Synthesis and properties of novel near-infrared dye based on BODIPY and diketopyrrolopyrrole units

Wang, Yafei; Chen, Jianhua; Zhen, Yuanhui; Jiang, Haigang; Yu, Gui; Liu, Yu; Baranoff, Etienne; Tan, Hua; Zhu, Weiguo

DOI: 10.1016/j.matlet.2014.10.043

License: Other (please specify with Rights Statement)

Document Version Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication in Materials Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Letters, Vol 139, January 2015, DOI: 10.1016/j.matlet.2014.10.043. Eligibility for repository checked February 2015

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIGA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 14. Apr. 2019
Synthesis and Properties of Novel Near-infrared Dye based on BODIPY and Diketopyrrolopyrrole Units

Yafei Wang, Jianhua Chen, Yuanhui Zhen, Haigang Jiang, Gui Yu, Yu Liu, Etienne Baranoff, Hua Tan, Weiguo Zhu

PII: S0167-577X(14)01831-X
DOI: http://dx.doi.org/10.1016/j.matlet.2014.10.043
Reference: MLBLUE17862

To appear in: Materials Letters

Received date: 29 July 2014
Accepted date: 8 October 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Synthesis and Properties of Novel Near-infrared Dye based on BODIPY and Diketopyrrolopyrrole Units

Yafei Wang a, Jianhua Chen a, Yuanhui Zhen b, Haigang Jiang a, Gui Yu b*, Yu Liu a, Etienne Baranoff c*, Hua Tan a, Weiguo Zhu a*

a Department of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in the Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China.

b Beijing National Laboratory for Molecular Sciences and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

c School of Chemistry, University of Birmingham, Birmingham, UK, B15 2TT.

d These authors contribute equally to this work.

Corresponding author: Dr. Weiguo Zhu

Tel: +86 (0) 731-58298280

Fax: +86 (0) 731-58292251

E-mail addresses: zhuwg18@126.com

Corresponding author: Dr. Gui Yu

Tel: +86 (0) 10-62613253

Fax: +86 (0) 10-62559373

E-mail addresses: yugui@iccas.ac.cn

Corresponding author: Dr. Etienne Baranoff

Tel: +44 (0) 121 414 2527

E-mail addresses: e.baranoff@bham.ac.uk
Abstract A novel near-infrared dye of DPP-BODIPY with a diketopyrrolopyrrole (DPP) central unit and two 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) flanking units has been synthesized and characterized. Its quasi-planar structure was confirmed by X-ray diffraction and panchromatic absorption from 300 nm to 1000 nm was exhibited both in solution and in solid state. Near-infrared emission at about 804 nm and low LUMO energy level at –3.93 eV are observed. Furthermore, ambipolar charge transporting properties with hole mobility of 1.5×10^{-5} cm2 V$^{-1}$ S$^{-1}$ and electron mobility of 2×10^{-6} cm2 V$^{-1}$ S$^{-1}$ were obtained in thin films.

Keywords: Near-infrared emission; luminescence; donor-acceptor structure; 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY); diketopyrrolopyrrole (DPP); electronic materials

1. Introduction

Photoactive organic dyes with absorption/emission features in the near infrared (NIR) between 700-1100 nm have attracted considerable interest because their optical property are appealing to a variety of applications such as organic semiconductor devices [1], energy conversion [2], biomedical sensing [3], and photodynamic therapy [4]. To date, various NIR absorbing/fluorescent materials based on metal complexes, ionic dyes, and extended π-conjugated chromophores have been reported [5,6]. Among them, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives have become one of the most fascinating family of NIR dyes due to their excellent stability, high fluorescence, and tunable optophysical properties via molecular functionalization [7-9].

Inspired by the strategies for low-band gap materials with conjugated donor-acceptor (D-A) systems, a wide range of D-A [10-12], A-D-A [13,14] and A-D-A-D-A [15-17] dyes have been reported. Considering that diketopyrrolopyrrole (DPP) is a widely used acceptor building block for organic semiconductor dyes
in particular when substituted with thiophene donor groups, due to strong charge-transfer transitions and good \(\pi\)-delocalization, herein, we designed a novel A-D-A-D-A NIR dye of DPP-BODIPY, in which DPP and BODIPY units were used as the acceptor building blocks and bithiophene group was employed as the donor bridges. To ensure good solubility of DPP-BODIPY in organic solvent, 2-ethylhexyl chains were grafted onto the central DPP unit. We envisioned this molecule would present excellent NIR characteristics due to efficient intramolecular charge transfer transitions. For this reason, in this context, the relationship between the DPP-BODIPY structure and optophysical property were explored. And its organic field-effect transistors (OFET) were fabricated to evaluate the charge transport properties of this material.

