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Abstract

Threshold models are one of the most common approaches for ordinal regression, based on projecting patterns to the real line and

dividing this real line in consecutive intervals, one interval for each class. However, finding such one-dimensional projection can

be too harsh an imposition for some datasets. This paper proposes a multidimensional latent space representation with the purpose

of relaxing this projection, where the different classes are arranged based on concentric hyperspheres, each class containing the

previous classes in the ordinal scale. The proposal is implemented through a neural network model, each dimension being a linear

combination of a common set of basis functions. The model is compared to a nominal neural network, a neural network based on

the proportional odds model and to other state-of-the-art ordinal regression methods for a total of 12 datasets. The proposed latent

space shows an improvement on the two performance metrics considered, and the model based on the three-dimensional latent

space obtains competitive performance when compared to the other methods.

Key words: Ordinal regression; ordinal classification; neural networks; latent variable

1. Introduction

When we face an ordinal regression (OR) problem, the ob-

jective is to predict the label yi of an input vector xi, where

xi ∈ X ⊆ R
k and yi ∈ Y ∈ {C1,C2, . . . ,CQ}. This is done by es-

timating a classification rule or function L : X → Y to predict

the labels of new samples. In a supervised setting, we are given

a training set of N points, D = {(xi, yi), 1 ≤ i ≤ N}. All these

considerations can be also found in standard nominal classifi-

cation, but, for OR, a natural label ordering is included, which

is given by C1 ≺ C2 ≺ . . . ≺ CQ. The symbol ≺ is an order re-

lation representing the nature of the classification problem and

expressing that a label is before another in the ordinal scale.

OR problems are very common in real settings, although

the machine learning community has often treated them from

a standard (nominal) perspective, ignoring the order relation-

ship, ≺, between classes. Some examples of application fields

where OR is found are credit rating [1], econometric modelling

[2], medical research [3] or face recognition [4], to name a few.

Considering the order relationship between classes can result in

two significant benefits: 1) minimisation of specific classifica-

tion errors, and 2) incorporation of the ordering into the classi-

fier. With respect to the first benefit, it is clear that one should

focus on predicting categories as close as possible to the real

one when tackling an OR problem. Hence, OR methods are

aimed to minimise those errors that involve large category gaps

in the ordinal scale. As an example, consider a tumour classi-

fication problem where the categories are {benign, dangerous,

malign}. Misclassification of malign tumours as dangerous is

∗Corresponding author: Pedro Antonio Gutiérrez

Email address: pagutierrez@uco.es (Pedro Antonio Gutiérrez)

preferred to assign the label benign to a malign tumour and OR

methods will generally minimise this second type of errors. The

second benefit comes from the fact that label order is usually

present, in a direct way in the input space or through a latent

space representation [5]. Imbuing a classifier with this order-

ing will generally improve generalisation performance, as the

classifier is better representing the nature of the task.

The field of OR has experienced significant development

in the last decade, with many new methods adapted from tra-

ditional machine learning methodologies, from support vector

machine (SVM) formulations [6] to Gaussian processes [7] or

discriminant learning [8]. For all these methods, although clas-

sifier construction is motivated and undertaken from different

points of view, the final models share a common structure or

nature. They exploit the fact that it is natural to assume that an

unobserved continuous variable underlies the ordinal response

variable (e.g. the actual age of the person appearing in a picture

for an age classification problem). This variable is called latent

variable, and methods based on that assumption are known as

threshold models [9]. Indeed, this structure can be found in one

of the first models for OR, the proportional odds model (POM)

[10], which is a probabilistic model estimating the cumulative

probabilities of the different ordered categories and leading to

linear decision boundaries. Threshold models methodologies

estimate:

• A function f (x) that tries to predict the values of the latent

variable.

• A set of thresholds b = (b1, b2, . . . , bQ−1) ∈ RQ−1 to rep-

resent intervals in the range of f (x), which must satisfy

the constraints b1 ≤ b2 ≤ . . . ≤ bQ−1.
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1. Introduction

When we face an ordinal regression (OR) problem, the ob-
jective is to predict the label yi of an input vector xi, where
xi ∈ X ⊆ Rk and yi ∈ Y ∈ {C1,C2, . . . ,CQ}. This is done by es-
timating a classification rule or function L : X → Y to predict
the labels of new samples. In a supervised setting, we are given
a training set of N points, D = {(xi, yi), 1 ≤ i ≤ N}. All these
considerations can be also found in standard nominal classifi-
cation, but, for OR, a natural label ordering is included, which
is given by C1 ≺ C2 ≺ . . . ≺ CQ. The symbol ≺ is an order re-
lation representing the nature of the classification problem and
expressing that a label is before another in the ordinal scale.

OR problems are very common in real settings, although
the machine learning community has often treated them from
a standard (nominal) perspective, ignoring the order relation-
ship, ≺, between classes. Some examples of application fields
where OR is found are credit rating [1], econometric modelling
[2], medical research [3] or face recognition [4], to name a few.
Considering the order relationship between classes can result in
two significant benefits: 1) minimisation of specific classifica-
tion errors, and 2) incorporation of the ordering into the classi-
fier. With respect to the first benefit, it is clear that one should
focus on predicting categories as close as possible to the real
one when tackling an OR problem. Hence, OR methods are
aimed to minimise those errors that involve large category gaps
in the ordinal scale. As an example, consider a tumour classi-
fication problem where the categories are {benign, dangerous,
malign}. Misclassification of malign tumours as dangerous is
preferred to assign the label benign to a malign tumour and OR
methods will generally minimise this second type of errors. The
second benefit comes from the fact that label order is usually
present, in a direct way in the input space or through a latent
space representation [5]. Imbuing a classifier with this order-
ing will generally improve generalisation performance, as the

classifier is better representing the nature of the task.
The field of OR has experienced significant development

in the last decade, with many new methods adapted from tra-
ditional machine learning methodologies, from support vector
machine (SVM) formulations [6] to Gaussian processes [7] or
discriminant learning [8]. For all these methods, although clas-
sifier construction is motivated and undertaken from different
points of view, the final models share a common structure or
nature. They exploit the fact that it is natural to assume that an
unobserved continuous variable underlies the ordinal response
variable (e.g. the actual age of the person appearing in a picture
for an age classification problem). This variable is called latent
variable, and methods based on that assumption are known as
threshold models [9]. Indeed, this structure can be found in one
of the first models for OR, the proportional odds model (POM)
[10], which is a probabilistic model estimating the cumulative
probabilities of the different ordered categories and leading to
linear decision boundaries. Threshold models methodologies
estimate:

• A function f (x) that tries to predict the values of the latent
variable.

