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Abstract 

Withdrawal from long-term dosing with exogenous progesterone precipitates increased anxiety-

linked changes in behavior in animal models due to the abrupt decrease in brain concentration of 

allopregnanolone (ALLO), a neuroactive metabolite of progesterone. We show that a withdrawal-

like effect also occurs during the late diestrus phase (LD) of the natural ovarian cycle in rats, when 

plasma progesterone and ALLO are declining but estrogen secretion maintains a stable low level. 

This effect at LD was prevented by short-term treatment with low dose fluoxetine.  
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During LD, but not at other stages of the estrous cycle, exposure to anxiogenic stress induced by 

whole body vibration at 4Hz for 5min evoked a significant decrease in tail flick latency (stress-

induced hyperalgesia) and a decrease in the number of Fos-positive neurons present in the 

periaqueductal gray (PAG). The threshold to evoke fear-like behaviors in response to electrical 

stimulation of the dorsal PAG was lower in the LD phase, indicating an increase in the intrinsic 

excitability of the PAG circuitry. All these effects were blocked by short-term administration of 

fluoxetine (2 x 1.75mg kg-1 i.p.) during LD. This dosage increased the whole brain concentration 

of ALLO, as determined using gas chromatography - mass spectrometry, but was without effect 

on the extracellular concentration of 5-HT in the dorsal PAG, as measured by microdialysis.  

We suggest that fluoxetine-induced rise in brain ALLO concentration during LD offsets the sharp 

physiological decline, thus removing the trigger for the development of anxiogenic withdrawal 

effects.  
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1. Introduction   

Premenstrual syndrome (PMS) and its more severe counterpart: premenstrual dysphoric disorder, blights 

the lives of millions of women worldwide (Steiner, 1997). In susceptible women the symptoms, which 

include angry outbursts, irritability and anxiety (ACOG, 2001), can be considered an exaggerated and  

inappropriate response to everyday acute stressful challenges. Surprisingly, given the enormity of the 

problem of PMS, there has been relatively little basic scientific study into its neurophysiological basis. 



 3

What is clear from clinical studies is that PMS is dependent on cyclical variations in female sex hormones. 

Symptoms do not appear in anovulatory cycles (Backström et al., 2003). However ovulation itself is not 

the key factor since many women taking the combined contraceptive pill on a 21 day on, 7 day off dosing 

regimen, which prevents ovulation, also experience PMS-like symptoms, which peak during the 7 day 

drug free period (Kadian and O’Brien, 2012). In both cycling women and those taking the pill, symptoms 

occur at a time when blood levels of progesterone and estrogen, or their synthetic analogues, are in rapid 

decline. 

In rats, withdrawal from long term dosing with exogenous progesterone at doses sufficient to raise 

progesterone to the high physiological range, precipitates increased anxiety ( Smith et al., 1998; Smith et 

al., 2006). Spontaneously cycling rats in the late diestrus phase, when progesterone secretion declines 

sharply but estrogen secretion remains at a stable low level (Butcher et al., 1974), also become more 

fearful in an open field arena (Devall et al., 2009).  Moreover, exposure of rats to 5min of mild anxiogenic 

vibration stress (5min vibration at 4Hz whilst confined in a tube, Jørum 1988) during late diestrus evokes 

a hyperalgesia, which is not seen when the animals are exposed to the same stressor at other stages of the 

cycle (Devall et al., 2009).  These findings suggest that falling progesterone predisposes to an enhanced 

response to psychogenic stress. By analogy, the rapid decline in ovarian progesterone secretion in women 

during the late luteal phase might also provide a trigger for the enhanced responsiveness to psychogenic 

stress, which is a feature of the premenstrual period in many women (Nilni et al., 2011; Hoyer et al., 2013; 

Gollenberg et al., 2010). Thus whilst the cause of PMS in women is likely to be multifactorial, withdrawal 

from progesterone could be a significant contributory precipitating factor. 

Progesterone passes readily through the blood brain barrier. The active agent that triggers the neuronal 

response to progesterone withdrawal in female rats is not however the native steroid hormone, but its 

neuroactive metabolite allopregnanolone (ALLO: 5�-pregnan-3�-ol-20-one or 3�,5�-

tetrahydroprogesterone) (Gulinello et al., 2003; Smith et al., 1998). This progesterone metabolite ALLO is 

a potent positive allosteric modulator of the actions of GABA at GABAA receptors (Paul and Purdy, 1992) 
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and its concentration in random cyclic female rat brain correlates with that of its precursor progesterone in 

plasma (Corpéchot et al., 1993). Ovarian secretion of both progesterone and ALLO decreases sharply at 

late diestrus (Ichikawa et al., 1974; Holzbauer, 1975), and so the concentration of ALLO in the brain will 

decrease in parallel. There is some endogenous production of progesterone and ALLO in the male rat 

brain (Cook et al., 2014). A similar situation appears to exist in the female rat, as evidenced by the 

persistence of these steroids in the brains of ovariectomised and adrenalectomised animals, but this is at 

concentrations around 9-fold and 40-fold lower, respectively, than those seen in the brains of intact 

random cycling rats (Corpéchot et al., 1993). Even in female rats at late diestrus, when ovarian 

progesterone secretion is low, brain concentrations of ALLO and progesterone were 10-fold higher than in 

males (Fry et al., 2014). Whether naturally during the ovarian cycle or following administration of 

exogenous progesterone, withdrawal from ALLO, triggers upregulation of extrasynaptic GABAA 

receptors in the brain and consequent changes in excitability of neuronal circuits associated with anxiety 

(Gangisetty and Reddy, 2010; Griffiths and Lovick, 2005a; Griffiths and Lovick, 2005b; Gulinello et al., 

2003; Lovick et al., 2005; Smith et al., 1998). The dynamic of the fall in brain concentration of 

progesterone appears critical because abrupt withdrawal from an exogenous progesterone-dosing regimen 

in rats precipitates an increase in responsiveness to anxiogenic stressors, whilst a gradually tapered 

withdrawal does not (Doornbos et al., 2009 ; Saavedra et al., 2006).  In this respect it is interesting that in 

women, an association between clinical features of PMS and rate of decrease in progesterone during the 

luteal phase has been noted (Halbreich et al., 1986). Thus we reasoned that if the sharp fall in brain ALLO 

concentration that occurs at the end of the estrous cycle in rats is a trigger for the development of 

increased stress sensitivity, measures to produce a more gradual reduction in brain concentration of ALLO 

at the end of the estrous cycle should prevent the development of withdrawal-like symptoms.  

In male rats and mice, the antidepressant fluoxetine (FLX) has been shown to induce an increase 

in the concentration of ALLO in the brain, which can be detected within 20 min of acute 

administration (Pinna et al., 2009; Serra et al., 2001; Uzunov et al., 1996). We therefore 
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hypothesized that if FLX produces a similar effect in female rats in late diestrus, then short term 

dosing with FLX during this stage of the ovarian cycle should offset the rapid physiological fall in 

the concentration of ALLO. Further, that the stimulus for the development of withdrawal effects, 

which normally characterise this phase of the ovarian cycle, should be absent and changes in 

behavioral responsiveness to stress should not occur. To test this hypothesis we chose to focus on 

changes in neuronal responsiveness in the PAG, since we have already shown that estrous cycle-

linked changes in GABAA receptor expression and neuronal excitability occur in this structure 

alongside changes in behavioral responsiveness (Lovick et al., 2005; Devall et al., 2009; 2011). 

