UNIVERSITYOF
 BIRMINGHAM

Costs and benefits of iodine supplementation for pregnant women in a mildly to moderately iodinedeficient population

Monahan, Mark; Boelaert, Kristien; Jolly, Catherine; Chan, Shiaoyng; Barton, Pelham; Roberts, Tracy

DOI:
10.1016/S2213-8587(15)00212-0

Document Version

Peer reviewed version
Citation for published version (Harvard):
Monahan, M, Boelaert, K, Jolly, C, Chan, S, Barton, P \& Roberts, T 2015, 'Costs and benefits of iodine supplementation for pregnant women in a mildly to moderately iodine-deficient population: a modelling analysis', The Lancet Diabetes and Endocrinology, vol. 3, no. 9, pp. 715-722. https://doi.org/10.1016/S2213-
8587(15)00212-0

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

> -Users may freely distribute the URL that is used to identify this publication.
> -Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
> -User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
> -Users may not further distribute the material nor use it for the purposes of commercial gain.
> Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
> When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Tables

Table 1

Parameter list - assuming worst case scenario, (i.e. being least favourable to iodine supplementation)	Data	Sources
Probability of a pregnant woman being iodine deficient	$67 \cdot 43 \%$	Bath and colleagues 5 Vanderpump and colleagues ${ }^{42}$ showed a similar proportion of iodine deficiency in 14/15 year old girls in the UK (68\%)
Iodine Deficiency		
Proportion of iodine deficient women who are mildly/moderately iodine deficient (Urinary Iodine-to-Creatinine ratio (UIC) 50 to 149 ug/l)	$0 \cdot 89$	${\text { Bath and colleagues }{ }^{5}}^{5}$
Proportion of iodine deficient women who are severely iodine deficient (UIC <50 $\mathrm{g} / \mathrm{ll})$	$0 \cdot 11$	Bath and colleagues ${ }^{5}$

Discount rate for costs	3.50\%	NICE guide to the methods of technology appraisal ${ }^{25}$
For a small minority of women who may develop thyroid dysfunction as a result of iodine supplementation (assumption based on non-pregnant population iodine supplementation programmes which include the elderly)		
Incremental incidence of thyroid dysfunction from iodine supplementation	0.25\%	European Commission ${ }^{27}$
IQ loss from overt \& subclinical hypothyroidism	7.00	Haddow and colleagues ${ }^{18}$
IQ loss from isolated hypothyroxinemia	7.00	Model assumption based on equivalent neurodevelopmental test scores in Subclinical Hypothyroidism and Isolated Hypothyroxinemia groups ${ }^{28}$
Incidence of early pregnancy loss from overt hyperthyroidism	26.00\%	Momotani \& Ito ${ }^{48}$
Odds ratio of stillbirth from overt hyperthyroidism*	$\begin{gathered} 8 \cdot 42 \\ 95 \% \mathrm{CI} \\ (2 \cdot 01-35 \cdot 20) \end{gathered}$	Aggarawal and colleagues ${ }^{49}$
Odds ratio of preterm birth from overt hyperthyroidism	$16 \cdot 50$ $95 \% \mathrm{CI}$ $(2 \cdot 09-130 \cdot 02)$	Millar and colleagues ${ }^{50}$
Odds ratio of pre-eclampsia from overt hyperthyroidism*	3.94 $95 \% \mathrm{CI}$ $(2 \cdot 47-6 \cdot 29)$	Aggarawal and colleagues ${ }^{49}$
Incidence of early pregnancy loss from overt hypothyroidism	30.00\%	Glinoer ${ }^{\text {¹ }}$
Odds ratio for stillbirth from Overt Hypothyroidism	9.69 $95 \% \mathrm{CI}$ $(2.92-32 \cdot 16)$	Allan and colleagues ${ }^{52}$
Odds ratio for Preterm Birth from Overt Hypothyroidism	$15 \cdot 55$ $95 \% \mathrm{CI}$ $(3 \cdot 62-66 \cdot 81)$	Ajmani and colleagues ${ }^{53}$
Incidence of pre-eclampsia from Overt Hypothyroidism	44.00\%	Davis and colleagues ${ }^{54}$
Odds ratio for early pregnancy loss from subclinical hypothyroidism	$1 \cdot 88$ $95 \% \mathrm{CI}$ $(1 \cdot 13-3 \cdot 15)$	Wang and colleagues ${ }^{55}$
Odds ratio of stillbirth from subclinical hypothyroidism	$3 \cdot 29$ $95 \% \mathrm{CI}$ $(1 \cdot 32-8 \cdot 21)$	Allan and colleagues ${ }^{52}$

Odds ratio for preterm birth from subclinical hypothyroidism	$5 \cdot 60$ $95 \% \mathrm{CI}$ $(2 \cdot 30-13 \cdot 58)$	Ajmani and colleagues 53
Odds ratio for pre-eclampsia from subclinical hypothyroidism	$3 \cdot 39$ $95 \% \mathrm{CI}$ $(1 \cdot 40-8 \cdot 15)$	Ajmani and colleagues 53
Odds ratio for preterm birth from isolated	$2 \cdot 54$	Korevaar and colleagues 56
hypothyroxinemia*	$95 \% \mathrm{CI}$	
* Adjusted Odds ratio	$(1 \cdot 42-4 \cdot 54)$	

Table 2

Results summary table and sensitivity analysis scenarios			
	Cost saving Analysis 1 (NHS perspective)	Cost saving Analysis 2 (Societal perspective)	IQ points gained
Base case results	£199	$£ 4476$	1.22
Sensitivity analysis scenarios			
IQ gain for severe iodine deficiency same as mild/moderate iodine deficiency	$£ 189$	$£ 4302$	1.18
1 IQ point gain from iodine supplementation	$£ 46$	£1900	0.53
No IQ gain for mild/moderate iodine deficiency	-£42	$£ 540$	$0 \cdot 17$
Prevalence of iodine deficiency halved	£59	£2178	0.61
Doubled early pregnancy loss	$£ 145$	£3352	0.92
Doubled cost of iodine tablets	$£ 148$	£4452	1.22
Doubled discount rate	$\mathfrak{¢} 144$	£1608	1.22
No thyroid dysfunction	£229	£4495	1.23
Health costs halved Analysis 1 only	£60		1.22
Value of an IQ point halved Analysis 2 only		£2409	$1 \cdot 22$
No real wage growth Analysis 2 only		£3239	$1 \cdot 22$
Willingness to pay figure for an additional IQ point used Analysis 2 only		£1832	$1 \cdot 22$
Exclusion of public sector costs Analysis 2 only		$£ 3953$	1.22

