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ABSTRACT

A cell contains thousands of proteins. Many important functions of cell are carried out
through the proteins therein. Proteins rarely function alone. Most of their functions
essential to life are associated with various types of protein-protein interactions (PPIs).
Therefore, knowledge of PPIs is fundamental for both basic research and drug development.
With the avalanche of proteins sequences generated in the postgenomic age, it is highly
desired to develop computational methods for timely acquiring this kind of knowledge.
Here, a new predictor, called “iPPI-Emsl”, is developed. In the predictor; a protein sample is
formulated by incorporating the following two types of information into the general form of
PseAAC (pseudo amino acid composition): (1) the physicochemical properties derived from
the constituent amino acids of a protein; (2) the wavelet transforms derived from the
numerical series along a protein chain. The operation engine to run the predictor is an
ensemble classifier formed by fusing seven individual random forest engines via a voting



system. [t is demonstrated with the benchmark dataset from S. cerevisiae as well as the
dataset from H. pylori that the new predictor achieves remarkably higher success rates than
any of the existing predictors in this area. The new predictor’ web-server has been
established at http://www.jci-bioinfo.cn/iPPI-Esml. For the convenience of most
experimental scientists, we have further provided a step-by-step guide, by which users can
easily get their desired results without the need to follow the complicated mathematics
involved during its development.

Keywords: Physicochemical properties; Wavelets transforms; Pseudo amino acid
composition; Random Forests; Fusion; Voting system; Ensemble classifier

I. INTRODUCTION

Proteins play a vital role in nearly all biology functions such as composing cellular
structure and promoting chemical reactions. Proteins in a cell rarely function in isolation
but are actively and selectively interacting with each other (Fig.1). Most of their functions
essential to life are associated with different types of protein-protein interactions (PPIs).
For instance: proteins are modified and degraded by enzyme proteins; many marvelous
biological functions in proteins, such as allosteric regulation, are realized via the
interactions between the protein subunits (Chou, 1989b; Perutz, 1942); signal transmission
between cells is via binding of protein messengers to protein receptors (Chou, 2005a);
proteins are directed to the correct compartments of cells thru binding to other proteins;
structural connections between cells are established via PPIs; the molecular mechanism of
muscle contraction as well as the opening and closing of ion-channels are also closely
associated with PPIs (Huang et al,, 2008; OuYang et al., 2013 ; Schnell and Chou, 2008).

On the other hand, PPIs are also related to various disease states. For instance, if a cell
suddenly lost some normal or necessary PPIs, the deprived cell would become “blind” and
“deaf”, completely paralytic finally leading to perish. Also, if many abnormal or unwanted
PPIs suddenly occurred in a cell, the “unfortunate” cell would completely lose control,
leading to network confuse and a terrible disaster.

Accordingly, it is vitally important to characterize PPIs and understand their interaction
network, an important subject in the discipline called “protein network” or a frontier for
investigating the functional relationship of proteins in a cell. However, it is by no means an
easy job due to the extreme complexity of the problem concerned. As is well known, using
graphical approaches to study complicated biological problems can provide an intuitive
picture or useful insights for helping analyzing complicated relations in these systems, as
demonstrated by many previous studies on a series of important biological topics, such as
enzyme-catalyzed reactions (Zhou and Deng, 1984), inhibition of HIV-1 reverse
transcriptase (Althaus et al., 1993a; Althaus et al., 1993b), protein folding kinetics (Chou,
1990), and using wenxiang diagram or graph (Chou et al., 2011) to study protein-protein



interactions (Zhou, 2011a; Zhou, 2011b; Zhou and Huang, 2013). In view of this, we are
also using the vertex-arc graph (Fig.1) to express a protein-protein interaction network,
where the vertex denotes each of the proteins in the network system while the arc to
indicate their relation. As we can see from the figure, the PPI systems are indeed very
complicated. Therefore, it is absolutely necessary to combine the experimental and
computational approaches together for really understanding this kind of systems.

During the last decade or so, various experimental techniques have been developed for
determining PPIs, such as yeast two-hybrid systems (Fields and Song, 1989; Ito et al., 2001),
mass spectrometry (Gavin et al., 2002), and protein chip (Zhu et al,, 2001). But only very
small portion of PPI's were identified (Han et al., 2005) because it was time-consuming,
labor-intensive and expensive by using experimental technique alone.

Fortunately, the success of the human genome project has provided us with a
significant amount of useful data to conduct statistical analyses in this regard, and hence
made it feasible to predict the PPIs by computational approaches.

Our rationale is as follows. It is virtually axiomatic that the amino acid sequence of a
protein will determine its 3D (three-dimensional) structure (Anfinsen, 1973); while the
latter will determine its biological function. Accordingly, the sequence information alone of
proteins can certainly determine their interaction relationship. Actually, many
computational methods have been proposed in this regard (Chou and Cai, 2006; Espadaler
etal, 2005; Gomez et al., 2003; Guo et al., 2008b; Marcotte et al., 1999; Shen et al., 2007b;
Xia et al,, 2010a; Xia et al., 2010b; Yang et al., 2010). Each of these methods has its own
merit, and did play a role in stimulating the development of this area. However, all the
aforementioned methods were based on a single learner without using the ensemble
learning technique, and hence their power might be limited. Besides, in the aforementioned
methods, none of physicochemical properties was taken into account, which might further
limit the prediction quality.