Moreover electrical stimulation of the PAG evokes behavior that characterises responses to 

threatening and hence stressful situations in the rat and is sensitive to actions of anxiolytic drugs 

(Borelli et al., 2004).  

 
2. Experimental procedures 

The following is a brief outline of the Methods used. Detailed descriptions are available as a 

Supplementary File.  

2. 1 Animals and drug treatment regimen 

The estrous cycle of female Wistar rats was established from daily vaginal smears taken at 

approximately 09.00h and only rats that had displayed at least two regular cycles used for the 

present study. Based on vaginal cytology, cycle stages were classified as follows:  proestrus:  

mainly lymphocytes; estrus: mainly cornified cells; early diestrus: mainly leucocytes with well-

defined lobular nuclei; late diestrus: fewer cells than in early diestrus, nucleus “clumped”, 

presence of amorphous, disintegrating leucocytes (Brack and Lovick, 2007). Fluoxetine 

hydrochloride (FLX) (Sigma, 1.75 mg kg-1 i.p.) or saline vehicle was administered at 16:30-17:00 

h on the evening of early diestrus. A second dose of fluoxetine or the saline vehicle was given in 

late diestrus the following morning 1h prior to behavioral or neurochemical testing.  The animals 
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allocated for brain steroid measurement were killed by decapitation and the whole brain, minus the 

olfactory bulbs, removed rapidly and stored frozen at -80oC until analysis. The dose of FLX was 

chosen as one that has been shown in male rats to produce a significant rise in brain concentration 

of ALLO (Uzunov et al., 1996) but is below the dose reported to produce significant rises in brain 

5-HIAA and 5-HT levels (Fuller et al., 1974; Rutter and Auerbach, 1993) or to produce 

behaviorally measurable effects via actions on brain 5-HT systems after acute administration in 

vivo (�10mg kg-1) (Silva and Brandão, 2000).  

 

2.2 Neurochemical studies 

2.2.1 Brain allopregnanolone measurement 

To establish whether the effects of FLX in preventing the behavioral and neuronal changes that 

normally occurred during late diestrus could be due to a steroidogenic action of the drug, we 

measured allopregnanolone concentration in whole brain homogenates. Rats were dosed with FLX 

(1.75mg kg-1 i.p.) or vehicle on the afternoon of early diestrus and again on the next morning 

when they were in late diestrus (see 2.1). In order to eliminate the possibility of eliciting stress-

induced increases in allopregnanolone, this group of rats did not undergo behavioral testing. They 

were killed by decapitation 1h after receiving the final dose on the morning of late diestrus. The 

brain was removed rapidly, separated from the olfactory bulbs and the tissue immediately snap 

frozen in solid CO2 pellets. Tissue was then stored at -80oC prior to analysis of steroid content.  

Following extraction and fractionation of free steroids, the concentration of 

allopregnanolone in brain homogenates was measured by selective ion monitoring of its 

methyloxime trimethylsilyl ether through gas chromatography - mass spectrometry (GC-MS), 

using the procedures described by Ebner and co-workers (Ebner et al., 2006) (for more details see 

Supplementary file). 
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2.2.2 Measurement of extracellular 5-HT concentration. 

Guide cannulae were chronically implanted into the dPAG in 14 rats (see Supplementary file for 

details). Following a recovery period of 5 to 7 days, rats in the afternoon of their early diestrus 

phase were treated with FLX (1.75 or 10mg kg-1 i.p.) or saline following the same dosing protocol 

used for behavioral experiments (see above). Next day, in the morning of late diestrus, a 

microdialysis probe was inserted into the dPAG via the guide cannula. A stabilization period of 2h 

was allowed before commencing sample collection. First, samples of dialysate were collected 

every 30 min over a further 2h period to establish baseline values. The second injection of 

fluoxetine was then given and 6 more samples of dialysate were collected every 30 minutes. Thus 

the effect of FLX on concentration of 5-HT in the extracellular fluid in the dPAG was tested over 

the equivalent time period that behavioral testing was carried out in other groups of rats (see 

above). Since the dose of FLX that produced effects on behavior had no effect on extracellular 5-

HT concentration in the PAG (see Results 3.1.2.2), as a positive control we also administered FLX 

at a higher dose of (10mg kg-1) to another group of rats in late diestrus, in order to ensure that our 

system was able to detect changes in 5-HT concentration. 

 

2.3 Behavioral studies 

2.3.1 Induction of stress-induced hyperalgesia 

Each rat was habituated, over three daily 30min sessions, to being constrained in a plexiglass tube 

in which it could rest comfortably but not turn around. Nociceptive threshold was assessed using 

the tail flick reflex in response to radiant heat applied to a 3mm diameter spot on the blackened 

underside of the tail. Tail flick latencies were measured at 5min intervals to establish a baseline 

(mean of 3 tail flick tests) before subjecting the rat to 5min of anxiogenic stress by vibrating the 

restraining tube at 4Hz for 5min. Tail flick testing then resumed for a further 20min (Devall et al., 
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2009).  Experiments were carried out on rats at all stages of the estrous cycle but each rat was 

tested only once, in order to avoid the possibility of learned effects due to repeated testing. 

Wherever possible, the experimenter was blinded to the estrous cycle stage of the animal. In all 

experiments, a video recording was made, so that behavior could be analysed off-line by other 

observers who were blinded to hormonal status. 

 

2.3.2 Behavioral responses to direct electrical activation of the periaqueductal grey matter 

Bipolar stimulating electrodes were chronically implanted into sites in the dorsal half of the 

periaqueductal gray matter (dPAG) (see Supplementary file for details). The PAG was stimulated 

for 10s periods (60Hz sine wave, intensity increased in 5�A increments) at pseudorandom 

intervals (30-120s) in order to determine the threshold current intensity needed to evoke the 

following behaviors (Brandão et al., 2008): 

1. freezing (cessation of all movement apart from breathing, believed to represent evaluation of a 

distal threat),  

2. escape (running and/or jumping, a measure of the response to proximal threat),   

3. post-escape freezing (freezing that occurred after interruption of PAG stimulation at escape 

threshold).  

The effect of PAG stimulation was tested on each rat at the four stages of its estrous cycle. The 

stage at which it was first tested was assigned randomly.  

 

2.4 Functional activation of neurons in the PAG. 

The effect of vibration stress on expression of the immediate early gene c-fos was examined in 

animals that had undergone behavioral testing for stress-induced hyperalgesia. Following the 

stress-testing protocol (see above) rats were returned to their home cages. Two hours following 

the exposure to vibration stress or at the equivalent time in non-stressed controls, they were 
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removed from their cages, anesthetized and the brain fixed by vascular perfusion, sectioned and 

processed to reveal Fos-like immunoreactivity. For each animal, the density of Fos-positive cells 

was sampled in 4 representative coronal sections through the PAG taken at antero-posterior levels 

-6.04, -7.04, -7.8 and -8.72 (Paxinos and Watson, 1986). For further details of the Method see 

Supplementary file. 

