The lateral distribution of depth-averaged velocity in a channel flow bend
Tang, Xiaonan; Knight, Donald W.

DOI:
10.1016/j.jher.2014.11.004

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as Tang, X., Knight, D.W, The lateral distribution of depth-averaged velocity in a channel flow bend, Journal of Hydro-Environment Research (2015), doi: 10.1016/j.jher.2014.11.004.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
The lateral distribution of depth-averaged velocity in a channel flow bend

Xiaonan Tang1 and Donald W Knight2

School of Civil Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

1 – Lecturer in water engineering, 2 – Emeritus Professor

Key words: Velocity, Open channel flow, Curved channel, Channel bend, Hydraulics

Abstract

This paper proposes an analytical model to predict the lateral distribution of streamwise velocity for flow in a curved channel with vertical sides, based on the depth-integrated Navier-Stokes equations. The model includes the effects of bed friction, lateral turbulence and secondary flows, where the additional secondary flow is approximated by a linear relationship, as demonstrated by the limited data which are available. Two analytical solutions for the depth-averaged velocity are obtained, one for a flat bed and another for a bed with a transverse slope. Two parameters (denoted by m and n herein), which define the secondary flow, have been examined to analyse how they affect the velocity distribution in these two cases. Comparison of the analytical results with the limited experimental data available shows that the proposed model predicts the lateral distributions of depth-averaged velocity well. Further studies are needed to validate the values of the model parameters (m and n) for bends with different geometric properties.
The lateral distribution of depth-averaged velocity in a channel flow bend

Xiaonan Tang and Donald W Knight

School of Civil Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Key words: Velocity, Open channel flow, Curved channel, Channel bend, Hydraulics

Abstract

This paper proposes an analytical model to predict the lateral distribution of streamwise velocity for flow in a curved channel with vertical sides, based on the depth-integrated Navier-Stokes equations. The model includes the effects of bed friction, lateral turbulence and secondary flows, where the additional secondary flow is approximated by a linear function of the lateral distance, as demonstrated by the limited data which are available. Two analytical solutions for the depth-averaged velocity are obtained, one for a flat bed and another for a bed with a transverse slope. Two parameters (denoted by m and n herein), which define the secondary flow, have been examined to analyse how they affect the velocity distribution in these two cases. Comparison of the analytical results with the limited experimental data available shows that the proposed model predicts the lateral distributions of depth-averaged velocity well. Further studies are needed to validate the values of the model parameters (m and n) for bends with different geometric properties.

Introduction

Since the early work of Rozovskii (1957), flow in channel bends has been studied by several researchers (e.g. Engelund 1974, Ascanio and Kennedy 1983, Yalin 1992, Yeh and Kennedy 1993, Jin and Steffler 1993, Khan and Steffler 1996). Noticeable development on the knowledge and understanding of the flow structure of bend are made recently (e.g. Blanckaert & Graf, 2001, 2004; Blanckaert & de Vriend, 2003, 2005, 2010; Blanckaert et al. 2008; Constantinescu et al. 2011, 2013; Jamieson et al. 2010, 2013; Kashyap et al. 2012; Sukhodolov 2012, Ottevanger et al. 2013). The experimental data of velocity in a bend show two circulation cells in a cross section: alongside the classical helical motion (centre-region cell), a weaker counter-rotating cell (outer-bank cell) is formed in the corner of the outer bank near the water surface (Blanckaert & Graf, 2001). Blanckaert & Graf (2004) found the advective momentum transport by the central-region cell significantly affects the velocity profile and bed shear stress in a sharp bend, by evaluating each term of the...
momentum equations using available experimental data. The cross-stream circulation in a bend was further studied by detailed 3D velocity measurements (Blanckaert et al. 2008; Jamieson et al. 2010, 2013). van Balen et al. (2009) and Stoesser et al. (2010) analyzed the pattern of secondary flow cell in a bend and its impact on the bed shear stress in terms of 3D numerical modelling, while others have developed simpler, 2D models, e.g., Hsieh and Yang (2003). With respect to 2D modelling, Blanckaert (2005) stated that “… conventional depth-averaged two dimensional (2D) models are intrinsically unable to account for the secondary flow …”. Blanckaert’s statement has highlighted the need for a secondary flow correction when 2D models are applied to simulate flow in bends, particularly by supplementing the 2D models with a closure sub-model for the secondary flow.