Many evidences have indicated that using ensemble classifier can significantly enhance
the success rates in recognizing protein fold pattern (Shen and Chou, 2006), identifying
membrane protein types (Shen and Chou, 2007), and predicting protein subcellular
localization (see, e.g., (Chou and Shen, 2006a; Shen et al,, 2007a)). In other words, in
comparison with a single classifier, the ensemble classifier formed by fusing multiple single
classifiers can achieve much better prediction quality with more generalized ability (Chou
and Shen, 2007a; Jia et al., 2011).

Stimulated by the successes of using ensemble classifiers for predicting protein
attributes (Chou and Shen, 2006a; Shen and Chou, 2006), Nanni et al. (Nanni and Lumini,
2006) developed an ensemble classifier by fusing K-local hyperplanes for predicting PPIs,
remarkably enhancing the success rate. Unfortunately, for the prediction method (Nanni
and Lumini, 2006), no web-server whatsoever has been established. Therefore, its practical
application value is considerably limited, particularly for most experimental scientists.

The present study was aimed at (1) developing a new and more powerful ensemble
classifier by incorporating the physicochemical properties concerned, and (2) establishing
a user-friendly web-server for the new PPI predictor.



As reflected by a number of recent articles (Chen et al,, 2013; Chen et al., 2014a; Chen
etal, 2014b; Guo et al,, 2014; Lin et al,, 2014; Liu et al., 2015b; Liu et al., 2014a; Liu et al,,
2014b; Xu et al,, 2014b) in response to the call (Chou, 2011), in presenting a sequence-
based statistical predictor for a biological system, one should make the following five
procedures very clear: (1) how to construct or select a valid benchmark dataset to train and
test the predictor; (2) how to formulate the biological sequence samples with an effective
mathematical expression that can truly reflect their intrinsic correlation with the target to
be predicted; (3) how to introduce or develop a powerful algorithm (or engine) to operate
the prediction; (4) how to properly perform cross-validation tests to objectively evaluate its
anticipated accuracy; (5) how to establish a user-friendly web-server that is accessible to
the public. Below, we are to address the five procedures one-by-one.

II. MATERIAL AND METHODS
II.1. Benchmark Datasets

Two benchmark datasets were used for the current study. One is called the S.C. dataset
used to study the PPIs in the cell of Saccharomyces Cerevisiae, while the other called the H.P.
dataset used to study the PPIs in the cell of Helicobacter Pylori.

S.C. Dataset. To obtain a high quality benchmark dataset, the source Saccharomyces
Cerevisiae proteins for the S.C. dataset were collected according to the following criteria: (1)
each of the included proteins must contain at least 50 residues in order to avoid fragments
(Chou and Shen, 2007a); (2) none of the included proteins has = 40% pairwise sequence
identity to any other in order to reduce the homology bias. From the 7,374 source proteins
thus obtained and using DIP (Database of Interacting Proteins) (Xenarios et al., 2002), we
can obtain 17,505 interactive protein pairs. As for the non-interacting pairs that are not
readily available from DIP database, we constructed them as follows. The non-interactive
pairs were generated based on such an assumption that proteins located at different
subcellular localizations do not interact with each other (Guo et al., 2008a; Shen et al.,,
2007b). The subcellularlocation information of the proteins concerned was extracted from
Swiss-Prot (http://www.expasy.org/sprot/) by considering the following seven locations:
Cytoplasm, Nucleus, Mitochondrion, Endoplasmic Reticulum, Golgi Apparatus, Peroxisome,
Vacuole. Subsequently, the negative data were formed via pairing the proteins concerned
from one location site with those from a different one. The following requirement must be
satisfied when doing so (Guo et al., 2008a; Shen et al., 2007b): the non-interacting pairs
thus formed should not also occur in the positive dataset of interactive pairs. A total of
5,943 negative pairs were thus generated. As pointed out by the authors in (Ben-Hur and
Noble, 2006), however, the restricting negative samples formed from different subcellular
locations may lead to a biased estimate of the accuracy for a PPI predictor. Therefore, it is
necessary to also generate the negative samples from the same subcellular location to
reduce this kind of bias. In view of this, additional negative samples were generated
according to the principle that the protein pairs at the same localization were considered as
the negative pairs if none of them has occurred in the yeast positive pairs. Thus, additional
27,204 negative pairs were generated within each of the aforementioned seven subcellular
locations: 8,000 within Cytoplasm, 8,000 within Nucleus, 8,284 within Mitochondrion,
1,953 within Endoplasmic Reticulum, 300 within Golgi apparatus, 171 within Peroxisome,



and 496 within Vacuole. Finally, the benchmark dataset thus established can be formulated
below

Ss.c. = S;.c. U S;c. (1)

where S is the S.C. benchmark dataset for Saccharomyces Cerevisiae that contains 50,652
protein pairs, of which 17,505 are interactive pairs belonging to the positive subset Sg.. ,

5943+27204 = 33,147 are non-interactive pairs belonging to the negative subset S , and
U represents the union in the set theory. For the details of these protein pairs and their
DIP codes, see Online Supporting Information S1.