 

2.5 Data analysis 

The data was analysed using repeated measures two-way or one-way ANOVA, as appropriate 

with post hoc comparisons, or student’s t-test as appropriate. Full details of statistical methods are 

available in the Supplementary Methods file. 

 

3. Results 

3.1 Neurochemical studies  

3.1.1 Effect of fluoxetine on allopregnanolone concentration in late diestrus.  

Allopregnanolone was detected in the brain tissue of all animals. However, in the FLX-treated 

group (n=5) the concentration was more than double that measured in the saline-treated group 

(n=6) (*P<0.01, unpaired t-test, Fig. 1A). 

 

3.1.2. Effect of fluoxetine on extracellular brain 5-HT concentration in late diestrus. 

Microdialysis samples for 5-HT measurement were taken after the second dose of FLX, i.e. at the 

equivalent time to when other rats were used for the behavioral testing or the collection of brain 

samples for ALLO measurement. One group of rats used for microdialysis received the same low 

doses of FLX (2 x 1.75 mg kg-1) as animals used for the behavioral and neurochemical studies.  In 

these rats that received the lower dose of FLX (1.75 mg kg-1) the concentration of 5-HT taken in 

the period immediately prior to the second drug injection did not differ from the saline control 
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group (1.5� 0.15 pg �l-1 v. 2.4�0.42 pg �l-1 respectively). However, in the group that received the 

higher doses of FLX (2 x 10 mg kg-1), the concentration of 5-HT prior to the second injection 

(3.8�1.07 pg �l-1), was significantly higher than the saline-treated group (p<0.05, one-way 

ANOVA followed by Newman Keuls), presumably reflecting inhibition of serotonin re-uptake by 

this dose.  

After the second injection of FLX, post-hoc comparisons showed that the lower dose of FLX 

(1.75mg kg-1), i.e. the same dose as used in behavioral studies, still had no effect on the 

extracellular concentration of 5-HT in the dialysate compared to control group (p > 0.05) (Fig 1B). 

In contrast, the second higher dose of FLX (10mg kg-1) caused a significant decrease in the 

concentration of 5-HT in the dialysate compared to baseline samples of the same group (p < 0.05) 

(Fig 1B).  The minimum concentration of 5-HT (0.78�0.35 pg �l-1) measured was above the lower 

limit of detection of our system (approximately 0.5 pg �l-1).  Histological analysis revealed that all 

the dialysis probes were localized to the dorsal PAG (Fig. 1C). 

 

3.2. Behavioral testing 

3.2.1 Effect of fluoxetine on the development of stress-induced hyperalgesia during late 

diestrus 

Baseline tail flick latencies were similar at all stages of the estrous cycle and regardless of drug 

treatment status. In non-stressed controls and in saline-injected rats, tail flick latency did not 

change significantly over the course of the experiment (Fig 2). However, following exposure to 5 

min vibration stress, the vehicle-treated animals in late diestrus, but not at other cycle stages, 

displayed hyperalgesia, manifested as a significant decrease in tail flick latency (TFL), lasting 20 

min (Fig. 2).  Administration of FLX (2 x 1.75mg kg-1 i.p) to rats in the late diestrus phase had no 

effect on baseline TFLs but blocked completely the development of stress-induced hyperalgesia 

(Fig 2).  
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3.2.2. Estrous cycle-linked changes in PAG-evoked fearful behavior - effect of fluoxetine.  

In each rat the effect of electrical stimulation of the PAG was tested on 4 consecutive days i.e. at 

different stages of its estrous cycle.  There was a significant estrous cycle-linked effect on the 

stimulus intensity required to evoke different aspects of fear-like behavior, as documented below. 

Freezing and escape behaviors 

Two-way ANOVA with repeated measures considering estrous cycle stage and treatments as the 

factors applied for freezing behavior showed signi�cant differences between the stages of the 

estrous cycle but not between treatments. Also there was a significant interaction between the 

factors. Post-hoc comparisons indicated that the dPAG stimulation current intensity, which 

evoked freezing behavior, was significantly lower in late diestrus compared to other periods of the 

estrous cycle (n=7, p < 0.05) (Figs. 3A).  Post-hoc comparisons for escape behavior determined 

that it was evoked at lower currents in late diestrus compared to proestrus and early diestrus (Fig. 

3B). The analysis also clearly indicated that pre-treatment with FLX in late diestrus (n=10) 

prevented the estrous cycle-linked increase in sensitivity of the dPAG (Figs 3A and 3B).  In 

contrast to the saline-treated rats, the threshold current required for eliciting freezing and escape 

behaviors in late diestrus in fluoxetine-treated rats did not differ from thresholds at other stages of 

the cycle. 

 

Post-escape freezing

Two-way ANOVA with repeated measures applied on the duration of post-escape freezing 

behavior showed no difference between treatments or an interaction between treatments and stages 

(Fig. 3C). 
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Order of testing 

In both the saline and FLX-treated group of animals, there was no correlation between thresholds 

for evoking fear-like behaviors and the cycle stage at which the first test was carried out. In the 

saline-treated rats the lowest thresholds always occurred during the late diestrus phase regardless 

of whether the rat was being tested for the first time or had been tested previously when in another 

stage of the estrous cycle. Similarly, there was no evidence for the development of tolerance to 

repeated testing over the 4 days of the experiment, regardless of the stage at which the rat was first 

tested (p > 0.05 in all cases). In all groups, the electrode placements were localized to the dorsal 

half of the PAG (dPAG) (Fig. 4). 

 

3.3 Functional activation of neurons in the PAG.  

We investigated expression of the immediate early gene c-fos as an index of functional activation 

of the PAG circuitry. In the animals that had undergone behavioral testing for stress-induced 

hyperalgesia (see above), Fos-like immunoreactivity was present in nuclei throughout the PAG. 

For the control rats (no vibration stress) the density of labelled cells was similar at all cycle stages 

(Fig. 5). And in rats that were exposed to 5min of vibration stress, the number of labelled cells 

present in the PAG in proestrus, estrus and early diestrus was not significantly different from the 

non- stressed rats. However, in rats in late diestrus, fewer labelled cells were present in 

comparison to other stages of the cycle, an effect which was most pronounced in the lateral part of 

the rostral half of the PAG (Fig. 5).  This effect of vibration stress in LD was blocked completely 

by pre-treatment with FLX.  Indeed, after FLX in late diestrus the number of Fos-immunoreactive 

cells in the PAG following vibration stress was increased significantly compared to saline-treated 

rats (Fig. 5). The effect of FLX was most pronounced in the lateral column of the rostral half of 



 13

the PAG where there was a threefold increase in the number of labelled cells compared to saline-

treated controls (Fig. 5). 

 
4. Discussion 

In the present study, 5min exposure to anxiogenic vibration stress induced hyperalgesia during late 

diestrus but not at other stages of the cycle, as shown previously (Devall et al., 2009). 