• A set of thresholds b = (b1, b2, . . . , bQ−1) ∈ RQ−1 to rep-
resent intervals in the range of f (x), which must satisfy
the constraints b1 ≤ b2 ≤ . . . ≤ bQ−1.

From a practical perspective, threshold models are basically
trying to find a one-dimensional projection ( f (x)) where pat-
terns are ordered according to the class labels. Finding this pro-
jection can be a problem for real world datasets. If we consider
linear models for f (x), the chances that the patterns exhibit a
linear ordering relationship are certainly very low. If we con-
sider nonlinear models, the pressure to find this nonlinear pro-
jection can result in unnatural or too complex projections lead-
ing to poorer generalisation performance. This paper proposes
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to relax this pressure by allowing a higher dimensional repre-
sentation of the latent space. This is done by ordering patters in
an L-dimensional space, where each class region is limited by
concentric hyperspheres (centred in the origin). The ordering of
the classes is imposed by assuring the radii of the hyperspheres
are also ordered.

Another popular way to tackle OR problems is to decom-
pose the original task into several binary tasks, where each bi-
nary task consists of predicting if the patterns belongs to a cat-
egory higher (in the ordinal scale) than a given label Cq. One
model is estimated for each class in the ordinal scale. The ap-
proach is presented in the work of Frank and Hall [11], also
proposing a way to fuse probabilities given for all binary tasks.
Later on, there have been two different lines of research where
binary classification and OR were linked in a more direct way
[12, 13, 14]. Instead of learning Q different binary classifiers, a
single binary classifier is learnt, where the category examined is
included as an additional feature and training patterns are repli-
cated and weighted. The framework in [13, 14] is more generic,
in the sense that it can be applied to different cost matrices.

The Error-Correcting Output Codes (ECOC) methodology
is a popular and effective coding method to learn complex class
targets, which can be used also for OR. The main idea is to
associate each class Cq with a column of a binary coding matrix
MR×Q, where each entry of the matrix M( j, q) ∈ {−1,+1}, Q is
the number of classes, R is the number of binary classifiers,
1 ≤ q ≤ Q and 1 ≤ j ≤ R. After training the binary classifiers,
prediction is then accomplished by choosing the column of M
closest to the set of decision values, where the distance function
should be selected according to the error function minimised
during learning [15, 16].

In the field of neural networks, there have been some pro-
posals for OR problems. The first one dates back to 1996, when
Mathieson proposed a non-linear version of the POM [2, 17]
by setting the projection f (x) to be the output of a neural net-
work. Although the results were quite promising, the method
was evaluated for a very specific dataset. A more extensive
battery of experiments should be done to further validate the
proposal.

Costa [18] derived another neural network architecture to
exploit the ordinal nature of the data. It was based on a “par-
titive approach”, where probabilities are assigned to the joint
prediction of constrained concurrent events.

Other approach [19] applies the coding scheme of Frank
and Hall and a decision rule based on examining output nodes
with an order and selecting the first one whose output is higher
than a predefined threshold T . The problem of this method is
that inconsistencies can be found in the predictions (i.e. a sig-
moid with value higher than T after the index selected).

The ordinal neural network (oNN) of Cardoso and da Costa
[12] adapts the previously discussed data replication method to
neural networks (a single model for binary decomposition using
an extended and replicated version of the dataset), allowing the
derivation of nonlinear decision boundaries.

Additionally, extreme learning machines (ELMs) have been
used as a very fast method to fit single layer neural networks,
where the hidden neurons weights are random, and the out-

put weights are analytically obtained [20]. They have been
adapted to OR [21], considering again the Frank and Hall cod-
ing scheme and a prediction based on the ECOC loss-based de-
coding approach [15], i.e. the chosen label is that which min-
imises the exponential loss. Another recent paper by Riccardi
et al. [22] introduces a cost-sensitive approach for adapting
the stagewise additive modelling using a multiclass exponential
boosting algorithm (SAMME, which is the multiclass version
of the well-known AdaBoost) to OR problems. They consider
ELMs as the base classifier and they introduce three different
loss functions, affecting the update rule of the error estimation
and/or of the pattern weights [22]. From the three variants intro-
duced in the paper, the third one (which adapts the update rule
of both the error estimation and the pattern weights) obtains
the best results. The OR model proposed in [23] adapts ELM
to OR problems by imposing monotonicity constraints in the
weights connecting the hidden layer with the output layer. The
optimum of the inequality constrained least squares problem is
determined analytically according to the closed-form solution
estimated from the Karush–Kuhn–Tucker conditions.

A conceptually different methodology is proposed by da
Costa et al. [24, 25] for training OR models, with a special
attention to neural networks. They assume that the random
variable class of a pattern should follow a unimodal distribu-
tion. Two possible implementations are considered: a paramet-
ric one, where a specific discrete distribution is assumed and
the associated free parameters are estimated by a neural net-
work; and a non-parametric one, where no distribution is as-
sumed but the error function is modified to avoid errors from
distant classes. Finally, the approach in [26] is a distribution-
independent methodology for OR based on pairwise preferences.
The strength of dependency between two data instances (con-
tinuous preferences) is shown to improve algorithmic perfor-
mance, obtaining competitive results.

In this paper, we extend the proposal of Mathieson [2, 17],
deriving a nonlinear version of the POM based on neural net-
works. We present a common learning framework to fit the
parameters of a nominal neural network (NNN) and the neu-
ral network based on the POM (POMNN). The framework is
then used to fit an extended version of the POMNN, where,
as previously discussed, the latent space is assumed to be L-
dimensional and the patterns are ordered by considering Q − 1
concentric hyperspheres. The underlying motivation is to relax
the imposition of projecting all patterns in a real line.

With regards to the relationship between ECOC and the pro-
posal of this paper, one single model is used for learning the
ordinal target, and the problem is not decomposed in several
binary ones. In this way, the latent space structure relates each
pattern to the posterior probabilities without learning multiple
binary classifiers.