H.P. Dataset. For facilitating comparison later, the benchmark dataset used to study
the PPIs in the cell of Helicobacter Pylori was taken from (Martin et al., 2005) since many
investigators used it to test their own methods with the success rates well documented (see,
e.g., (Nanni, 2005; Nanni and Lumini, 2006; Xia et al., 2010b)). Likewise, the H.P. dataset
can be formulated as

Syp. = S;-LP. U Sup. (2)

where S, contains 2,916 Helicobacter Pylori protein pairs, Sy, is the positive subset

containing 1,458 interactive protein pairs, and Sy, is the negative subset containing 1,458

non-interactive protein pairs. For the details of these protein pairs and their corresponding
protein sequences, see Online Supporting Information S2 and Online Supporting
Information S3, respectively.

I1.2. Using Pseudo Amino Acid Composition to Represent Protein Pairs

One of the most challenging problems in computational biology today is how to
effectively formulate the sequence of a biological sample (such as protein, peptide, DNA, or
RNA) with a discrete model or a vector that can considerably keep its sequence order
information or capture its key features. The reasons are as follows. (1) If using the
sequential model, i.e., the model in which all the samples are represented by their original
sequences, it is hardly able to train a machine that can cover all the possible cases
concerned, as elaborated in (Chou, 2011). (2) All the existing computational algorithms,
such as optimization approach (Zhang and Chou, 1992), correlation-angle approach (Chou,
1993), covariance discriminant (CD) (Chen et al., 2012), neural network (Feng et al., 2005),
SLLE algorithm (Wang et al., 2005), support vector machine (SVM) (Lin et al., 2014; Xu et al,,
2014a), random forest (Lin et al., 2011), conditional random field (Xu et al., 2013a), nearest
neighbor (NN) (Cai and Chou, 2003), K-nearest neighbor (KNN) (Shen et al,, 2006), OET-
KNN (Shen and Chou, 2009a), Fuzzy K-nearest neighbor (Xiao et al., 2013a), and ML-KNN
algorithm (Xiao et al., 2011), can only handle vector but not sequence samples.

However, a vector defined in a discrete model may completely lose the sequence-order



information. To cope with such a dilemma, the approach of pseudo amino acid composition
(Chou, 2001a; Chou, 2005b) or Chou’s PseAAC (Cao etal., 2013; Du et al., 2012; Lin and
Lapointe, 2013) was proposed. Ever since it was introduced in 2001 (Chou, 2001a), the
concept of PseAAC has been widely used in almost all the areas of computational
proteomics, such as in predicting antifreeze proteins (Mondal and Pai, 2014), predicting
protein structural class (Kong et al., 2014; Zhang et al., 2014b), predicting anticancer
peptides (Hajisharifi et al., 2014), identifying bacterial virulent proteins (Nanni et al.,
2012b), predicting protein subcellular location in various organisms and levels
(Kandaswamy et al., 2010; Li et al., 2014; Mei, 2012; Nanni and Lumini, 2008; Zhang et al.,
2008; Zuo et al., 2014), predicting membrane protein types (Chen and Li, 2013; Han et al,,
2014), discriminating outer membrane proteins (Hayat and Khan, 2012), analyzing genetic
sequence (Georgiou et al., 2013), identifying cyclin proteins (Mohabatkar, 2010), predicting
GABA(A) receptor proteins (Mohabatkar et al., 2011), identifying antibacterial peptides
(Khosravian et al., 2013), identifying allergenic proteins (Mohabatkar et al., 2013),
predicting metalloproteinase family (Mohammad Beigi et al., 2011), identifying GPCRs and
their types (Zia Ur and Khan, 2012), identifying the types of conotoxins (Ding et al., 2014),
identifying protein quaternary structural attributes (Sun et al., 2012), identifying risk type
of human papillomaviruses (Esmaeili et al., 2010), identifying various PTM (post-
translational modification) sites in proteins (Jia et al., 2014; Qiu et al., 2014b; Qiu et al,,
2014c; Xu et al.,, 2013a; Xu et al,, 2013b; Zhang et al,, 2014a), among many others (see a
long list of references cited in a recent article (Du et al., 2014)). It has also been used in
some disciplines of drug development and biomedicine (Zhong and Zhou, 2014) as well as
drug-target area (Chou, 2015). Recently, the concept of PseAAC was further extended to
represent the feature vectors of DNA and nucleotides (Chen et al., 2013; Chen et al., 2014c;
Guo et al., 2014; Liu et al,, 2015a; Qiu et al.,, 2014a), as well as other biological samples (see,
e.g., (Jiang et al,, 2013)). Because it has been widely and increasingly used, recently three
types of powerful open access soft-ware, called ‘PseAAC-Builder’ (Du et al.,, 2012), ‘propy’
(Cao etal., 2013), and ‘PseAAC-General’ (Du et al., 2014), were established: the former two
are for generating various modes of Chou’s special PseAAC; while the 3rd one for those of
Chou'’s general PseAAC.

