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SUMMARY 

Studies on the evolution of tuberculosis, and the influence of this disease on human and 

animal development and interaction, require the accumulation of indisputable biomarker 

evidence. Ideally, the determination of full genomes would provide all the necessary 

information, but for very old specimens DNA preservation may be compromised and only 

limited DNA amplification may be a possibility. Mycobacterium tuberculosis is characterised 

by the presence of unusual cell envelope lipids, with specific biomarker potential. Lipid 

biomarker recognition has been decisive in pinpointing the oldest known cases of human and 

animal tuberculosis; the former are a woman and child from a pre-pottery settlement at Atlit-

Yam, Israel (~9,000 ka) and the latter is an extinct Bison antiquus from Natural Trap Cave, 

Wyoming (~17,000 ka). Including some new data, it is demonstrated how analysis of a 

combination of mycolic, mycocerosic and mycolipenic acid and phthiocerol biomarkers 

provide incontrovertible evidence for tuberculosis in these landmark specimens. 

 

Keywords: Ancient tuberculosis; Lipids; Biomarkers 
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1. Introduction 

Exploration of the origins and evolution of tuberculosis necessarily relies on the clear 

unambiguous identification of ancient well-characterised archaeological specimens. It would 

be advantageous to identify an extended population of infected individuals but, given the 

likely scarcity of the oldest examples, investigation of single landmark cases may well be a 

productive option. If studies of isolated cases are well-conducted and published in established 

peer-reviewed journals, the results achieved must be properly respected. In this report, the 

incontrovertible evidence for tuberculosis in the oldest human1 and animal2 cases, described 

to date, will be reviewed and some new data included. 

The widest possible combination of complementary methods should be used to diagnose 

ancient mycobacterial disease. For skeletal material, considerable expertise has been 

developed in recognising characteristic bone changes linked to tuberculosis infection.3,4 The 

precise diagnosis of tuberculosis disease requires recognition of decisive biomarkers5 for the 

causative agent Mycobacterium tuberculosis. The amplification of key DNA sequences has 

been systematically developed into widely-applied protocols, during the past two decades 

During the past twenty years, DNA fragment analysis has been extensively utilised.5 Major 

advances in determining full genomic data have been recently provided by the application of 

so-called “Next Generation Sequencing”6 and the more direct “Metagenomic” approach.7  

The predominant feature of the tubercle bacillus is the presence of high proportions of 

long-chain lipids, easily distinguishable from any mammalian lipids. In a pioneering study, 

the 70 to 90 carbon mycolic acids (MAs) (Figure 1A) were clearly identified in a mediaeval 

bone from Addingham, UK, complementing DNA amplification and skeletal indications.8 

The biomarker range has been extended to include multi-methyl-branched mycocerosic and 

mycolipenic acids (Figure 1B).2,9 MAs were originally analysed by fluorescence High 

Performance Liquid Chromatography (HPLC) of slightly unstable methylanthryl esters,8 so a 

special robust derivatisation protocol, involving pyrenebutyrates of pentafluorobenzyl (PFB) 

esters was systematically developed.1,2,9 The mycocerosate and mycolipenate PFB esters can 

be exquisitely detected by Selected Ion Monitoring (SIM) Negative Ion Chemical Ionisation 

(NI-CI) Gas Chromatography Mass Spectrometry.2,9 The value of lipid biomarkers in 

providing decisive confirmation of tuberculosis in key archaeological specimens will be 

reviewed and emphasised. The cases under consideration are Lipid biomarker detection has 

been particularly decisive in diagnosing tuberculosis in ribs from a woman and child from a 
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pre-pottery settlement at Atlit-Yam, Israel (~9,000 ka)1 and an extinct Bison antiquus 

metacarpal from Natural Trap Cave, Wyoming (~17,000 ka).2 However, these clear 

diagnostic data are occasionally overlooked4, so in this communication the data for these two 

landmark cases are presented together and reinforced by some new lipid results. 

