pembro- lizumab, 1 st line		Impact of PDL1 TPS, AEs
Fujita et al, 2019 [135]	Cohort study	32 (patient with infection only)	78.1	69.8, σ 12.2	Japan, 2 centres	NSq = 78.1%	Stage IV	Nivolumab, 2 nd line or later		AEs
Fukihara et al, 2019 [136]	Cohort study	170	73.5	With IRP: 67.0 (58-73) No IRP: 70.0 (63-73)	Japan, 3 centres	Sq = 30% NSq = 70% Sq = 36% NSq = 64%	Advanced or recurrent	Nivolumab 3mg/kg per 2 weeks, 1 st line or later Pembroli- zumab 200mg per 3 weeks, 1 st line or later	9.9 median	Impact of drug used or risk of IRP ¹¹

¹¹ Immune-related pneumonitis

2	
3	
4	
5	
6 7 8	
7	
9	
10	
11	
12	
13	
14	
15 16	
16 17 18	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

1

	Study			P	opulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Fukui et al, 2018 [125]	Cohort study	52	71	69.0 (46-83)	Japan, 1 centre	Sq = 31%, Ad = 63%, NOS = 6%	Stages IIIA, IIIB, IVA, IVB or recurrent	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	10.9 median	PFS, deaths, AEs, impact of histology, ECOG PS, PDL1 TPS and NLR
Garassino et al, 2018 [50]	Cohort study	371	80	68.0 (31-91)	Italy, 96 centres	Sq = 100%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line	7.1 median	OS, PFS, deaths, AEs
Garde- Noguera et al, 2018 [81]	Cohort study	175	73.1	61.5 ¹²	Spain, 14 centres	Sq = 22.9%, NSq = 77.1%	Stage III, IVA, or IVB	Nivolumab 3mg/kg, 2 nd line or later		OS, PFS, deaths and AEs, impact of histology, ECOG PS, metastases

¹² No range provided

Page 55 of 101

1	
2	
2	
1	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
יי רכ	
20 21	
21	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 32 33 34 35 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
39 40	
41	
42	
43	
44	
45	
46	

	Study			Po	pulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Garon et al, 2015 [72]	Phase I trial akin to cohort study	495	64	64.0 (28-93)	Europe, Australia, Asia, USA	Sq = 17.2%, Ad = 1.4%, NSq = 81.0%	Advanced or metastatic	Pembro- lizumab 2mg/kg per 3 weeks, 2 nd line	10.9 median	OS, PFS, AEs, impact of PDL1 TPS
Garon et al, 2019 [76]	Phase I trial akin to cohort study	550	Rx- naïve ¹³ : 59 Pre- treated: 51	Rx- naïve: 68.0 (39-93) Pre- treated: 62.0 (28- 85)		Rx-naïve: Sq = 19%, NSq = 78%, NOS = 3% Pre-treated: Sq = 17%, NSq = 82%, NOS = 1%	Advanced or metastatic	Pembro- lizumab 2mg/kg per 3 weeks OR 10mg/kg per 2 weeks, then 200mg per 3 weeks, 1 st line or later	60.6 median	OS, deaths, AEs, impact of EGFR mutation, histology, and PDL1 TPS (5-year outcomes)
									Y	

¹³ Therapy-naïve

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 32 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 37 38 38 37 38 37 38 37 38 37 38 37 38 37 38 38 37 38 38 37 38 38 38 38 38 38 38 38 38 38	
26	
2/	
28	
29	
30	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40	

1

	Study			F	Population				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Gauvain et								Nivolumab		
al, 2018	Cohort	43	76	59.5, σ	France, 2	Sq = 16%,	Advanced or	3mg/kg per 2	5.8	PFS, deaths,
	study		10	8.4 ¹⁴	centres	Ad = 82%	metastatic	weeks, 2 nd	median	AEs
[97]			10					line or later		
						Sq = 27%,		Nivolumab		OS, PFS,
Geier et al,	259	70.0	62.0 (29-	France, 9	Ad =	Stage IIIB or	3mg/kg per	17.7	AEs, impact	
2018 [64]		259	72.2	85)	centres	63.7%,	IV	15 days, 2 nd	median	of histology
						Ud = 6.9%		line		and irAEs
								Nivolumab		OS, PFS,
Grossi et al,	Cohort	371	80	68.0 (31-	Italy, 96	Sa 100%	Stage IIIB or	3mg/kg per 2	7.5	AEs, impact
2018 [65]	study	371	00	91)	centres	Sq = 100%	IV	weeks, line	median	of age and
								not reported		ECOG PS
							Stage IIIB, IV			OS, PFS,
Haratani	Oshart			00.0 (40	1	Ad = 96%,	or recurrent;	NP:	7.0	impact of
et al, 2017	Cohort	25	48	69.0 (42-	Japan, 3	AdSq ¹⁵ =	EGFR-	Nivolumab,	7.3	T790
[59]	study	/		78)	centres	4%	mutation	1 st – 3 rd line	median	mutation and
							positive			PDL1 TPS

¹⁴ Mean (standard deviation)
 ¹⁵ Adeno-squamous

Page 57 of 101

	Study design			Р	opulation				Follow up	Report
Author		Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Haratani et al, 2018 [56]	Cohort study	134	67	68.0 (33- 85)	Japan, 4 centres	Sq = 25%, NSq = 75%	Stage IIIB, IV or recurrent	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	4 weeks, 6 weeks and 8 weeks	OS and F AEs, imp of skin a endocri AEs
Hasan Ali et al, 2016 [127]	Cohort study	40	55	65.5 (46- 88) ¹⁶	Switzer- land, 1 centre	Sq = 35%, Ad = 57%	Metastatic	Nivolumab 3mg/kg per 2 weeks, 1 st line or later		AEs, dea
Inoue et al, 2018 [129]	Cohort study	201	67.2	68.0 (27- 87)	Japan, 3 centres	Sq = 20.9%, Ad = 70.6%	Advanced, un- resectable	Nivolumab 3mg/kg per 2 weeks, 2 nd - 4 th lines		Deaths, A impact ECOG I and CF /album

¹⁶ Mean (range)

1 2	
3 4 5	
5 6 7	
8 9	
10 11	
12 13 14	
15 16	
12 13 14 15 16 17 18 19	
20	
21 22 23	
24 25	
26 27 28	
29	
31 32	
30 31 32 33 34 35 36	
36 37	
38 39	
40 41	
42 43 44	
45	

	Study			Р	opulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Kaderbhai et al, 2017 [82]	Cohort study	115	77	66, σ 10 ¹⁷	France, 3 centres	Sq = 36.4%, Ad = 60%, LC = 1.7%	Stage IIIB or IV, previously treated	Nivolumab 3mg/kg per 2 weeks, 1 st line	-	OS, PFS, impact of initial best response to 1 st line therapy
Kanai et al, 2018 [100]	Cohort study	216	71	69.0 (30- 89)	Japan, 3 centres	Sq = 27%, Ad = 62%	Advanced/r ecurrent, pre-treated	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	-	PFS, AEs
Karantanos et al, 2019 [137]	Cohort study	22	54.5	62, σ 9.37 ¹⁸	USA, 1 centre	Sq = 45.5%, Ad = 54.5%	Stage III or IV, pre- treated	Nivolumab 3mg/kg per 2 weeks, 2 nd – 4 th line	-	OS ¹⁹
								0,	4	

¹⁷ Mean (standard deviation)
 ¹⁸ Mean (standard deviation)
 ¹⁹ Mean (standard deviation)

Page 59 of 101

 Thorax

	Study design			Р		Follow up	Reported			
Author		Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Katsura et al, 2019 [60]	Cohort study	99	ECOG PS2-4: 80 ECOG PS 0-1: 84 PC ²⁰ : 50	ECOG P2 2-4: 69.0 (55- 84) ECOG PS 0-1: 70.0 (48- 90) PC: 74.0 (44-91)	Japan, 2 centres	ECOG PS 2-4: Sq = 45% Ad = 45% ECOG PS 0-1: Sq = 42% Ad = 53% PC: Sq = 14% Ad = 81%	Advanced or recurrent	Nivolumab 3mg/kg per 2 weeks, 2 nd line	~3 months	OS, PFS AEs
Kawachi et al, 2019 [90]	Cohort study	31	71	69.0 (41- 92)	Japan, 1 centre	Sq = 19%, Ad = 77%	Stage IIIB or IV	Nivolumab, 2 nd line or later		OS, PFS
									Y	

²⁰ Palliative care patients

Page 60 of 101	
----------------	--

1 2	
2 3 4	
5	
6 7	
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23	
23 24 25	
26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
40 41 42	
43	
44 45	
46	

	Study			F	opulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Kobayashi et al, 2017 [101]	Cohort study	50	60	67.0 (34-85)	Japan, 1 centre	Sq = 12%, NSq = 88%	Stage III, IV or recurrent	Nivolumab 3mg/kg per 2 weeks, 1 st line		PFS
Kobayashi et al, 2018 [102]	Cohort study	142	74.6	67.0 (34-85)	Japan, 13 centres	Sq = 28.9%, Ad = 58.5%, LC = 2.8%, Ud = 6.3%	Stage III or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		PFS, death AEs, impa of EGFR of ALK mutati
Krefting et al, 2019 [98]	Cohort study	40	75.0	65.0 (59-82)	Germany	Sq = 100%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	20.0 median	PFS, AE
Ksienski et al, 2019a [66]	Cohort study	190	51.5	70.0 (41-91)	USA, 6 centres	Sq = 22.1%	Stage IIIB, IV or recurrent	Pembro- lizumab 2mg/kg per 3 weeks, 1 st line or later	6.1 median	OS, PFS deaths, AE impact o ECOG PS