Interestingly, during nociceptive flexor reflex threshold testing in women (arguably also a mildly 

stressful procedure) a mild hyperalgesia has been demonstrated during the luteal phase, similar to 

our finding in rats (Tassorelli et al., 2002). In addition, in the present study the thresholds for fear-

like freezing and escape behavior evoked in response to direct electrical stimulation in the dPAG 

were found to be lower in late diestrus compared to other cycle stages. Changes in motor control 

seem an unlikely explanation for this effect since freezing and escape are opposing locomotor 

responses, yet both were sensitive in the same way to estrous cycle stage, i.e. a lowered threshold 

for evoking the responses in late diestrus. It also seems unlikely that the effect of PAG stimulation 

in late diestrus was pain related since it was blocked by fluoxetine, which is not known to have 

analgesic properties. Fluoxetine also prevented the development of vibration stress-evoked 

hyperalgesia in late diestrus as well as the reduction in the expression of Fos-like 

immunoreactivity in the PAG in response to the vibration stress. 

The dose of fluoxetine chosen for this study (1.75mg Kg-1 i.p.) was at the lower end of the 

range reported to raise brain ALLO concentration in male rats (Uzunov et al., 1996), which was 

the only data available at the time our study began.  Similar findings were subsequently reported 

in male mice by Pinna et al. (2009) and Serra et al. (2001), who showed that fluoxetine could raise 

brain ALLO concentration at doses below the threshold for effects on 5-HT systems. Indeed, the 

EC50s for an influence of fluoxetine on ALLO were 10-50 times lower than the EC50 required to 

inhibit 5-HT reuptake. Based on these findings it is possible that an even lower dose of fluoxetine 

might have been effective in the present study. Nevertheless, at the present dosage of FLX used to 
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prevent the stress-induced hyperalgesia of female rats in late diestrus, brain ALLO concentration 

was raised yet there was no change in the extracellular concentration of 5-HT in the dPAG. We 

cannot rule out an action of fluoxetine on 5-HT systems in other brain regions. However, the 

published data in males suggests that the dose we used would at best produce only small, transient 

effects (see Fig 1 of Rutter and Auerback, 1993).  Moreover, fluoxetine has been shown to be less 

effective in raising extracellular 5-HT concentration in females compared to males after acute 

administration (Masswood et al, 1999). Thus it is most likely that the effects of fluoxetine in the 

present study were due its effects on neurosteroid synthesis rather than 5-HT systems. 

In female rats, ALLO in the brain appears to arise predominantly from local metabolism of 

ovarian progesterone, with a significant correlation between brain ALLO and plasma progesterone 

across the estrous cycle (Corpechot et al., 1993). At late diestrus there is a sharp fall in plasma 

progesterone (Butcher et al., 1974) and the ovarian secretions of both this steroid and ALLO fall 

to the lowest values across the cycle (Ichikawa et al., 1974; Holzbauer, 1975). In male rats and in 

mice, a single dose (18 mg kg-1) of fluoxetine produces a rapid onset (<15 min) increase in the 

brain concentration of ALLO, followed by a more gradual fall (> 2 h; Uzunov et al., 1996; Pinna 

and Rasmusson 2012). The elevation of brain ALLO by fluoxetine was thought to be due to an 

activation of the aldo-keto reductase enzyme, which produces this steroid from 5�-

dihydroprogesterone (Griffin and Mellon 1999). Such a mechanism has been questioned however 

(Trauger et al., 2002) and we have shown recently that FLX raises ALLO concentration in female 

rat brain by inhibiting the microsomal dehydrogenase oxidising ALLO to 5�-DHPROG (Fry et al., 

2014 in press). Acute treatment with FLX has been shown to inhibit the cytochrome CYP2C11 

enzyme in liver (Wójcikowski et al., 2013) but this would not be expected to influence the 

synthesis of ALLO.  

In our spontaneously cycling female rats, the short term dosage beginning late in the 

afternoon of early diestrus with a second dose on the morning of late diestrus, likely offset the 
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sharp decline in plasma and brain ALLO that normally occurs in late diestrus. However, 

administration of FLX did not simply shift the withdrawal effect on by a day since thresholds for 

evoking fear-related behaviors by electrical stimulation of the PAG a day later in proestrus were 

no different from saline-treated animals. The major metabolite of FLX is norfluoxetine, which 

Pinna et al. (2009) have shown to be more potent than FLX itself at elevating mouse brain ALLO 

and which in rat brain has a half-life of around 8h following a single dose (Qu et al., 2009).  Thus 

it is likely that after administration of FLX in the current study, the brain concentration of ALLO 

was elevated throughout late diestrus. 

 Behavioral evidence for the estrous cycle-linked change in excitability of the PAG was 

accompanied by evidence of changes in the functional activation of neurons induced by exposure 

to mild anxiogenic vibration stress. Thus, in the early stages of the cycle (i.e. proestrus, estrus and 

early diestrus), exposure to the stressor failed to evoke a significant change in Fos expression in 

the PAG. This contrasted with late diestrus, when the vibration stress significantly lowered the 

number of Fos-positive neurons, particularly in the rostral half of the nucleus in the dorsal, 

dorsolateral and lateral columns.  These results imply deactivation of a tonically active cell 

population in response to the acute stress applied during late diestrus.  Reduced activation within 

GABAergic populations induced by stress is not unprecedented.  In male rats, reduced activation 

of GABAergic neurons in the prefrontal cortex (i.e. fewer Fos-positive cells present) was reported 

following exposure to a novel anxiogenic stress (Weinberg et al., 2010) whilst a decrease in 

extracellular concentration of GABA has been observed in the PAG during contextual fear (Rea et 

al., 2009). Two recent studies in women also showed acute stress-evoked deactivation in the 

BOLD fMRI signal in both the PAG and the medial prefrontal cortex during the late 

follicular/mid-cycle (Goldstein et al., 2010) and the late luteal (Ossewaarde et al., 2010) phase of 

the menstrual cycle, the latter coinciding with increased sensitivity to acute emotional stress 

(Goldstein et al., 2010; Ossewaarde et al., 2010), as seen during the analogous ovarian cycle stage 
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in rats (see Introduction).  

Although the phenotype/s of the Fos-labelled cells in the PAG in the present study was not 

identified, a stress-induced deactivation of the intrinsic GABAergic interneurone population 

during late diestrus would be consistent with the above findings in women. Afferent input from 

nociceptors is modulated at the spinal level by tonic activity in descending facilitatory and 

inhibitory systems that originate in the PAG (Gebhart, 2004). Under normal circumstances, the 

balance between the activity in these systems has been suggested to be biased towards facilitation, 

at least in males (Bee and Dickenson, 2008). Stress-induced inhibition of GABA tone on these 

control systems during late diestrus in females, might tip the balance further in favor of 

facilitation, thereby lowering the threshold for evoking nociceptive reflexes such as the tail flick. 