Camporeale et al. (2007) have given a review on commonly used simple models for curved rivers to illustrate the interconnected processes among the hydrodynamics, bed morphodynamics and bank morphodynamics. Most existing hydrodynamics models for curved channel flow take account for the impact of secondary flow using a parameterization that is based on the hypothesis of mild curvature. For example, Johannesson and Parker (1989) used a perturbation expansion to linearize the depth-integration momentum equation, where the secondary flow was parameterized with an empirical shape function for the vertical distribution of primary velocity. Thus based on the linearity and gradual variation assumptions, the representation of the secondary flow is justified for small curvature channels, but it is not appropriate in moderately and strongly curved bends. For strongly curved bends, Blanckaert & De Vriend (2003, 2010) proposed a sub-model for a nonlinear treatment of the secondary flow in the depth-averaged momentum equation, where the secondary flow was parameterized through a correction factor which depends on the so-called bend parameter. Thus the derived nonlinear sub-model was a reduced-order equation. Ottevanger et al. (2013) extended the non-linear model of Blanckaert & De Vriend (2010) to the bed morphology in strongly curved bends. However, it is worth noting that all these sub-models were not directly to resolve the 2D depth-averaged momentum equations rather than they further reduced the equations by taking the average or the first moment in lateral direction.

Similar arguments have often drawn attention against quasi 2D models in straight channels, e.g., the Shiono & Knight model (SKM) (Shiono & Knight, 1991; Tang & Knight, 2008, 2009) has often been accused of being too simplistic, yet it has yielded significant insight into the flow dynamics in straight channels and has enabled reasonably accurate predictions of depth-averaged velocities, boundary shear and channel discharge to be made in natural rivers (Abril and Knight, 2004; Knight et al. 2007, 2010a&b; Knight 2012, Sharifi and Sterling, 2009). The aim of this paper is to illustrate that it is
possible to use the SKM to accurately predict the lateral distribution of depth-averaged velocities in bends by solving the depth-averaged momentum equation.

Before describing the mathematics relating to the SKM model it will be beneficial to outline in qualitative terms the secondary flow associated with a number of features inherent in bend flow. Since this discussion is purely qualitative, flow around a “general” bend will be discussed, as illustrated in Fig. 1. It is reasonably straightforward to demonstrate that a lateral pressure gradient exists between the inner and outer banks which are proportional to the local streamwise velocity squared and inversely proportional to the distance from the centre of curvature of the channel. Combined with the effect of boundary layer drag arising from the channel bed, the flow in a curved channel will have some relatively large scale vorticity, resulting in what is commonly termed ‘Prandtl’s secondary flow of the first kind’ (Schlichting, 1979). Fig. 1 illustrates that the flow can be dominated by one large scale secondary flow cell which extends from the inner bank to cover most of the cross section and a corresponding small secondary flow cell near the water surface at the outer bank. This is remarkably different from what is known to exist in a straight channel where a series of secondary flow cells arise as a result of the anisotropy in Reynolds stresses (Nezu et al. 1993; Albayrak and Lemmin, 2011). Fig. 2 illustrates that at a particular cross section the flow can be conceptualised to consist of a number of different secondary flow cells which ensure that lateral gradient of \((UV)_d\) (where \(U\) represents the local streamwise velocity, \(V\) represents the local transverse velocity and the subscript \(d\) denotes a depth average) varies across the channel. A full explanation of how \((UV)_d\) is associated to the secondary cell can be seen in the paper by Knight et al. (2007). Subsequent sections will discuss the importance of \((UV)_d\) but for now it is sufficient to note that it can be interpreted as an indicator of the strength of secondary flow cell. Hypothesising this distribution for the case illustrated in Fig. 1 would suggest that the flow domain could be discretized into four panels – two large panels corresponding to the large secondary flow cell and smaller panels centred around the outer bend secondary flow cell. Indeed, given the relative size of the both flow cells it could be postulated that it is not unreasonably too simple to just use a two panel structure, i.e., effectively ignoring the contribution of the smaller flow cell. The feasibility of this is addressed below.