Page 61 of 101

45 46

AuthordesignPatients $\mathcal{M}male$ $\mathcal{Age}_{(yrs)}$ LocationHistologyDiseaseIntervention(months)Outcome $Ksienski$ Retrosp ective cohort 50.4 64.0 (39.82) 64.0 (39.82) $Sq =$ USA $Sq =$ $25.7\%, NSq$ $=74.3\%$ Nivolumab $Stage IV$ Nivolumab $3mg/kg per 2$ weeks, 1st 8.1 median $00come$ $[57]$ Retrosp ective cohort 271 68.0 (50.81) $00come$ $Sq =$ (50.81) $Sq =$ $19.5\%, NSq$ $= 80.5\%$ $Stage IV$ $Nivolumab$ $2mg/kg per 3$ weeks, 1st 8.1 median $Nicolumab$ $median8.1medianNicolumabMale interventionLacerenzaet al, 2019[83]Cohortstudy208567.0(43.81)ItalySq = 30\%,Ad = 70\%Stage IIIBOr IVNivolumab,2^{nd} lineAe S, ImpleAe S, ImpleMale = 0208567.0(43.81)ItalySq = 30\%,Ad = 70\%Stage IIIBOr IVNivolumab,2^{nd} lineAe S, ImpleAe S, Imple$	AuthordesignPatients%maleAge (yrs)LocationHistologyDisease featuresIntervention(months)OutKsienski et al, 2019b [57]Retrosp ective cohort study271 50.4 64.0 (39.82) $Sq =$ $25.7\%, NSq$ $= 74.3\%$ $Sq =$ $25.7\%, NSq$ $= 74.3\%$ Nivolumab $3mg/kg per 2$ weeks, 1st line or later 8.1 median $0S.$ death imp treation[57]Retrosp ective cohort study 271 50.4 64.0 (39.82) USA $Sq =$ $19.5\%, NSq$ $= 80.5\%$ $Stage IV$ Nivolumab $2mg/kg per 3$ weeks, 1st line or later 8.1 median $0S.$ $death$ Lacerenza et al, 2019 [83]Cohort study 20 85 67.0 (43.81) $Italy$ $Sq = 30\%,$ $Ad = 70\%$ $Stage IIIB$ or IVNivolumab, 2^{nd} line $$ $OS.$ $AEs,$ of I expr	AuthordesignPatients%maleAge (yrs)LocationHistologyDisease featuresIntervention(months)OutcomKsienski et al, 2019b [57]Retrosp ective cohort study271 50.4 64.0 (39-82) $Sq =$ 25.7 %, NSq $(39-82)$ $Sq =$ 25.7 %, NSq $= 74.3$ %Nivolumab $3mg/kg per 2$ weeks, 1st line or later $Nivolumab$ $3mg/kg per 2$ weeks, 1st line or later 8.1 medianOS, PF deaths, A impact treatment interrupt and colinLacerenza et al, 2019 [83]Cohort study20 85 67.0 (43-81)USA $Sq = 30\%$, Ad = 70% $Stage IIIB$ or IVNivolumab, 2^{nd} line $Nivolumab,$ 2^{nd} line OS, PF deaths, A impact treatment interrupt and colin		Study				Population				Follow up	Reported
$\begin{array}{c} Ksienski \\ et al, 2019b \\ [57] \\ [57] \\ [57] \\ [57] \\ [sudy \\ [57] \\ [sudy \\ [sud \\ [s$	Ksienski et al, 2019b [57]Retrosp ective cohort study271 50.4 64.0 (39.82) Sq = 25.12 $3mg/kg per 2$ weeks, 1st 19.5% , NSq 80.6 $3mg/kg per 2$ weeks, 1st 19.5% , NSq 80.5% $3mg/kg per 2$ weeks, 1st $1median$ 8.1 median 8.1 median<	Ksienski et al, 2019b [57]Retrosp ective cohort study 271 50.4 64.0 $(39-82)$ $Sq =$ $25.7\%, NSq$ USA $Sq =$ $25.7\%, NSq$ $= 74.3\%$ $3mg/kg per 2$ weeks, 1st line or later $3mg/kg per 2$ weeks, 1st line or later $0S, PF$ deaths, A impact median[57] 271 51.2 68.0 $(50-81)$ USA $Sq =$ $19.5\%, NSq$ $= 80.5\%$ $Stage IV$ $Pembro-$ lizumab $2mg/kg per 3$ weeks, 1st line or later 8.1 median OS, PF deaths, A impact medianLacerenza et al, 2019 [83] $Cohort$ study 20 85 67.0 $(43-81)$ $Italy$ $Sq = 30\%,$ $Ad = 70\%$ $Stage IIIB$ or IVNivolumab, 2^{nd} line V OS, PF deaths, A impact median	Author		Patients	%male	-	Location	Histology		Intervention		Outcomes
$\begin{bmatrix} 57 \end{bmatrix} \begin{bmatrix} cohort \\ study \end{bmatrix} \begin{bmatrix} cohort \\ study \end{bmatrix} \begin{bmatrix} cohort \\ study \end{bmatrix} \begin{bmatrix} 51.2 \\ 0 \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \end{bmatrix} \begin{bmatrix} 57 \\ 19.5\%, NSq \\ 19.5\%, NSq \\ 80.5\% \end{bmatrix} \begin{bmatrix} 19.5\%, NSq \\ 2mg/kg per 3 \\ weeks, 1^{st} \\ line or later \end{bmatrix} \begin{bmatrix} median \\ media$	$\begin{bmatrix} 57 \end{bmatrix} \begin{bmatrix} cohort \\ study \end{bmatrix} \begin{bmatrix} 51.2 \\ 0 \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \end{bmatrix} \begin{bmatrix} 57 \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \\ (50-81) \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \\ (50-81) \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \\ (50$	$\begin{bmatrix} 57 \end{bmatrix} \begin{bmatrix} cohort \\ study \end{bmatrix} \begin{bmatrix} chort \\ study \end{bmatrix} \begin{bmatrix} 51.2 \\ -51.2 \end{bmatrix} \begin{bmatrix} 68.0 \\ (50-81) \end{bmatrix} \begin{bmatrix} -50 \\ -80 \end{bmatrix} \begin{bmatrix} Sq = \\ 19.5\%, NSq \\ = 80.5\% \end{bmatrix} \begin{bmatrix} 2mg/kg per 3 \\ weeks, 1^{st} \\ line or later \end{bmatrix} \begin{bmatrix} median \\ interrupt \\ and coling \\ median \end{bmatrix} \begin{bmatrix} treatment \\ interrupt \\ and coling \\ median \end{bmatrix} \begin{bmatrix} treatment \\ median \\ median \end{bmatrix} \begin{bmatrix} treatment \\ interrupt \\ and coling \\ median \end{bmatrix} \begin{bmatrix} treatment \\ median \\ median \\ median \end{bmatrix} \begin{bmatrix} treatment \\ median \\ med$		-	271	50.4		USA	25.7%, NSq	Stage IV	3mg/kg per 2 weeks, 1 st line or later	8.1	OS, PFS deaths, AE impact o
Lacerenza et al, 2019 [83]Cohort study2085 67.0 (43-81)ItalySq = 30%, Ad = 70%Stage IIIB or IVNivolumab, 2^{nd} lineAEs, Impact of PDL expression	$ \begin{array}{c c} Lacerenza \\ et al, 2019 \\ [83] \end{array} \end{array} \begin{array}{c} Cohort \\ study \end{array} \begin{array}{c} 20 \end{array} \begin{array}{c} 85 \end{array} \begin{array}{c} 67.0 \\ (43-81) \end{array} \end{array} \begin{array}{c} Italy \end{array} \begin{array}{c} Italy \end{array} \begin{array}{c} Sq = 30\%, \\ Ad = 70\% \end{array} \begin{array}{c} Stage IIIB \\ or IV \end{array} \begin{array}{c} Nivolumab, \\ 2^{nd} line \end{array} \begin{array}{c} . \end{array} \begin{array}{c} AEs, \\ of Ieap \\ expression \\ or IV \end{array} \end{array}$	Lacerenza et al, 2019 [83]Cohort study208567.0 (43-81)ItalySq = 30%, Ad = 70%Stage IIIB or IVNivolumab, 2 nd lineAEs, Imp of PDL express on OS				51.2		2	19.5%, NSq		lizumab 2mg/kg per 3 weeks, 1 st	median	treatmen interruptic and coliti
			et al, 2019		20	85		Italy		_			OS, PFS AEs, Impa of PDL1 expressio on OS

1 2 3 4 5 6	
7 8 9 10 11 12 13	
14 15 16 17 18 19	
20 21 22 23 24 25 26	
27 28 29 30 31 32	
33 34 35 36 37 38 39	
40 41 42 43 44 45	
46	

	Study			Рор	ulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Leighl et al, 2019 [75]	Phase I trial akin to cohort study	550	Rx- naïve: 59.0 Pre- treated: 51.0	Rx-naïve: 68.0 (59- 74) Pre- treated: 62.0 (54- 70)	?/.	Rx-naïve: Sq = 19%, NSq = 78%, NOS = 3% Pre- treated: Sq = 17%, NSq = 82%, NOS = 1%	Stage IV	Pembrolizumab 2mg/kg per 3 weeks, 1 st line or later Pembrolizumab 10mg/kg per 2 weeks, 1 st line or later	34.5 median	OS, PFS, deaths, AEs, impact of PDL1 TPS, and previous Rx, (3-year outcomes)
Lisberg et al, 2018 [92]	Cohort study	97	trAE: 56.0 Non- trAE: 48.0	trAE: 67.0 (32-87) Non-trAE: 65.0 (36-83)	USA, 1 centre	trAE: Sq = 21% Non-trAE: Sq = 19%	Stage IV	Pembrolizumab 2mg/kg per 3 weeks, 1 st line or later Pembrolizumab 10mg/kg per 2 weeks, 1 st line or later		OS, PFS, AEs, impact of trAEs on OS and PFS

Page 63 of 101

Thorax

1 2 3	
4 5 6	
7 8 9	
10 11 12	
13 14 15	
16 17 18	
19 20 21	
22 23 24	
25 26 27	
28 29 30	
31 32 33	
34 35	
36 37 38	
39 40 41	
42 43 44	
45 46	

	Study			Р	opulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Liu et al, 2019 [51]	Cohort study	44	75.0	60.0 (43- 74)	China, 1 centre	Sq = 29.5%, Ad = 70.5%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	6.9 median	OS, PFS, deaths, AEs impact of blood inflammatio markers
Manrique et al, 2018 [107]	Cohort study	188	77.0	58.0 (45- 81)	Spain, 9 centres	Sq = 35%, Ad = 60%, Ud = 5%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 1 st – 6 th line		OS, PFS, deaths, hospital- isations, AE impact of ECOG PS
Merino Almazan et al, 2019 [84]	Cohort study	221	77.0	64.5 (σ 9.2) ²¹	Spain, 15 centres	Sq = 59.7%, NSq = 40.3%	Stage I, II, III and IV	Nivolumab 3mg/kg per 2 weeks, 1 st line or later	Y	OS, PFS, cost- effectivenes deaths, AE impact of ECOG PS

²¹ Mean and standard deviation

1 2 3 4 5	
6 7 8 9 10 11	
12 13 14 15 16 17	
18 19 20 21 22 23	
24 25 26 27 28	
29 30 31 32 33 34	
35 36 37 38 39	
40 41 42 43 44 45	
46	

	Study			Po	pulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Montana et al, 2019 [85]	Cohort study	98	71.4	65.5 (42-85.6)	France	Sq = 21.4%, NSq = 78.6%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 1 st – 4 th lines		OS, PFS, Al impact of ECOG PS o OS
Naqash et al, 2018 [86]	Cohort study	87	64.4	64.0 (35-85)	USA, 1 centre	Sq = 44.8%, Ad = 49.4%	Stage III or IV	Nivolumab, 2 nd line		OS, AEs, impact of CF NLR, and prognostic scores
Nomizo et al, 2017 [138]	Cohort study	50	68	65.0 (40- 80)	Japan	Sq = 20%, Ad = 80%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line		PFS, impact SNPs
Okuma et al, 2018 [139]	Cohort study	39	74.4	69.0 (50- 88)	Japan, 2 centres	Sq = 17.9%, Ad = 71.8%, LC = 5.1%, Ud = 5.1%	Stage IV or recurrent	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		Impact of soluble PDI on OS

Page 65 of 101

	Study			Poj	pulation				Follow up	Repo
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outco
Osorio et al, 2017 [93]	Cohort	51	No thyroid disorder: 39.1	No thyroid disorder: 63.0 (35-93)	USA, 1 centre	No thyroid disorder: Ad = 85%	Stage IV	Pembro- lizumab 2mg/kg per 3		OS, I AE
	,		Thyroid disorder: 50.0	Thyroid disorder: 59.0 (39-80)		Thyroid disorder: Ad = 70%		weeks, 1 st line or later		
Oya et al, 2017 [52]	Cohort study	124	70.0	66.0 (37- 79)	Japan, 1 centre	Sq = 22%, Ad = 65%, Ud = 13%	Stage IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	6.0 median	OS, I dea Impa PDI EGFR, LDH, and his

2	
2	
3	
4	
5 6 7	
6	
/	
8 9	
10	
11 12	
12 13	
14 15	
16 17	
17 18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37 38	
30 39	
39 40	
40 41	
42	
43	
44	
45	
46	

	Study			Po	pulation				Follow up	Reported
Author	Author	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Oyanagi et al, 2019 [140]	Cohort study	38	74.0	68.5 (49- 86)	Japan, 1 centre	Sq = 29%, NSq = 71%	Stage IIIB and IV	Nivolumab 3mg/kg per 2 weeks, 1 st line or later		Impact of follastin, IP1 and RANTE
Passaro et al, 2019 [67]	Cohort study	53	62.0	64.0 (56- 70)	Italy, 1 centre	Sq = 29%, Ad = 75%	Stage IIIB and IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	19.0 median	OS, PFS, impact of G MDSC
Passiglia et al, 2019a [91]	Cohort study	530	KRas +ve: 63 KRas -ve: 67	KRas +ve: 66.0 (36- 87) KRas -ve: 65.0 (29-86)	Italy, 168 centres	NSq = 100%	Stage IIIB, IIIC or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		OS, PFS, deaths, AE
Passiglia et al, 2019b [87]	Cohort study	45	71.1	66.0 (51- 80)	Italy, 2 centres	Sq = 45.5%, Ad = 55.5%	Stage IIIB, IIIC or IV	Nivolumab 3mg/kg per 2 weeks, 2nd line or later	Y.	OS, deaths impact of ECOG PS NLR, and histology

Page 67 of 101

1	
2 3	
4	
5 6 7	
7	
8	
9 10	
11	
12	
13 14	
15	
16 17	
18	
19	
20 21	
20 21 22	
23	
24 25	
26	
27 28	
20	
30	
31 32	
33	
34	
35 36	
37	
38	
39 40	
41	
42 43	
43 44	
45	
46	

	Study					Follow up	Reported			
Author design	•	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Ramos-Levi et al, 2019 [130]	Cohort study	40	67.5	69.0 (38-86)	Spain, 1 centre	Sq = 52.5%, NSq = 42.5%, NOS = 5.0%	Previous Rx	Nivolumab 3mg/kg per 2 weeks, 2nd line or later	7.6 median	AEs
Ravanelli et al, 2019 [61]	Cohort study	104	66.4	67.0 (43-85)	Italy, 3 centres	Sq = 27.9%, NSq = 72.1%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd – 3 rd line	~3.5 median	OS, PFS, deaths
Ricciuti et al, 2019a [73]	Cohort study	176	62.5	63.0 (30-84)	Italy, 3 centres	Sq = 18.7%, NSq = 78.5%, NOS = 2.8%	Stage IIIB, IV or recurrent	Nivolumab 3mg/kg per 15 days, 2 nd line or later	28.3 months	OS, AEs, impact of F post- progression discontinuat
Ricciuti et al, 2019b [74]	Cohort study	195	65.6	63.0 (30-84)	Italy, 3 centres	Sq = 21.1%, NSq = 78.9%, NOS = 2.8%	Stage IIIB, IV or recurrent	Nivolumab, 2 nd line or later	26.0 median	OS, PFS, A impact of irA

2	
3	
4	
5	
5	
7	
6 7 8	
ð	
9 10	
10	
11	
12	
13 14 15	
14	
15	
16	
16 17 18	
18	
19	
20	
21 22	
22	
23	
24	
25	
26 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30 31 32 33 34 35 36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