2. Landmark studies 

2.1 Nine thousand year old woman and child, Atlit-Yam, Israel 

Archaeological investigations off the coast at Atlit-Yam revealed a submerged coastal 

pre-pottery, post-domestication Neolithic settlement, which included skeletal material from a 

woman and infant with lesions suggestive of tuberculosis.1,10 In particular, the inner aspect of 

the infant cranial bones had serpentine engravings (serpens endocrania symmetrica, SES), 

considered to be diagnostic for intra-thoracic inflammation associated with tuberculosis.1,11 

The tubular bones from the infant, and to a lesser extent from the adult, also demonstrated 

lesions identified as hypertrophic osteoarthropathy (HOA), highly suggestive of 

tuberculosis.1,12 Encouraging results were also achieved for the PCR amplification and 

sequencing of the M. tuberculosis DNA insertion elements IS6110 and IS1081,1 but 

additional confirmation was desirable.  

Carefully crafted robust lipid biomarker studies were found to be ideal complements to 

the above compelling evidence for TB in the Atlit-Yam skeletons.1 The chosen bone samples 

were degraded by a proven alkaline hydrolysis,1,2,8 designed to release the maximum amount 

of mycobacterial lipid biomarkers. Quantitative conversion of the acidic fatty components to 

pentafluorobenzyl (PFB) esters gave lipid biomarkers the ability to be separated reproducibly 

on silica gel cartridges into fractions containing PFB mycolipenate/mycocerosates, PFB 

mycolates and free phthiocerols (Figure 1). The latter two lipid classes were converted to 

stable pyrenebutyric acid (PBA) esters, ideal for sensitive fluorescence HPLC, with the PFB 

mycocerosate/mycolipenates being amenable to NI-CI GC-MS. The assembled lipid 

biomarker profiles for the Atlit-Yam specimens are shown in Figure 2.  

A simple logical sequence is followed for the HPLC characterisation of mycolic acid 

derivatives. The initial “reverse phase” HPLC (Figure 2A) serves to isolate and observe any 

C70 – C90 mycolates free from any smaller mammalian lipids. A “tight envelope” of total 

mycolate peaks, as recorded in Figure 2A, is very characteristic for members of the M. 

tuberculosis complex and, indeed, such clear profiles are immediately very positive 

indications of tuberculosis infections.5,8 The next stage is to subject the collected total 
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mycolates (Figure 2A) to “normal phase” HPLC to separate the α-, methoxy- and 

ketomycolate classes (Figure 1A) according to their polarity (Figure 2B); if clear peaks are 

seen for the individual mycolates, this strengthens the diagnosis of TB. Reverse phase HPLC 

of each of the collected mycolate types (Figure 2B) can provide very diagnostic profiles 

(Figure 2C-E). The α-mycolates are relatively homogeneous, a regular series of C76 to C84 

homologues (Figure 2C) having two cis-cyclopropane rings (Figure 1A). The oxygenated 

mycolates, in contrast, comprise two overlapping homologous series with either cis- or trans-

cyclopropane rings (Figure 1A). A very diagnostic feature of the methoxymycolates from M. 

tuberculosis (Figure 2D) is the presence of a double peak comprising the C87 cis-cyclopropyl 

and C88 trans-cyclopropyl methoxymycolates. Similarly, the ketomycolates from M. 

tuberculosis are characteristically dominated by the presence of the C87 trans-cyclopropyl 

ketomycolate (Figure 2E). This sequential analysis enables a close correlation to be observed 

between the mycolate patterns for the Atlit-Yam specimens and standard M. tuberculosis.  