Theoretical background

The governing continuity and Reynolds Averaged Navier-Stokes equations for the streamwise motion of a fluid element in a curved channel (a cylindrical coordinate system), with a plane bed
that \(F \) is normal to the bed,
\[\frac{\partial u}{\partial s} + \frac{\partial w}{\partial n} + \frac{\partial w}{\partial z} + \frac{v}{r} = 0 \] \((1) \)
\[\frac{\partial u^2}{\partial s} + \frac{\partial (uw)}{\partial n} + \frac{\partial (uw)}{\partial z} + 2 \frac{uw}{r} + \left(\frac{\partial u'}{\partial s} + \frac{\partial (u')}{\partial n} + \frac{\partial (u')}{\partial z} + 2 \frac{uw'}{r} \right) = -\frac{1}{\rho} \frac{\partial p}{\partial s} + F_s \] \((2) \)
where the overbar and prime denote the time-averaged value and fluctuation of velocity respectively, \(r \) is a radius of the curvature, and the velocity components \(\{u,v,w\} \) correspond to the coordinates \(\{s,n,z\} \) or corresponding \(\{x,y,z\} \), s-streamwise parallel to the channel bed, n-lateral and \(z \)-normal to the bed, \(\rho \) = fluid density, \(t \) = time, \(F_s \) = unit body force in the direction \(s \), and \(p \) = pressure.

Multiplying Eq.(1) by \(\bar{u} \) and subtracting the resulting equation from (2) yields
\[\bar{u} \frac{\partial u}{\partial s} + \overline{\frac{\partial (u)}{\partial n}} + \overline{\frac{\partial (uw)}{\partial z}} + \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial s} + F_s - \left(\frac{\partial u'}{\partial s} + \frac{\partial (u')}{\partial n} + \frac{\partial (u')}{\partial z} + 2 \frac{uw'}{r} \right) \] \((3) \)
When compared to a Cartesian coordinate system \((x, y, z) \) in a straight channel, (3) has two additional terms: \(\frac{\bar{v}}{r} \) on the left side and \(2 \frac{uw'}{r} \) on the right side.

For a curved open channel with a gradually varied flow along the streamwise direction, it is assumed that \(F_s = 0 \) (streamwise) and that \(\partial p/\partial s = gS_n \), where \(S_n \) is bed slope of channel and \(g \) is acceleration of gravity. Thus Eq. (3) can be rewritten as
\[\rho \left[\frac{\partial u^2}{\partial s} + \frac{\partial (u)}{\partial n} + \frac{\partial (uw)}{\partial z} \right] = \rho g S_n - \rho \left(\frac{\partial u'}{\partial s} + \frac{\partial (u')}{\partial n} + \frac{\partial (u')}{\partial z} + 2 \frac{uw'}{r} \right) \] \((4) \)
For simplicity, Eq. (4) can be written as
\[\rho \left[\frac{\partial u^2}{\partial s} + \frac{\partial (u)}{\partial n} + \frac{\partial (uw)}{\partial z} \right] = \rho g S_n + \frac{\partial T_{ss}}{\partial s} + \frac{\partial T_{ns}}{\partial n} + \frac{\partial T_{zs}}{\partial z} - 2\rho \left(\frac{\bar{v}}{r} + \frac{uw'}{r} \right) \] \((5) \)
In an open channel flow under steady flow, by depth-averaging equation (5), and noting that the velocity component of \(w \) at both the surface and the bottom of channel can be neglected, Eq.(5) becomes as:
\[\rho \left[\frac{\partial H^2 u_a}{\partial s} + \frac{\partial (u)}{\partial n} \right] = \rho g H S_n + \frac{\partial T_{ss}}{\partial s} + \frac{\partial T_{ns}}{\partial n} - 2\rho \int_0^H \left(\frac{\bar{v}}{r} + \frac{uw'}{r} \right) dz \] \((6) \)
For a curved channel in fully developed flow conditions, where it is assumed that \(\frac{\partial H^2 u_a}{\partial s} \approx 0 \) and \(\frac{\partial T_{ss}}{\partial s} \approx 0 \) in the streamwise direction at a section, Eq.(6) becomes to:
\[\rho \frac{\partial H(u)}{\partial n} = \rho g H S_n + \frac{\partial H T_{ns}}{\partial n} - \tau_b \sqrt{1 + \frac{1}{ss^2}} - 2\rho \int_0^H \left(\frac{\bar{v}}{r} + \frac{uw'}{r} \right) dz \] \((7) \)
where the long overbar or subscript (d) denotes a depth-averaged value, \(\tau_b \) is the bed shear stress, \(ss \) is the channel side slope of the banks (1:ss, vertical: horizontal), \(H \) is the flow depth, \(\{\tau_{ns}, \tau_b\} \) are
Reynolds stresses on planes perpendicular to the n and z directions respectively, and the depth-averaged velocity U_d is defined as