1

	Study			Po	opulation		Follow up	Reported		
Author design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes	
Sabatier et al, 2018 [68]	Cohort study	30	73	75.2 (70-86.8)	France, 1 centre	Sq = 37%, NSq = 63%	Stage IIIB or IV, patients ≥ 70 only	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	8.2 median	OS, PFS, AEs, impact of AEs and PDL1 TPS
Sarocchi et al, 2018 [27]	Cohort study	59	69	69.0 (44-81)	Italy, 1 centre	Sq = 22%, NSq = 78%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		Deaths, AEs
Sato et al, 2018 [132]	Cohort study	38	74	68.5 (49-86)	Japan, 1 centre	Sq = 26%, NSq = 74%	Stage IIIB or IV, post- operative relapse	Nivolumab 3mg/kg per 2 weeks, line not specified	~5.25 months	PFS, AEs
Schouten et al, 2018 [53]	Cohort study	248	54.8	63.0 (29-84) ²²	Holland, 1 centre	Sq = 22.2%, Ad = 66.5%, Mixed = 6.5%, NOS = 4.8%	Metastasis	Nivolumab 3mg/kg per 2 weeks, 1st line or later	4.8 median	OS, PFS, deaths, AEs, impact of histology and ECOG PS

²² Mean and range

Page 69 of 101

 Thorax

	Study			Р		Follow up	Reported			
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Sekine et al, 2018 [88]	Cohort study	87	62.5	62.0 (34-83)	Japan, 1 centre	Sq = 11.5%, Ad = 73.6%, Other = 14.9%	Stage III or IV	Nivolumab 3mg/kg per 2 weeks, 1st line or later		OS, PFS, AEs, impact of LMR ²³ and NLR on OS
Shamai et al, 2018 [89]	Cohort study	77	55.9	68.0 (33-90)	Israel, 1 centre	Sq = 16.9%, NSq = 83.1%	Previously treated	Nivolumab 3mg/kg per 2 weeks, 1 st line or later		OS, PFS, deaths, AEs
Shiroyama et al, 2018 [126]	Cohort study	201	67.2	68.0 (27- 87)	Japan, 3 centres	Sq = 20.4%, NSq = 79.6%	Advanced, previously treated	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	12.4 median	PFS, deaths impact of acute lung injury and NLR
Takeda et al, 2018 [103]	Cohort study	30	63.3	71.0 (54- 83)	Japan, 1 centre	Sq = 30%, Ad = 70%	Pre-treated	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	2/	PFS, AEs, impact of NLR

²³ Lymphocyte-monocyte ratio

י ר	
2	
3	
4	
5	
6	
7	
8	
9 10	
10	
11	
12	
13	
14	
15	
12 13 14 15 16	
17	
18	
19	
20	
21	
22	
22	
23 24 25 26	
24	
25	
26	
27	
28	
29	
30	
30 31 32	
32	
33	
34	
33 34 35 36	
36	
37 38	
38	
39	
40	
41	
42	
43	
43 44	
44 45	
46	

	Study			Poj	oulation			Intervention	Follow up (months)	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features			Outcomes
Tamiya et al, 2019 [71]	Cohort study	213	82.6	71 (39-91)	Japan, 11 centres	Sq = 25.8%, Ad = 60.6%, NOS = 13.6%	Untreated, stage IIIB or IV	Pembroli- zumab 200mg/kg per 3 weeks, 1 st line	11.0 median	OS, PFS, AEs, impac of ECOG P PDL1 and steroid use on PFS
Tanizaki et al, 2018 [141]	Cohort study	134	67.2	68.0 (33- 85)	Japan, 4 centres	Sq = 24.6%, Ad = 67.2%, NOS = 8.2%	Stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		Impact of blood biomarker and histolo
Teraoka et al, 2017 [104]	Cohort study	43	63.0	70.0 (50- 82)	Japan, 1 centre	Sq = 21%, Ad = 70%, NOS = 9%	Stage IIIB or IV	Nivolumab, 2 nd line or later		PFS, AEs impact of irAEs
Tiu et al, 2018 [54]	Cohort study	38	42.0	67.0 (46- 84)	USA	Sq = 13%, Ad = 71%, NOS = 11%	Stage IIB, IIIA, IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 1 st line or later	5.6 median	OS, PFS, deaths, AE impact of ethnicity

Page 71 of 101

 Thorax

	Study			F	opulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcome
Toi et al, 2018 [133]	Cohort study	70	87.0	68.0 (36- 88)	Japan, 1 centre	Sq = 39%, NSq = 61%	Advanced	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		AEs, impa of irAEs
Tournoy et al, 2018 [69]	Cohort study	67	72.3	66.0 (41- 86)	Belgium 20 centres	Sq = 26.6%, NSq = 73.4%	Stage IIIA, IIIB, or IV	Nivolumab, 2 nd line or later		OS, PFS AEs, impa of ECOG F
Weis et al,	Cohort	24	48.2	64.3	USA, 1	Sq = 32.1%, NSq = 60.5%, Ud = 7.4%	Stage IV or	Nivolumab 240mg OR 3mg/kg per 2 weeks, 2 nd line or later	7.5	OS, PFS deaths, Al impact o
2019 [70]	study		53.5	67.2	centre	Sq = 27.9%, NSq = 67.4%, Ud = 4.7%	recurrent	Atezo- lizumab 1200mg per 3 weeks, 2 nd line or later	median	drug type

Thorax

1 2	
- 3 4	
5 6	
7 8	
9	
10 11	
12 13 14	
14 15	
16 17	
1 2	
19 20	
20 21 22 23	
24	
25 26	
27 28	
29 30	
30 31 32	
33	
34 35 36	
36 37	
38 39	
40 41	
42 43	
44	
45 46	
-τU	

	Study			Pop	pulation		• • • • • • • • • • • • • • • • • • •		Follow up	Reported
Author	design	Patients	ents %male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Yoo et al, 2018 [55]	Cohort study	47	85.1	62.0 (41- 81)	South Korea, 2 centres	Sq = 14.9%, Ad = 61.7%, NOS = 23.4%	Stage IIIB, IV or recurrent	Nivolumab 3mg/kg per 2 weeks OR 20mg or 100mg per 3 weeks, 2nd line or later	5.2 median	OS, PFS, deaths, impact of use of a low dose on OS and PFS
Zhuo et al, 2018 [58]	Cohort study	10	70	64.0 (45- 66)	China	Sq = 40%, Ad = 50%, AdSq = 10%	Pre- treated stage IIIB or IV	Atezo- lizumab 1200mg per 3 weeks, 2 nd line or later	4.8 median	OS, PFS
							16			

Page 73 of 101

Thorax

Population

Location

Histology

	Study					Р	0
dy arms	design	Author	Study arms	Patients	%male	Age (yrs)	
olumab			Nivolumab	C .			
/kg per 2			3mg/kg per 2	$ \sim $	73.9	70.0	
eks, 2 nd		Genova	weeks, 2 nd		75.9	(44-82)	
or later	Cohort	et al,	line or later	73	nx.		
platin +	study	2019	Cisplatin +	13		51	
netrexed/		[116]	pemetrexed/		74.1	69.0	
boplatin,			carboplatin,		74.1	(46-81)	
st line			1 st line			•	
olumab,			Nivolumab,				
d line or		Russo	2nd line or				
later	Cohort	et al,	later	62	77.0	68.0 (45-	
cetaxel,	study	2018	Docetaxel,	02	11.0	82)	
¹ line or		[142]	2 nd line or				
later			later				
	Cohort	Araujo et				64.0	
olumab	study	al, 2017	Nivolumab	287	62	(37-83)	
	olday	[143]				(07 00)	
					https	://mc.manusc	

45 46

a	Cohort study	3mg/kg per 2 weeks, 2 nd line or later Cisplatin + pemetrexed/ carboplatin, 1 st line	73	73.9 74.1	70.0 (44-82) 69.0 (46-81)	Italy	Sq = 23.9%, NSq = 76.1% NSq = 100%	Stage IIIB or IV	18.0 median	OS, PFS, impact of B7H4 and PDL1 expression on PFS
	Cohort study	Nivolumab, 2nd line or later Docetaxel, 2 nd line or later	62	77.0	68.0 (45- 82)	ltaly, 1 centre	Sq = 40%, Ad = 48%, Mixed/NOS = 12%		17.0 median	OS, PFS, impact of baseline neutrophilia, NLR and PLR
et 7	Cohort study	Nivolumab	287	62	64.0 (37-83)	Brazil, 1 centre	NSq = 59%	Pre-treated, advanced/ metastatic	4.9 median	OS, PFS, AEs

Follow up

(months)

Disease

features

Reported

Outcomes

Ardizzoni et al, 2017 [144]	Cohort study	Nivolumab 3mg/kg per 2 weeks	1588		Italy, 168 centres	NSq = 100%	Previously treated, stage IIIB or IV	7.7 median	OS
		- h).					
		weeks							

Page 75 of 101

Included observational abstracts

	Study			Р	opulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Bennati et al, 2017 [145]	Cohort study	86	61			Ad = 76%		Nivolumab, lines not specified		OS, PFS, impact of NLR and PDL1 TPS
Canova et al, 2016 [146]	Cohort study	37		65.0 (54-79)		Sq = 56.8%, NSq = 27%	Pre- treated stage IIIA or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	12.0 median	PFS
Cappuzzo et al, 2017 [147]	Cohort study	363			Italy	Sq = 100%	Pre- treated, stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	5.2 median	OS
De Pietro et al, 2017 [148]	Cohort study	92					Pre- treated stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		AEs
Dixmier et al, 2018 [149]	Cohort study	1394	69.2	66.0 (35-91)	186 centres			Nivolumab, 2 nd line or later	9	PFS, AEs

Thorax

Thorax

	Study			I	Population				Follow up	Reported	
Author	design	Patients	Patients %male Ag		Location Histology		Disease features	Intervention	(months)	Outcomes	
Elvarathnam et al, 2017 [150]	Cohort study	63	76.1	65.0 (40-78)	France, 1 centre	Sq = 33.3%	Advanced	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	-	AEs	
Emiliani et al, 2016 [151]	Cohort study	33	51.5	67.0 (53-84)	21.	Sq = 18%, Ad = 82%	Metastatic	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		AEs	
Fernandez et al, 2017 [152]	Cohort study	32	87.5		Spain, 1 centre	Sq = 25%, Ad = 75%	Stage IIIB or IV	Nivolumab, 2 nd line or later		PFS, AEs	
García et al, 2018 [153]	Cohort study	129			Spain, 5 centres		Pre-treated, advanced	Nivolumab, 2 nd line or later	6.0 median	OS, impact o ECOG PS	
Honda et al, 2018 [154]	Cohort study	93	76.3	67.0 (31-89)	Japan, 1 centre	Sq = 30.1%, NSq = 69.9%	Advanced	Nivolumab, lines not specified		PFS, AEs	
Hosoya et al, 2018 [155]	Cohort study	145	84.0	71.0 (39-87)	Japan, 10 centres		Advanced, PDL1 TPS ≥50%	Pembro- lizumab, 1 st line		Impact of ear irAEs and types of AEs	

Page 77 of 101

Thorax

1	
2 3	
4	
5	
6	
7	
8 9	
10	
11	
12	
13	
14 15	
15 16	
17	
18	
19	
20	
21 22	
23	
24	
25	
26	
27 28	
29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 41	
41 42	
43	
44	
45	
46	

	Study				Population				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Kim et al, 2017 [156]	Cohort study	299	68.9		Korea, 36 centres	Sq = 28.8%, NSq = 70.9%	Pre-treated, advanced/ metastatic	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		AEs
Lampaki et al, 2017 [157]	Cohort study	23	82.6	68.0	Greece, 1 centre	Sq and NSq	Pre-treated stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 3 rd line or later		Deaths, AE
Lopez Flores et al, 2017 [158]	Cohort study	25	80	64.0 (43-80)	Spain, 1 centre	Sq = 48%, Ad = 44%	Pre-treated, stage IIIA, IIIB, or IV	Nivolumab 3mg/kg per 15 days, 2 nd line or later		PFS, death AEs
Mielgo et al, 2016 [159]	Cohort study	11	90	65.0 (40- 78) ²⁴	Spain, 1 centre	Sq = 27%, Ad = 73%	Advanced	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		AEs

²⁴ Mean and range

1 2	
3 4	
5 6 7	
7 8 9	
10	
12 13	
14 15	
11 12 13 14 15 16 17	
18 19	
18 19 20 21 22 23	
24	
25 26	
27 28	
29 30	
31 32 33	
34 35	
34 35 36 37	
38 39	
40 41	
42 43	
44 45 46	
40	

	Study			Р	opulation				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Migliorino et al, 2017 [160]	Cohort study	754			Italy	NSq = 100%	Pre-treated stage IIIB or IV	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		OS, AEs
Moor et al, 2018 [161]	Cohort study	214		67.0 (42-84)	Australia , 7 centres	C	Pre-treated, advanced	Nivolumab, 2 nd line		OS, PFS, AEs, impact of ECOG PS
Moreno et al, 2017 [162]	Cohort study	46	86	64.0 (47-77)	Spain, 1 centre	Sq = 39%, NSq = 61%	Pre-treated, stage III or IV	Nivolumab, 2 nd line or later		OS, PFS, AEs
Nakamura et al, 2018 [163]	Cohort study	31			Japan		Advanced	Nivolumab, lines not specified		HRs for OS and PFS, impact of NLR
Ota et al, 2018 [164]	Cohort study	51			Japan		Pre-treated, advanced	Nivolumab, 2 nd line		Impact of time to progression and histology
Paglialunga et al, 2017 [165]	Cohort study	69	-	-	Italy	Sq = 23%, Ad = 77%	Advanced	Nivolumab, lines not specified		OS, PFS, AEs, impact of EGFR mutations

