Specific risk scores for specific purposes: Use CHA2DS2-VASc for assessing stroke risk, and use HAS-BLED for assessing bleeding risk in atrial fibrillation

Dzeshka, Mikhail S.; Lip, Gregory

DOI: 10.1016/j.thromres.2014.06.003
License: Other (please specify with Rights Statement)

Citation for published version (Harvard):

Publisher Rights Statement:
NOTICE: this is the author's version of a work that was accepted for publication in Thrombosis Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Thrombosis Research [VOL 134, ISSUE 2, August 2014] DOI: 10.1016/j.thromres.2014.06.003

Eligibility for repository checked October 2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 24. Oct. 2017
Accepted Manuscript

Specific risk scores for specific purposes: Use CHA₂DS₂-VASc for assessing stroke risk, and use HAS-BLED for assessing bleeding risk in atrial fibrillation.

Mikhail S. Dzeshka, Gregory Y.H. Lip

PII: S0049-3848(14)00328-4
DOI: doi: 10.1016/j.thromres.2014.06.003
Reference: TR 5557

To appear in: Thrombosis Research

Received date: 2 June 2014
Revised date: 2 June 2014
Accepted date: 3 June 2014

Please cite this article as: Dzeshka Mikhail S., Lip Gregory Y.H., Specific risk scores for specific purposes: Use CHA₂DS₂-VASc for assessing stroke risk, and use HAS-BLED for assessing bleeding risk in atrial fibrillation, Thrombosis Research (2014), doi: 10.1016/j.thromres.2014.06.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
EDITORIAL

Specific risk scores for specific purposes: Use CHA_{2}DS_{2}-VASc for assessing stroke risk, and use HAS-BLED for assessing bleeding risk in atrial fibrillation

Mikhail S Dzeshka MD^{1,2}
Gregory YH Lip MD^{1,3}

^{1}University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom; ^{2}Grodno State Medical University, Grodno, Belarus; and ^{3}Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.

Corresponding author:
Professor Gregory Y.H. Lip, Tel: +44 121 507 5080, Fax: +44 121 554 4083, Email: g.y.h.lip@bham.ac.uk

Competing interests
G.Y.H.L. has served as a consultant for Bayer, Astellas, Merck, Sanofi, BMS/Pfizer, Biotronik, Medtronic, Portola, Boehringer Ingelheim, Microlife and Daiichi-Sankyo and has been on the speakers bureau for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Microlife and Daiichi-Sankyo. M.D. – none declared.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia which is often asymptomatic AF. The detection of this arrhythmia is improved by population screening, detecting newly diagnosed (and untreated) cases that would have otherwise have presented with devastating complications such as stroke, heart failure, etc.[1,2] Indeed, AF accounts for a large proportion of cryptogenic strokes where prolonged ECG monitoring was used to reveal ‘silent’ AF cases. [3] Thus, stroke prevention is central to the management of AF, and oral anticoagulants (OACs) are recommended as the effective means of stroke prevention. Until recently, the only OAC available for use were the Vitamin K Antagonists (VKAs, eg. warfarin) and given the various limitations associated with these drugs, as well as the need for good quality anticoagulation control to reduce complications [4, 5], much of the focus of risk stratification was to identify ‘high risk’ patients to be targeted for these ‘inconvenient’ drugs. Hence, various risk stratification schemes were proposed, to aid clinical decision making for patients with AF.

For stroke risk stratification, the CHADS$_2$ and the CHA$_2$DS$_2$-VASc scores have had the most support and acceptance, as they include common stroke risk factors seen in daily clinical practice.[6] The CHA$_2$DS$_2$-VASc score is now the recommended stroke risk score in the major guidelines, from the 2012 European Society of Cardiology, 2013 Asia Pacific Heart Rhythm Society, 2014 American Heart Association/American College of Cardiology/Heart Rhythm Society and the 2014 National Institute for Health and Care Excellence (NICE).

However, the OACs reduce risk of stroke and other thromboembolic events at cost of increased risk of haemorrhage. In a recent systematic review of 16 randomized controlled trials (61 563 patient-years of follow-up) and 31 observational studies (484 241 patient-
In the current issue of *Thrombosis Research*, Barnes et al.[9] evaluated the applicability of stroke risk scores (CHADS\(_2\) and CHA\(_2\)DS\(_2\)-VASc) for prediction of major bleeding events and compared their performance with current bleeding stratification scores (HEMORR\(_2\)HAGES, HAS-BLED and ATRIA) in a contemporary real-world cohort of AF patients anticoagulated with warfarin in the US. [9] Unsurprisingly, the frequency of haemorrhagic complications increased with higher stroke risk and vice versa, given the co-distribution of stroke and bleeding risk factors [10]. Barnes et al. found all specific bleeding scores had a higher performance in the prediction of major bleeding events, when compared to stroke risk scores: for example, the c statistic difference was 0.10-0.16 and net reclassification improvement (NRI) was 0.54-0.58 over the CHADS\(_2\) and 0.36-0.54 - over the CHA\(_2\)DS\(_2\)-VASc scores. An advantage of the study by Barnes et al. is the analysis of data from a real-world
cohort of AF patients recruited from several anticoagulation clinics, making the data generalizable and applicable to everyday clinical practice.