This paper is organised as follows: Section 2 is devoted
to a brief analysis of the POM model, closely related to the
models proposed; the description of the different ordinal neural
network models is carried out in Section 3; Section 4 contains
the experimental results; and finally, Section 5 summarises the
conclusions of our work.
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2. Proportional Odds Model (POM)

This model is a direct extension of binary logistic regression
for the case of OR. It was first presented by McCullagh [10] and
dates back to 1980. POM can be grouped under a wider family
of models, the cumulative link models (CLMs) [27], which pre-
dict probabilities of adjacent categories, taking the ordinal scale
into account. The key idea of CLMs is to estimate cumulative
probabilities as follows:

P(y � Cq|x) = P(y = C1|x) + . . . + P(y = Cq|x),

P(y = Cq|x) = P(y � Cq|x) − P(y � Cq−1|x),

for 1 < q ≤ Q, considering by definition that P(y � CQ|x) = 1
and P(y = C1|x) = P(y � C1|x). CLMs relate a linear model of
the input variables to these cumulative probabilities:

f (x) = g−1
(
P(y � Cq|x)

)
= bq − wT x,

where g−1 : [0, 1] → (−∞,+∞) is a monotonic transformation
(the inverse link function), bq is the threshold defined for class
Cq, and w is the coefficient vector of the linear model. The
most common choice for the link function is the logistic func-
tion (which is indeed the one selected for the POM [10]), al-
though probit, complementary log-log, negative log-log or cau-
chit functions could also be used [27]. The logit link function
is the inverse of the standard logistic cumulative distribution
function (cdf), with the following expression:

g−1
(
P(y � Cq|x)

)
= ln

(
P(y � Cq|x)

(1 − P(y � Cq|x)

)
, (1)

while the probit link function is the inverse of the standard nor-
mal cdf:

g−1
(
P(y � Cq|x)

)
= Φ−1(P(y � Cq|x)), (2)

where Φ(x) is the normal distribution, and the cauchit link func-
tion is the inverse of the Cauchy cdf (characterised for having
long thick tails):

g−1
(
P(y � Cq|x)

)
= tan{π · [P(y � Cq|x) − 0.5]}. (3)

Under the assumption that f (x) follows a logistic cdf and fol-
lowing the idea of the POM model [10], the cumulative likeli-
hood of a pattern being associated with a class less than or equal
to class Cq is defined as:

P(y � Cq|x) =
1

1 + exp( f (x) − bq)
, (4)

where q = 1, . . . ,Q, and, by definition, P(y � CQ|x) = 1.Therefore,
this model approximates the posterior probability of a class j as:

P(y = Cq|x) = P(y � Cq|x) − P(y � Cq−1|x) =

=
1

1 + exp( f (x) − bq)
− 1

1 + exp( f (x) − bq−1)
. (5)

Thresholds must satisfy the constraint b1 < b2 < . . . < bQ−1

and their role is to divide the real line into Q contiguous inter-
vals; these intervals map the function value f (x) into the dis-
crete variable, while forcing a proper probability interpretation
(increasing probability when a higher class in the ordinal scale
is examined).

3. Neural network classification algorithms

This section explains the characteristics of the different neu-
ral network models considered for the present work, including
the ones proposed. The first subsection will introduce the learn-
ing algorithm which will be based on a set of estimated prob-
abilities p(x) = {P(y = C1|x), P(y = C2|x), . . . , P(y = CQ|x)}.
The different ways of obtaining this probability vector p(x) con-
stitute the different neural network models considered.

3.1. Learning algorithm

As previously stated, our aim is to estimate a classification
rule L based on a training set D. If we consider a “1-of-Q”
encoding vector for representing the class labels, then we define
a vector yi =

(
y(1)

i , y(2)
i , ..., y(Q)

i

)
for each training label yi, such

that y(q)
i = 1 if xi corresponds to an example belonging to class

Cq and y(q) = 0 otherwise. We will denote θ to the vector of free
parameters of the model to be learnt, which will be specified
in following subsections. To perform the maximum likelihood
estimation of the parameter vector θ, we choose to minimise
the cross-entropy error function:

L(θ) = − 1
N

N∑

n=1

Q∑

q=1

y(q)
n log P(y = Cq|xn,θ). (6)

An individual should be assigned to the class which has the
maximum probability, given the measurement vector x:

F(x) = q̂, where q̂ = arg max
q

P(y = Cq|xn,θ), q = 1, ...,Q.

Considering the L(θ) error function, we optimise the model
parameters by gradient descent using the iRprop+ local im-
provement procedure [28]. This training scheme combines the
local information (i.e. the sign of the partial derivative of the
error with respect to a weight like Rprop) with more global
information (i.e. the error value at each iteration) in order to
decide whether to revert an update step for each weight individ-
ually, resulting in very robust performance [28].

For the sake of simplicity, let S be the total number of pa-
rameters of the model. The gradient vector is given by:

∇L(θ) =

(
∂L(θ)
∂θ1

,
∂L(θ)
∂θ2

, . . . ,
∂L(θ)
∂θS

)
. (7)

Considering (6), each of its component will be defined as:

∂L
∂θs

= − 1
N

N∑

n=1

Q∑

q=1

y(q)
n

P(y = Cq|xn,θ)
· ∂P(y = Cq|xn,θ)

∂θs
,

where s = 1, . . . , S . These derivatives will depend on the actual
model form and they will be specified in the following subsec-
tions.

3



3.2. Nominal neural network (NNN)
Even when an ordinal classification problem is considered,

one could use as a baseline a nominal neural network (NNN)
to estimate p(x). A feed-forward multilayer perceptron can be
configured with Q output nodes and one hidden layer. For a
more robust model and learning process, the output of this NNN
should be transformed by considering the softmax transforma-
tion:

P(y = Cq|xn,θ) =
exp

(
hq

(
x,θq

))

∑Q
j=1 exp

(
h j

(
x,θ j

)) , (8)

where 1 ≤ q ≤ Q, θ = (θ1,θ2, ...,θQ) and hq

(
x,θq

)
is the

output of the q-th node of the output layer. A proper proba-
bility distribution should assure that

∑Q
l=1 P(y = Cl|xn,θ) = 1,

what implies that the probability for one of the classes could be
expressed as a function of the others, reducing the degrees of
freedom of the model. This can be done by setting one class as
the reference class (in our case, the last class, CQ), and dividing
numerator and denominator by exp

(
gQ

(
x,θQ

))
:

P(y = Cq|xn,θ) =
exp

(
gq(x,θq) − gQ

(
x,θQ

))

1 +
∑Q−1

j=1 exp
(
g j(x,θ j) − gQ

(
x,θQ

))

for q = 1, . . . ,Q − 1. Now we set fq(x,θq) = gq(x,θq) −
gQ

(
x,θQ

)
and the final model reduces to:

P(y = Cq|xn,θ) =
exp

(
fq

(
x,θq

))