Page 79 of 101

 Thorax

	Study					Follow up	Repor			
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcor
Rapoport et al, 2019 [166]	Cohort study	56	57	65.0 (46-86)	South Africa, 5 centres	Ad = 57%	Pre-treated	Nivolumab, line not specified		OS, P AEs, im of NL
Rodriguez- Abreu et al, 2018 [175]	Cohort study	664	73	61.0 (32-85)	Spain	Sq = 19.2%, NSq = 80.8%	Pre- treated, advanced	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later	Median 8.2 months	OS, P AEs
Rodriguez- Cid et al, 2017 [167]	Cohort study	38	35.3		India, 1 centre	Sq = 5.9%, Ad = 88.2%	Pre- treated, stage III or IV	Nivolumab, 1 st line or later		OS, P deatl
Saijo et al, 2018 [168]	Cohort study	51	19.6	70.0 (37-87)	Japan, 1 centre	Sq = 11.8%, Ad = 45.1%	Advanced NSCLC	Pembro- lizumab, 1 st - 4 th , 8 th lines	6.4 median	OS, P AE:
Sakaguchi et al, 2017 [169]	Cohort study	50	66	69.0 (53-86)	Japan, 1 centre	Sq = 28%, Ad = 66%	Advanced or recurrent	Nivolumab 3mg/kg per 2 weeks, 2 nd line or later		PFS, /

Thorax

2	
2 3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18 19	
20	
20	
27	
23	
24	
20 21 22 23 24 25 26 27 28 29	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

1

	Study			I	Population				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Sanoyan et al, 2017 [170]	Cohort study	70		64.5 (39-89)	Germany, 1 centre	Sq = 23.8%, NSq = 76.2% Sq = 14.3% NSq = 85.7%	Stage IIIB and IV	Nivolumab, 2 nd line Pembro- lizumab, 1 st line	-	OS, PFS
Saravia et al, 2017 [171]	Cohort study	114	52	67.0 (40-91)	USA	-	Advanced	Nivolumab, lines not specified	5.4 median	Impact of ANC/ALC ratio ²⁵ and ECOG PS
Shaverdian et al, 2019 [172]	Cohort study	43	65	67.0			Pre- treated	Durvalumab 10mg/kg biweekly, lines not specified	4.6 median	Deaths, AEs, impact of NLR
Shibata et al, 2018 [173]	Cohort study	35						Nivolumab, 2 nd line	-	AEs, impact of NLR
Tanimura et al, 2017	Cohort study	19		67.0		Sq = 47.4%, NSq =		Nivolumab, lines not	Median 7.2	PFS

²⁵ Absolute neutrophil count/absolute lymphocyte count ratio

Page 81 of 101

Thorax

1	
2	
3	
4	
5	
3 4 5 6 7	
/	
8	
9 10	
10	
11	
12	
12 13 14 15 16 17	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
21 22 23 24 25 26 27	
20	
2/	
28 29	
30	
30 31 32 33	
37	
32	
34	
34 35 36 37	
36	
37	
38	
39	
40	
41	
42	
43	
43	
44	
43 46	
40	

[174]			52.6%	specified	months
					months

Thorax

1 2 3 4 5 6 7	
8 9 10 11 12 13 14 15	
16 17 18 19 20 21 22 23	
24 25 26 27 28 29 30 31	
32 33 34 35 36 37 38	
39 40 41 42 43 44 45	

	Study			F	Population				Follow up	Reported
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Tay et al, 2018 [176]	Cohort study	58	66	67.0	UK, 1 Trust	Sq = 36%, NSq = 64%	Pre- treated, advanced	Pembroli- zumab, line not specified	Median 5.2 months	OS, PFS
Watanabe	al, 2017 Cohort 20 study Poor	Elderly: 78.0 (75-83)		Elderly: Ad = 100%	Stage III, IV and	Nivolumab, 1 st				
et al, 2017 [177]		PS:	Poor PS: 64.0 (46-72)	Japan	Poor PS: Sq = 30%, Ad = 40%	post- operative recurrent	– 5 th line		PFS, AEs	
Yamaguchi et al, 2017 [178]	Cohort study	42	88	67.5 (39-76)			Pre- treated, stage III or IV	Nivolumab, 2 nd line	-	PFS, AEs
		<u>.</u>			<u>.</u>		<u>.</u>	0,	4	

Page 83 of 101

1 2	
3 4	
5	
7	
8 9	
10 11	
12 13	
14 15	
16 17	
18	
20	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 4\\ 5\\ 36\\ 37\end{array}$	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35	
37	
38 39	
40 41	
42 43	
44 45	
46	

	Study				Population		Follow up	Reported		
Author	design	Patients	%male	Age (yrs)	Location	Histology	Disease features	Intervention	(months)	Outcomes
Yamamoto et al, 2017 [179]	Cohort study	68	rid.	·	Japan, 1 centre			Nivolumab, line not specified		PFS, impac of hypo- thyroidism and SNPs
Yamane et al, 2017 [180]	Cohort study	34		64	Japan, 1 centre		Advanced	Nivolumab, 2 nd line		AEs, impac of age
								Nivolumab, 2 nd line		

Risk of bias assessment

	D1	D2	D3	us domains D4	D5	Overall	Reasons for overall bias assessment from two reviewers
Brahmer 2015	+	-	+	+	+	+	Open-label, so potential for crossover is high. However, intention-to-treat analysis was used More patients using intervention discontinued; impact of patient characteristics not discusse
Carbone 2017	X	+	+	-	-	-	Open-label trial, so potential for crossover is high. However, the primary end point of PFS was assessed by blinded central review; details of this are not specified.
Borghaei 2015	X	-	+	+	+	-	Open-label trial, so potential for crossover is high
Wu 2019	•	+	+	+	+	+	Randomisation process specified, but no intention-to-treat analysis mentioned.
Reck 2018	X	X	+	-	+	X	Open-label trial, so potential for crossover is high. No details provided about the causes of losses to follow up, and the proportion in each treatment arm.
Heilmann 2018	•	+	+	+	+	-	Randomisation process specified, but no intention-to-treat analysis mentioned.
Heilmann 2019	-	+	+	+	+	-	Randomisation process specified, but no intention-to-treat analysis mentioned.
Antonia 2019	X	X	+	+	+	-	Analysis of two open-label trials, so potential for crossover is high. Adverse effects and deaths were causes of treatment cessation, but were not compared between trial arms.
Horn 2017	+	+	+	+	+	+	Randomisation process outlined clearly. Equal distribution of withdrawals and causes of withdrawals between trial arms. Intention-to-treat analysis was used.
Vokes 2019	•	X	+	X	+		The distribution of reasons for stopping treatment were not described. No intention-to-treat analysis used
Herbst 2016	+	+	+	-	+	+	Adverse effects were solely patient reported; potential for subjectivity depending on patient coping mechanisms and intuition to report.
Herbst 2019	+	+	+	+	+	+	Open-label trial, so potential for crossover is high. However, intention-to-treat analysis was used.
Brahmer 2017	+	+	+	+	+	+	Clear description of unbiased randomisation process. Consistent reporting of compliance to quality of life questionnaires. Several quality of life tools used.
Reck 2016	+	+	+	+	+	+	Open-label trial, so potential for crossover is high. However, intention-to-treat analysis is used. Blinded independent central radiological review used.
Reck 2019	+	+	+	+	+	+	Open-label trial, so potential for crossover is high. However, intention-to-treat analysis is used.
Mok 2019	+	-	+	+	+	+	Clear description of unbiased randomisation process. Adverse effects were described as leading to discontinuation; however, impact of patient characteristics not discussed.
Nosaki 2019	+	-	+	-	-	-	Open-label trial; however, intention-to-treat analysis was used. Higher rate of discontinuatio due to AEs in chemotherapy group; impact of patient characteristics not discussed.
Bordoni 2018	+	+	+	+	-	+	Several types of analyses conducted without explanation of reasoning behind analysis plan or the results presented
Fehrenbacher 2018	+	-	+	-	-	-	No information about intervention deviations due to experimental context. Pooled analysis of two populations, as protocol was amended. May be differences between populations.
Gadgeel 2019	+	+	+	+	-	+	Reason for point of step down of follow up not justified in the context of natural history of progression of disease.
Hida 2018	+	+	-	+	+	+	No information about losses to follow up. However, intention-to-treat analysis was used.
Rittmeyer 2017	X	+	+	+	+	-	Open-label and allocation unmasked, so very possible for crossover to occur. However, intention-to-treat-analysis was used.
Von Pawel 2019	+	-	+	+	+	+	No details of the extent of masking or blinding, so the impact of crossover is unknown. However, intention-to-treat analysis was used. Clear definition used for subgroup analysis.
Antonia 2017	+	+	+	+	+	+	Patients blinded to intervention or placebo. Clear specification of randomisation process. Intention-to-treat analysis used.
Antonia 2018	+	+	+	+	+	+	Patients blinded to intervention or placebo. Clear specification of randomisation process. Intention-to-treat analysis used.
Hui 2019	+	+	+	+	+	+	Clear description of unbiased randomisation process. Patients blinded to intervention or placebo. Intention-to-treat analysis used.
Fehrenbacher 2016	+	-	+	-	+	-	Open-label; however, intention-to-treat analysis was used. Withdrawals mentioned, but impact of patient characteristics not discussed. Concern regarding focus on intervention
Spigel 2019	-	X	+	+	-	-	Very little information provided regarding randomisation, receipt of intended intervention, an justification of outcomes, due to abstract format.

Thorax

ROB 2.0 assessment

The figure shows a traffic light assessment, generated using ROBVIS, and accompanying reasoning for the overall risk from the assessing authors.

	D1 D2	Risk of blas dor D3 D4 D5		Overall	Reasons for overall bias assessment from two reviewers
Alama 2019	-	++-	-	-	Lack of information on how participants were selected for the study, whether participants were excluded due to missing data, and how study outcomes were ascertained.
Bagley 2017	++	++-	•	+	Lack of information regarding whether participants were excluded due to missing information and how survival outcomes were ascertained
Bins 2018	++	••-	-+	-	Lack of information regarding whether participants were excluded due to missing information and how survival outcomes were ascertained. Reasoning behind 7 investigated single nucleotide polymorphisms is not explicit.
Brustugun 2016	-+	++-	-+	-	Authors did not account for the impact of smoking on patient outcomes. No information on exclusions due to missin information. Time to treatment failure was not defined, which could introduce systematic errors in assessment.
Crino 2019a	-+	+++	-	•	No methods for accounting for confounding factors mentioned. Lack of information regarding whether participants were excluded due to missing information and how survival outcomes were ascertained.
Crino 2019b	-+	+++	++	+	No methods for accounting for confounding factors mentioned.
Diem 2017	+-	+ + -	++	•	Given the aim of the study was to investigate blood parameters as markers of effectiveness, there is potential for exclusion of patients with incomplete blood results. No discussion of this in the study.
Dudnik 2018	++	•••	-+	•	Exclusions based on inadequate follow up may introduce a bias against patients who did not meet minimum follow requirement due to medical reasons relating to therapy. No clarification of this within the study.
Dumenil 2018	++	+++	-+	+	The information used in the study was highly dependent on availability in medical charts which, in turn, is dependen on completeness of clinical assessment and recording. No discussion of how this was addressed.
Dusselier 2019	+-	+ - +	-+	-	Given the aim of the study was to investigate blood parameters as markers of effectiveness, there is potential for exclusion of patients with incomplete blood results. No discussion of this in the study.
Edahiro 2019	+ -	+++	-	-	Lack of information regarding whether participants were excluded due to missing information and how survival outcomes were ascertained
Fujita 2019	++	+?+	++	+	No information regarding intervention deviations.
Fukihara 2019	++	+	++	+	The study subdivided patients into groups of patients who experienced or did not experience immune related pneumonitis; likely to be differences in patient characteristics that also affect susceptibility, which were not discuss
Fukui 2018	++	+	••	-	No information provided about missing data among patients or deviations, and any potential exclusions resulting fr this.
Garassino 2018	++	+ 🛛 -	++	-	A very high rate of discontinuation was observed in this study, which largely originated from patients who had neve smoked. The authors potentially attribute this to differences in turnour mutational burden.
Garde-Noguera 2018	++	+	++	+	Lack of information regarding whether participants deviated from their intended interventions and how survival outcomes were ascertained.
Garon 2015	-+	+	-+	-	Only PDL1 expression was accounted for in the main text. No information on deviations from intervention beyond expectation.
Garon 2019	-+	++-	••	-	While more potential confounders are accounted for in this text, it is unclear how complete the control of these confounders is. No information on deviations from intervention beyond expectation, or patients exclusions.
Gauvain 2018	++	+	++	+	Lack of information regarding whether participants deviated from their intended interventions and how survival outcomes were ascertained.
Geier 2018	+-	++-	•••	-	Little information regarding outcomes of all participants and exclusions. Unclear whether predictive factors of efficat were calculated using data from responders alone, rather than contrasting to non-responders.
Genova 2019	++	+++	•	+	Many different outcome measures are investigated, and two distinct cohorts of patients were used to compare and contrast the impact of B7-H4 as a biomarker of effectiveness.
Grossi 2018	++	+++		+	No notable problems
Haratani 2017	+-	+ + -	•	-	Selection of EGFR mutation positive patients on record only. The proportion of participants who had to be censore not stated.
Haratani 2018	-+	+?-	•	•	No information regarding deviations from interventions
Hasan Ali 2016	++	+?+	•	+	No information regarding deviations from interventions
Incue 2018	++	+	••	+	Little information regarding the proportion of participants who deviated from the intervention or for whom there was missing data.
Kaderbhai 2017	++	+++	++	+	No notable problems.
Kanai 2018	++	+++	++	+	No notable problems.
Karantanos 2018	++	+?+	++	+	No notable problems, although there was no information regarding patient deviations from interventions.
Katsura 2019	-+	+ - +	•••	•	Potential for confounding from factors potentially influencing patient outcomes; little information regarding deviation from intervention
Kawachi 2019	-+	+++	++	+	In spite of recording baseline characteristics of potential confounders, there is potential for confounding from facto potentially influencing patient outcomes, such as smoking history and ECOG PS.
Kobayashi 2017	+ -	+?+	++	+	No information regarding deviations from interventions
Kobayashi 2018	++	+++	• •	+	Several measures of survival-related outcome effectiveness measures were used, which increases the scope to detect an effect but no speculation on impact of outcome choice on results
Krefting 2019	-+	+++	++	+	In spite of recording baseline characteristics of potential confounders, there is potential for confounding from facto potentially influencing patient outcomes, such as smoking history and ECOG PS.
Ksienski 2019a	++	+ - +	••	+	Little information regarding deviations from interventions
Ksienski 2019b	++	+++	++	+	No notable problems.