$$U_d = \frac{1}{H} \int_0^H \bar{u} \, dz$$

In a Cartesian coordinate system, where $\{x,y,z\}$ represent $\{s,n,z\}$ respectively, as shown in Fig. 2, Eq. (7) is written as

$$\rho \frac{\partial H(\bar{u} \bar{v})}{\partial y} = \rho g H S_0 + \frac{\partial H r_{xy}}{\partial y} - \tau_b \sqrt{1 + \frac{1}{ss^2}} - 2\rho \int_0^H \left(\frac{\bar{u} \bar{v}}{r} + \frac{\bar{w} \bar{v}_r}{r} \right) dz$$

which is the same equation as that given by Shiono and Knight (1991). Eq. (10) also shows that the secondary flow (the term on LHS) and the last term on RHS (due to the curvature of channel) affect the flow contributing to balance the body force and Reynolds stress.

Development of a new analytical model

In a curved channel, the governing depth-averaged momentum equation (9) can be rewritten as

$$\rho g H S_0 + \frac{\partial H r_{xy}}{\partial y} - \tau_b \sqrt{1 + \frac{1}{ss^2}} = \rho \frac{\partial H(\bar{u} \bar{v})}{\partial y} + 2\rho \int_0^H \left(\frac{\bar{u} \bar{v}}{r} + \frac{\bar{w} \bar{v}_r}{r} \right) dz$$

The terms on the RHS of Eq. (11) include the secondary flow term (1^{st} term) and the contribution of additional Reynolds stress due to curvature (2^{nd} term). Eq. (11) can apply to a straight channel where the second terms on the RHS will not exist. In a straight channel, the secondary flow term (1^{st} term of RHS in Eq. 11) is assumed to be a constant value (Γ), based on detailed measurements (Shiono and Knight, 1991). However, there are few corresponding measurements for curved channels. Hence it is not fully understood how much the additional Reynolds stress term in Eq. (11) contributes to the overall balance. Blanckaert and de Vriend (2003, 2010) proposed as a first approximation to a parabolic width distribution of the RHS terms. Similarly, as a first attempt we here assume that the overall RHS contribution varies linearly cross the channel from the centre of channel bend (see Fig. 2), and hence can be described in the form of $m + n \, y$, where m and n are constants that depend on the turbulence characteristics and the geometry of the curved channel. The aim is thus to explore whether there exists any form of analytical solution for the depth-averaged velocity in a curved channel that ensures this approximate distribution of the RHS of Eq. (11). In later sections, a
preliminary analysis is made using the limited experimental data that are available, and this shows that such an approximation is reasonable and leads to useful results.

Therefore, the linear relationship between the additional flow term [RHS of Eq. (11)] and the lateral distance (y), is assumed to be given by

\[
\rho \frac{\partial H\langle \overline{u} \overline{v}\rangle_d}{\partial y} + 2\rho \int_0^H \left(\frac{\overline{u} \overline{v}}{r} + \frac{\overline{u} \overline{v}}{r} \right) \, dz = m + ny
\]

(12)

where \(m \) and \(n \) are constants to take into account the influence of secondary flow and the additional Reynolds stress due to curvature of the flow. For simplicity, let \(\Omega = m + ny \), then

\[
\rho \frac{\partial \langle u \overline{v} \rangle_d}{\partial y} + 2\rho \int_0^H \left(\frac{u \overline{v}}{r} + \frac{u \overline{v}}{r} \right) \, dz = \Omega
\]

(13)

Further discussion on this assumption is given later. Combining Eqs. (11) and (12) gives

\[
\rho g S_0 + \frac{\partial H \tau_{yx}}{\partial y} - \tau_b \sqrt{1 + \frac{1}{s^2}} = m + ny
\]

(14)

Through Eq. (8) and the following assumptions (15),

\[
\tau_b = \left(\frac{f}{\rho} \right) \rho U_d^2 ; \quad \tau_{yx} = \rho \varepsilon_{yx} \frac{\partial U_d}{\partial y} ; \quad \varepsilon_{yx} = \lambda U_d H
\]

(15)

where \(U_c \) = shear velocity [= (\(\tau_b / \rho \))^{1/2}], Eq. (14) can be rewritten as

\[
\rho g S_0 - \rho \frac{f}{\rho} U_d^2 \left(1 + \frac{1}{s^2} \right)^{1/2} + \frac{\partial}{\partial y} \left(\rho A H^2 \left(\frac{f}{\rho} \right)^{1/2} U_d \frac{\partial U_d}{\partial y} \right) = m + ny
\]

(16)

where \(f = \) Darcy-Weisbach friction factor, and \(\lambda = \) dimensionless eddy viscosity.