2. Results and discussion

Materials

All reagents were purchased from Aldrich, Acros and TCI companies and used as received. All reactions and manipulations were carried out under \(N_2\) atmosphere with the use of standard inert atmosphere techniques. The procedures of 2 and 3 are described in the supporting information.

Synthesis of DPP-BODIPY

A mixture of compound 3 (98 mg, 0.1 mmol) and 2,3,5,6-tetrachlorocyclohexa-2,5-diene-1,4-dione (54 mg, 0.22 mmol) in \(\text{CH}_2\text{Cl}_2\) (10 mL) was stirred for 8 h at room temperature under \(N_2\) atmosphere. Then, \(\text{BF}_3\cdot\text{Et}_2\text{O}\) (1 mL) was added. After 5 min, triethylamine (2 mL) was added, and the reaction mixture was stirred for a further 3 hours, after which it was quenched with water. The organic layer was separated, dried over \(\text{MgSO}_4\), filtered, and evaporated. The crude compound was purified by column chromatography on silica (\(\text{CH}_2\text{Cl}_2\)) to afford a purple powder. Yield: 71%. \(^1\text{H NMR}\) (400 MHz, \(\text{CDCl}_3\)) \(\delta\) 8.97 (s, 1H), 7.95 (s, 2H), 7.57 (s, 1H), 7.48 (s, 2H), 7.35 (s, 2H), 6.62 (s, 2H), 4.08 (s, 2H), 1.93 (s, 1H), 1.35 (d, \(J = 35.0\) Hz, 8H), 0.93 (dd, \(J = 17.3, 10.3\) Hz, 6H). \(^{13}\text{C NMR}\) (100 MHz, \(\text{CDCl}_3\)) \(\delta\): 161.52,
144.04, 142.28, 140.72, 139.41, 138.22, 136.66, 134.85, 134.33, 134.05, 130.96, 126.34, 125.94, 118.64, 109.25, 46.15, 39.40, 30.46, 29.68, 28.60, 23.62, 23.07, 14.02, 10.61. MALDI-MS (m/z): 1068.94; Found: 1068.39, 1049.37 [M-F].

3. Results and discussion

As shown in Scheme 1, we obtained the DPP-BODIPY dye via a three-step synthesis route. Compound 1 was obtained according to previous literature [19]. Then, Pd-catalyzed Suzuki coupling between compound 1 and 5-formylthiophen-2-ylboronic acid afforded compound 2 in 65% yield. Compound 3 was synthesized by the condensation of 2 with pyrrole in the presence of InCl₃•4H₂O in catalytic amount with good yield of 64%. Finally, chelating reaction between compound 3 and BF₃•Et₂O in the presence of chloranil led to the target compound DPP-BODIPY as a purple solid with 71% yield. The structure of the resulting molecule was confirmed by ¹H NMR, ¹³C NMR and TOF-Mass (Fig. S1, ESI).

To investigate the molecular structure along with the packing structure in solid state, single crystals of DPP-BODIPY used for X-ray diffraction analysis have been grown by slow evaporation of its CH₂Cl₂ solution. As shown in Fig. 1 and Fig. S2, the DPP core and thiophene parts display a quasi-planar structure with torsion angle low than 10° between the rings. However, both flanking BODIPY units are tilted by about 47° from the bithiophene-DPP plane owing to significant steric hindrance between the neighboring hydrogen atoms on the BODIPY and the thiophene units. The molecules are packed in a slipped arrangement with close contact (3.5 Å) between a bithiophene of one molecule and the DPP unit of another one (see ESI).

Fig. 2 shows the UV-vis absorption spectra of DPP-BODIPY in chlorobenzene (10⁻⁵ mol/L) solution and its thin film. A broad absorption profile from 250 nm to 800 nm is observed in solution. Two absorption peaks located at 350 nm (2.8 × 10⁴ M⁻¹ cm⁻¹) and 522 nm (8.74 × 10⁴ M⁻¹ cm⁻¹) are assigned
to the π-π* transition of the BODIPY moiety [20]. The broad absorption band at low energy (670 nm, 6 × 10^4 M^-1 cm^-1) is attributed to an intramolecular charge transfer (ICT), which is more intense than that of A-D-D-D-A-type BODIPY dyes [21]. To further explore the relationship between structure and absorption, the temperature-dependent and concentration-dependent absorption spectra were studied (Fig. S3, ESI). As temperature increased from 25 °C to 95 °C, the broad absorption band at 670 nm is hypsochromically shifted, but the narrow band at 520 nm undergoes virtually no change. At the same time, no change is observed for the absorption spectra at different concentrations. It implies that no aggregation occurs in solution. On the contrary, in thin film, the absorption spectrum significantly expands to near-infrared area. This is attributed to aggregation in solid state and additional ICT transitions.