Thorax

Thorax

	D1	D2	D3	D4	D5	D6	D7 Ó	verall	Reason for bias assessment
Lacerenza 2019		Ŧ	+	?	Ŧ	+	+	-	No confounders were controlled for as declared in this study. No information regarding deviations from intervention
Leighl 2019	•	+	+	+	+	+	+	+	While more potential confounders are accounted for in this text, it is unclear how complete the control of these confounders is.
Lisberg 2018	Ð	-	(?	Ŧ	Ŧ	+	+	When analysing the impact of trAEs on patient outcomes, no comparisons were made to validate findings in the n- trAE groups. No information regarding deviations from intervention
Liu 2019	Ŧ	Ŧ	(+)	+	Ŧ	((+	No notable problems.
Manrique 2018	Ŧ	Ŧ	(-	•	•	+	+	Little information regarding deviation from intervention.
lerino Almazan 2019	Ŧ	Ŧ	Ŧ	-	Ŧ	+	H	+	Little information regarding deviation from intervention.
Montana 2019	Ŧ	Ŧ	(<u> </u>	Ŧ	-	H	+	Little information regarding deviation from intervention.
Naqash 2018	Ŧ	Ŧ	H	?	•	•	+	+	No information regarding deviations from intervention.
Nomízio 2017		-	((•	(-	X	No confounders were controlled for as declared in this study.
Okuma 2018	-	Ŧ	Ŧ	Ŧ	Ŧ	+	H	+	There is potential for confounding from factors potentially influencing patient outcomes, such as smoking history a ECOG PS.
Osorio 2016	-	Ŧ	H	(•	+	•	+	There is potential for confounding from factors potentially influencing patient outcomes, such as smoking history a ECOG PS.
Oya 2017		-	Ð	+	•	+	+	N	No confounders were controlled for as declared in this study.
Oyanagi 2019	-	Ŧ	Ð	+	Ŧ	+	-	-	There is potential for confounding from factors potentially influencing patient outcomes, such as smoking history at ECOG PS.
Passaro 2019			Ð	?	Ŧ	Ŧ			No information regarding deviations from intervention
Passiglia 2019a	-	Ŧ	Ð	•	•	•	$\mathbf{+}$	+	There is potential for confounding from factors potentially influencing patient outcomes, such as smoking history a ECOG PS.
Passiglia 2019b		-	Ð	•	•	•	—		No confounders were controlled for as declared in this study.
Ramos-Levi 2019			Ð	Ŧ	4	4			No confounders were controlled for as declared in this study.
Ravanelli 2019		+		A	Ð	•			No confounders were controlled for as declared in this study.
Ricciuti 2019a		Ŧ	Ð	Ŧ	A	Ŧ			No confounders were controlled for as declared in this study.
Ricciuti 2019b	-	Ŧ	Ð	?	•	2	$\mathbf{\Phi}$	+	There is potential for confounding from factors influencing patient outcomes. No information regarding deviations from intervention, or details of outcome assessment.
Russo 2018		Ŧ	(• +	•	• •	$\overline{}$		No confounders were controlled for as declared in this study. Minimal details regarding outcome assessment.
Sabatier 2018		Ŧ	Ŧ	?	•	•	$\overline{-}$		No confounders were controlled for as declared in this study; no information regarding deviations from intervention Minimal details regarding outcome assessment.
Sarocchi 2018	x	-	Ŧ	?	Ŧ	Ŧ	•	x	No confounders were controlled for as declared in this study; no information regarding deviations from intervention
Sato 2018	x	Ŧ	H	• ?	Ŧ	Ŧ		x	No confounders were controlled for as declared in this study; no information regarding deviations from intervention Minimal details regarding outcome assessment.
Schouten 2017	•	Ŧ	Ŧ	• ?	•	•		-	No information regarding deviations from intervention. Minimal details regarding outcome assessment.
Sekine 2018	Ŧ		Ŧ	• •	•	Ŧ	$\overline{-}$	- -	Heavily restricted recruitment of patients receiving nivolumab, some of which may have had implications on result
Shamai 2018		-	H	+	-	-	$\overline{-}$		No confounders were controlled for as declared in this study. Minimal details regarding outcome assessment.
Shiroyama 2018		Ŧ	Ð	?	•	+	-	X	No confounders were controlled for as declared in this study; no information regarding deviations from intervention
Takeda 2018		Ŧ	Ð	?	Ŧ	+		X	No confounders were controlled for as declared in this study; no information regarding deviations from intervention
Tamiya2019		Ŧ	Ð	?	Ŧ	Ŧ	-	X	No confounders were controlled for as declared in this study; no information regarding deviations from intervention
Tanizaki 2017		Ŧ	Ð	?	Ŧ	•	-	X	No confounders were controlled for as declared in this study; no information regarding deviations from intervention
Teraoka 2017	ō	Ŧ	Ð	?	Ŧ	+	<u> </u>		No confounders were controlled for as declared in this study; no information regarding deviations from intervention
Tiu 2018		Ŧ	Ð	?	Ŧ	Ŧ	-	X	Confounders not controlled for due to incomplete record keeping among population studied. No information regarding deviations from intervention.
Toi 2018		?	Ð	÷	•	•	-	X	No confounders were controlled for as declared in this study. No information regarding participant recruitment.
Tournoy 2018		Ŧ	Ð	•	•		<u> </u>	X	No confounders were controlled for as declared in this study.
Weis 2019		Ŧ	Ð	+	•	-	<u> </u>	X	No confounders were controlled for as declared in this study.
Yoo 2018	ō	+	Ð	?	+	+	-	X	No confounders were controlled for as declared in this study; no information regarding deviations from intervention
Zhuo 2018									No confounders were controlled for as declared in this study.

ROBINS-I assessment of observational full texts

The figures show a traffic-light assessment, generated using ROBVIS, and accompanying reasoning for the overall risk from the assessing authors.

	D1 D2 D3		as domains D5 D6 D7 Ov	rall Reason for bias assessment
Araujo 2017	?+?)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
rdizzoni 2017	?+?)?	??-	Very little information regarding methods to make assessments. Although participant selection appeared consistent the results reported were chosen from patients who were KRas mutation positive; this was to be expected but does
ennati 2017	? + ?	?	??+	have associated risk. Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
nova 2016	?+?)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
ippuzzo 2017	?+?)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v
De Pietro 2017	?+?)?	??+	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Dixmler 2018	$\mathbf{?}$ + $\mathbf{?}$)?	??+	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
varathnam 2017	$\mathbf{?}$ + $\mathbf{?}$	$\hat{\boldsymbol{r}}$	$\mathbf{?}\mathbf{?}$	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Emiliani 2016	2 + 2		22+	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
emandez 2017	2 ± 0		22+	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Garcia 2018				consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
				consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Honda 2018				consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Hosoya 2018	(? + (?)		?? +	consistent and fair, and reported outcomes were assessablents, from the methods available, participant selection is very little information regarding methods to make assesses from the methods available, participant selection is
Kim 2017	? + ?		??+	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
Lampaki 2017	?+?)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
opez Flores 2017	?+?	?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
Mielgo 2016	?+?	?	??	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair. However, despite several clinical outcomes being alluded to, very few of these measures were ultimately reported
igliorino 2017	? - ?	?	???	Very little information regarding methods to make assessments. Participant selection appears to be clear, but this i not certain.
Moor 2018	? + ?)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
Moreno 2017	?+?)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
Vakamura 2018	? + ?)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
Ota 2018	?+?	?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
aglialunga 2017	? 🗙 ?)?	??-	Very little information regarding methods to make assessments. Only responders to therapy were analysed in this study, as the authors were looking to identify biomarkers. However, by excluding non-responders, they were unable compare findings to non-responders
Rapoport 2019	?+?	2)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
xdriguez-Cid 2017	?+?)?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v
Saijo 2018	?+?)?	??+	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Sakaguchi 2017	?+?)?	??+	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Sanoyan 2017	? + ?)?	??+	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Saravia 2017	$\mathbf{?}$ + $\mathbf{?}$	$\hat{\boldsymbol{r}}$	$\mathbf{?}\mathbf{?}$ +	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
haverdian 2019	2 - 2	20	22	consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection
Shibata 2018				appears to be consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
Tanimura 2017				consistent and fair, and reported outcomes appear to be reasonably assessed from appropriate analyses. Very little information regarding methods to make assessments. From the methods available, participant selection v
	$\begin{array}{c} \hline \hline$		$\begin{array}{c} \hline \hline \\ $	consistent and fair, and reported outcomes appear to be reasonably assessed from appropriate analyses.
Tarruella 2018	? + ?			Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
Tay 2018)?		Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair.
Watanabe 2017	? + ?	?	??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.
Yamaguchi 2017	? + ?)?	??-	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes appear to be reasonably assessed from appropriate analyses.
Yamane 2018	(?+?		??+	Very little information regarding methods to make assessments. From the methods available, participant selection v consistent and fair, and reported outcomes were reasonably assessed from appropriate analyses.

Thorax

ROBINS-I assessment of observational abstracts The figure shows a traffic light assessment, generated using ROBVIS, and accompanying reasoning for the overall risk from the assessing authors.

GRADE Assessment of RCT Evidence

Nivolumab, pembrolizumab or atezolizumab compared to chemotherapy for managing advanced NSCLC

Thorax

Adapted from table produced using the GRADEpro Guideline Development Tool (GDT) [181]

Outcomes	No of studies	Certainty of the	Relative effect (95%
	40.007	evidence (GRADE)	CI)
Risk of death	10 RCTs	$\oplus \oplus \oplus \oplus \oplus$	HR 0.75
Follow-up: range 0 months to		High	(0.69 to 0.81)
18 months			[Risk of death]
Risk of death	3 RCTs	$\oplus \oplus \oplus \oplus \oplus$	HR 0.72
Follow-up: range 18 months to		High	(0.65 to 0.81)
31 months		-	[Risk of death]
Risk of death	3 RCTs	$\oplus \oplus \oplus \bigcirc$	HR 0.70
Follow-up: range 31 months to		Moderate	(0.59 to 0.82) [Risk
as far as reported			of death]
Risk of progression or death	10 RCTs	$\Theta \Theta \bigcirc \bigcirc$	HR 0.87
Follow-up: range 0 months to		Low	(0.76 to 0.99)
18 months			[Risk of progression
	×		or death]
Risk of progression or death	2 RCTs	$\oplus \oplus \oplus \bigcirc$	HR 0.82
Follow-up: range 18 months to		Moderate	(0.74 to 0.90)
31 months			[Risk of progression
			or death]
Incidence of treatment-related	9 RCTs	$\oplus \oplus \oplus \oplus$	
adverse events assessed with:		High	Not pooled
Mean percentage incidence			
Time to deterioration in quality	2 RCTs 🤍	$\Theta \Theta \Theta \bigcirc$	-
of life assessed with: EORTC-		Moderate	
QLQ-LC13			
Time to deterioration in quality	1 RCT	$\oplus \oplus \bigcirc \bigcirc$	Not estimable
of life assessed with: EQ-5D-3L		Low	
Time to deterioration in quality	1 RCT	$\Theta \Theta O O$	Not estimable
of life assessed with: LCSS		Low	
ASBI			
Time to deterioration in quality	1 RCT	$\oplus \oplus \oplus \bigcirc$	Not estimable
of life assessed with: EORTC-		Moderate	
QLQ-C30		4	