1 +
∑Q−1

j=1 exp
(

f j

(
x,θ j

)) , 1 ≤ q ≤ Q − 1,

P(y = CQ|xn,θ) =
1

1 +
∑Q−1

j=1 exp
(

f j

(
x,θ j

)) ,

which is equivalent to Eq. (8) when the last output is set to
zero, fQ

(
x,θQ

)
= 0. This way the number of model parameters

is reduced. For the rest of classes, the outputs are defined by a
linear combination of the hidden nodes, in the following way:

fq(x,θq) = f (x,βq,W) = β
q
0 +

M∑

j=1

β
q
j B j(x,w j),

where 1 ≤ q ≤ Q−1, βq = {βq
0, β

q
1, . . . , β

q
M}, W = {w1, . . . ,wM},

w j = {w j0,w j1, . . . ,w jk}, and B j(x,w j) can be any kind of basis
function, in our case, sigmoidal units:

B j(x,w j) =
(
1 + exp

(
−w j0 −∑k

i=1 w ji · xi

))−1
. (9)

With this configuration, the derivatives are given in the fol-
lowing way. For the sake of simplicity, let θs be any of the
parameters of βq or W, P(y = Cq|xn,θ) = pnq and fq(xn,θq) =

fnq:

∂pnq

∂θs
=

Q∑

j=1

pnq ·
(
I ( j = q) − pn j

)
· ∂ fnq

∂θs
,

where I(·) is the indicator function. The derivatives of the pa-
rameters of the model output functions fnq can be expressed as:

∂ fnq

∂βk
0

=


0 if q , k,

1 if q = k.
,
∂ fnq

∂βk
j

=


0 if q , k,

B j(xn,w j) if q = k.

and the gradient for the hidden layer depends on the kind of
basis function used. For sigmoidal nodes:

∂ fnq

∂w jt
= β

q
j B j(xn,w j)

(
1 − B j(xn,w j)

)
xnt, 1 ≤ t ≤ k,

∂ fnq

∂w j0
= β

q
j B j(xn,w j)

(
1 − B j(xn,w j)

)
.

3.3. Proportional odds model neural network (POMNN)

The fact that the POM is linear limits its applicability in real
world datasets, given that the parallel linear decision boundaries
are often unrealistic. A non-linear version of the POM model
can be formed by setting the projection f (x) to be the output of
a neural network. While the POM model approximates f (x) by
a simple linear combination of the input variables, the POMNN
considers a non-linear basis transformation of the inputs. For
each class we will have:

fq(x,θq) = fq(x,β,W, bq) = bq − f (x,β,W)

where q = 1 . . .Q − 1, θq = {β,W, bq} and the projection func-
tion f (x,β,W) is estimated by:

f (x,β,W) =

M∑

j=1

β jB j(x,w j),

where β = {β1, . . . , βM}, W = {w1, . . . ,wM}, and B j(x,w j) can
be any kind of basis functions, in our case, sigmoidal units.
Note that in this case the neural network model will have only
one output node. As compared with the model of Mathieson
[17], that model had skip-layer connections and the error func-
tion was endowed with a regularization term. Moreover, in or-
der to ensure the constraints in the biases, b1 ≤ . . . ≤ bQ−1, we
propose the following definition: bq = bq−1+∆2

q, q = 1 . . .Q−1,
with padding variables ∆ j, which are squared to make them
positive, and b1,∆q ∈ R. Consequently, the parameter vec-
tor is defined as: θ =

{
β,W, b1,∆2, . . . ,∆Q−1

}
. In this way,

we convert the constrained optimization problem into an un-
constrained one, and gradient descent can be applied to all the
parameters in θ without considering the constraints.

With this model structure, the derivatives can now be re-
formulated to perform gradient-descent optimization. Let θs be
any of the parameters of β or W, P(y = Cq|xn,θ) = pnq and
f (xn,β,W) = fn:

pnq|q>1 =
1

1 + exp(bq − fn)
− 1

1 + exp(bq−1 − fn)
,

pn1 =
1

1 + exp(b1 − fn)
,

∂pnq|q>1

∂θs
=

exp(bq − fn)

(1 + exp(bq − fn))2

∂ fn
∂θs

− exp(bq−1 − fn)

(1 + exp(bq−1 − fn))2

∂ fn
∂θs

,

∂pn1

∂θs
=

exp(b1 − fn)
(1 + exp(b1 − fn))2

∂ fn
∂θs

,
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where the derivatives for the projection parameters θs are:

∂ fn
∂β j

= B j(xn,w j),

∂ fn
∂w jt

= β jB j(xn,w j)
(
1 − B j(xn,w j)

)
xnt, 1 ≤ t ≤ k,

∂ fn
∂w j0

= β jB j(xn,w j)
(
1 − B j(xn,w j)

)
.

The derivatives for the biases and the padding variables can
be formulated in the following way:

∂pnq|q>1

∂b1
=

exp( fn − bq)

(1 + exp( fn − bq))2
− exp( fn − bq−1)

(1 + exp( fn − bq−1))2
,

∂pn1

∂b1
=

exp( fn − b1)
(1 + exp( fn − b1))2

,

∂pnq|q>1

∂∆ j
= 2∆ j ·

∂pnq|q>1

∂b1
, j = 2 . . .Q − 1,

∂pn1

∂∆ j
= 2∆ j · ∂pn1

∂b1
, j = 2 . . .Q − 1.

3.4. Concentric hypersphere neural network (CHNN)

Both POM and POMNN project input patterns to the real
line with the difference that POM impose a linear projection and
POMNN a nonlinear one. After this, the projection is divided
into intervals, each representing a different class. Finding such
one-dimensional projection where patterns are ordered accord-
ing to the class labels can be too harsh an imposition for some
datasets. We propose to relax this requirement by allowing a
multivariate representation. The class order will be represented
by a natural order of nested concentric hyper-spheres (centered
at the origin). The proposal tries to find a space made up by
several different projections (coordinates) where the order of
the class labels is presented in the form of concentric hyper-
spheres. The smallest hypersphere will contain the patterns of
the first class in the ordinal scale.

An example showing the proposed idea is presented in Fig-
ure 1, where the one-dimensional projection of POMNN is com-
pared against the two-dimensional one of the proposed CHNN
approach. As can be seen, the patterns can be more easily posi-
tioned in their correct region, because they are projected into a
two-dimensional space, where each coordinate is approximated
separately.