GABAergic neurones are present throughout the PAG of the rat and are especially populous in the 

dorsolateral sector (Griffiths et al., 2005a; Griffiths et al., 2005b; Lovick and Paul, 1999).  In the 

cat they constitute some 36% of the total population in this sector (Barbaresi, 2005). In late 

diestrus or after withdrawal from dosing with exogenous progesterone, expression of �4, �1 and � 

GABAA receptor subunits on the GABAergic interneuron population in the PAG is upregulated, 

triggered by the declining brain concentration of progesterone (and hence ALLO) (Griffiths and 

Lovick, 2005a; 2005b). Since �4, �1 and � subunits can co-assemble to form functional receptors 

(Lovick et al., 2005) and the presence of � subunits indicates an extrasynaptic location (Farrant 

and Nusser, 2005), the tonic current carried by the interneurone population of the PAG would 

increase. Indeed, we have shown in vivo, that the level of GABAergic tone, which regulates the 

excitability of the output neurons in the PAG, is reduced during late diestrus (Brack and Lovick, 

2007).  As a consequence, the circuitry becomes intrinsically more excitable, as reflected in the 

present study by the decrease at late diestrus in the threshold current required to evoke fear-like 

behaviors in response to electrical stimulation of the dPAG.  

The above changes in behavior of the rats were associated with changes within the PAG at 
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the cellular level. Rather than simply normalizing Fos expression in late diestrus to the level seen 

in earlier stages of the cycle, FLX treatment transformed the stress-induced decrease in the 

number of fos-positive neurons in the PAG in late diestrus into a large increase in labelled cells, 

most prominently in the lateral column at mid-PAG level. Thus in the presence of FLX, the 

circuitry appeared to process the stress-inducing stimulus in a quite different way. This may reflect 

functional changes within the PAG circuitry itself and/or changes in afferent input from other 

structures involved in the processing of stress-inducing stimuli.   

Fluoxetine was developed originally as a selective serotonin reuptake inhibitor and is one of 

the most widely used antidepressant drugs worldwide. Its clinical effectiveness as an 

antidepressant typically requires a long lead in period and exacerbation of adverse symptoms is 

not uncommon in the short term. In male rats, acute administration of FLX at doses that show 

anxiolytic or anti-aversive effects after long-term treatment is actually anxiogenic (Silva and 

Brandao, 2000). Yet in the present study of females in late diestrus, FLX appeared anxiolytic at 

the low dose (2 x 1.75mg kg-1) used. Moreover, this low dose of FLX failed to produce a 

significant change in extracellular 5-HT concentration in the dPAG, suggesting that its effects on 

behavior were not due to an action on 5-HT systems.  

The lack of effect of the lower dose of FLX (2 x 1.75mg kg-1) used in the present study on 

extracellular 5-HT concentration in the PAG was not due to insufficient sensitivity of our system, 

because the basal concentration of 5-HT was above the threshold for detection. Moreover, a 

change in 5-HT concentration was observed in response to a higher dose of FLX (2 x 10mg kg-1).  

Indeed the second higher dose of FLX, which we had used only to check the responsiveness of our 

microdialysis system, produced a significant decrease in the extracellular concentration of 5-HT in 

the dPAG.  At first sight this finding appeared at odds with the reported rise in extracellular 5-HT 

in the PAG after acute administration of FLX in males (Zanoveli et al., 2010). However, in the 

dosing protocol used for our study in females the rats received FLX on two occasions: once on the 
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evening of early diestrus and again on the morning of late diestrus immediately before the 

microdialysis samples were taken.  In the female rats that received the higher dose of FLX (10 mg 

kg-1) the basal concentration of 5-HT before the second injection was given was significantly 

higher than in the control group. This suggests that the higher dose of FLX had blocked serotonin 

re-uptake in the PAG, as it does in males (Zanoveli et al., 2010).  Against the raised basal level, a 

second injection of FLX might be expected to raise extracellular 5-HT further. However, a further 

rise in 5-HT in the dorsal raphe nucleus (DRN), the major source of serotonergic input to the 

PAG, may have lead to activation of 5-HT1A somatodendritic autoreceptors, which would depress 

the activity of the DRN population (Rutter and Auerbach, 1993; Hajos et al., 2001) and reduce 5-

HT output in the PAG, as seen in the present experiments.  Whilst these possibilities are 

intriguing, further investigation was outside the scope of the present study.  

ALLO has been shown to produce a modest increase the firing of 5HT neurons in the DRN 

after acute intracerebroventricular administration to anaesthetised rats (Robichaud and Debonnel, 

2006). However, in that study the dose given of 1μg kg-1 icv would be expected, assuming an even 

distribution within the brain and without loss to the periphery, to give an ALLO concentration of 

about 0.15�g g-1 of brain for a 250-325g rat (Bailey et al., 2004). This is some 50 times higher 

than the ALLO concentration of 3ng g-1 brain measured after FLX treatment in the present study 

in females. Moreover, there was no change in the extracellular concentration of 5-HT in the PAG, 

which might have been expected if the FLX-induced rise in ALLO concentration had been 

sufficient to stimulate the 5-HT neurons in the DRN. Another possibility is that FLX could have 

influenced GABA release in the PAG or elsewhere via activation of the 5-HT2A receptors that are 

present on GABAergic neurones in the PAG (Griffiths and Lovick, 2002). However, since our 

dose of FLX did not influence extracellular 5-HT concentration in the PAG, it is unlikely that 

these cells would have been influenced. 

Our current findings in a rat model indicate that the increased responsiveness to acute 
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anxiogenic stress seen at late diestrus can be prevented by administration of FLX, which induces 

an increase in brain ALLO timed to offset the physiological decrease in the steroid expected at this 

stage of the ovarian cycle. The timing of FLX treatment appears to be critical, since dosing at 

other cycle stages had no effect on behavior. Moreover in a recent study using an exogenous 

progesterone withdrawal regimen, long-term treatment with FLX, albeit at a higher dose than that 

used in the present study, had no effect on the withdrawal response (Li et al., 2012). The 

pharmacological action of FLX might therefore be related to its ability to alter the rate of change 

of brain ALLO across the cycle rather than simply producing an increase in basal concentration. 

This would be consistent with our recent discovery that fluoxetine inhibits the oxidative 

inactivation of ALLO (Fry et al., 2014, in press).  

In women, short term administration of FLX during the late luteal phase or after a single 

dose of a delayed release formulation, starting a few days before adverse premenstrual symptoms 

arise, could similarly produce a gradual tapering in brain concentration of this steroid over several 

days and thereby offset the precipitous fall in ALLO that occurs naturally. Fluoxetine is 

particularly suited to produce such an effect, with a long plasma half-life, which is seen also for its 

active metabolite norfluoxetine: 1- 4 and 7-15 days respectively after a single dose (Hiemke and 

Härtter, 2000). Moreover, if women at the late luteal phase are comparable to the late diestrus rats 

of the present study in requiring only a low dose of FLX to elevate brain ALLO concentration, 

then adverse side effects should be absent or minimal.  

To conclude, short-term administration of a low dose of fluoxetine during late diestrus in the 

rat raises brain ALLO concentration and blunts the abrupt fall in this progesterone metabolite, 

which normally occurs at this stage of the ovarian cycle, due to the sudden decline in ovarian 

progesterone secretion. The trigger for the neuronal withdrawal response, which precipitates the 

development of anxiety-like behavior under stressful circumstances, is therefore absent. We 

suggest these observations in the rat provide an explanation for the efficacy of fluoxetine in the 
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treatment of PMS (see Majoribanks et al., 2013). If we are correct, then short term treatment with 

fluoxetine given at doses below the antidepressant threshold but tailored to elevate brain 

allopregnanolone during the premenstrual period, could explain both the rapid response of PMDD 

patients to fluoxetine (Steinberg et al., 2012) and the effectiveness of intermittent dosing with this 

drug in the treatment of the disorder (Steiner et al., 1997).  Moreover, by determining the 

magnitude and rate of the decline in progesterone for each individual, it should be possible to 

personalise the treatment to select the minimum effective dose of fluoxetine for the patient.  