CI: confidence interval; HR: hazard ratio

GRADE Working Group grades of evidence

High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

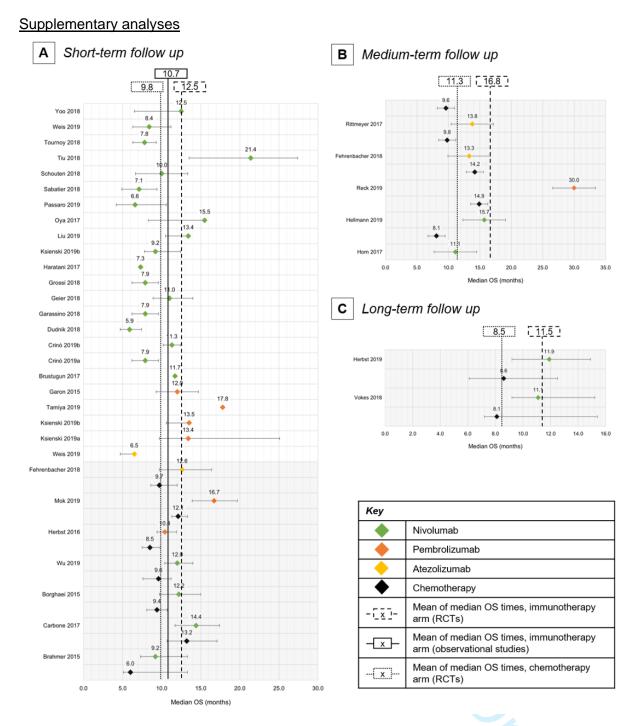
Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

Durvalumab compared to placebo for managing advanced NSCLC Adapted from table produced using the GRADEpro Guideline Development Tool (GDT) [181]

No of studies	Certainty of the	Relative effect (95%
	evidence (GRADE)	CI)
1 RCT	$\oplus \oplus \oplus \oplus$	Not estimable
	High	
1 RCT	$\oplus \oplus \oplus \oplus$	Not estimable
	High	
1 RCT	$\oplus \oplus \oplus \oplus$	Not estimable
	High	
	-	
1 RCT	$\oplus \oplus \oplus \bigcirc$	Not estimable
	Moderate	
_	1 RCT 1 RCT 1 RCT	evidence (GRADE) 1 RCT ⊕⊕⊕⊕ 1 RCT ⊕⊕⊕⊕ High 1 RCT ⊕⊕⊕⊕ High 1 RCT ⊕⊕⊕⊕ High 1 RCT ⊕⊕⊕⊕ High

CI: confidence interval

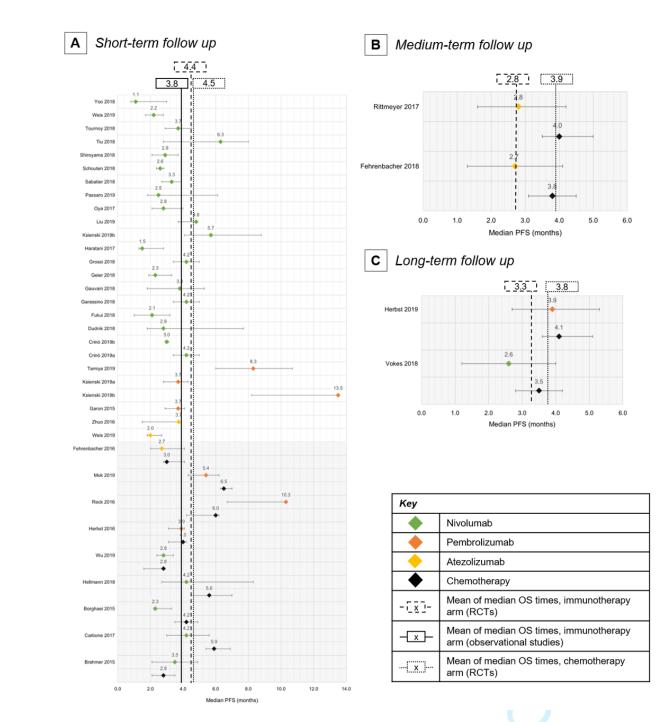
GRADE Working Group grades of evidence


High certainty: we are very confident that the true effect lies close to that of the estimate of the effect.

Moderate certainty: we are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.

Low certainty: our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.

Very low certainty: we have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.

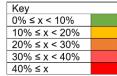

Relievoni

Supplementary Figure 1 – Median OS results

A) Median OS and 95% confidence intervals reported in observational and RCT studies with short-term follow up [31-35, 37, 40, 48-55, 57, 59, 62-72]. B) Median OS and 95% confidence intervals reported in observational and RCT studies with medium-term follow up [38-40, 42, 64]. C) Median OS and 95% confidence intervals reported in observational and RCT studies with long-term follow up. Shaded area denotes RCT data [44, 45].

https://mc.manuscriptcentral.com/thorax

Supplementary Figure 2 – Median PFS results

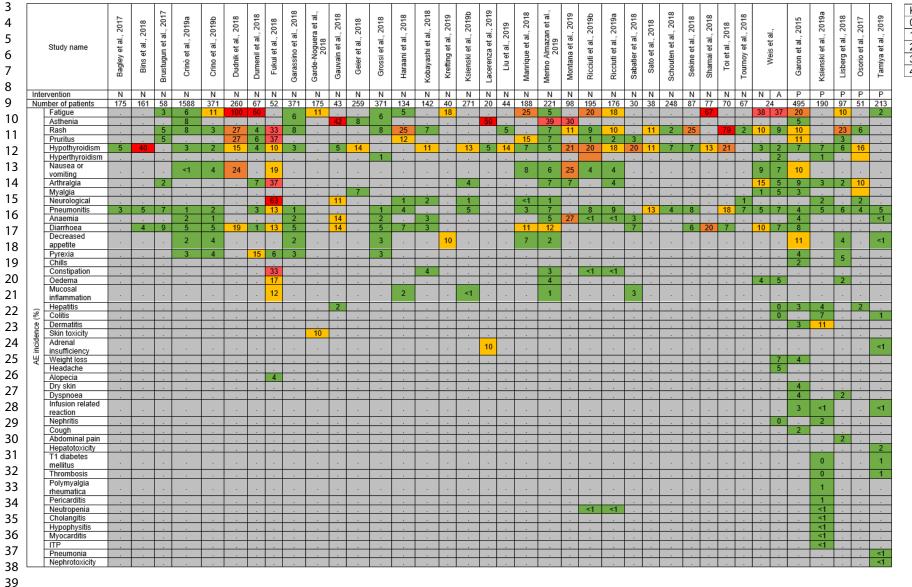

A) Median PFS and 95% confidence intervals reported in observational and RCT studies with short-term follow up [31-37, 47-59, 63-72, 95, 97, 125, 126]. B) Median PFS and 95% confidence intervals reported in observational and RCT studies with medium-term follow up [40, 42]. C) Median PFS and 95% confidence intervals reported in observational and RCT studies with long-term follow up. Shaded area denotes RCT data [44, 45].

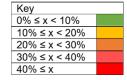
Supplementary Figure 3 – Incidence of trAEs in primary-analysis RCTs

Thorax

Table illustrating the percentage incidence of trAEs in RCTs. Each block corresponds to the proportion of patients with each AE per trial arm, expressed as a percentage. [32-35, 37-39, 42, 44, 47, 94, 95]. N = nivolumab, P = pembrolizumab, A = atezolizumab, D = durvalumab, C = chemotherapy.

Stu	dy name		ner et 2015	Carbo al., 2	one et	Borgh al., 2			mann 2018	Wue 20		Herb	st et al., 2016		Rec al., 2		Mol al., 2			neyer 2017		ia et al 017
Tria	l arm	N	С	N	С	N	С	N	С	N	С	P (2mg/kg)	P (10mg/kg)	С	P	C	P	С	A	С	D	Placeb
Nur	nber of patients	131	129	267	263	287	268	391	570	337	156	339	343	309	154	150	636	615	609	578	475	234
	Fatigue	16	33	21	35	16	29	11	18	10	25	14	14	25	10	29	8	17	27	36	13	11
	Decreased appetite	11	19	12	28	10	16	6	19	7	23	14	10	16	9	26	6	18	24	24	6	3
	Diarrhoea	8	20	14	13	8	1	11	10			1	6	18	14	13	5	7	15	24	10	8
	Pyrexia	5	8												10	5			18	13		
	Nausea	9	23	12	48	12	26	5	36			11	9	15	10	43	5	30	18	23	6	6
	Rash	4	6	10	6			11	1	12	3	9	13	5			7	4			8	6
	Hypothyroidism							6	0			8	8	<1	9	1	11	<1			11	<1
	Asthenia	10	14	3	11	10	18	7	13			6	6	11			4	10	19	20	6	6
	Arthralgia	5	7														4	7	12	10		
	Constipation			3	11			2	15						4	11	1	11	18	14		
	Vomiting			6	23			3	13						3	20	2	16	12	11		
	Myalgia	2	10			2	11										3	8	6	16		
	Alopecia	0	22			<1	25			<1	22	1	1	33			<1	22	<1	35		
	Peripheral oedema					3	10												9	14		
	Anaemia	2	22	3	43	2	20	3	32	4	26	3	4	13	5	42	6	37	12	24		
	Leukopenia	1	6			0	10			3	17						2	6				
	Neutropenia	1	33	0	18	<1	31	<1	17	2	20	<1	<1	14	<1	23	5	14	2	16		
(%)	Cough																		23	18	5	2
6)	Febrile neutropenia	0	11			0	10												<1	11		
ЭC	Stomatitis											4	2	14	3	12	1	5	3	11		
AE incidence	Peripheral	1	12														<1	8	4	11		
nc	neuropathy							· ·				· ·		· ·		•						
щ	Dyspnoea																		19	19	6	3
∢	Thrombocytopenia			1	14									· ·	0	11	<1	9				
	Dysgeusia						•						•	•	<1	10	•	•	3	10		•
	Back pain																		11	7		
	Musculoskeletal pain															•			11	4		
	Pneumonitis	5	0				•					5	4	2	6	<1	7	3		•	9	3
	Hyperthyroidism	•	•				•					4	6	1	8	1	6	<1			6	1
	Pruritus	•	•					8	1								7	2		•	7	2
	Colitis	•	•			•	•		•		•	1	1	0	2	0			•	•	•	
	Severe skin reaction	•	•				•					1	2	1	4	0	•	•				•
	Pancreatitis	•	•	•		•	•		•		•	1	0	0	<1	0		•		•	•	
	Myositis	•	•									1	<1	<1	2	0		•		•		
	Thyroiditis	•	•	•			•		•			<1	0	0	3	0		•		•		
	Type 1 diabetes	•	•				•					<1	1	0	<1	0		•				
	Hypophysitis	•	•				•					<1	<1	0	<1	0		•				
	Autoimmune hepatitis	•	•	•		•	•		•		•	<1	1	0						•	•	
	Adrenal insufficiency	•	•									1	1	0		-		_				
	Nephritis						•							•	<1	0		•				
	Mucosal inflammation	2	9														•					




Page 93 of 101

 Thorax

Supplementary Figure 4 – Incidence of AEs in observational studies

Table illustrating the percentage incidence of AEs in observational studies. Each block corresponds to the proportion of patients with each AE in the study, expressed as a percentage. [48-51, 53, 56, 57, 62-66, 68-76, 78, 79, 81, 83-85, 88, 89, 92, 94, 96-98, 101, 107, 125, 128, 132, 133].

Immune-related adverse effects

Immune-related adverse effects (irAEs) were more common among patients using an intervention compared to chemotherapy and less frequent than trAEs. The mean incidence of irAEs among patients receiving pembrolizumab in RCTs was 24.1% (range 19.0% – 29.2%). Similarly, the mean incidence of irAEs was 27.9% (range 17.0% – 43.0%) among the 7 observational studies investigating pembrolizumab. By contrast, the mean incidence of irAEs across the chemotherapy arms of RCTs investigating pembrolizumab was 5.3%, (range 4.2% – 7.0%). Unlike the RCTs, 10 observational studies reported the incidence of irAEs among patients using nivolumab; the mean incidence of irAEs was 37.5% (range 18.1% – 62.8%).

, a mi yroidism. a pembroli. (6.6%) and pne. highest mean in yneumonitis (5.9%). With a mean incidence of 9.3%, the most common irAE among patients receiving pembrolizumab in RCTs was hypothyroidism. Similarly, the irAEs with the highest mean incidence among patients using pembrolizumab in observational studies were hypothyroidism (7.2%), dermatitis (6.6%) and pneumonitis (4.6%). Among patients receiving nivolumab, the irAEs with the highest mean incidence were hypothyroidism (11.1%), hyperthyroidism (10.8%) and pneumonitis (5.9%).

https://mc.manuscriptcentral.com/thorax

Supplementary Figure 5 – Meta-analysis risk of progression or death by PDL1 expression status for patients receiving nivolumab, pembrolizumab or atezolizumab in included RCTs [31 - 36, 40, 42]

Pembrolizumab data from patients with less than 50% expression could not be included, because a breakdown of survival outcomes was not provided between 1 - 49%.