For given coefficients \((f, \lambda, m \text{ and } n) \), Eq.(16) becomes a constant coefficient ordinary differential equation for the velocity variable \((U_d) \) with respect to the lateral distance (y). An analytical solution to Eq.(16) can be obtained as follows (Tang & Knight, 2008a):

\(<1>\) For a domain of constant depth:

\[
U_d = (A_1 e^{\gamma y} + A_2 e^{-\gamma y} + k)^{1/2}
\]

(17)

\[
k = \frac{8 g S_0 H}{f - \frac{8}{\rho f} (m + ny) ; \quad \gamma = \sqrt{\frac{2}{\lambda}} \left(\frac{f}{\rho} \right)^{1/4} \frac{1}{H}}
\]

(18)

\(<2>\) For a domain with linearly varying bed (1:ss):

\[
U_d = \left(A_3 \xi^\alpha + A_4 \xi^{-\alpha+1} + \omega \xi + \eta \right)^{1/2}
\]

(19)
\[
\alpha = -\frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{ss \sqrt{1 + \frac{\lambda}{\mu}}}{\alpha} \sqrt{8f}}; \quad \omega = \frac{\frac{g}{ss} \frac{n \rho}{\rho_{\mu}}}{\frac{\lambda}{\mu} \frac{\sqrt{1 + \frac{\lambda}{\mu}}}{\alpha} \sqrt{8f}}; \quad \eta = \frac{-(m + Hn \rho)}{\rho \sqrt{1 + \frac{\lambda}{\mu} \frac{\sqrt{1 + \frac{\lambda}{\mu}}}{\alpha} \sqrt{8f}}} (20)
\]

in which \(A_1 - A_4 \) are unknown constants, and \(\xi \) is the local depth given by \(\xi = H - y / ss \) (for \(y > 0 \)).

Validation of secondary flow term in the new model

The proposed approximation for the secondary flow and additional Reynolds stress due to curvature \([\text{RHS of Eq.(11)}]\) is in the form of Eq.12. Many experimental researches have been undertaken on flows in river bends, but the majority of measurements have only focused on streamwise and lateral velocities. There is little data available on 3D flow velocities and stresses. Booij (2003) investigated the secondary flow in a \(180^\circ \) rectangular bend flume by undertaking detailed measurement of 3D velocities using a 3D LDV system. Such a valuable data set enables one to evaluate both the secondary flow and the additional Reynolds stress terms in a curved channel, i.e. all the terms on the RHS of Eq. (11). The cross-section of the 0.5m wide flume was rectangular and the radius of curvature of the centre of flume was 4.10m, as shown in Fig. 3. The flow depth was set at 0.052m for this particular series of experiments.

Two detailed data sets, at two cross-sections \(29^\circ \) and \(135^\circ \) from the entrance of flume, are given by van Balen et al. (2009), and are repeated in Fig.4. The flow at the \(135^\circ \) cross-section was found to be fully developed, and therefore this set of data was used to evaluate the secondary flow and the additional Reynolds stress terms in Eq. (20).

To validate the approximate expression in Eq. (12), each term on the left side of Eq. (12) has been evaluated from the data extracted from Fig.4 (after van Balen et al., 2009). The results are analysed and given by Figures 5-7. Fig.5 shows an approximately linear variation of the secondary flow term \(\rho H(\bar{u} \bar{v})_d \) from inner (left) to outer (right) side along the cross section of channel with a maximum located slight towards the left of the central line. A similar approximately linear variation of the additional Reynolds stress term, \(2 \rho \int_0^H \left(\frac{\bar{u} \bar{v}}{r} + \frac{\bar{u}' \bar{v}'}{r} \right) dz \), is given in Fig.6. The corresponding total additional secondary flow term, \(\rho H(\bar{u} \bar{v})_d + 2 \rho \int_0^H \left(\frac{\bar{u} \bar{v}}{r} + \frac{\bar{u}' \bar{v}'}{r} \right) dz \), termed as \(\Omega \) for convenience as shown in Eq. (13), is given in Fig.7, which clearly demonstrates an approximate bilinear transverse distribution of the total additional secondary flow term (RHS of Eq. 11). Therefore, the
approximation given by Eq. (12) appears to be reasonable. In the next section we analyze how the coefficients \((m, n)\) affect the predicted distributions.