Non-linearity is achieved by letting these projections be the
output of different linear combinations of the basis functions.
Input conditional class probabilities are related to the distance
of the pattern to the centre of the hyperspheres. Specifically, the
latent space is defined in the following way:

fl(x,θl) = f (x,βl,W) = βl
0 +

M∑

j=1

βl
jB j(x,w j), 1 ≤ l ≤ L,

where L is the latent space dimensionality (hence dimension-
ality of the hyperspheres), βl = {βl

0, β
l
1, . . . , β

l
M} is the vector

of coefficients of the linear combination for the l-th projection,
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(a) One-dimensional projection of POMNN
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(b) Two-dimensional projection of CHNN

Figure 1: POMNN projection for the tae dataset and proposed
two-dimensional CHNN projection for the same dataset.

and W = {w1, . . . ,wM} is the matrix containing the parame-
ters of the basis functions. The matrix W is common for all
the projections, while the corresponding βl vectors are specific
for each one. In this way, the coordinates of the pattern in the
latent space are decided by each of the fl(x,θl) functions. Con-
sequently, each input pattern x is projected using the following
mapping φ : Rk → RL:

φ(x) = { f1(x,θ1), f2(x,θ2), . . . , fL(x,θL)}.

The dimensionality of the latent space is an additional parame-
ter and different values will be considered in the experimental
section.

The input conditional class probability is related to the dis-
tance to origin of the derived space. In order to simplify the
calculus, we obtain the norm of the projection:

‖φ(x)‖ =

√
f1(x,θ1)2 + f2(x,θ2)2 + . . . + fL(x,θL)2,

and then the different classes are defined by a set of thresholds
{b1, . . . , bQ−1}, as in POM:

P(y � Cq|x) =
1(

1 + exp
(
bq − ‖φ (x) ‖

)) , q = 1, . . . ,Q − 1.
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Figure 2: CHNN structure and topology

The scheme of the proposed neural network can be seen in Fig-
ure 2.

Again, we need a set of thresholds – radiuses of the concen-
tric hyperspheres in the latent space. These thresholds have to
respect the class order, b1 ≤ b2 ≤ . . . ≤ bQ−1, so we again
introduce padding variables (see previous subsection), bq =

bq−1 + ∆2
q, 1 < q < Q, b1,∆q ∈ R. Consequently, the parameter

vector is now θ =
{
β1, . . . ,βL,W, b1,∆2, . . . ,∆Q−1

}
.

With respect to the derivatives, they are the same than for
POMNN model, if we replace fn by ‖φ (x) ‖. Then:

∂ fn
∂θs

=
2 · f (x,θl)
‖φ (x) ‖4 · fnl · ∂ fnl

∂θs
,

where fnl is f (xn,θl) and the derivatives of the parameters of
each latent dimension fnl can be expressed as:

∂ fnl

∂βk
0

=


0 if l , k,

1 if l = k.
,
∂ fnl

∂βk
j

=


0 if l , k,

B j(xn,w j) if l = k.

The gradient for the hidden layer depends on the basis function.
For sigmoidal nodes:

∂ fnl

∂w jt
= βl

jB j(xn,w j)
(
1 − B j(xn,w j)

)
xnt, 1 ≤ t ≤ k,

∂ fnl

∂w j0
= βl

jB j(xn,w j)
(
1 − B j(xn,w j)

)
.

4. Experiments

4.1. Experimental design

The proposed methodology was applied to 12 different data-
sets taken from the UCI repository [29]. As can be seen in Table
1, the characteristics vary noticeably among the datasets. We
included a more controlled dataset (the toy one), which is a 2D
problem synthetically generated, using the instructions given in
[25]. The performance of the different methods was evaluated
by the following two metrics [30]:

Table 1: Characteristics of the 12 datasets used for the ex-
periments: number of instances (Size), total number of inputs
(#In.), number of classes (#Out.), and number of patterns per-
class (NPPC)

Dataset Size #In. #Out. NPPC
balance 625 4 3 (288,49,288)

car 1728 21 4 (1210,384,69,65)
ERA 1000 4 9 (92,142,181,172,158,118,88,31,18)
ESL 488 4 9 (2,12,38,100,116,135,62,19,4)
LEV 1000 4 5 (93,280,403,197,27)

newth. 215 5 3 (30,150,35)
pasture 36 25 3 (12,12,12)
sq.-st. 52 51 3 (23,21,8)

sq.-unst. 52 52 3 (24,24,4)
SWD 1000 10 4 (32,352,399,217)

tae 151 54 3 (49,50,52)
toy 300 2 5 (35,87,79,68,31)

• The Correctly Classified Ratio (CCR) is the error rate of
the classifier, expressed as a percentage:

CCR =
100
N

N∑

i=1

I(y∗i = yi),

where yi is the true label and y∗i is the predicted label.
This metric evaluates the global classification performance
task without taking into account the different kinds of er-
rors with regards to the category order.

• The Mean Absolute Error (MAE) is the average deviation
in absolute value of the predicted rank from the true one
[31]:

MAE =
1
N

N∑

i=1

|O(yi) − O(y∗i )|,

where the position of a label in the ordinal scale is ex-
pressed by the function O in the form O(Cq) = q, 1 ≤
q ≤ Q. |O(yi) − O(y∗i )| is the distance between the true
and predicted ranks. MAE values range from 0 to Q − 1
(maximum deviation in number of categories).

All the compared algorithms have been run 30 times for
each dataset, considering a random holdout partition with a
75% of patterns for the training set and the remaining 25%
for testing generalization performance of the obtained classi-
fier. The partitions were stratified in the sense that both parti-
tions approximately presented the same class distribution of the
complete dataset, and the same random partitions were consid-
ered for all the methods.

Apart from the methods previously presented in the paper
(POM, NNN, POMNN and CHNN), different state-of-the-art
methods were included in the experimentation for comparison
purposes.

• Support vector ordinal regression (SVOR) by Chu et. al
[7, 6], who optimized multiple thresholds in order to de-
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fine parallel discriminant hyperplanes for the ordinal sca-
les. In one first approach with explicit inequality con-
straints on the thresholds, they derive the optimality con-
ditions for the dual problem, and adapt the SMO algo-
rithm for the solution. We will refer it to as SVOREX.
There is a second approach based on implicit constraints
(SVORIM), but we consider SVOREX as we have found
slightly better results for it in a previous work [32].

• Kernel discriminant learning for ordinal regression (KD-
LOR) [8], which is an adaption of kernel discriminant
analysis to the field of ordinal regression. Order on classes
is imposed by constraining the projection to be obtained
from the optimization problem.

• Extreme learning machine with ordered partitions (EL-
MOP) [21], which is the ordinal regression version of
ELMs. They are adapted by relabelling the dataset using
the binary coding proposed in [11] and then fitting one
multi-output model or several binary models based on the
Error-Correcting Output Codes (ECOC) framework. The
authors present the single model ELM as the one with the
best performance [21], so this is the configuration chosen
for ELMOP.