 
References 
ACOG. 2001. ACOG practice bulletin: premenstrual syndrome.  Int. J. Gyn. Obst. 73: 183-191. 

Backstrom ,T., Andreen, L., Birzniece, V., Bjorn, I., Johansson, I.M., Nordenstam-Haghjo, M., 

Nyberg S., Sundström-Poromaa, I., Wahlström, G., Wang, M., Zhu, D. 2003. The role of 

hormones and hormonal treatments in premenstrual syndrome. CNS Drugs 17, 325-342. 

Bailey SA, SA, Zidell, RH, Perry RW (2004) Relationships between organ weight and body/brain 

weight in the rat: what is the best analytical endpoint? Toxicol Pathol  32: 448-456. 

Barbaresi, P. 2005. GABA-immunoreactive neurons and terminals in the cat periaqueductal gray 

matter: a light and electron microscopic study. J. Neurocytol. 34 471-487. 

Bee, L.A., Dickenson, A.H. 2008. Descending facilitation from the brainstem determines 

behavioural and neuronal hypersensitivity following nerve injury and efficacy of pregabalin. Pain 

140, 209-223. 

Borelli, K.G., Nobre, M.J., Brandão, M.L., Coimbra, N.C. 2004. Effects of acute and chronic 

fluoxetine and diazepam on freezing behavior induced by electrical stimulation of dorsolateral and 

lateral columns of the periaqueductal gray matter. Pharmacol Biochem Behav. 77:557-566. 

Brack, K.E., Lovick, T.A. 2007. Neuronal excitability in the periaqueductal grey matter during the 

estrous cycle in female Wistar rats. Neuroscience 144, 325-335. 

Brandão, M.L., Zanoveli, J.M., Ruiz-Martinez, R.C., Oliveira, L.C., Landeira-Fernandez, J. 2008. 



 21

Different patterns of freezing behavior organized in the periaqueductal gray of rats: association 

with different types of anxiety. Behav. Brain Res. 188, 1-13. 

Brown, J., O'Brien, P.M., Marjoribanks, J., Wyatt, K. 2009. Selective serotonin reuptake inhibitors 

for premenstrual syndrome. Cochrane Database Syst. Rev.(2) CD001396. 

Butcher, R.L., Collins, W.E. Fugo, N.W. 1974. Plasma concentration of LH, FSH, prolactin, 

progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94, 

1704-1708. 

Cook,  J.B., Dumitru, A.M.G., O’Buckley,  T.K.. Morrow, L.A. 2014. Ethanol administration 

produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in 

the rat brain. Alcohol Clin Exp Res. 38 90-99. 

Corpechot, C., Young, J., Calvel, M., Wehrey, C., Veltz, J.N., Touyer, G., ·Mouren, M., Prasad, 

V.V., Banner, C.,  Sjövall, J. 1993. Neurosteroids: 3 alpha-hydroxy-5 alpha-pregnan-20-one and 

its precursors in the brain, plasma, and steroidogenic glands of male and female rats. 

Endocrinology 133, 1003-1009 

Devall, A.J., Liu, Z.W., Lovick, T.A. 2009. Hyperalgesia in the setting of anxiety: sex differences 

and effects of the oestrous cycle in Wistar rats. Psychoneuroendocrinology 34, 587-596. 

Doornbos, B., Fokkema, D.S., Molhoek, M., Tanke, M.A., Postema, F., Korf, J. 2009. Abrupt 

rather than gradual hormonal changes induce postpartum blues-like behavior in rats. Life, Sci, 84  

69-74.  

Ebner, M.J., Corol, D.I., Havlikova, H., Honour, J.W., Fry, J.P. 2006. Identification of neuroactive 

steroids and their precursors and metabolites in adult male rat brain. Endocrinology 147, 179-190. 

Fairhurst, M., Wiech, K., Dunckley, P., Tracey, I., 2007. Anticipatory brainstem activity predicts 

neural processing of pain in humans. Pain 128, 101-110 

Farrant, M., Nusser, Z., 2005. Variations on an inhibitory theme: phasic and tonic activation of 

GABA(A) receptors. Nat Rev Neurosci 6, 215–229. 



 22

Fry, J.P., Li, K.Y., Devall, A.J., Cockcroft, S., Honour, J.W., Lovick, T.A. 2014. Fluoxetine 

elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase 

rather than activating an aldo-keto reductase. Br J Pharmacol, in press, DOI: 10.1111/bph.12891. 

Fuller, R.W., Perry, K.W., Molloy, B.B. 1974. Effect of an uptake inhibitor on serotonin 

metabolism in rat brain: studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-

phenylpropylamine (Lilly 110140). Life Sci. 15:1161-1171 

Gangisetty, O., Reddy, D.S. 2010. Neurosteroid withdrawal regulates GABA-A receptor alpha4-

subunit expression and seizure susceptibility by activation of progesterone receptor-independent 

early growth response factor-3 pathway. Neuroscience 17, 865-880. 

Gebhart, G.F. 2004. Descending modulation of pain. Neurosci. Biobehav. Rev. 27, 729-737. 

Goldstein, J.M., Jerram, M., Abbs, B., Whitfield-Gabrieli, S., Makris, N. 2010. Sex differences in 

stress response circuitry activation dependent on female hormonal cycle.  J. Neurosci. 30, 431-

438. 

Gollenberg A.L., Hediger M.L., Mumford S.L., Whitcomb B.W., Hovey K.M., Wactawski-Wende 

J., Schisterman E.F. 2010 Perceived stress and severity of perimenstrual symptoms: the BioCycle 

Study. J Womens Health (Larchmt). 19: 959-967.  

Griffin, L.D., Mellon, S.H., 1999 Selective serotonin reuptake inhibitors directly alter activity of 

neurosteroidogenic enzymes. P.N.A.S. USA. 96 13512-13517. 

Griffiths J.L., Lovick T.A. 2002 Co-localization of 5-HT 2A -receptor- and GABA-

immunoreactivity in neurones in the periaqueductal grey matter of the rat. Neurosci Lett. 326 151-

154. 

Griffiths, J.L., Lovick T.A. 2005a. Withdrawal from progesterone increases expression of alpha4, 

beta1, and delta GABA(A) receptor subunits in neurons in the periaqueductal gray matter in 

female Wistar rats. J. Comp. Neurol. 486 89-97. 



 23

Griffiths, J.L., Lovick, T.A. 2005b. GABAergic neurones in the rat periaqueductal grey matter 

express alpha4, beta1 and delta GABAA receptor subunits: plasticity of expression during the 

estrous cycle. Neuroscience. 136, 457-466. 