Discussion of Results

In order to model the lateral distribution of depth-averaged velocity, as shown by Eqs. (17) and (19), four parameters \((f, \lambda; m \text{ and } n)\) are needed, where \(m\) and \(n\) represents the total additional flow term in a curved channel, expressed as the right side \(\Omega\) of Eq. (11). The parameters \((f, \lambda, \Gamma)\), where \(\Gamma\) is the secondary flow term defined as \(\rho \frac{\partial \left(\bar{v} \bar{v}\right)}{\partial y}\), have been studied extensively for different cases in straight channels by Shiono & Knight (1991), Abril & Knight (2004), McGahey (2006), McGahey et al. (2006), Chlebek & Knight (2006), Knight et al. (2007, 2010a,b) and Tang & Knight (2008a,b). They found the model was less sensitive to \(\lambda\) for overbank flows than for inbank flows, and that even constant values of \(f\), \(\lambda\) and \(\Gamma\) in particular panels or zones (groups of panels) may give satisfactory results. In the following section, the influence of \(\Omega\) on the lateral distribution of velocity is discussed, using modelling results for curved rectangular channels with a flat bed.

Boundary Conditions for solution of \(U_d\)

For the channel shown in Fig.8, the cross-section may be divided into several panels \((i)\) with either constant depth or linear depth domains, where the analytical solutions of \(U_d\) given by (17) and (19) apply respectively. Two unknown constants \(A_1\) and \(A_2\) (Eq. 17) or \(A_3\) and \(A_4\) (Eq. 19) in each domain can be obtained using appropriate boundary conditions as follows (see Fig.8):

- The no-slip condition, i.e. \(U_d = 0\) at the remote boundaries;
- The continuity of the velocity \(U_d\) at each domain junction, i.e. \(U_d^{(i)} = U_d^{(i+1)}\) at \(y=b\);
- The continuity of unit force \((H_{\bar{\bar{y}}x}\tau)\) at each domain junction, i.e. \([H_{\bar{\bar{y}}x}\tau]^{(i)} = [H_{\bar{\bar{y}}x}\tau]^{(i+1)}\) at \(y=b\).

It follows using (16) for a continuous depth domain that the continuity of unit force at each junction is as given by (Tang and Knight, 2008b):

\[
\left(\mu \frac{\partial U_d}{\partial y}\right)^{(i)} = \left(\mu \frac{\partial U_d}{\partial y}\right)^{(i+1)} \quad \text{with} \quad \mu = \lambda \sqrt{f}
\]

where \(i\) is panel number.

Modelling philosophy and calibration coefficients
The philosophy adopted in the analytical solutions (17) & (19) is based on a constant value for \((m, n)\) used to determine the distribution of \(\Omega\) for each panel, whether the panel has a flat bed or a linearly varying sloping bed. The cross-section of the channel can normally be split into a number of panels in which the calibration parameters are held constant. Generally panel boundaries are chosen where the flow depth is discontinuous or changes. In those cases characterized by complex secondary flow cells, further division of the channel may be required. More details about how to divide the channel according to the size and distribution of secondary cells is given by Knight et al. (2007). The friction factor in each panel is normally assumed to be constant, based on experimental results and by using the back calculated values from Darcy-Weisbach equation. To simplify the calibration procedure, and to make the work of the modeller easier, a constant ‘standard’ value for \(\lambda\) for most panels (\(\lambda = 0.07\)) is assumed.

Modelling results for a curved rectangular channel

This session examines the impact of the total additional secondary flow term \((\Omega)\) on the lateral velocity distribution using the model in a smooth curved rectangular channel similar to that used in the flume experiments by Booij (2003). The channel bed slope is set at 0.0001, and the channel width is 0.50m with various curvature radius \(r\), as shown in Fig. 9, where \(y\) is towards outside bank of the channel, \(B = \) channel width, \(H = \) flow depth, and \(b_1\) and \(b_2\) are the panel widths respectively for panels (1) and (2). For all cases values of \(\rho = 1000\) kg/m\(^3\) and \(g = 9.807\) m/s\(^2\) were adopted.

In the modelling, \(f = 0.010\) was used for the smooth channel, and the total additional secondary flow term \(\Omega = m + ny\) is assumed to be bi-linearly distributed over the channel width, with \(\Omega = 0\) at the edge of channel, implying that \(m = 0\) in panel (1). To test how the \(n\) value and the ratio of \(b_1/B\) \((B=b_1+b_2)\) affect the velocity distribution, some results are shown in Figs. 10-11, along with the experimental data by Booij (2003).