To support the positive mycolate results, the mycocerosate/mycolipenate (Figure 1B) and 

phthiocerol family (Figure 1C) profiles have been prepared, in unpublished studies, using NI-

CI GC-MS of PFB esters for the former (Figure 2F-I) and fluorescence HPLC of PBA esters 

for the latter (Figure 2J). Again, the mycocerosate/mycolipenate traces (Figure 2F-I) 

correspond well with those for standard M. tuberculosis. Interestingly, the infant showed a 

stronger presence of mycolipenate (Figure 2H, C27 m/z 407). The presence of members of the 

phthiocerol family (Figure 1C) was revealed by reverse phase HPLC (Figure 2J) for ribs from 

the Atlit-Yam Infant and Woman. The main components corresponded to the characteristic 

M. tuberculosis C34 and C36 phthiocerol As (PA) and C33 and C35 phthiodiolones (PO); there 

was insufficient material to carry out confirmatory normal phase HPLC. 

2.2. Seventeen thousand year old bison Natural Trap Cave Wyoming USA 

 Excavations directed by the late Larry D. Martin (1943-2013) of the Biodiversity 

Institute, University of Kansas, in Natural Trap Cave, Wyoming, revealed the presence of a 

variety of well-preserved Pleistocene animal bones2,3. In particular, a metacarpal from a 17 ka 

extinct Bison antiquus showed evidence of lesions “undermining the articular surface”, 

associated with tuberculosis both in humans and animals.2,3 In a landmark study, aDNA 

characteristic of M. tuberculosis rather than M. bovis was clearly identified.12 

A search for lipid biomarkers provided weak but encouraging profiles of mycolic acids 

(Figure 3A-E). Remarkably, absolutely pristine profiles of mycolipenic (C27 m/z 407) and 
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mycocerosic acids (Figure 1B) were recorded for specimens taken both at the lesion (Bison 1) 

and a remote site (Bison 2) (Figure 3F-H). The initial reverse phase HPLC profiles of the 

PBA derivatives of the phthiocerol family fraction (Figure 3I) were not as clean as those for 

the Atlit-Yam skeletons (Figure 2J). Normal phase analysis (Figure 3J) of the collected 

material from the reverse phase separation (Figure 3I) confirmed the presence of members of 

the phthiocerol family, as published previously.2 In addition, to the phthiocerols, however, 

the full normal phase profiles of the PBA derivatives showed the presence of ill-defined 

more-polar components, labelled X, Y and Z in Figure 3J. The presence of these unknown 

components was not reported in the initial study,2 as their identity could not be readily 

understood. One possible explanation is that components X – Z are derived from glycosyl 

phenolphthiocerols, the deacylated so-called “phenolic” glycolipids (PGLs). To investigate 

this hypothesis, the PGL from M. bovis BCG was processed through the hydrolysis and 

extraction protocols and it was found that the resulting PBA derivatives chromatographed in 

a similar fashion to the components X, Y and Z (data not shown). Unfortunately, none of the 

X – Z material remained from the bison samples, so it was not possible to make a precise 

direct comparison. The key conclusion, however, is that the material from Atlit-Yam does not 

show the presence of these potential biomarkers, possibly derived from PGLs (Figure 2J). 

Many modern isolates of M. tuberculosis do not produce PGLs, but they are found in M. 

bovis, M. africanum, certain M. tuberculosis Beijing strains and smooth morphology isolates 

labelled “Mycobacterium canettii”. A recent detailed study13 has confirmed that “M. canettii” 

strains are likely ancient progenitors of modern tuberculosis. The aDNA studies12 ruled out 

M. bovis, but indicated a similarity with M. africanum. Further studies will be needed to 

determine the precise strain of tubercle bacillus infecting the Natural Trap Cave bison. 