• AdaBoost for ordinal regression based on an ordinal cost
model for both the error estimation and pattern weights
(ABORC3). As proposed in [22], the base classifier is an
ELM with Gaussian kernel and a regularization param-
eter and the weighted least squares closed-form solution
of the error function was considered for estimating the
linear parameters of the individuals in the final ensemble
model.

Regarding hyper-parameter tuning, the following procedure
has been applied. For kernel algorithms, i.e. SVOREX, KD-
LOR and ABORC3, the width of the Gaussian kernel, γ, was
adjusted using a grid search with a 10-fold cross-validation,
considering the following range: γ ∈ {10−3, 10−2, . . . , 103}. An
additional parameter u was also used for KDLOR in order to
avoid singularities in the covariance matrices, u ∈ {10−6, 10−5,
. . . , 10−2}. For SVOREX and ABORC3, the additional cost pa-
rameter was adjusted by using the range C ∈ {10−3, 10−2, . . . ,
103}. Finally, the results of the ABORC3 algorithm were di-
rectly taken from [22], given that the authors used the same
partitions than in this paper (as presented in [32]), and the same
configuration for γ and C parameters. The number of members
of the ensemble model was M = 25.

For the neural network algorithms, the hyper-parameters
(number of hidden neuron, H, and number of iterations of the
local search procedure, N), were adjusted using a grid search
with a 5-fold cross-validation, considering the following ranges:
H ∈ {1, 5, 15, 20, 30, 40} and N ∈ {100, 200, 300, 400, 500}. For
ELMOP, a higher numbers of hidden neurons are considered,
H ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, given that it re-
lies on sufficiently informative random projections [20]. With
respect to iRprop+, the parameter values are set to those speci-
fied in [28]. Although more advanced methods could have been

considered for adjusting the structure of the neural networks
[33, 34], we have selected cross-validation to ease the compar-
isons against other state-of-the-art methods.

The CHNN algorithm has been run with different options
for the dimensionality of the latent space (L ∈ {1, 2, 3, 4}), lead-
ing to four versions of the algorithm: CHNN1D, CHNN2D,
CHNN3D and CHNN4D. Indeed, the CHNN1D is very similar
to POMNN (they both project the patterns into a one dimen-
sional space), but the classes are arranged in nested intervals
for CHNN1D, while the intervals are consecutive in the case of
POMNN.

4.2. Comparison of the different alternatives for the neural net-
work algorithms

In the first part of this section, we compare the different
neural network algorithms in order to check 1) whether con-
sidering an ordinal regression configuration is able to improve
the performance of the NNN classifier, and 2) if the additional
dimensions for latent space helps to better separate the classes.
The results are shown in Table 2. This table includes the aver-
age ranking (R) obtained for each metric and all datasets (R = 1
for the best method, R = 6 for the worst one).

First of all, the attention should be drawn in the results of
the nominal version (NNN) of the model presented in this paper.
As can be seen, there are only two datasets (LEV and pasture),
where the nominal version of the algorithm obtain a first or a
second position (for CCR and MAE) when compared to the or-
dinal versions. A further analysis should be done on those two
datasets to check if the order scale of the target variable can be
found (in a linear or non-linear form) in the input space distri-
bution of the training patterns. Regarding the ordinal methods,
the one dimensional projection of CHNN1D (where the inter-
vals are nested) seems to be too restrictive, and the results are
a bit worse than those of POMNN. However, when the dimen-
sionality is increased (CHNN2D and CHNN3D), the results are
considerably better, although a too high dimensionality seems
to compromise the learning capability (CHNN4D).

The projections of the CHNN2D model for the tae dataset
are included in Figure 1b, showing a higher degree of flexibil-
ity than the POMNN model (Figure 1a). The projection of the
patterns in this space can be used to have better understanding
about how they are organised with regards to the classification
task, serving as a visualisation tool. In Figure 3, the result of
CHNN3D has been included for one of the runs of sq.-st.
dataset, where the model only confuses one green pattern, la-
belled as red.

An analysis of the significance of the differences found was
also performed. We consider a procedure for comparing mul-
tiple classifiers over multiple datasets, following the guidelines
of Demšar [35]. It begins with the Friedman test [36, 37], us-
ing the CCR ranking as the test variable. This test is a non-
parametric equivalent to the repeated-measures ANOVA test.
We apply it because a previous evaluation of the CCR ranking
values results in rejecting the normality and the equality of vari-
ances’ hypothesis. Applying this test to the average ranks at Ta-
ble 2, the test shows that the effect of the method used for clas-
sification is statistically significant at a significance level of 5%,
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Table 2: Statistical results obtained when comparing the differ-
ent neural network algorithms considered for this work

CCR (MeanSD)
Dataset NNN POMNN CHNN1D CHNN2D CHNN3D CHNN4D
balance 95.751.73 97.641.51 96.791.45 97.241.30 97.281.19 97.111.52

car 98.940.53 98.980.59 98.910.71 99.040.35 99.100.54 98.990.57
ERA 26.492.78 26.962.47 26.732.17 26.962.51 26.872.46 26.372.57
ESL 68.063.00 70.083.12 70.492.54 70.773.11 71.372.88 69.893.51
LEV 62.852.58 62.432.97 62.672.21 62.932.20 62.612.71 62.853.15

newth. 96.982.15 97.042.21 96.792.48 97.282.47 97.222.32 96.852.24
pasture 72.5914.51 68.8913.81 64.0714.50 71.8514.22 74.0712.83 69.6314.27
sq. st. 63.0812.35 64.6210.99 63.8510.91 63.8511.63 66.9212.48 64.3613.17

sq. unst. 75.1313.20 76.9210.88 66.1515.33 75.6410.71 76.4113.69 71.0312.40
SWD 56.812.69 57.363.23 57.843.54 57.923.19 57.963.25 57.553.45

tae 57.198.09 57.637.29 55.618.92 59.045.97 59.917.30 56.938.78
toy 92.933.40 93.782.63 92.763.26 93.112.74 93.422.55 92.442.83