Gulinello M, Gong QH, Li X, Smith SS. 2001. Short-term exposure to a neuroactive steroid 

increases alpha4 GABA(A) receptor subunit levels in association with increased anxiety in the 

female rat. Brain Res. 910, 55-66 

Gulinello, M., Orman, R., Smith, S.S. 2003. Sex differences in anxiety, sensorimotor gating and 

expression of the alpha4 subunit of the GABAA receptor in the amygdala after progesterone 

withdrawal.  Europ. J. Neurosci. 17, 641-648. 

Hajós, M., Hoffmann, W.E., Tetko, I., V., Hyland, B., Sharp ,T., Villa, A.E.P. 2001. Different 

tonic regulation of neuronal activity in the rat dorsal raphe and medial prefrontal cortex via 5-

HT1A receptors. Neurosci. Lett. 304, 129–132. 

Halbreich, U., Endicott, J., Goldstein, S., Nee, J.,1986. Premenstrual changes and changes in 

gonadal hormones. Acta Psychiatr. Scand. 74, 576-586. 

Hiemke C., Härtter S. 2000. Pharmacokinetics of selective serotonin reuptake inhibitors. 

Pharmacol Ther. 85, 11-28. 

Holzbauer, M. 1975. Physiological variations in the ovarian production of 5alpha-pregnane 

derivatives with sedative properties in the rat. J. Steroid Biochem. 6, 1307-1310. 

Hoyer J., Burmann I., Kieseler M.L., Vollrath F., Hellrung L., Arelin K., Roggenhofer E., 

Villringer A., Sacher J. 2013 Menstrual cycle phase modulates emotional conflict processing in 

women with and without premenstrual syndrome (PMS)--a pilot study. PLoS One. 8 :e59780. doi: 

10.1371/journal.pone.0059780.  

Ichikawa, S., Sawada, T., Nakamura, Y., Morioka, H. 1974. Ovarian secretion of pregnane 

compounds during the estrous cycle and pregnancy in rats. Endocrinology 94, 1615-1620. 



 24

Jitsuki S, Kimura F, Funabashi T, Takahashi T, Mitsushima D. (2009) Sex-specific 24-h profile of 

extracellular serotonin levels in the medial prefrontal cortex. Brain Res.1260 30-37.  

Jørum, E., 1988. Analgesia or hyperalgesia following stress correlates 

with emotional behavior in rats. Pain 32 341-348. 

Kadian, S., O'Brien, S., 2012. Classification of premenstrual disorders as proposed by the 

International Society for Premenstrual Disorders. Menopause Int. 18, 43-47. 

Li ,Y., Pehrson, A.L., Budac, D.P., Sánchez, C., Gulinello, M. 2012 

A rodent model of premenstrual dysphoria: progesterone withdrawal induces depression-like 

behavior that is differentially sensitive to classes of antidepressants. Behav. Brain Res. 234, 238-

247. 

Lovick, T.A., Griffiths, J.L., Dunn, S.M., Martin, I.L., 2005. Changes in GABA(A) receptor 

subunit expression in the midbrain during the oestrous cycle in Wistar rats. Neuroscience 131, 

397-405. 

Lovick, T.A., Paul, N.L. 1999. Co-localization of GABA with nicotinamide adenine dinucleotide 

phosphate-dependent diaphorase in neurones in the dorsolateral periaqueductal grey matter of the 

rat. Neurosci. Lett. 272,167-170. 

Marjoribanks J., Brown, J., O'Brien, P.M., Wyatt, K. 2013. Selective serotonin reuptake inhibitors 

for premenstrual syndrome. Cochrane Database Syst Rev. 6:CD001396. doi: 

0.1002/14651858.CD001396.pub3. 

Maswood, S., Truitt, W., Hotema, M., Caldarola-Pastuszka, M., Uphouse, L. (1999) 

Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the 

serotonin transporter and terminal autoreceptors. Brain Res. 831, 146-54. 

Mora, S., Dussaubat, N., Diaz-Veliz, G. 1996. Effects of the estrous cycle and ovarian hormones 

on behavioral indices of anxiety in female rats. Psychoneuroendocrinology 21, 609-620. 



 25

Nillni Y.I.,Toufexis D.J., Rohan K.J. 2011 Anxiety sensitivity, the menstrual cycle, and panic 

disorder: a putative neuroendocrine and psychological interaction. Clin Psychol Rev. 31 :1183-

1191.  

Ossewaarde, L., Hermans, E.J., van Wingen, G.A., Kooijman, S.C., Johansson, I.M., Backstrom, 

T., Fernández, G., 2010. Neural mechanisms underlying changes in stress-sensitivity across the 

menstrual cycle. Psychoneuroendocrinology. 35 47-55. 

Paul, S.M., Purdy, R.H. 1992. Neuroactive steroids. FASEB J. 6, 2311-2322. 

Paxinos, G., Watson ,C., 2007. The rat brain in stereotaxic coordinates. New York: Academic 

Press. 

 Pinna, G., Costa, E., Guidotti, A., 2009. SSRIs act as selective brain steroidogenic stimulants 

(SBSSs) at low doses that are inactive on 5-HT reuptake. Curr. Opin. Pharmacol. 9, 24-30. 

Pinna, G., Rasmusson, A.M. 2012. Upregulation of neurosteroid biosynthesis as a 

pharmacological strategy to improve behavioral deficits in a putative mouse model of PTSD. J. 

Neuroendocrinol.  24, 102–116 

Rutter, J.J., Auerbach, S.B. 1993. Acute uptake inhibition increases extracellular serotonin in the 

rat forebrain. J Pharmacol Exp Ther. 265:1319-1324. 

Qu, Y., Aluisio, L., Lord, B., Boggs, J., Hoey, K., Mazur, C., et al 2009. Pharmacokinetics and 

pharmacodynamics of norfluoxetine in rats: Increasing extracellular serotonin level in the frontal 

cortex. Pharmacol. Biochem. Behav. 92, 469-473. 

Rea, K., Lang, Y., Finn, D.P. 2009. Alterations in extracellular levels of gamma-aminobutyric 

acid in the rat basolateral amygdala and periaqueductal gray during conditioned fear, persistent 

pain and fear-conditioned analgesia. J.Pain 10, 1088-1098. 

Robichaud M., Debonnel G. (2006). Allopregnanolone and ganaxolone increase the firing activity 

of dorsal raphe nucleus serotonergic neurons in female rats. Int J Neuropsychopharmacol. 9:191-

200.  



 26

Saavedra, M., Contreras, C.M., Azamar-Arizmendi, G., Hernandez-Lozano, M. 2006. Differential 

progesterone effects on defensive burying and forced swimming tests depending upon a gradual 

decrease or an abrupt suppression schedules. Pharmacol, Biochem. Behav. 83, 130-135. 

Serra, M., Pisu, M.G., Muggironi, M., Parodo, V., Papi, G., Sari, R., Dazzi, L., Spiga, F., Purdy, 

R.H., Biggio, G., 2001. Opposite effects of short- versus long-term administration of fluoxetine on 

the concentrations of neuroactive steroids in rat plasma and brain. Psychopharmacology. 158, 48-

54. 

Silva, R.C., Brandão, M.L., 2000. Acute and chronic effects of gepirone and fluoxetine in rats 

tested in the elevated plus-maze: an ethological analysis. Pharmacol. Biochem. Behav. 65, 209-

216. 