According to (Chou, 2011), PseAAC can be generally formulated as

P, | ®

where T is the transpose operator, while Q an integer to reflect the vector’s dimension.
The value of Q as well as the components y, (u=1, 2, ---, Q) in Eq.3 will depend on how

to extract the desired information from a protein sequence. Below, we are to describe how
to extract the useful information from the aforementioned benchmark datasets to define a
pair of proteins via Eq.3.

The wavelet transform (Mallat, 1989) is a very effective approach for using Eq.3 to
formulate a biological sequence, as demonstrated by a series of recent studies such as: (1)
using wavelets to formulate PseAAC (Chou, 2001a; Chou, 2005b) for predicting membrane
protein types (Liu et al,, 2005), predicting protein structural classes (Chen et al., 2012a; Li



et al., 2009), predicting enzyme family classes (Qiu et al., 2010), predicting protein
classification (Nanni et al., 2012a), predicting protein quaternary structural attributes (Sun
et al., 2012), predicting types of homo-oligomers (Qiu et al., 2011a), as well as predicting G-
protein-coupled receptor classes (Qiu et al., 2009), and (2) using wavelets to formulate
PseKNC (pseudo-trinucleotide composition) for predicting promoters (Zhou et al., 2013).
As is well known, in molecular and cellular biology many remarkable functions in proteins
and DNA can be revealed through the low-frequency (or Terahertz frequency) collective
motion (Chou, 1988; Chou, 1989b; Chou and Mao, 1988; Gordon, 2008). In view of this, it
would be particularly intriguing to define the components of Eq.3 with the wavelets
transform approach because it may help to capture the features important for studying PPL

Below, we use the wavelets transform to define each of the components in Eq.3 via the
amino acid’s physicochemical properties.
1. Physicochemical Properties
Given a protein sample with L residues as expressed by
P=RR,R,R,R.RR. R, (4)
where R, represents the 15t amino acid residue of the protein P, R, the 2n residue, and so

forth. Different types of amino acid in Eq.4 may have different physicochemical properties.
In this study, we considered the following seven physicochemical properties: (1)

hydrophobicity (Tanford, 1962) or ®; (2) hydrophicility (Hopp and Woods, 1981) or
®?; (3) side-chain volume (Krigbaum and Komoriya, 1979) or ®%; (4) polarity
(Grantham, 1974) or ®'¥; (5) polarizability (Charton and Charton, 1982) or ®“; (6)
solvent-accessible surface area (SASA) (Rose etal., 1985) or ®?; and (7) side-chain net

charge index (NCI) (Zhou et al,, 2006) or ®”. Their numerical values are given in Table 1.

Thus, the protein P of Eq.4 can be encoded into seven different numerical series, as
formulated by

ODHDODPHDVHDHDVPHDHD M
PPV PVDV DD NP ... P
q)§2)q)(22)q)22)q)22)q)§2)q)(62)(1);2) .. .(1)(2)
q)f)q)g)q)?)q)?)q)?)q)(63)q)g3) . (1)(3)

— DRV YPHPDHDH™® 4
P=:0Y0V P PPPP DY ... (5)

OBOBHOBODHOHOPHO) (5)

PPV PP PP .. DL

q>§6)Cpg6)¢gé)¢ié)¢gé)q>(66)q);6) .. @(6)

DHDBH DD DHDHDFH (7
LR OR SOR YUk S SUN SO

where ®{" is the hydrophobicity value of R, in Eq.4, ®! the hydrophilicity value of R,



and so forth. Note that before substituting the physicochemical values of Table 1 into Eq.5,
they all are subjected to the following standard conversion

@)_<q>(_é)>
o S o2 12 ©

where the symbol < > means taking the average for the quantity therein over the 20 amino

acid types, and SD means the corresponding standard deviation. The converted values via
Eq.6 will have zero mean value over the 20 amino acid types, and will remain unchanged if
they go thru the same standard conversion procedure again.

2. Discrete Wavelet Transform (DWT)

Wavelet Transform (WT) is a multi-resolution analysis tool (Mallat, 1989). It is quite
popular for analyzing, de-noising and compressing signals and images. The WT approach
can overcome the shortcoming of Fourier analysis, which is based on the functions that are
localized in frequency domain but not in time domain. A digital signal can be decomposed
into many groups of coefficients in different scales with WT, and these coefficient vectors
can exhibit characteristics in time domain and frequency domain.