RCCR 4.54 3.04 4.88 2.33 1.83 4.38

MAE (MeanSD)
Dataset NNN POMNN CHNN1D CHNN2D CHNN3D CHNN4D
balance 0.0550.022 0.0250.018 0.0350.016 0.0300.016 0.0290.014 0.0310.016

car 0.0130.007 0.0100.006 0.0110.007 0.0100.004 0.0090.005 0.0100.006
ERA 1.3010.073 1.2640.049 1.2630.051 1.2580.051 1.2570.051 1.2620.056
ESL 0.3460.035 0.3150.033 0.3100.029 0.3050.034 0.3020.032 0.3160.037
LEV 0.4060.027 0.4120.031 0.4100.023 0.4070.024 0.4090.029 0.4070.033

newth. 0.0300.021 0.0300.022 0.0320.025 0.0270.025 0.0280.023 0.0320.022
pasture 0.2740.145 0.3150.143 0.3670.163 0.2850.151 0.2590.128 0.3040.143
sq. st. 0.4080.143 0.3720.116 0.3740.112 0.3720.120 0.3410.129 0.3720.143

sq. unst. 0.2740.156 0.2330.112 0.3440.159 0.2510.118 0.2410.140 0.2920.125
SWD 0.4640.029 0.4480.035 0.4430.038 0.4430.034 0.4410.035 0.4470.036

tae 0.5500.124 0.5390.096 0.5410.119 0.5140.081 0.4970.106 0.5170.109
toy 0.0720.034 0.0620.026 0.0720.033 0.0690.027 0.0660.025 0.0760.028

RMAE 4.75 3.50 4.83 2.41 1.58 3.91

The best result is shown in bold face and the second one in italics.

as the confidence interval is C0 = (0, F(α=0.05) = 2.38) and the
F-distribution statistical values are: 1) for CCR, F∗ = 9.48 <
C0; and 2) for MAE, F∗ = 10.06 < C0. Consequently, we reject
the null-hypothesis stating that all algorithms perform equally
in mean ranking and a post-hoc test is needed. For the post-hoc
test, the best performing method (CHNN3D) was considered as
the control method, and it was compared to the remaining ones
according to their rankings. It has been noted that the approach
of comparing all classifiers to each other in a post-hoc test is
not as sensitive as the approach of comparing all classifiers to
a given classifier (a control method). One approach to this lat-
ter type of comparison is the Holm test. The test statistics for
comparing the i-th and j-th method using this procedure is:

z =
Ri − R j√

k(k+1)
6N

, (10)

where k is the number of algorithms, N is the number of datasets
and Ri is the mean ranking of the i-th method. The z value
is used to find the corresponding probability from the table of
normal distribution, which is then compared with an appropri-
ate level of significance α. Holm test adjusts the value for α
in order to compensate for multiple comparisons. This is done
in a step-up procedure that sequentially tests the hypotheses or-
dered by their significance. We will denote the ordered p-values

by p1, p2, . . . , pk so that p1 ≤ p2 ≤ . . . ≤ pk−1. Holm test com-
pares each pi with α

′
Holm = α/(k− i), starting from the most sig-

nificant p value. If p1 is below α/(k− 1), the corresponding hy-
pothesis is rejected and we allow to compare p2 with α/(k − 2).
If the second hypothesis is rejected, the test proceeds with the
third, and so on. As soon as a certain null hypothesis cannot be
rejected, all the remaining hypotheses are retained as well.

Table 3: Holm test for the comparison of the different neural
network algorithms: adjusted p-values using CCR and MAE as
the test variables (CHNN3D is the control method).

Variable Test: CCR Variable Test: MAE
Algorithm p-value α

′
Holm Algorithm p-value α

′
Holm

CHNN1D 0.000? 0.010 CHNN1D 0.000? 0.010
NNN 0.000? 0.013 NNN 0.000? 0.013

CHNN4D 0.001? 0.017 CHNN4D 0.002? 0.017
POMNN 0.114 0.025 POMNN 0.012? 0.025
CHNN2D 0.513 0.050 CHNN2D 0.275 0.050

?: statistically signficant differences for α = 0.05

The results of the Holm test can be seen in Table 3, using the
corresponding p and α

′
Holm values. From the results of this test,

it can be concluded that the CHNN3D methodology obtains a
significantly higher ranking when compared to all methods ex-
cept CHNN2D (for CCR and MAE) and POMNN (for CCR).

The reason why the proposed latent space helps to improve
the classification for ordinal regression problems is that the or-
dering imposed by the projection helps to better locate new pat-
terns in the ordinal scale, which is also truth for the POMNN
model. However, as opposed to PONN, the CHNN model al-
lows certain flexibility when constructing the multidimensional
projection, which encourages more parsimonious models less
prone to overfitting.

4.3. Comparison of CHNN3D against other state-of-the-art al-
gorithms

This second part of the experiments compares the results
obtained from CHNN3D to other state-of-the-art algorithms in
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Figure 3: Three-dimensional CHNN projection for the
sq.-st. dataset. Hyperspheres has been omitted for clarity.

8



Table 4: Statistical results obtained when comparing the
CHNN3D approach against other state-of-the-art algorithms

CCR (MeanSD)
Dataset CHNN3D ELMOP POM SVOREX KDLOR ABORC3
balance 97.281.19 91.852.30 90.551.86 99.790.56 83.692.40 95.12

car 99.100.54 84.851.10 15.7530.63 98.740.53 95.350.83 98.30
ERA 26.872.46 24.551.69 25.612.11 28.602.62 20.513.46 27.24
ESL 71.372.88 69.513.30 70.553.36 71.233.36 65.383.68 71.88
LEV 62.612.71 62.852.58 62.332.80 62.551.97 54.933.46 65.01

newth. 97.222.32 94.882.51 97.222.22 96.852.39 97.532.02 96.96
pasture 74.0712.83 61.1113.29 49.6315.37 66.6711.67 66.3012.54 74.44
sq. st. 66.9212.48 56.4115.16 38.2115.18 64.3614.21 64.8711.90 59.49

sq. unst. 76.4113.69 61.2812.37 34.8714.25 73.8511.88 75.1312.73 65.64
SWD 57.963.25 56.533.00 56.792.96 57.093.14 49.082.93 59.07

tae 59.917.30 54.397.52 50.447.73 57.895.82 57.635.76 57.89
toy 93.422.55 91.732.87 28.932.55 98.271.27 88.583.05 95.49