Fig.10 shows that the velocity decreases as \(n\) increases, and the velocity distribution is symmetric as expected due to the two equal width panels used for the same \(n\)-value. It also shows that the results using \(n = 0.02\) agree with the data reasonably well, and that the results without secondary flow overestimate slightly, as it is not surprising for the mild curved channel \((R/B = 8.2)\).

As the data reveal that the secondary cells are not symmetric, we examined how the panel size (corresponding to the secondary cell distribution) affects the velocity distribution. The modelled results with varying \(b_1/B\) ratios are shown in Fig.11, which demonstrates that the velocity distribution is skewed towards the inside bank as the maximum secondary flow location changes from 30% to 70% of whole channel width away to the inner bank.
However, the value of m ($\Omega = m + ny$) at the two banks of a channel is unlikely to be zero in most cases. This can be explained as follows: although the velocity components (u,v) at the edge of a channel are zero, the data for $\rho H(\bar{u}\bar{v})_d$ show that it varies approximately linearly over the majority of the channel, except at the extreme edges. Therefore the gradient of $\rho H(\bar{u}\bar{v})_d$ is not zero at these extreme points, but has a limiting small value. To further explore how the values of (m, n) affect the velocity distribution, a comparison of the results with varying m_1 (value of m in panel 1) is given in Fig. 12, whereas Fig.13 shows results of velocity distribution for varying m_2 (value of m in panel 2). In the modelling, the same channel was used with $b1/B = 50\%$. Fig.12 shows that m_1 has a significant impact on the velocity distribution, and the velocity decreases as m_1 increases, which results in a skewed distribution of velocity. Fig.13 shows m_2 has a similar impact to m_1. This demonstrates that the model is capable of predicting the lateral distribution of velocity using appropriate values for m_1 and m_2.

Conclusions

Based on a RANS approach and the assumption of a bi-linear distribution for the additional secondary flow terms, an analytical model is proposed that predicts the lateral distribution of depth-averaged velocity of flow in curved open channels. The two parameters (m, n) for the total additional secondary flow term, $\Omega (=m+ny)$, have been examined for their impacts on the velocity distribution for typical case in a rectangular channel with flat bed. The following conclusions may be drawn:

1) The additional flow term (Ω) can be approximated by a linear variation with lateral distance, as given by Eqs. (12) and (13). This has been validated using the limited data that are available.

2) Based on the premise of point (1) the two analytical solutions for U_d, given by Eqs. (17) and (19), are shown to describe the lateral distribution of depth-averaged velocity in a curved rectangular channel for a flat bed and a sloping side bed respectively.

3) It is demonstrated that the modelled results agree reasonably well with the limited experimental data.

4) Model tests for a curved rectangular channel with flat bed show that m values have a significant influence on the results, as shown by Figs. 12 & 13. By contrast, n values have a relatively small impact on the results, as shown by Figs. 10 & 11.

5) Although the model is capable of predicting the lateral distribution of depth-averaged velocity, further experimental work is needed to valid the m and n values and to define the number and
position of the dominant secondary flow cells in bends with different geometries.

Notation:

\(\tilde{\varepsilon}_{xy} \) = depth-averaged eddy viscosity, defined by (15);

\(\{u, v, w\} \) = velocity components in the coordinates \(\{s, n, z\} \) or \(\{x, y, z\} \) directions;

\(A_1 \) to \(A_4 \) = constants in (17) and (19);

\(B \) = bed width of channel;

\(b_1, b_2 \) = panel width of channel;

\(f \) = Darcy-Weisbach friction factor, defined by (15);

\(g \) = gravitational acceleration;

\(H \) = flow depth in channel;

\(k \) = coefficient constant, defined by (18);

\(ss \) = channel side slope (1:ss, vertical : horizontal);

\(s_b \) = channel bed slope;

\(U_* \) = shear velocity \([= (\tau_b/\rho)^{1/2}] \);

\(U_d \) = depth-averaged streamwise velocity, defined by (8);

\(x \) = streamwise co-ordinate;

\(y \) = lateral co-ordinate;

\(z \) = co-ordinate normal to bed;

\(\lambda \) = dimensionless eddy viscosity, defined by (15);

\(\rho \) = fluid density;