Study or Subgroup	Weight	Hazard Ratio IV, Random, 95% Cl	Hazard Ratio IV, Random, 95% CI	Riskof Bia ABCDE
10.2.1 <1% expression				
Brahmer 2015	14.1%	0.66 [0.43, 1.01]		
Fehrenbacher 2016	13.5%	1.12 [0.72, 1.74]		
Fehrenbacher 2018	39.8%	1.11 [0.93, 1.32]	- 	
Rittmeyer 2017	32.6%	1.00 [0.80, 1.25]	_ + _	
Subtotal (95% CI)	100.0%	1.00 [0.83, 1.20]	◆	
Heterogeneity: Tau ² =	0.01; Chi ² =	= 5.03, df = 3 (P = 0.17); I ² = 40%		
Test for overall effect:				
10.2.2 ≥ 1% expressi	ion			
Borghaei 2015	10.9%	0.70 [0.53, 0.92]		
Brahmer 2015	6.1%	0.67 [0.44, 1.02]		• ? • • •
Fehrenbacher 2016	9.9%	0.85 [0.63, 1.15]		• ? • ? •
Fehrenbacher 2018	17.3%	0.87 [0.73, 1.04]		• ? • ? ?
Herbst 2019	19.9%	0.83 [0.72, 0.96]		
Mok 2019	21.0%	1.07 [0.94, 1.22]		• ? • • •
Rittmeyer 2017	15.0%	0.91 [0.74, 1.12]		
Subtotal (95% CI)	100.0%	0.87 [0.77, 0.98]	◆	
		= 13.43, df = 6 (P = 0.04); l ² = 55%		
Test for overall effect:	Z = 2.35 (P	= 0.02)		
10.2.3 ≥ 5% expressi				
Borghaei 2015	19.4%	0.54 [0.39, 0.75]		
Brahmer 2015	7.5%	0.54 [0.32, 0.91]		
Fehrenbacher 2016	11.3%	0.72 [0.47, 1.10]		$\bullet ? \bullet ? \bullet$
Fehrenbacher 2018	33.6%	0.73 [0.57, 0.93]		• ? • ? ?
Rittmeyer 2017	28.1%	0.76 [0.58, 1.00]		
Subtotal (95% CI)	100.0%	0.68 [0.59, 0.78]		
Heterogeneity: Tau* = Test for overall effect:		= 3.71, df = 4 (P = 0.45); I² = 0% < 0.00001)		
10.2.4 ≥ 10% express	sion			
Borghaei 2015	73.3%	0.52 [0.37, 0.73]		●?•••
Brahmer 2015	26.7%	0.58 [0.33, 1.02]		
Subtotal (95% CI)	100.0%	0.54 [0.40, 0.72]	◆	
	0.00; Chi² =	= 0.11, df = 1 (P = 0.75); I ² = 0%	-	
10.2.5 ≥ 50% express				
Carbone 2017	14.5%	1.07 [0.77, 1.49]		
Fehrenbacher 2016	6.6%	0.60 [0.31, 1.16]		
Fehrenbacher 2018	13.3%	0.59 [0.41, 0.85]		
Herbst 2016 Mark 2010	17.5%	0.59 [0.46, 0.76]		
Mok 2019	19.8%	0.81 [0.67, 0.98]		0
Reck 2016	15.5%	0.50 [0.37, 0.68]		
Rittmeyer 2017 Subtotal (95% CI)	12.8% 100.0%	0.63 [0.43, 0.92]		
		0.67 [0.55, 0.82]	▼	
Test for overall effect:		= 16.58, df = 6 (P = 0.01); I² = 64% = 0.0001)		
			0.2 0.5 1 2 Favours immunotherapy Favours chemothe	5
Test for subgroup diff	erences: Cl	ni² = 22.34, df = 4 (P = 0.0002), l² = 82.1%		napy
[
ROB2.0 Ri	sk of R	ias		

Supplementary Figure 6 – Meta-analysis comparing risk of death among patients with $\geq 1\%$ and <1% PDL1 expression who received nivolumab in included observational studies [52, 104, 116, 125]

Study or Subgroup Haratani 2017 Oya 2017 Fukui 2018 Genova 2019 Total (95% CI) Heterogeneity: Tau ² Test for overall effect	Hazard Ratio Weight IV, Random, 95% CI Year 12.9% 0.37 [0.10, 1.37] 2017 58.5% 0.56 [0.33, 0.95] 2017 17.0% 1.57 [0.51, 4.83] 2018 11.6% 0.60 [0.15, 2.40] 2019 100.0% 0.64 [0.39, 1.04] 4 r= 0.03; Chi ² = 3.36, df = 3 (P = 0.34); I ² = 11% rt Z = 1.81 (P = 0.07)	Hazard Ratio N, Random, 95% CI 0.1 0.2 0.5 1 2 5 10 Lower risk of death Higher risk of death	Risk of Bias A B C D E F G H ♥ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	Risk of bias legend (A) Confounding (B) Participant selection (C) Intervention classification (D) Intervention deviation (E) Missing data (F) Outcome measurement (G) Outcome reporting (H) Overall

Supplementary Figure 7 – Meta-analysis of A) risk of death and B) risk of progression or death by therapy line for patients receiving nivolumab, pembrolizumab or atezolizumab in included RCTs [30 – 37, 42, 47, 96]

A Risk of death by therapy line

		Hazard Ratio	Hazard Ratio	Risk of Bias
Study or Subgroup	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	ABCDEF
11.1.1 1st line only				
Carbone 2017	33.3%	1.02 [0.80, 1.30]		😑 🕒 🔁 😮 😮
Mok 2019	45.1%	0.81 [0.71, 0.92]		
Reck 2016	21.6%	0.60 [0.41, 0.88]		
Subtotal (95% CI)	100.0%	0.82 [0.65, 1.03]		
Heterogeneity: Tau ² = 0.	.03; Chi² = 5	.68, df = 2 (P = 0.06); I ² = 65%		
Test for overall effect: Z	= 1.69 (P = 1	0.09)		
11.1.2 2nd line only				
Borghaei 2015	35.1%	0.73 (0.59, 0.90)		●? • • •?
Brahmer 2015	18.5%	0.59 [0.44, 0.79]	_ 	• ? • • • •
Rittmeyer 2017	46.4%	0.71 [0.59, 0.85]		
Subtotal (95% CI)	100.0%	0.69 [0.61, 0.79]	◆	
Heterogeneity: Tau ² = 0.	.00; Chi ² = 1	.45, df = 2 (P = 0.48); I ² = 0%		
Test for overall effect: Z	= 5.70 (P < 1	0.00001)		
11.1.3 Mixed therapy li	nes			
Fehrenbacher 2016	9.7%	0.73 [0.53, 1.01]		•?•?
Herbst 2016	24.3%	0.71 [0.58, 0.87]	_ 	
Spigel 2019 (Abstract)	16.6%	0.83 [0.65, 1.06]		? 🕒 🛨 😯 ? ?
Wu 2019	49.4%	0.68 [0.59, 0.78]		? • • • • •
Subtotal (95% CI)	100.0%	0.72 [0.65, 0.79]	◆	
Heterogeneity: Tau ² = 0.	.00; Chi ² = 1	.93, df = 3 (P = 0.59); I ² = 0%		
Test for overall effect: Z	= 6.59 (P < 1	0.00001)		
			0.2 0.5 1 2	5
Toot for outparoup diffor		- 4 60 46 - 2 (D - 0 46) 12 - 00(Favours immunotherapy Favours chemot	nerapy

Test for subgroup differences: Chi² = 1.58, df = 2 (P = 0.45), l² = 0%

B Risk of progression or death by therapy line

		Hazard Ratio	Hazard Ratio	Risk of Bias
Study or Subgroup	Weight I	V, Random, 95% Cl	IV, Random, 95% Cl	ABCDEF
11.2.1 1st line only				
Carbone 2017	26.1%	1.15 [0.91, 1.45]	- -	
Hellmann 2019	21.1%	0.95 [0.64, 1.41]		? • • • • •
Mok 2019	28.7%	1.07 [0.94, 1.22]		\bullet ? \bullet \bullet \bullet
Reck 2016	24.1%	0.50 [0.37, 0.68]	_ -	
Subtotal (95% CI)	100.0%	0.89 [0.63, 1.24]		
Heterogeneity: Tau ² =	= 0.10; Chi ² =	22.77, df = 3 (P < 0.0001); I [≥]	= 87%	
Test for overall effect:	Z=0.71 (P:	= 0.48)		
11.2.2 2nd line only				
Borghaei 2015	53.8%	0.92 [0.77, 1.10]		😑 ? 🛨 🛨 ?
Brahmer 2015	46.2%	0.62 [0.47, 0.82]		• • • • • • •
Subtotal (95% CI)	100.0%	0.77 [0.52, 1.13]		
Heterogeneity: Tau ² =	= 0.06; Chi ² =	: 5.52, df = 1 (P = 0.02); l ² = 82	2%	
Test for overall effect:	Z=1.35 (P	= 0.18)		
11.2.3 Mixed therapy	/ lines			
Fehrenbacher 2016	12.3%	0.94 [0.72, 1.23]	_	• ? • ? • ?
Herbst 2016	29.0%	0.88 [0.74, 1.05]		
Rittmeyer 2017	40.2%	0.95 [0.82, 1.10]		
Wu 2019	18.6%	0.77 [0.62, 0.96]		? • • • • •
Subtotal (95% CI)	100.0%	0.89 [0.81, 0.98]	\bullet	
Heterogeneity: Tau ² =	= 0.00; Chi ² =	2.65, df = 3 (P = 0.45); l ² = 09	%	
Test for overall effect	Z = 2.39 (P	= 0.02)		
			0.2 0.5 1 2	5
Test for subgroup dif	ferences: Ch	ii² = 0.56, df = 2 (P = 0.75), l² =	= 0% Favours immunotherapy Favours chemoth	ierapy

ROB2.0 Risk of Bias Risk of bias legend (A) Randomisation (B) Deviations from intervention (C) Missing outcome data (D) Outcome measurement

- (E) Selection of reported outcomes
- (F) Overall

Supplementary References (continued from main reference list)

125. Fukui T, Okuma Y, Nakahara Y, Otani S, Igawa S, Katagiri M, et al. Activity of Nivolumab and Utility of Neutrophil-to-Lymphocyte Ratio as a Predictive Biomarker for Advanced Non-Small-Cell Lung Cancer: A Prospective Observational Study. Clin Lung Cancer. 2019;20(3):208-14.e2.

126. Shiroyama T, Suzuki H, Tamiya M, Tamiya A, Tanaka A, Okamoto N, et al. Pretreatment advanced lung cancer inflammation index (ALI) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer. Cancer Med. 2018;7(1):13-20.

127. Hasan Ali O, Diem S, Markert E, Jochum W, Kerl K, French LE, et al. Characterization of nivolumab-associated skin reactions in patients with metastatic non-small cell lung cancer. Oncolmmunology. 2016;5(11).

128. Bins S, Basak EA, El Bouazzaoui S, Koolen SLW, Oomen De Hoop E, Van Der Leest CH, et al. Association between single-nucleotide polymorphisms and adverse events in nivolumab-treated non-small cell lung cancer patients. Br J Cancer. 2018;118(10):1296-301.

129. Inoue T, Tamiya M, Tamiya A, Nakahama K, Taniguchi Y, Shiroyama T, et al. Analysis of Early Death in Japanese Patients With Advanced Non-small-cell Lung Cancer Treated With Nivolumab. Clin Lung Cancer. 2018;19(2):e171-e6.

130. Ramos-Levi AM, Rogado J, Sanchez-Torres JM, Colomer R, Marazuela M. Nivolumab-induced thyroid dysfunction in patients with lung cancer. Endocrinol. 2019;66(1):26-34.

131. Sarocchi M, Grossi F, Arboscello E, Bellodi A, Genova C, Dal Bello MG, et al. Serial Troponin for Early Detection of Nivolumab Cardiotoxicity in Advanced Non-Small Cell Lung Cancer Patients. Oncologist. 2018;23(8):936-42.

132. Sato K, Akamatsu H, Murakami E, Sasaki S, Kanai K, Hayata A, et al. Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung Cancer. 2018;115:71-4.

133. Toi Y, Sugawara S, Kawashima Y, Aiba T, Kawana S, Saito R, et al. Association of Immune-Related Adverse Events with Clinical Benefit in Patients with Advanced Non-Small-Cell Lung Cancer Treated with Nivolumab. Oncologist. 2018;23(11):1358-65.

134. Dusselier M, Deluche E, Delacourt N, Ballouhey J, Egenod T, Melloni B, et al. Neutrophil-to-lymphocyte ratio evolution is an independent predictor of early progression of second-line nivolumab-treated patients with advanced non-small-cell lung cancers. PLoS ONE. 2019;14(7).

135. Fujita K, Kim YH, Kanai O, Yoshida H, Mio T, Hirai T. Emerging concerns of infectious diseases in lung cancer patients receiving immune checkpoint inhibitor therapy. Respiratory Medicine. 2019;146:66-70.