3.  Conclusions 

Sound evidence has been assembled, therefore, for the clear diagnosis of tuberculosis in 

~9ka human skeletons and a ~17ka bison metacarpal; these examples provide solid reference 

points for tracing the evolution of tuberculosis back into antiquity. Surprisingly, the actual 

validity of the aDNA results in the properly peer-reviewed Atlit-Yam study2 has been directly 

challenged,14 with no mention being made of the very conclusive MA lipid biomarker 

evidence. Equally, in an otherwise generally comprehensive review on ancient tuberculosis 

and leprosy,4 the critique was repeated but no reference whatsoever was made to a range of 

published lipid biomarker results,5 even though the Atlit-Yam1 and Addingham8 studies were 

cited.4 The inclusion of new mycocerosate/mycolipenate and phthiocerol data for the Atlit-
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Yam specimens (Figure 2F-J) and additional components in the phthiocerol area for the 

Natural Trap Cave bison (Figure 3J) adds further weight to the power of lipid biomarkers in 

the diagnosis of ancient tuberculosis. 

Genomic studies suggest a rapid expansion of modern biotypes of the tubercle bacillus 

following an apparent evolutionary bottleneck at the end of the Pleistocene.13. In a detailed 

examination of the parallel evolution of genomes from 186 members of the M. tuberculosis 

complex and 4,995 human mitochondria, extrapolations were interpreted to suggest that TB 

and humans co-evolved “out of Africa”, commencing ~70 ka ago.15 However, parallel 

evolution is not necessarily linked co-evolution and absolutely no evidence was advanced to 

substantiate the presence of any human tuberculosis going back to 70 ka. Indeed, not a single 

citation was made to any previous publication on the diagnosis of ancient tuberculosis in 

archaeological material! The current lack of any identified cases of Pleistocene TB in Homo 

sapiens and the apparent abundance of the disease in Pleistocene megafauna has led to the 

suggestion that animals may well have been prime vectors to facilitate the emergence of a 

viable tuberculosis pathogen from an environmental ancestor.2 

Dedication:  This paper is dedicated to the memory of Larry Martin (1943 – 2013), formerly 

of the Biodiversity Institute, University of Kansas, whose informed selection of specimens 

from Natural Trap Cave, Wyoming, led directly to the first diagnosis of tuberculosis in 

Pleistocene megafauna. 

Funding: The Leverhulme Trust Project Grant F/00 094/BL (OY-CL, DEM, GSB) 
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Figure legends 

 

Figure 1.  Lipid biomarkers for M. tuberculosis. (A) Generalized structures of α-, methoxy- 

and ketomycolates; the main components are in brackets. (B) Structures of mycolipenate and 

mycocerosates, showing negative carboxylate ions used for selected ion monitoring on NI-CI 

GC-MS analysis of pentafluorobenzyl (PFB) esters. (C) Structures of members of the 

phthiocerol family. 

 

Figure 2.  Mycobacterial lipid profiles from standard M. tuberculosis and Atlit-Yam Woman 

and Infant. (A – E) Reverse and normal phase fluorescence HPLC of mycolate pyrenebutyric 

acid (PBA) derivatives of pentafluorobenzyl (PFB) esters. (F –I) NI-CI GC-MS of 

pentafluorobenzyl (PFB) esters of mycolipenate and mycocerosates; relative intensities are 

shown normalised to the major component [100]. (J) Reverse phase fluorescence HPLC of 

pyrenebutyric acid (PBA) derivatives of members of the phthiocerol family: PA phthiocerol 

A, PB phthiocerol B, PO phthiodiolone. 

 

Figure 3.  Mycobacterial lipid profiles from standard M. tuberculosis and Natural Trap Cave 

Bison metacarpal specimens. (A – E) Reverse and normal phase fluorescence HPLC of 

mycolate pyrenebutyric acid (PBA) derivatives of pentafluorobenzyl (PFB) esters. (F –H) NI-

CI GC-MS of pentafluorobenzyl (PFB) esters of mycolipenate and mycocerosates; relative 

intensities are shown normalised to the major component [100]. (I and H) Reverse (I) and 

normal (J) phase fluorescence HPLC of pyrenebutyric acid (PBA) derivatives of components 

recovered with members of the phthiocerol family: PA phthiocerol A, PB phthiocerol B, PO 

phthiodiolone, X, Y & Z unknown components. 
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