Smith, S.S., Gong, Q.H., Li, X., Moran, M.H., Bitran, D., Frye, C.A., Hsu, F.C., 1998. Withdrawal 

from 3alpha-OH-5alpha-pregnan-20-One using a pseudopregnancy model alters the kinetics of 

hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in 

association with increased anxiety.  J. Neurosc.i 18, 5275-5284. 

Smith, S.S., Ruderman, Y., Frye, C., Homanics, G., Yuan, M., 2006. Steroid withdrawal in the 

mouse results in anxiogenic effects of 3alpha,5beta-THP: a possible model of premenstrual 

dysphoric disorder. Psychopharmacology. 186, 323-333. 

Steinberg EM, Cardoso GM, Martinez PE, Rubinow DR, Schmidt PJ (2012). Rapid response to 

fluoxetine in women with premenstrual dysphoric disorder. Depression and Anxiety 29, 531-540. 

Steiner, M., 1997 Premenstrual syndromes. Ann Rev. Med. 48: 447-455. 

Steiner M1, Korzekwa M, Lamont J, Wilkins A. 1997. Intermittent fluoxetine dosing in the 

treatment of women with premenstrual dysphoria. Psychopharmacol Bull. 33, 771-774. 

Tassorelli C, Sandrini G, Cecchini AP, Nappi RE, Sances G, Martignoni E., 2002. Changes in 

nociceptive flexion reflex threshold across the menstrual cycle in healthy women. Psychosom 

Med. 64: 621-626. 



 27

Trauger, J.W., Jiang, A., Stearns, B.A., LoGrasso, P.V.  2002  Kinetics of allopregnanolone 

formation catalyzed by human 3 alpha-hydroxysteroid dehydrogenase type III (AKR1C2). 

Biochemistry. 41 13451-13459. 

Uzunov, D.P., Cooper, T.B., Costa, E., Guidotti, A.1996. Fluoxetine-elicited changes in brain 

neurosteroid content measured by negative ion mass fragmentography. Proc. Nat. Acad. Sci. USA. 

93, 12599-12604. 

Weinberg, M.S., Grissom, N., Paul, E., Bhatnagar, S., Maier, S.F., Spencer R.L., 2010. 

Inescapable but not escapable stress leads to increased struggling behavior and basolateral 

amygdala c-fos gene expression in response to subsequent novel stress challenge. Neuroscience 

170, 138-148. 

Wójcikowski, J., Haduch, A., Daniel, W.A. 2013. Effect of antidepressant drugs on cytochrome 

P450 2C11 (CYP2C11) in rat liver. Pharmacol Rep. 65 1247-1255. 

Zanoveli, J.M., Pobbe, R.L., de Bortoli, V.C., Carvalho, M.C., Brandao, M.L., Zangrossi, H., Jr. 

2010. Facilitation of 5-HT1A-mediated neurotransmission in dorsal periaqueductal grey matter 

accounts for the panicolytic-like effect of chronic fluoxetine. Int. J. Neuropsychopharmacol. 13, 

1079-1088. 



 28

Figures captions 

Fig. 1. A. Increase in brain concentration of ALLO (mean� S.E.M.) in rats in late diestrus treated 

with fluoxetine (FLX, 1.75mg kg-1 i.p., n=5) or saline vehicle (VEH, n=6) on the afternoon of 

early diestrus and again on the morning of late diestrus, (LD) 60 min before sacrifice. *P<0.01, 

unpaired t-test.

B. Extracellular concentration of 5-HT in the PAG of rats in late diestrus treated with fluoxetine (2  

x 1.75 mg kg-1, n=6 or 2 x 10 mg kg-1, n=4  or saline, n=4 using the i.p. dosing regimen as above). 

Arrow indicates time of injection on morning of late diestrus. All values means � S.E.M.  *P<0.05 

with respect to mean baseline, repeated measures two-way ANOVA with Tukey’s test. 

C. Location of dialysis probes (solid bars) plotted onto outlines of coronal sections through the 

PAG taken from the atlas of Paxinos and Watson (2007). Numbers below drawings indicate mm 

caudal to bregma. 

Fig. 2. Effect of 5 min of vibration stress (gray bar) on tail flick latency (TFL) in female rats at 

different stages of the estrous cycle and following fluoxetine treatment. Administration of 

fluoxetine (FLX 1.75 mg kg-1 i.p.) or vehicle (saline, i.p.) was carried out on the evening of early 

diestrus and again 1 h before behavioral testing commenced in late diestrus the next morning. All 

values (mean ± SEM) are expressed as a percentage of mean pre-stress baseline values. 

Abbreviations: P: proestrus; E: estrus; ED: early diestrus; LD: late diestrus. * P<0.05, ** P<0.01, 

two-way ANOVA compared to baseline. § P<0.05, §§§ P<0.001, two-way ANOVA compared to 

vehicle (n=8 to10 per group). 

Figure 3. Estrous cycle-linked effects on responses to electrical stimulation of the dPAG. 

Threshold currents to evoke freezing (A) and escape behavior (B). The duration of post-escape 

freezing is shown at C. For each rat thresholds were measured on the 4 days of its cycle.  Saline 

(vehicle control, n=7) or fluoxetine (1.75mg Kg-1 i.p, n=10) was administered on the afternoon of 

early diestrus and again 1h prior to beginning testing on the morning of late diestrus. 
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Abbreviations P: proestrus; E: estrus; ED: early diestrus; LD: late diestrus; SAL: saline; FLX: 

fluoxetine. Data expressed as means ± S.E.M. * p < 0.05 compared to the other periods of the 

estrous cycle for freezing and to P and ED for escape and post-stimulation freezing behavior 

(Fischer´s LSD post-hoc test after significant repeated measures one-way ANOVA); # p < 0.05 

significant interaction between treatments and stage of estrous cycle. 

Fig 4. Left: Photomicrograph showing location of electrode track in the dorsal PAG in a 

representative animal. Right: Stimulation sites in the dorsal PAG plotted onto representative 

outline sections of the PAG taken from the atlas of Paxinos and Watson (2007). o: no drug 

(n=12); *: saline-treated rats (n = 7); �: fluoxetine-treated rats (n = 10). Numbers below sections 

indicate distance from bregma.  

 

Fig. 5. A. The density of Fos-positive nuclei in 5 longitudinal columns in the rostral (levels I & II) 

and caudal (levels III & IV) halves of the PAG. Panel B shows the effect of vibration stress and 

fluoxetine (1.75 mg kg-1 i.p.) treatment in late diestrus on the density of Fos-positive nuclei in 

whole extent of the PAG observed at each stage of the estrous cycle.  Panel C shows detailed 

effect of FLX in different columns of the rostral (levels I and II) and caudal (levels III and IV) 

PAG in late diestrus. All values mean ± SEM, n=5-6 per group. Abbreviations: P: proestrus; E: 

estrus; ED: early diestrus; LD: late diestrus. *** P<0.001, ** P<0.01, * P<0.05, § significantly 

different from stressed animals in proestrus, estrus and early diestrus (P<0.05), two-way ANOVA 

with Bonferroni’s test. 
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