\(\Omega \) = transverse gradient of secondary flow term, defined by (13);

\(\alpha \) = coefficients in (19);

\(\gamma \) = coefficient constants, defined by (18);

\(\eta \) = coefficients in (30);

\(\mu \) = coefficient, defined by (21)

\(\tau_b \) = local boundary shear stress, defined by (15);

\(\omega \) = coefficients in (20);

Acknowledgments

The works are supported by the open funds provided by the State Key Lab of Hydraulics and Mountain River Engineering at Sichuan University, China (SKLH-OF-0906).
References

A typical flow structure in a bend (modified after Balen et al. 2009)

A sketch of a cross-section in a bend with secondary flow cells

Curved experimental flume (after Booij, 2003)

Velocity components from the experiments at locations equidistantly placed from the inner bank (left) to the outerbank (right) for the 135° cross-section. Vav = 0.2 ms\(^{-1}\) (after Balen et al. 2009).

The lateral distribution of secondary flow term, \(\rho H(u \overline{v})_d\) versus y (m)

The lateral distribution of additional secondary flow term, \(2\rho \int_{0}^{H} \left(\frac{u \overline{v}}{r} + \frac{\overline{v}' v'}{r} \right) dz\) versus y (m)

The lateral distribution of total additional flow term, \(\rho H(u \overline{v})_d + 2\rho \int_{0}^{H} \left(\frac{u \overline{v}}{r} + \frac{\overline{v}' v'}{r} \right) dz\)

Sketch of a channel with two panels

A sketch of a rectangular cross-section

Result of modelled depth-averaged velocity for various n values (H = 0.052m)

Modelled depth-averaged velocity for two panels with various ratio of b1/B (n = 0.02)

Modelled depth-averaged velocity with varying \(m_1\) values in panel 1

Modelled depth-averaged velocity with varying \(m_2\) values in panel 2
Fig. 1. A typical flow structure in a bend (modified after Blanckaert & de Vriend, 2010)

Fig. 2. A sketch of a cross-section in a bend with secondary flow cells, where a flat surface is assumed as simplicity.
Fig. 3. Curved experimental flume (after Booij, 2003)

Fig. 4. Velocity components from the experiments at locations equidistantly placed from the inner bank (left) to the outerbank (right) for the 135° cross-section. $V_{av} = 0.2 \text{ms}^{-1}$ (after van Balen et al. 2009), where the circle symbols are measured data and the solid line denotes the model of van Balen et al.
Fig. 5 The lateral distribution of secondary flow term, $\rho H (\bar{u} \bar{v})_d$ versus y (m), where y varies from inner (left) to outer (right) side of channel and the symbols denote the data from van Balen et al.(2009).

Fig. 6 The lateral distribution of additional secondary flow term, $2\rho \int_0^H \left(\frac{\bar{u} \bar{v}}{r} + \frac{\bar{u}^2 \bar{v}}{r} \right) dz$ versus y (m), where y varies from inner (left) to outer (right) side of channel and the circles denote the data from van Balen et al.(2009).
Fig. 7. The lateral distribution of total additional flow term, \(\rho H(\overline{u} \overline{v})_d + 2 \rho \int_0^H \left(\frac{u' v'}{r} + \frac{\overline{u'} \overline{v'}}{r} \right) \, dz \), where the symbols denote the data from van Balen et al. (2009).

Fig. 8 Sketch of a channel with two panels.
Fig. 9 A sketch of a rectangular cross-section

Fig. 10 Result of modelled depth-averaged velocity for various n values (m=0, H = 0.052m)
Fig. 11 Modelled depth-averaged velocity for two panels with various ratio of \(b_1/B \) \((n = 0.02, m = 0) \)

Fig. 12 Modelled depth-averaged velocity with varying \(m_1 \) values in panel 1
Fig. 13 Modelled depth-averaged velocity with varying m_2 values in panel 2

Fig. 14 Sketch of a curved rectangular channel with transverse sloping bed
Fig. 15 Modelled depth-averaged velocity with varying n values

Fig. 16 Modelled depth-averaged velocity with varying ratios of b/B
Fig. 17 Modelled depth-averaged velocity with varying bed side slope ss values

![Graph showing modelled depth-averaged velocity with varying bed side slope ss values]

- Model (ss=2)
- Model (ss=4)
- Model (ss=8)
- Model (ss=16)
- Model (ss=50)
- Model (ss=100)

$n = 0.08, b1/B = 50\%$