The DWT approach can transform a discrete time signal to a discrete wavelet
representation. When using the DWT on any of the seven numerical series for protein P
(cf. Eq.5), we can view it as a discrete time series, with the 1st residue as ¢ =1, 2m residue
as t =2, and so forth. The discrete time series thus obtained is input into one high-pass
filter and one low-pass filter. The coefficients thus obtained can be approximately used for
the signal’s high scale and low frequency components. In practice, such transform will be
applied recursively on the low-pass series with the Mallat algorithm (Mallat, 1999) until
the desired number of iterations is reached. The block diagram of Fig.2 illustrates the
digital implementation of DWT. In this study, the decomposition level A =4 was selected
to represent a protein, which is similar to the treatment of (Qiu etal., 2011b). Accordingly,
we can obtain (441) =35 sub-bands when the discrete series P was decomposed by DWT

with level A =4 (see Fig.2). Each of the five sub-bands has four coefficients: (1) o, the
maximum of the wavelet coefficients in the j-th sub-band; (2) B ; the mean of the wavelet
coefficients in the j-th sub-band; (3) Y, the minimum of the wavelet coefficients in the

Jj-th sub-band; (4) & ; the standard deviation of the wavelet coefficients in the j-th sub-

band (j =1, 2, ---, 5). Thus, in a way quite similar to the treatment in (Qiu et al., 2014b;
Xu etal,, 2013a; Xu et al,, 2013b), each of the components in Eq.3 can be formulated as
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For a protein pair formed by P and P**, the corresponding PseAAC can be formulated by
their orthogonal sum (Chou and Cai, 2006); i.e.,
T
PrOPC =yl vy o wi v wE eyl @
where P*' and P** as well as their components have exactly the same meaning as those in

Eq.3 except for that they are now referred to a specified protein P"' or P** instead of a

general protein P, and the symbol @ represents the sign of orthogonal sum (Chou and Cai,
2006).

Note that when in turn using each of the seven different physicochemical features (cf.
Eq.5), we can generate seven different PseAAC vectors to represent a same protein pair, as
formulated by

hydrophobicity

hydrophicility

side-chain volume
Protein-pair = P*' @ P**(§) = < polarity

9
polarizability )

solvent-accessible surface

VALY L IRY o L BT e LNV e LY LIV A )
I
~N O D W

side-chain net charge

II.3. Random Forest and Ensemble Classifier

The random forests (RF) algorithm is a powerful algorithm and has been used in many
areas of computational biology (see, e.g. (Kandaswamy et al., 2011; Lin et al,, 2011;
Pugalenthi et al,, 2012)). The detailed procedures and formulation of RF have been very
clearly described in (Breiman, 2001), and hence there is no need to repeat here.

As shown in Eq.9, a protein pair can be formulated with seven different PseAAC forms,
each of which can be used to train the RF predictor. Accordingly, we have a total of seven
individual predictors for identifying PPIs, as formulated by

PPl individual predictor =RF (&)  (&=1,2, -+, 7) (10)

where RF (&) represents the RF predictor based on the the &-th physicochemical property
(cf. Egs.5, 6, 9).

Now, the problem is how to combine the results from the seven individual predictors to
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maximize the prediction quality. As indicated by a series previous studies, using the
ensemble classifier formed by fusing many individual classifiers can remarkably enhance
the success rates in predicting protein subcellular localization (Chou and Shen, 2006b;
Chou and Shen, 2007b) and protein quaternary structural attribute (Shen and Chou,
2009b). Encouraged by the previous investigators’ studies, here we are also to develop an

ensemble classifier by fusing the seven individual predictors RIF(?;) €&=1,2, -, 7)

through a voting system, as formulated by

REF® = RF()VRF(2)V---VRF(7) = V]_RF(&) (11)

where RF" represents the ensemble classifier; and the symbol V denotes the fusing

operator. For the detailed procedures of how to fuse the results from the seven individual
predictors to reach a final outcome via the voting system, see Eqs.30-35 in (Chou and Shen,
2007a), where a crystal clear and elegant derivation was elaborated and hence there is no
need to repeat here. To provide an intuitive picture, a flowchart is given in Fig.3 to illustrate
how the seven individual RF predictors are fused into the ensemble classifier.

w:zn

The final predictor thus obtained is called “iPPI-Esml”, where “i” stands for “identify”,
“PPI” for “protein-protein interaction”, and “Esml” for “ensemble learning”.