136. Fukihara J, Sakamoto K, Koyama J, Ito T, Iwano S, Morise M, et al. Prognostic Impact and Risk Factors of Immune-Related Pneumonitis in Patients With Non-Small-Cell Lung Cancer Who Received Programmed Death 1 Inhibitors. Clinical Lung Cancer. 2019.

137. Karantanos T, Karanika S, Seth B, Gignac G. The absolute lymphocyte count can predict the overall survival of patients with non-small cell lung cancer on nivolumab: a clinical study. Clin Transl Oncol. 2019;21(2):206-12.

138. Nomizo T, Ozasa H, Tsuji T, Funazo T, Yasuda Y, Yoshida H, et al. Clinical Impact of Single Nucleotide Polymorphism in PD-L1 on Response to Nivolumab for Advanced Non-Small-Cell Lung Cancer Patients. Sci. 2017;7:45124.

139. Okuma Y, Wakui H, Utsumi H, Sagawa Y, Hosomi Y, Kuwano K, et al. Soluble Programmed Cell Death Ligand 1 as a Novel Biomarker for Nivolumab Therapy for Non-Small-cell Lung Cancer. Clin Lung Cancer. 2018;19(5):410-7.e1.

140. Oyanagi J, Koh Y, Sato K, Mori K, Teraoka S, Akamatsu H, et al. Predictive value of serum protein levels in patients with advanced non-small cell lung cancer treated with nivolumab. Lung Cancer. 2019;132:107-13.

141. Tanizaki J, Haratani K, Hayashi H, Chiba Y, Nakamura Y, Yonesaka K, et al. Peripheral Blood Biomarkers Associated with Clinical Outcome in Non-Small Cell Lung Cancer Patients Treated with Nivolumab. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer. 2018;13(1):97-105.

142. Russo A, Franchina T, Ricciardi GRR, Battaglia A, Scimone A, Berenato R, et al. Baseline neutrophilia, derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), and outcome in non small cell lung cancer (NSCLC) treated with Nivolumab or Docetaxel. J Cell Physiol. 2018;233(10):6337-43.

143. Araujo LH, Baldotto C, Martins C, Zukin M. Local experience in an expanded access program of nivolumab in advanced non-small cell lung cancer in Brazil. Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S1303.

144. Ardizzoni A, Bidoli P, Chiari R, Bonomi L, Turci D, Landi L, et al. Nivolumab in advanced non-squamous NSCLC patients with KRAS mutations: Results from the Italian expanded access program (EAP). Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S1804.

145. Bennati C, D'Arcangelo M, Minuti G, Vecchiarelli S, Landi L, Mazza V, et al. Programmed cell death ligand 1 and neutrophil to lymphocyte ratio to predict response to nivolumab in non-small cell lung cancer. Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S2390-S1.

146. Canova S, Bidoli P, Lissoni P, Abbate MI, Capici S, Casiraghi S, et al. Predictive role of absolute lymphocyte count (ALC) and neutrophil/lymphocyte ratio (NLR) in patients with metastatic non small cell lung cancer (NSCLC) treated with nivolumab: Results of a retrospective monocentric study. Annals of Oncology Conference: 18th National Congress of Medical Oncology Italy. 2016;27(Supplement 4).

147. Cappuzzo F, Delmonte A, Capici S, Crino L, Logroscino AF, Sandri P, et al. Treatment beyond progression in patients with advanced squamous NSCLC participating in the Expanded Access Programme (EAP). Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S667-S8.

148. De Pietro L, Vitiello F, Gilli M, Letizia A, Tortoriello A, Hengeller M, et al. Nivolumab in non-small cell lung cancer: Is there an upper age limit? Ann Oncol. 2017;28 (Supplement 6):vi60.

149. Dixmier A, Debieuvre D, Raspaud C, Auliac JB, Benoit N, Bombaron P, et al. EVIDENS: An observational study of nivolumab-treated patients in advanced non-small cell lung cancer (NSCLC) in a real-world setting: Initial results on 1394 patients. Ann Oncol. 2018;29 (Supplement 8):viii532.

150. Elvarathnam S, Chouaid C, Thiriat N, Jabot L, Rousseau-Bussac G, Jaskowiec C, et al. Immunochic: A prospective nivolumab monotherapy cohort in advanced non-small cell lung cancer patients in routine clinical practice. Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S1332-S3.

151. Emiliani A, Prete AA, Prelaj A, Del Bene G, Speranza I, Seminara P, et al. Nivolumab in non small cell lung cancer: General and immune-related toxicities in the real life. Annals of Oncology Conference: 18th National Congress of Medical Oncology Italy. 2016;27(Supplement 4).

152. Fernandez PR, Alcala MM, Ruiz JCP, Garcia YG, Macias I, Cardona MF. Experience with nivolumab in compassionate use in non-small lung carcinoma patients who have progressed to one or more prior lines of chemotherapy. Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S1302.

153. Garcia M, Calles A, Lobo M, Alvarez Alvarez R. Clinical Characteristics of Long-Term Survivors With Nivolumab in Pretreated Advanced NSCLC from Real-World Data (RWD). Journal of Thoracic Oncology. 2018;13 (10 Supplement):S612.

154. Honda N, Akagi K, Oshima K, Gyotoku H, Senjyu H, Takemoto S, et al. Analysis of advanced or postoperative recurrent non-small cell lung cancer cases treated with nivolumab at hospitals in Nagasaki, Japan. Respirology. 2018;23 (Supplement 2):288.

155. Hosoya K, Fujimoto D, Tamiya M, Tamiya A, Suzuki H, Hirano K, et al. Association between early immune-related adverse events and clinical outcomes in patients with advanced non-small cell lung cancer treated with pembrolizumab as first-line therapy: A retrospective multicenter cohort study. Ann Oncol. 2018;29 (Supplement 8):viii511.

156. Kim SW, Cho BC, Kang JH, Ahn MJ, Lee KH, Kim DW, et al. Safety of nivolumab in patients with advanced or metastatic non-small cell lung cancer who have received at least one prior systemic regimens: Expanded access program in Korea (ONO-4538-X04). Ann Oncol. 2017;28 (Supplement 10):x135-x6.

157. Lampaki S, Boutsikou E, Zarogoulidis P, Spyratos D, Eleptheriadou E, Ioannidou D, et al. Immunotherapy with nivolumab in NSCLC patients: One centre preliminary results. Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S1341.

158. Lopez Flores M, Diz Tain P, Delgado Sillero I, Sanchez Cousido L, Lopez Gonzalez A, Pedraza Lorenzo M, et al. Nivolumab after progression to platinum-based chemotherapy in advanced non-small-cell lung cancer (NSCLC). Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S1917-S8.

159. Mielgo X, Toro P, Ruiz-Gimenez L, Olier C, Perez M, Rosero A, et al. Nivolumab monotherapy in patients with previously treated advanced non-small cell lung cancer (NSCLC) in routine clinical practice in a Spanish center. Journal of Thoracic Oncology. 2016;11(4):S135.

160. Migliorino MR, Gelibter A, Grossi F, Fagnani D, Bordi P, Franchina T, et al. Use of nivolumab in elderly patients with advanced non-squamous NSCLC: Results from the Italian expanded access program (EAP). Ann Oncol. 2017;28 (Supplement 5):v471.

161. Moor R, Roberts K, Ladwa R, Miles K, O'Byrne K. Clinical and Radiological Predictors of Efficacy to Nivolumab in NSCLC: A Multi-Institutional, Retrospective Cohort Study. Journal of Thoracic Oncology. 2018;13 (10 Supplement):S895.

162. Martinez Moreno E, Irigoyen Medina A, Martinez Barroso K, Borregon Rivilla M, Alvarez Cabellos R, Cardenas JD, et al. Nivolumab experience in patients with previously treated advanced non small cell lung cancer (NSCLC) in Toledo, Spain. Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S2430.

163. Nakamura M, Sugihara K, Xu C, Sakai T, Ishioka K, Takahashi S, et al. NLR and its relative change early during nivolumab treatment could be useful to predict outcome in advanced NSCLC. Ann Oncol. 2018;29 (Supplement 7):VII80.

164. Ota T, Kirita K, Udagawa H, Umemura S, Matsumoto S, Yoh K, et al. Efficacy of second-line nivolumab after early time to progression on first-line cytotoxic chemotherapy in patients with advanced nonsmall cell lung cancer (NSCLC). Ann Oncol. 2018;29 (Supplement 8):viii535.

165. Paglialunga L, Bellezza G, Gili A, Ricciuti B, Minotti V, Chiari R, et al. Immunotherapy against non-small cell lung cancer (NSCLC): Looking for predictive factors to avoid an untargeted shooting. Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S1317-S8.

166. Rapoport BL, Vorobiof DA, Langenhoven L, Hall JM, Van Eeden RI, Smit T, et al. Prognostic significance of neutrophil/lymphocyte ratio in patients undergoing treatment with nivolumab for recurrent non-small cell lung cancer. Ann Oncol. 2019;30 (Supplement 2):ii61.

167. Rodriguez-Cid J, Bonilla-Molina D, Martinez-Barreda L, Diaz-Rico J, Arellanes-Herrera P, Del Olmo Gil E, et al. Nivolumab for patients with non-small cell lung carcinoma in patients with progression to one or more lines of chemotherapy in Mexican population. Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S2153.

168. Saijo N, Inagaki Y, Abe Y, Kono S, Taniguchi Y, Otsuka K, et al. Efficacy and Safety of Pembrolizumab in Non-Small Cell Lung Cancer in Our Institution: A Retrospective Study. Journal of Thoracic Oncology. 2018;13 (10 Supplement):S900.

169. Sakaguchi T, Hataji O, Suzuki Y, Saiki H, Ito K, Nishii Y, et al. A retrospective study of the efficacy and safety of nivolumab in our clinical practice: A single institutional experience. Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S1340.

170. Sanoyan DA, Siebenhuner A, Delaloye R, Bankel L, Paulino TDL, Curioni A. Real-life experience with nivolumab and pembrolizumab in patients(pts) with advanced non-small cell lung cancer (NSCLC): Efficacy and safety analysis at the University Hospital Zurich. Ann Oncol. 2017;28 (Supplement 11):xi7.

171. Saravia D, Laderian B, Park W, Desai A, Vargas F, Elias R, et al. Complete blood count parameters as predictive factors in patients with advanced non-small cell lung cancer treated with nivolumab. Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S1327.

172. Shaverdian N, Zhang Z, Lobaugh S, Deasy JO, Offin M, Preeshagul I, et al. Real-World Evaluation of Consolidative Durvalumab in Locally Advanced Non-Small-Cell Lung Cancer Treated with Definitive Chemoradiation. International Journal of Radiation Oncology Biology Physics. 2019;105 (1 Supplement):E531.

173. Shibata E, Yokoi T, Takahashi R, Mikami K, Kanemura S, Koda Y, et al. Prognostic Value of Changes in Neutrophil-To-Lymphocyte Ratio in Patients with Lung Cancer Treated with Nivolumab. Journal of Thoracic Oncology. 2018;13 (10 Supplement):S708.

Thorax

174. Tanimura K, Yamada T, Tamiya N, Kaneko Y, Uchino J, Takayama K. The impact of neutrophil/lymphocyte ratio as the predictive marker to anti-PD-1 antibody treatment in NSCLC patients. Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S2013.

175. Rodriguez-Abreu D, Campillo J, Grau F, Carcereny E, Bernabe R, Garcia Y, et al. NIVEX TRIAL (GECP 1605): Nivolumab in the Real World: Spanish Expanded Access Program Experience in Pretreated Advanced NSCLC Patients. Journal of Thoracic Oncology. 2018;13 (10 Supplement):S827.

176. Tay RY, Chiramel J, Montague E, Wilson F, Summers Y, Blackhall FH, et al. Impact of blood-based biomarkers on survival outcomes with pembrolizumab in pre-treated advanced non-small cell lung cancer (NSCLC) patients (pts). Ann Oncol. 2018;29 (Supplement 8):viii529.

177. Watanabe S, Goto Y, Motoi N, Goto K, Shiraishi H, Itahashi K, et al. Nivolumab in elderly or poor performance status patients with advanced non-small cell lung cancer. Journal of Thoracic Oncology. 2017;12 (1 Supplement 1):S1338-S9.

178. Yamaguchi T, Oya Y, Kagawa Y, Furuta H, Watanabe N, Shimizu J, et al. Efficacy and safety of nivolumab in non-small cell lung cancer patients who relapse after thoracic radiotherapy. Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S2426.

179. Yamamoto T, Nomizo T, Ozasa H, Tsuji T, Yasuda Y, Yoshida H, et al. Clinical impact of hypothyroidism and PD-L1 SNPs in patients with non-small cell lung cancer treated with nivolumab. Ann Oncol. 2018;29 (Supplement 8):viii428.

180. Yamane K, Takeda K, Yanai M, Tanaka N, Izumi H, Sakamoto T, et al. Efficacy and tolerability of nivolumab in elderly patients with advanced non-small cell lung cancer. Journal of Thoracic Oncology. 2017;12 (11 Supplement 2):S1919.

181. Unknown. GRADEpro 2021 [Available from: https://www.gradepro.org/]