At the 517 nm excitation wavelength, the DPP-BODIPY presents an NIR photoluminescent emission at 804 nm in chlorobenzene solution with moderate luminescent quantum yield of 0.23 (Fig. 3). The PL spectra display minor changes in solution with increasing temperatures (Fig. S4), further indicating that no aggregation occurred in solution. However, no emission is detected up to 900 nm (limit of the instrument) in the film.

The electrochemical properties of DPP-BODIPY were measured in solution in dichloromethane by cyclic voltammetry. As shown in Figure S5, DPP-BODIPY displays two clear irreversible oxidation peaks and one reduction peak with onset potential of 0.34 V, 0.44 V and -0.87 V vs Fe^+/Fe, respectively (ESI). According to the equations of \(E_{\text{HOMO}} = -(E_{\text{ox}} + 4.8) \) and \(E_{\text{LUMO}} = -(E_{\text{red}} + 4.8) \), the HOMO and LUMO energy levels were calculated to be -5.14 eV and -3.93 eV [22]. Compared to the reported DPP derivatives, DPP-BODIPY has a lower LUMO energy level due to the enhanced acceptor strength of the
dual BODIPY unit. Interestingly, the electrochemical bandgap of 1.21 eV matches well with the onset of absorption in thin film (1.24 eV).

To further investigate the electronic structure of DPP-BODPY, DFT calculations at the B3LYP/6-31G(d) level were carried out. The electron density distribution patterns of the HOMO and LUMO of DPP-BODIPY are shown in Fig. S6. As expected, the HOMO of DPP-BODIPY is mainly located on the DPP central unit while the LUMO is largely concentrated on the BODIPY unit. Accordingly, the HOMO and LUMO energies were evaluated to –4.982 eV and –4.098 eV, respectively, in line with the experimental results.

Charge carrier mobilities in DPP-BODIPY were investigated via bottom-contact organic field effect transistors (OFET). This dye showed ambipolar charge transporting character with both medium electron and hole mobilities (Fig. 4). The maximum hole mobility and electron mobility was determined to be 1.5x10⁻⁵ cm² V⁻¹ s⁻¹ and 2x10⁻⁶ cm² V⁻¹ s⁻¹, respectively. To probe the reasons for the relatively low mobilities, the surface morphology of this compound was explored by atomic force microscopy (AFM). As shown in Fig. S7, the DPP-BODIPY film exhibits a poor crystallinity, which is adverse for charge mobilities, leading to the non-ideal OFET [23].

4. Conclusion

In summary, a novel NIR dye based on a central DPP acceptor unit connected to two BODIPY acceptor units through donor bithiophene bridges was prepared. The DPP-BODIPY dye exhibits a planar structure and the NIR emission in solution, as well as a low LUMO energy level. Most interestingly, panchromatic absorption up to 1000 nm was observed in thin film. Ambipolar charge transporting properties was achieved due to the introduced push-pull unit.
Acknowledgments

Financial supports from the National Natural Science Foundation of China (21202139, 51273168 and 21172187), the Innovation Group in Hunan Natural Science Foundation (12JJ7002), the Scientific Research Fund of Hunan Provincial Education Department (12B123) and Natural Science Foundation of Hunan (12JJ4019, 11JJ3061).

References

Figures captions

Scheme 1 synthetic route of DPP-BODIPY

Fig. 1 ORTEP view of DPP-BODIPY (50% displacement ellipsoids). H atoms are omitted for clarity. C, gray; O, red; N, blue; B, pink; F, green.

Fig. 2 UV/vis absorption spectra of DPP-BODIPY in chlorobenzene (black) and as a thin film (red).

Fig. 3 PL spectra of DPP-BODIPY in chlorobenzene.

Fig. 4 (a) Transfer curves and (b) output characteristics of OFET devices.

Scheme 1

![Scheme 1 diagram]

Figure 1

![Figure 1 image]

Figure 2

![Figure 2 image]

Figure 3
Figure 4

(a) Plot showing I_{DS} vs V_{DS} for $V_{DS} = -40V$. (b) Plot showing I_{DS} vs V_{DS} for various V_{DD} values.
Research Highlights

> A-D-A-D-A dye based on DPP and BODIPY units has been synthesized and characterized. Novel DPP-BODIPY dye possesses quasi-planar structure and low LUMO level. Absorption from 300 nm to 1000 nm is observed both in solution and neat film. Near-infrared emission at 804 nm and ambipolar transporting properties are revealed.
Graphical abstract

DPP-BODIPY

 acceptor

 donor

 R = (a.u.)

 normalized absorbance

 wavelength (nm)

 normalized PL emission

 wavelength (nm)