I1.4. Evaluation Metrics and Validation Method

For identifying whether the two counterparts in a pair of proteins are interacting with
each other, four metrics are often used in literature; they are (1) overall accuracy or Acc, (2)
Mathew’s correlation coefficient or MCC, (3) sensitivity or Sn, and (4) specificity or Sp (see,
e.g., (Chen et al., 2007)). Unfortunately, the conventional formulations for the four metrics
are not quite intuitive for most experimental scientists, particularly the one for MCC.
Interestingly, by using the symbols and derivation as used in (Chou, 2001b) for studying
signal peptides, the aforementioned four metrics can be formulated by a set of equations
given below (Chen et al,, 2013; Lin et al,, 2014; Qiu et al,, 2014a)

Snzl—N‘+ 0<Sn<l1
N
Sp=1—N+_ 0<Sp<l
Acc=A =1 N=tNe 0<Acc<1
N'"+N
1- N‘++N+_
N* N~ (12)
MCC = ~1<MCC<1
e
1+—= 1+ +
N* N~

where N represents the total number of interactive protein pairs investigated whereas
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N' the number of true interactive pairs incorrectly predicted as the non-interactive pairs;
N~ the total number of the non-interactive protein pairs investigated whereas N_ the
number of non-interactive protein pairs incorrectly predicted as the interactive pairs.

Now with Eq.12 at hands, it is crystal clear to see the following. When N* =0 meaning

none of the interactive protein pairs is incorrectly predicted to be a non-interactive pairs,
we have the sensitivity Sn =1. When N* = N* meaning that all the interactive protein

pairs are incorrectly predicted to be non-interactive protein pairs, we have the sensitivity
Sn =0. Likewise, when N =0 meaning none of the non-interactive protein pairs was

incorrectly predicted to be the interactive protein pairs, we have the specificity Sp=1;
whereas N, = N~ meaning that all the non-interactive protein pairs were incorrectly

predicted as interactive pairs, we have the specificity Sp=0.When N* = N, =0 meaning

that none of interactive protein pairs in the positive dataset and none of the non-interactive
protein pairs in the negative dataset was incorrectly predicted, we have the overall

accuracy Acc=1 and MCC =1;when N"=N" and N, = N~ meaning that all the

interactive protein pairs in the positive dataset and all the non- interactive protein pairs in
the negative dataset were incorrectly predicted, we have the overall accuracy Acc =0 and

MCC =—1; whereas when N*=N"/2 and N, =N~ /2 we have Acc =0.5 and MCC=0

meaning no better than random prediction. As we can see from the above discussion based
on Eq.12, the meanings of sensitivity, specificity, overall accuracy, and Mathew’s
correlation coefficient have become much more intuitive and easier-to-understand.

It should be pointed out, however, the set of metrics as defined in Eq.12 is valid only
for the single-label systems. For the multi-label systems whose emergence has become
more frequent in system biology (Chou et al., 2012; Lin et al,, 2013; Xiao et al., 2011) and
system medicine (Chen et al., 2012b; Xiao et al., 2013b), a completely different set of
metrics as defined in (Chou, 2013) is needed.

With the evaluation metrics available, the next thing is what validation method should
be used to generate the metrics values.

In statistical prediction, the following three cross-validation methods are often used to
derive the metrics values for predictor: independent dataset test, subsampling (or K-fold
cross-validation) test, and jackknife test (Chou and Zhang, 1995). Of the three methods,
however, the jackknife test is deemed the least arbitrary that can always yield a unique
outcome for a given benchmark dataset as elucidated in (Chou, 2011) and demonstrated by
Eqgs.28-32 therein. Accordingly, the jackknife test has been widely recognized and
increasingly used by investigators to examine the quality of various predictors (see, e.g.,
(Chou and Elrod, 2002; Chou and Cai, 2003; Hajisharifi et al., 2014; Mohabatkar et al., 2013;
Mondal and Pai, 2014; Nanni et al., 2014; Shen et al.,, 2007a; Zhou, 1998; Zhou and Assa-
Munt, 2001; Zhou and Doctor, 2003)). However, to reduce the computational time, in this
study we adopted the 5-fold cross-validation and 10-fold cross validations, as done by most
investigators with random forests algorithm as the prediction engine.
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I1.4. Web-Server and User Guide

To enhance the value of its practical applications, a web-server for iPPI-Esml has been
established at http://www.jci-bioinfo.cn/iPPI-Esml. Furthermore, to maximize the
convenience for most experimental scientists, a step-to-step guide or protocol is provided
below.

Step 1. Opening the web-server at http://www.jci-bioinfo.cn/iPPI-Esml, you will see
the top page of iPPI-Emsl on your computer screen, as shown in Fig.4. Click on the Read
Me button to see a brief introduction about the PPI predictor.

Step 2. Either type or copy/paste the query protein sequences into the input box at the

center of Fig.4. The input sequence should be in the FASTA format. For the examples of
sequences in FASTA format, click the Example button right above the input box.
Step 3. Click on the Submit button to see the predicted result. For example, if you use the
query protein sequences in the Example window as the input, you will see the following
shown on the screen of your computer: (1) Proteins example-1 and 2 belong to non-
interacting pair because their voting score for interaction is 3/7=0.43, smaller than 4/7 =
0.57. (2) Proteins example-1 and 3 belong to non-interacting pair because their voting
score for interaction is 3/7=0.43, smaller than 4/7=0.57. (3) Proteins example-2 and 3
belong to interacting pair because their voting score for interaction is 5/7
=0.7124/7=0.57 . All these results are fully consistent with the experimental
observations.

Step 4. As shown on the lower panel of Fig.4, you may also choose the batch prediction
by entering your e-mail address and your desired batch input file (in FASTA format) via the
“Browse” button. To see the sample of batch input file, click on the button Batch-example.

Step 5. Click on the Citation button to find the relevant papers that document the
detailed development and algorithm of iPPI-Esml.

Step 6. Click the Supporting Information button to download the benchmark dataset
used to train and test the current PPI predictor.

III. RESULTS AND DISCUSSION

The proposed predictor was first tested by the benchmark dataset S . in Eq.1 from

S.cerevisiae, which contains 17,505 interactive protein pairs and 33,147 non-interactive
protein pairs (cf. Online Supporting Information S1). The benchmark dataset was randomly

separated into a training dataset S . (train) and a testing dataset S . (test); i.e.,

Sq e =S (train) US, . (test) (13)

where S . (train) contains 5,943 interactive pairs and 5,943 non-interactive pairs, while

S o (test) contains 11,562 interactive pairs and 27,204 non-interactive pairs.

Listed in Table 2 are the values of the four metrics (cf. Eq.12) obtained by iPPI-Emsl
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via the 5-fold cross-validation on S . (train). For facilitating comparison, listed in that

table are also the corresponding rates obtained by the method proposed by Guo et al. (Guo
et al.,, 2008b).

Listed in Table 3 are the corresponding results on the (11,562+27,204 )=38,766
samples in the independent testing dataset Sq . (test) but trained with

(5,943+5943)=11,886 samples in the training dataset S . (train).

[t can be clearly seen from Tables 2 and 3, the new predictor iPPI-Emsl remarkably
outperformed the Guo et al." method (Guo et al., 2008b) via both the 5-fold cross-validation
and independent dataset tests, indicating the proposed predictor is indeed a quite powerful
one.

As mentioned in Section II.1, many state-of-the art prediction methods in this area
have used the benchmark dataset Sy, (cf. Eq.2) constructed by Martin et al. (Martin et al,,

2005) from the cell of Helicobacter Pylori to examine their success rates. Below, we are also
to use the same benchmark dataset to examine the proposed iPPI-Emsl predictor.

The results obtained by iPPI-Emsl on the benchmark dataset S, (cf. Online

Supporting Information S2 and Online Supporting Information S3) via the 10-fold cross-
validation test are given in Table 4, where, for facilitating comparison, the rates obtained

by the other methods using exactly the same benchmark dataset and exactly the same
cross-validation approach are also given. As we can see from the table, the new method
proposed in this paper remarkably outperformed all the other existing methods, once again
demonstrating that iPPI-Emsl is really a very promising predictor for identifying protein-
protein interactions. Particularly, as clearly sown in Table 4, in contrast to all the other six
existing prediction methods without any web-server provided, the current proposed
predictor does provide a use-friendly web-server that is no doubt very useful for the
majority of experimental scientists in this or related areas.

Why could the proposed method be so powerful? This is because many key features,
which are deeply hidden in complicated protein sequences, can be extracted via the
wavelets transform approach. Just like in dealing with the extremely complicated internal
motions of proteins, it is the key to grasp the low-frequency collective motion (Chou, 1983;
Chou, 1984; Chou and Chen, 1977; Chou et al,, 1981; Gordon, 2008; Madkan et al., 2009;
Sobell et al,, 1983; Zhou, 1989) for in-depth understanding or revealing the dynamic
mechanisms of their various important biological functions (Chou, 1988), such as
cooperative effects (Chou, 1989Db), allosteric transition (Chou, 1987; Schnell and Chou,
2008), assembly of microtubules (Chou et al., 1994), and switch between active and
inactive states (Wang and Chou, 2009).

IV. CONCLUSION

In the new PPI predictor, a protein pair is formulated by a general form of PseAAC
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whose components are defined via the following procedures: (1) a protein sequence is
converted into a numerical series via the physicochemical properties of amino acids; (2)
the numerical series is subsequently converted into a 20-D (dimensional) feature vector by
means of the DWT technique; (3) the protein pair sample is an orthogonal sum of the two
20-D vectors generated from its two counterparts respectively.

The operation engine to run the PPI prediction is an ensemble classifier formed via a
voting system to fuse seven different random forest classifiers based on seven different
physicochemical properties, respectively.

Rigorous cross-validations have indicted that the new predictor established with the
above procedures is very powerful and promising. It is anticipated that iPPI-Emsl will
become a very useful high throughput tool for predicting protein-protein interactions in
cells, stimulating a series of interesting follow-up researches in this and related areas.
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Table 1. The original values of the seven physicochemical properties ®* (£ =1,2,---,7)

for the 20 native amino acids (cf. Eq.5).

Amino
acid d» H? d>® HW d> H© o7
code
A 0.620 -0.500 27.500 8.100 0.046 1.181 7.187x10-3
C 0.290 -1.000 44.600 5.500 0.128 1.461 -3.661x10-2
D -0.900 3.000 40.000 13.000 0.105 1.587 -2.382x10-2
E -0.740 3.000 62.000 12.300 0.151 1.862 6.802x10-3
F 1.190 -2.500 115.500 5.200 0.290 2.228 3.755%x10-2
G 0.480 0.000 0.000 9.000 0.000 0.881 1.791x101
H -0.400 -0.500 79.000 10.400 0.230 2.025 -1.069x10-2
[ 1.380 -1.800 93.500 5.200 0.186 1.810 2.163x10-2
K -1.500 3.000 100.000 11.300 0.219 2.258 1.771x10-2
L 1.060 -1.800 93.500 4.900 0.186 1.931 5.167x10-2
M 0.640 -1.300 94.100 5.700 0.221 2.034 2.683x10-3
N -0.780 2.000 58.700 11.600 0.134 1.655 5.392x10-3
P 0.120 0.000 41.900 8.000 0.131 1.468 2.395x101
Q -0.850 0.200 80.700 10.500 0.180 1.932 4.921x102
R -2.530 3.000 105.000 10.500 0.291 2.560 4.359x10-2
S -0.180 0.300 29.300 9.200 0.062 1.298 4.627x103
T -0.050 -0.400 51.300 8.600 0.108 1.525 3.352x10-3
\' 1.080 -1.500 71.500 5.900 0.140 1.645 5.700x10-2
W 0.810 -3.400 145.500 5.400 0.409 2.663 3.798x10-2
Y 0.260 -2.300 117.300 6.200 0.298 2.368 2.360x10-2
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Table 2. The results obtained by the 5-fold cross-validation on the dataset
S, (train) (cf. Eq.13). See Eq.12 for the definitions of Acc, MCC, Sn, and Sp.

Method Acc (%) MCC Sn (%) Sp (%)
This paper 2 84.39 0.6897 87.03 82.13
Guo et al.b 77.96 0.5099 76.84 78.22

a The proposed predictor iPPI-Emsl.
b See ref. (Guo et al., 2008b).



Table 3. The results on the (11,562+27,204 )=38,766 samples in S . (test) but
trained with (5,943+5943)=11,886 samples in Sy . (train)

Method Acc (%) MCC Sn (%) Sp (%)

This paper 2 86.45 0.6832 75.59 91.53

Guo etal.b 78.65 0.5171 64.85 85.00

17
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Table 4. Compared with the other six state-of-art methods via the 10-cross-validation on
the H. Pylori dataset (Martin et al., 2005).

Method Acc (%) MCC Sn (%) Sp (%) Web-server
Bé’(fi‘;“ad 75.80 N/A 69.80 80.20 No
Gao etal. b 80.96 0.5577 78.65 83.20 No
Martin ¢ 83.40 N/A 79.90 85.70 No
Nanni ¢ 83.00 N/A 80.60 85.10 No
Nanni and 86.60 N/A 86.70 85.00 No
Lumini ¢
Xia etal. f 88.40 N/A 88.20 89.20 No
iPPI-Esml ¢ 90.75 0.8151 90.41 87.50 Yes

aResults reported by Bock et al. (Bock and Gough, 2003).

bResults reported by Guo et al. (Guo et al., 2008a).

¢Results reported by Martin et al. (Martin et al,, 2005).

dResults reported by Nanni (Nanni, 2005).

e Results reported by Nanni et al. (Nanni and Lumini, 2006).

fResults reported by Xia et al. (Xia et al., 2010b).

g Results obtained by the current predictor using the same cross-validation method on the
same benchmark dataset as the aforementioned six state-of-art-methods.
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FIGURE LEGENDS

Figure 1. A complicated protein-protein interaction network is expressed by the vertex-arc
graph, where the vertex is used to represent each of the proteins in the network system
while the arc to indicate their relation. If there is an arc between two proteins, they are in
interaction with each other; otherwise, they are not. For more about using the graphic
approach to deal with complicated biological systems, see (Chou, 1989a; Chou, 2010).

Figure 2. A schematic drawing to illustrate the procedure of multi-level DWT (discrete
wavelet transform). See the text for further explanation.

Figure 3. A flowchart to show how an ensemble classifier is formed via a voting system.

Figure 4. A semi-screenshot to show the top-page of the iPPIs-Emsl web-server at
http://www.jci-bioinfo.cn/iPPI-Esml.
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iPPI-Esml: an ensemble classifier for the interactions of proteins
by incorporating their physicochemical properties and
wavelet transforms into PseAAC
| Read Me | Supporting Information | Citation |

Enter the sequence of query proteins in FASTA format (Example): the number of
Protein sequences is limited at 100 or less for each submission.

| Submit l | Cancel l

Enter your e-mail address and upload the batch input file (Batch-example). The
predicted result will be sent to you by e-mail once completed; it usually takes 1
minute for each Protein sequence.

Upload file: | |[ Browse... ]
Your Email: | |

[Batch Submit ] [ Cancel ]

Figure 4
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