RCCR 1.96 4.67 5.04 2.63 4.33 2.38

MAE (MeanSD)
Dataset CHNN3D ELMOP POM SVOREX KDLOR ABORC3
balance 0.0290.014 0.0890.026 0.1070.021 0.0020.006 0.1640.025 0.050

car 0.0090.005 0.1750.012 1.4510.548 0.0130.005 0.0460.008 0.018
ERA 1.2570.051 1.2430.044 1.2180.050 1.2090.057 1.7830.099 1.213
ESL 0.3020.032 0.3220.035 0.3100.038 0.3020.035 0.3650.043 0.301
LEV 0.4090.029 0.4060.027 0.4090.030 0.4110.021 0.5120.039 0.385

newth. 0.0280.023 0.0520.025 0.0280.022 0.0310.024 0.0250.020 0.036
pasture 0.2590.128 0.4040.144 0.5850.204 0.3330.117 0.3410.130 0.242
sq. st. 0.3410.129 0.4850.181 0.8130.248 0.3670.147 0.3740.145 0.419

sq. unst. 0.2410.140 0.4230.137 0.8260.230 0.2620.119 0.2510.132 0.354
SWD 0.4410.035 0.4520.031 0.4500.030 0.4460.031 0.5790.035 0.443

tae 0.4970.106 0.6250.115 0.6280.116 0.4660.061 0.4610.065 0.500
toy 0.0660.025 0.0830.029 0.9810.039 0.0170.013 0.1140.030 0.043

RMAE 2.29 4.58 4.83 2.45 4.17 2.67

The best result is shown in bold face and the second one in italics.

order to check if the method can be considered competitive.
The results of this comparison are included in Tables 4 and 5
and follow the same format that in the previous comparison.
Again, the Friedman test shows that the effect of the method
used for classification is statistically significant at a significance
level of 5%, as the confidence interval is C0 = (0, F(α=0.05) =

2.38) and the F-distribution statistical values are: 1) for CCR,
F∗ = 11.23 < C0; and 2) for MAE, F∗ = 6.72 < C0. From
Table 4, it can be checked that the best ranking is obtained
by CHNN3D for MAE and CCR. The second methods are
ABORC3 for CCR and SVOREX for MAE. Recall that ABORC3
is an ensemble of kernel models, while CHNN3D is a single
model. SVOREX is known to be one of the most competi-
tive methods for ordinal regression [6, 32], because it inherits
the good properties of binary SVM. The statistical tests of Ta-
ble 5 conclude that the differences are significant for all meth-
ods, except SVOREX and ABORC3. These results confirm that
CHNN3D method is able to achieve a very competitive perfor-
mance when compared to the state-of-the-art.

5. Discussion and Conclusion

This paper is motivated by the fact that the one dimensional
projection of threshold models in ordinal regression can be too

Table 5: Holm test for the comparison of the different neural
network algorithms: adjusted p-values using CCR and MAE as
the test variables (CHNN3D is the control method).

Variable Test: CCR) Variable Test: MAE
Algorithm p-value α

′
Holm Algorithm p-value α

′
Holm

POM 0.000? 0.010 POM 0.000? 0.010
ELMOP 0.000? 0.013 ELMOP 0.003? 0.013
KDLOR 0.002? 0.017 KDLOR 0.014? 0.017

SVOREX 0.383 0.025 ABORC3 0.623 0.025
ABORC3 0.546 0.050 SVOREX 0.827 0.050

?: statistically signficant differences for α = 0.05

restrictive, resulting in too complex nonlinear models or unre-
alistic assumptions for linear models. We propose to relax this
projection by extending the latent space and allowing multiple
dimensions. The order of the classes is organised in this space
by using concentric hyperspheres centred in the origin, in such
a way that intermediate classes are bounded by consecutive hy-
perspheres.

In analogy with kernel methods, increased dimensionality
of internal “feature space” representations allows one to use
simpler, less complex functions to accomplish the task. In clas-
sification problems, one can always attempt to design poten-
tially complex non-linear decision boundaries in the data space
without the need to map to a higher dimensional feature space.
However, the advantage of the feature space is that by (im-
plicitly) representing important class structure properties in the
higher dimensional space, usually much simpler (e.g. linear)
functions are needed to accomplish the final task. These func-
tions are easier to fit, the fit is more robust, and crucially, less
prone to over-fitting.

By the very nature of binary classification, provided linear
decision boundary is needed, we only need to specify its normal
vector (and bias). In that case, the input points are eventually
projected into a single dimension where the class membership
is decided. The situation is different for ordinal regression. In
one dimension, the class order can be naturally represented (as
done in this paper) in a nested way, e.g. class C1 would be rep-
resented by interval [−a1, a1], class C2 by [−a2,−a1) ∪ (a1, a2],
class C3 by [−a3,−a2)∪(a2, a3], etc. for some positive constants
a1 < a2 < . . . < aQ−1.

Assume the input points x are projected onto the real line
through function φ(x). By composing φ with a function ψ(u) =

|u|, thus obtaining another projection function ν = ψ◦φ, one can
always transform the nested interval structure into the typical
threshold structure used in ordinal regression, [0, a1], (a1, a2],
(a2, a3], etc. However, if we did not fix ψ a-priori and wanted
to fit ν directly, the additional modelling burden would lead to
more complex and hence more difficut to fit projection models.

We proposed to push this idea one step further: the nested
interval structure can be naturally generalized to a series of
nested L-dimensional hyper-spheres. Such structure still pre-
serves the idea of class order, while eliminating the need to di-
rectly formulate and fit constrained 1-dimensional projections,
as commonly done in ordinal regression. In our case we need
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to learn a less restricted projection function φ = ( f1, f2, . . . , fL)
taking x into RL. This projection is then combined with a fixed

function ψ(u1, u2, . . . , uL) =

√
u2

1 + u2
2 + . . . + u2

L to form the fi-
nal projection ν = ψ ◦ φ. Crucially, increasing the latent space
dimension from 1 to L can allow us to put less strain on non-
linear projection function φ, taking us from the input space to
the latent space that would be needed if we wanted to fit di-
rectly more complex projections to 1-dimensional structure of
ordered intervals. In analogy with the feature space metaphor
mentioned above, we suggest a “feature space” structure in our
latent space that, at the price of increasing dimensions of the la-
tent space (thus increasing its representational capacity), allows
us to use a simple decision function ψ on top of the latent space.
In contrast with kernel methods, we do not fix the “feature map-
ping” φ while learning the decision function ψ - instead, ψ is
fixed and φ is learnt.

The model is implemented by using a neural network ap-
proach, where each of these dimensions are set to a linear com-
bination of basis functions (sigmoidal nodes, in our case). The
proposed model shows better performance than a nominal neu-
ral network and a neural network based on the proportional
odds model, and competitive performance when compared to
the state-of-the-art in ordinal regression. A study of the number
of dimensions of this extended latent space is also performed,
where both two and three dimensional spaces seem to be a good
option, at least for the 12 datasets considered. Finally, the pro-
jections learnt by the model are shown to be useful for studying
additional characteristics of the dataset, acting as a visualisation
tool.

As future research lines, the same latent space structure
could be tested with other ordinal regression models, e.g. linear
models or kernel models.
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