These results are consistent with previous similar studies, showing that specific bleeding risk scores perform best in predicting bleeding, compared to using CHADS$_2$ or CHA$_2$DS$_2$-VASC. [10-12] In the post-hoc analysis of the AMADEUS trial cohort, the HAS-BLED score but not the CHADS$_2$ and CHA$_2$DS$_2$-VASC scoring systems demonstrated significant discriminatory performance for any clinically relevant bleeding (major and non-major). [11] Broadly similar data were obtained in the study of Roldán et al, who followed-up 1370 ‘real world’ (ie. non-trial) AF patients in an outpatient anticoagulation clinic for median of 996 days. [12]

Barnes et al. also suggest considering an integration of both stroke and bleeding risk assessment schemes into a single risk assessment score [9]. Perhaps this is unwise. The current experience of the development of combination (or composite) stroke and bleeding risk assessment scores testifies to their complexity and only marginal comparative performance against the currently recommended individual stroke and bleeding stratification schemes.[13,14]

In one study from the AMADEUS trial cohort, regression models for composite end-points ‘stroke/thromboembolism or major bleeding’ and ‘stroke, systemic or venous embolism, myocardial infarction, cardiovascular death, or major bleeding’ included following predictors: age, previous stroke / transient ischaemic attack, aspirin use, time in therapeutic range and left ventricular dysfunction (the latter had predictive value for second end-point only), but despite good predictive value for the composite endpoint, did not offer significant
advantage over separate stroke and/or bleeding risk scores. [13] In the Loire Valley Atrial Fibrillation Project, a composite risk model included risk factors from the HAS-BLED and CHA\textsubscript{2}DS\textsubscript{2}-VASc scores (history of heart failure, age >75, age >65, diabetes mellitus, stroke, vascular disease, liver and/or renal impairment, history of bleeding and labile international normalized ratio) and was tested for four end-points, but also failed to outperform separate stroke and bleeding risk assessment scores. [14]

Nonetheless, another important aspect of study of Barnes et al. is a validation of the bleeding risk assessment schemes in their studied cohort. [9] They highlighted a modest predictive ability of existing bleeding scores as evaluated with the c-statistic, which is a statistical index used to compare performance of different prognostic tools with range between 0.5 (model is not better than chance at making prediction) and 1.0 (perfect prediction with the model).

For risk scores to be useful for everyday clinical practice, one has to reduce complexity and increase simple practicality of the risk assessment tools (importantly, without loss of their discriminative ability). Also, equal weighing is assigned for majority of risk factors (i.e., 1 point for each) for simplicity - despite the fact that in the derivation studies, the association of various risk factors with predicted outcomes varied in wide range. Thus, a c-statistic of 1.0 cannot be reached, without exceedingly complex and impractical risk stratification schemes that include a long list of clinical factors added to biomarkers, imaging etc. [6]

Nevertheless, previous studies have shown that the HAS-BLED score outperformed older bleeding risk scores and the newer ATRIA bleeding score, and HAS-BLED was the only score
that was predictive of risk of intracranial haemorrhage.\cite{15-17} When Barnes et al. calculated the net reclassification index (NRI), the HAS-BLED score showed a 31% and 26% improvement over the HEMORR\textsubscript{2}HAGES and ATRIA scores.\cite{18} Also, the HAS-BLED score has been validated in multiple populations, even in AF and non-AF patients undergoing bridging therapy, percutaneous coronary interventions, etc – as well as those taking VKAs and non-VKA anticoagulants.\cite{18, 19} Unsurprisingly HAS-BLED score is relatively simpler than the HEMORR\textsubscript{2}HAGES score and more predictive than the other bleeding risk scores, and has been recommended in guidelines and consensus documents.

In conclusion, the study by Barnes et al. confirms what should really be common sense – use specific risk scores for specific purposes, and not use bleeding risk scores to assess stroke risk (or vice versa). In particular, use the CHA\textsubscript{2}-DS\textsubscript{2}-VASc for assessing stroke risk, and use the HAS-BLED for assessing bleeding risk in patients with AF. Guidelines are there for a reason, and we should follow them.
References:

