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Abstract 

 

Objective  

To determine a plausible estimate for a test’s performance in a specific target setting using a 

new method for selecting diagnostic test accuracy studies which are applicable to the setting.  

 

Study design 

It is shown how routine data collected on the test positive rate and the prevalence of disease 

for the setting of interest may be used to derive a region of performance for the test in 

receiver operating characteristic (ROC) space. After qualitative appraisal, studies are selected 

based on the probability that their study accuracy estimates arose from parameters lying in 

this ‘applicable region’. Three methods for calculating these probabilities are developed and 

used to tailor the selection of studies for meta-analysis. The Pap test applied to the UK NHS 

cervical screening programme provides a case example. 

 

Results 

The original meta-analysis for the Pap test included 68 studies but at most 17 studies were 

considered applicable to the NHS. For conventional meta-analysis the sensitivity and 

specificity (with 95% confidence intervals) were estimated to be 72.8% (65.8-78.8) and 

75.4% (68.1-81.5) compared with 50.9% (35.8-66.0) and 98.0% (95.4-99.1) from tailored 

meta-analysis using a binomial method for selection. The effect of this is that for a prevalence 

for Cervical Intraepithelial Neoplasia (CIN) 1 of 2.2%, the post-test probability for CIN 1 

increases from 6.2% to 36.6% between the two methods of meta-analysis. 

 

Conclusion 

Tailored meta-analysis provides a method for augmenting study selection based on the 

study’s applicability to a setting. As such the summary estimate is more likely to be plausible 

for a setting and could improve diagnostic prediction in practice. 
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1. Introduction 

Ensuring that study results are applicable in practice or in a particular clinical setting poses a 

challenge to clinicians and policy makers. Yet this may not always be readily appreciated 

particularly when applying the results of diagnostic or screening test studies in practice; we 

shall see in the methods developed here, it is possible for studies to provide estimates of a 

test’s performance which are highly improbable in some settings.  

 

To facilitate diagnosis, the performance of a test is most usefully reported in terms of either 

its sensitivity and specificity or its positive and negative likelihood ratio - the latter two being 

directly derived from the former two [1,2]. The difficulties arise from these being dependent 

on external factors that may change individually or multiply between different settings. 

Variations in the disease prevalence [3,4], the work up of patients with other tests [3], the 

patient spectrum [5,6], and the execution of the test [7,8] may all contribute to differences in 

a test’s performance between different surroundings [9]. Hence, a study of a diagnostic test 

represents a snap shot of its performance within a particular setting, with its own set of 

external factors. 

 

With the potential for these external factors to vary between different settings, it is not 

surprising that heterogeneity is so widespread in diagnostic test accuracy (DTA) reviews and 

meta-analyses [10]. Although meta-analysis has allowed the study of test characteristics 

across a wide range of environments, the summary estimates they provide represent the 

average performance across all studies [11-13] and may not be representative of an individual 

clinical setting. This may be the case even when study selection is confined to a particular 

setting, such as primary care; the resulting summary (average) estimate may still misrepresent 

some individual primary care settings due to heterogeneity in the true test performance across 

settings. 

 

This creates a problem for the current paradigm of evidence-based medicine, which is 

broadly based on ensuring that the best evidence is applied to clinical practice [14]. This 

usually relies upon the existing methods of critical appraisal being effective at identifying 

those studies which are representative of the setting in question. But without details of the 

external factors from both the study and the end user’s population, how can we be sure that 

this is the case? 
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Rather than wholly relying on the effectiveness of critical appraisal to assess 

representativeness of studies, here an alternative method is proposed. For the purpose of 

meta-analysis, it will be demonstrated how basic data collection from the setting where the 

test is being applied may be used to tailor the selection of studies. 

 

2. Method 

The objective is to determine a plausible estimate for a test’s performance in a specific setting 

given the combination of routine data from the setting and evidence from the literature. 

Broadly, the method relies upon first collecting actual data on the test positive rate and 

prevalence from the setting in question and using this to deduce a region of plausible values 

for the sensitivity and false positive rate for the test in the setting. This is then used to aid 

study selection for meta-analysis by comparing the sensitivities and false positive rates of 

studies with this region. This is now discussed more fully below. 

 

2.1Defining a plausible region of performance for the setting 

Although the true performance of a test within a setting may not be known there are 

quantities which may be measured in the practice setting which allow us to define a plausible 

region of performance – called the applicable region for the test from hereon. 

 

 (i) Using the test positive rate as a constraint 

Normally, within practice the test results are unverified since the true diagnosis, established 

by applying a reference standard, is not known at the time of testing [15]. Consequently, the 

numbers of true positives, false positives, false negatives and true negatives are unknown. 

However, these quantities must be non-negative. 

 

In some settings the unverified results of all patients tested in a clinical population are 

known; for instance, the total number of positive test results and the negative test results for a 

particular test threshold may be counted. Importantly these may be used to constrain the 

possible values that the test’s sensitivity, s and false positive rate, f, may take within the 

practice setting. 

 

If we define the test positive rate, r, as the proportion of all those tested who test positive for 

a particular threshold, then from these observations, the following condition may be deduced 
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if  f   s  this implies  f   r and s ≥ r    (1) 

 

Thus, providing the test is able to classify subjects better than a random process, we can 

define the range of possible values that the false positive rate (FPR) and sensitivity may take 

in the (f, s) plane or ROC space (after Receiver Operating Characteristic curve) [16].  

 

If our estimate of r is unbiased and precise (zero standard error), since these are mathematical 

constraints, the effect of imposing them is to make large areas of ROC space mathematically 

impossible. Although such accuracy and precision is unlikely in practice, these inequalities 

still serve to define the applicable region in ROC space representing the feasible values for 

the test’s performance within the setting in question.  

 

The size of the applicable region is determined in part by the precision of our estimate for r, 

since it affects the width of the confidence interval. Figure 1 demonstrates the effect an 

interval estimate for 0.15 ≤ r ≤ 0.3 (bold boundary) has on the shape of the applicable region 

for a point estimate r = 0.225.  The locations of the boundaries are defined by the upper and 

lower limits of the interval. 

 

To summarise, the test positive rate may be derived by counting the number of patients 

testing positive as a proportion of the total number of patients tested within the target setting 

and a confidence interval estimate may be obtained readily from this. As a result, clinicians 

who frequently apply a particular test in practice could feasibly collect their own data to help 

define their own applicable region for the test.  

 

The applicable region for the test may be refined further by incorporating knowledge of the 

prevalence of the target disorder in clinical practice. 

 

(ii) Incorporating knowledge of the local prevalence 

Suppose the prevalence of the target disorder for the setting of interest, p may be estimated, 

then, it follows from the definitions of the prevalence and sensitivity, s (see appendix 1) that  

 

  



s 
r

p

(1 p) f

p       (2) 
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If it was possible to have perfect knowledge for r and p this would constrain the sensitivity 

and false positive rate for the test in clinical practice to a straight line. Although including 

uncertainty in the estimates for r and p widens the applicable region from a straight line to a 

polygonal area, the area is still narrower than when information on the prevalence is not 

included. 

 

Unlike r, it is more difficult to estimate p with both accuracy and precision. The best estimate 

is obtained from verifying (applying the reference standard to) all the patients in the setting, 

and is therefore unavailable. Accurate estimates of p may be obtained from verifying a small 

sub-sample of patients in the setting as a form of calibration, but with an obvious loss in 

precision; such as, taking a swab (reference standard) from a sub-sample of patients when the 

test is a prediction rule for infection. 

 

More usually, estimates of the prevalence are derived from sources outside of the setting and 

so risk being inaccurate for the setting in question. For example, local laboratories may have 

estimates of disease prevalence for the locality. A Bayesian argument could be used where 

the interval estimate is based on belief either from previous test results or where the empirical 

estimate for the prevalence is believed to be potentially biased. Thus, in a Bayesian 

framework, any summary estimate for the test (see 2.3) is conditioned on this interval 

estimate for the prevalence. 

 

In figure 2, the applicable region shown in figure 1 is refined using an interval estimate for 

the prevalence, for 0.05 ≤ p ≤ 0.12. For each (r, p) pair a straight line constraint (labelled 1 to 

4) is generated and these are illustrated for (r=0.15, p=0.12), (r=0.15, p=0.05), (r=0.30, 

p=0.12), (r=0.30, p=0.05), respectively.  

 

The dotted lines for constraints 2 and 3 are used to demonstrate the fact that these constraints 

are surplus or ‘dominated’ by the other two constraints (1, 4). This follows since if the ‘true’ 

sensitivity and FPR for the test is located to the right of 2 it will always lie to the right of 1, 

but not vice versa. Similarly, 3 is surplus when compared with 4. 
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2.2 Study selection based on the applicable region 

In contrast to conventional meta-analysis, where studies are selected on the basis of 

qualitative criteria alone, here we propose to augment this process by selecting only those 

studies which report performances which are compatible with the setting in question. To do 

this requires an appropriate test procedure which incorporates the constraints defining the 

applicable region.  

 

We are interested in only those studies whose ‘true’ sensitivity and FPR are likely to lie in the 

applicable region, so we may ‘tailor’ the selection of studies for meta-analysis to the setting 

in question. The test procedure used for selecting studies is dependent on whether we have 

knowledge of the test positive rate only or knowledge of both the test positive rate and 

prevalence where deriving the applicable region. The two cases are discussed below. 

 

(i) Knowledge of the test positive rate only 

Suppose r is estimated by some confidence interval with a level of significance, α, then we  

know within a classical framework that the parameter (‘true’ value) for the test positive rate, 

μr, will be present in the interval 100(1- α)% of the time in the long run [17]. We will assume 

μr is contained in the interval. This is reasonable if we choose α so there is a high coverage 

probability, and suggest α is no more than 0.01. This will lead to a loss of precision in the 

estimate for r which may be mitigated by ensuring a large sample size. 

 

Let μf , and μs be the parameters for the FPR and sensitivity, respectively for the test in the 

setting of interest. From (2) we have μf μr and μs ≥ μr whenever μf    μs. Since rlcl  μr rucl, 

where rlcl  and rucl  are the lower and upper confidence limits for r, the most extreme value for 

μf  lies on the boundary when μf =rucl. 

 

Similarly, for a study i to be compatible with the setting of interest its parameter μf,i must lie 

in the applicable region. Its maximum permitted value is when it lies on the boundary when 

μf,i =rucl. Thus, for studies lying to the right of this boundary we test whether the study 

estimate for the FPR, if̂ , arises from a distribution whose parameter μf,i lies on the boundary 

of the applicable region. Since the FPR, fi has a binomial distribution we may calculate the 

probability of fi being equal to or more extreme than the study estimate if̂  given that μf,i =rucl. 
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The FPR is constant along the vertical boundary (see figure 1) so we do not need to consider 

the sensitivity of the study when testing hypotheses. 

 

Hence, we suggest the following test procedure (referred to here as the ‘B1 method’) for 

selecting studies: for study i, the null hypothesis H0: μf,i  = rucl  is rejected in favour of the 

alternative hypothesis, H1: μf,i >rucl if the tail area binomial probability P(fi  ≥ if̂  )<β for level 

of significance β. Studies are excluded if H0 is rejected. This provides an exact approach 

given the assumption that μr lies in the confidence interval for r. 

 

Note it is possible for studies lying outside of the applicable region to lie closer to the 

horizontal boundary, s = rlcl than the vertical boundary f = rucl. On such occasions we proceed 

as above but test the null hypothesis of H0: μs,i  = rlcl versus the alternative H1: μs,i  < rlcl. 

 

(ii) Knowledge of test positive rate and prevalence 

Although knowledge of the prevalence within a setting does not allow us to make any 

assertions on the sensitivity and FPR for the setting (see appendix 1), in combination with the 

test positive rate we may refine the size of the applicable region for the setting. 

 

Again we know that the parameters μp and μr for the prevalence and test positive rate 

respectively will lie in their 100 (1- α)% confidence intervals, with a coverage probability of 

1- α. If we assume p and r to be independent then the coverage probability for both μp and μr 

being in their respective 95% confidence intervals at the same time is approximately 0.9. 

However, this probability is likely to be higher, since (1) may be derived from assuming p 

and r to be positively correlated [18]. Clearly, this coverage probability is dependent on the 

value of α chosen, but we will assume that μr and μp for the setting actually lie in their 

respective intervals by always choosing α ≤ 0.01.  

 

Our aim is to select only those studies which have parameters for the sensitivity and FPR, 

(μf,i,μs,i) that lie in the applicable region. Other studies, which have (μf,i, μs,i) outside the 

applicable region, are considered implausible for the setting. Consistent with other models we 

will assume that for a single observation from each study i, the sensitivity, si and FPR, fi are 

independent [11,12] and that both have binomial distributions [12]. 
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If a study reports an estimate )ŝ,f̂( ii which lies in the applicable region we have no grounds 

for excluding it, since based on a single observation the maximum likelihood estimate (MLE) 

[19] for (μf,i, μs,i) must equal )ŝ,f̂( ii . For studies which report estimates which lie outside of 

the applicable region we derive the MLE (μmax,f,i , μmax,s,i) for potential (μf,i, μs,i) pairs which 

are constrained to lie in the applicable region, (see Appendix 2).   

 

Once (μmax,f,i , μmax,s,i) has been found, we may calculate the tail area probability, Pi of the 

study i producing an estimate (fi  ≥ if̂ , si  ≥ iŝ ) given a parameter pair (μmax,f,i , μmax,s,i). Hence 

we have the following test procedure, (‘the B2 method’): if we denote the applicable region 

by A, we reject the null hypothesis H0: (μf,i, μs,i)   A in favour of H1: (μf,i, μs,i)   A
c
  if Pi < β, 

where A
c
 is the complement of A (i.e. all points outside of the applicable region), and β is the 

level of significance. The study is excluded if H0 is rejected and this method provides an 

exact approach given the assumptions on μr and μp lying in the respective intervals for r and 

p. 

 

There are other approaches for estimating μmax,f,i and  μmax,s,i based on assuming that the FPR 

and sensitivity for each study have independent but normal distributions.  The estimate for 

μmax,f,i and  μmax,s,i corresponds to the point on the boundary which minimises the ‘statistical 

distance’ called the Mahalanobis distance, 2
iD between the boundary and the study estimate 

)ŝ,f̂( ii [20]. Here 2
iD  has a 2

2 )( distribution [21] and so the critical value for β =0.025 is 

7.38. Thus, the ‘D
2
 method’ consists of rejecting H0 if 

2
iD  >7.38 for a particular study. This 

approach has the intuitive appeal of studies being selected on the basis of how ‘close’ they 

are to the applicable region. It also has the advantage that a good approximate estimate for 

2
iD may be calculated directly without recourse to sampling the applicable region (and 

therefore needing to write de novo software) as in the case of the B2 approach. However, 

more refined estimates require an iterative approach which is best achieved computationally 

(see appendix 2).  

 

Thus following qualitative appraisal, the process of study selection has two parts, this is 

summarised by the following algorithm (for the B2 method):  
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1. Define region in ROC space for the test in the setting by collecting data from the setting.  

(i). Collect data on test positives and prevalence (if available) to calculate interval 

estimates for r and p. 

(ii). Use upper and lower confidence limits for r and p to define region in ROC space 

according to relations (1) and (2) (see figure 2). 

(iii). Assume the parameters μr and μp are contained in their interval estimates, then 

the parameters for the sensitivity, μs and FPR, μf for the test in the setting are also 

contained in the region – the ‘applicable region’. 

 

2. Exclude those studies which report a sensitivity and FPR that is improbable for the setting. 

(i) For each primary study derive the maximum likelihood estimate (MLE) from all 

potential parameter pairs for the FPR and sensitivity that are constrained to lie in the 

applicable region – in practice the MLE will be on one of the boundaries. 

(ii). Calculate the tail probability of the study estimate for the FPR and sensitivity 

given the MLE of the parameter pair lying on the boundary. 

(iii). Exclude study if tail probability less than level of significance. 

 

Similarly, study selection based on the ‘minimum distance’ (D
2
) method follows readily with 

few changes to the second part of the algorithm. 

 

2.3 Statistical methods for aggregating the relevant studies 

Once the applicable studies have been identified, they may be aggregated using a bivariate 

random effects model (BRM) as previously described [12]. In effect a ‘tailored’ meta-

analysis is conducted in which the summary estimate of the sensitivity and specificity is 

derived only from studies compatible with the applicable region.  

 

The method is now illustrated by applying it to the Pap test to estimate its sensitivity and 

specificity when used in the NHS. All analyses were made using the statistical software R 

and STATA. 
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3. Results 

3.1 Case example - Screening for Cervical cancer
 

Until 2003 the NHS Cervical Screening programme used the Pap test exclusively for 

screening women for cervical pre-cancerous changes [22]. The target group is women 

between the ages of 25 to 65 years, who between 25 and 49 are invited on a three yearly basis 

for a smear, and five yearly thereafter [23]. Negative smears result in routine recall, whereas 

abnormal smears lead to further investigation [24].  

 

In 1999-2000, the NHS Cervical Screening programme reported that 169,946 smears were 

classed as mild dyskaryosis or worse [25]. Excluding inadequate smears, 3,675,297 smears 

were classed as negative or borderline [25]. To satisfy (2), the sensitivity of the Pap test in the 

NHS programme must be greater than r =169,946/ 3,845,244 = 4.4%. Table 1 shows that 

within the NHS, r has remained relatively constant across all thresholds for a number of years 

[25], suggesting that the Pap test had a consistent level of performance within the programme 

during this period.  

 

We would like to maximise the coverage probability for the parameter, μr without a 

significant loss of precision. In this instance we may vastly exceed the 2.57 standard errors 

for a 99% confidence interval and provide an interval estimate of (4.437-4.447%) to 5 

standard errors with minimal loss of precision. Essentially in the long run with repeated 

sampling, μr would lie outside such a confidence interval only once in 3.5 million [26]. We 

set 4.437% ≤ r ≤ 4.447%. 

 

The applicable region is refined by estimating the disease prevalence at a threshold of CIN 1. 

The prevalence of CIN 1 or greater in the UK may be estimated to be 2.2% (99% CI 2.19-

2.22%) [27]. This is likely to be an underestimate as it based on those who are referred to 

colposcopy clinic and does not include those with negative smears.  We will set a 

conservative range for p to be 0.5% ≤ p ≤10%. 

 

One meta-analysis [28] which evaluated the accuracy of the Pap test included 68 studies at a 

test threshold of Low grade Squamous Intraepithelial Lesion (mild dyskaryosis in the UK 

system) and a reference standard threshold of CIN 1 [28]. The qualitative criteria used for 

selecting studies were: the study evaluated cervical cytology as a screening test; used 

histology or colposcopy as a reference standard; there was less than 3 months between the 
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cytology and the reference standard being applied; and the 2 x 2 table could be completed 

[28]. 

 

Overall in the review, verification bias was a potential issue with 69% of primary studies 

reporting verification of only a selected (non-random) sample of test negatives. Further only a 

quarter of studies reported blinding of the reference standard. Other factors such as patient 

spectrum were also poorly reported [28]. However, it is unclear what the combined effect of 

these was on individual study estimates. 

 

The results of applying the different methods B1, B2 and D
2
 are summarised in table 2. The 

level of significance, β =0.025. As expected when the applicable region is defined by r only 

(B1 method) more studies (17) are included for tailored meta-analysis than when both r and p 

define the region. The D
2
 method excludes one of these studies (16) and the B2 method 

excludes a further four. The difference between D
2
 and B2 is that the former relies upon a 

normal approximation which may not be valid for some studies of small sample size. 

 

Figure 3 illustrate the effects of applying the B2 method to meta-analysis. The dotted lines 

define the applicable region. The bold squares represent 12 studies reporting FPRs which are 

most likely to be compatible with the NHS programme; there was agreement across the three 

methods on these studies.  The transparent triangles lying outside of the applicable region are 

those studies which are incompatible with the NHS. Out of 17 UK-based studies only 3 were 

in the applicable region. It is clear from figure 3 that conventional meta-analysis provides an 

estimate which would be highly improbable in the NHS given the location of the applicable 

region. 

 

The median sample size for the included set of studies was 105, that is, 50% (6/12) of studies 

had a sample size, n ≤ 105. To put this in context, the studies varied in sample size across 

ROC space: 44% (7/16) of studies had a sample size, n ≤ 105 in the region FPR ≤ 0.1, 

compared with 19% (10/52) of studies in the region FPR >0.1. Thus, the sample sizes of the 

included studies did not vary significantly (p=0.39, Fisher’s exact test) from the FPR ≤ 0.1 

region which contains the applicable region. 

 

Confining the meta-analysis to those studies which are in the applicable region has a 

profound effect on the summary estimates of performance for the Pap test. From conventional 
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meta-analysis the sensitivity and specificity are estimated to be 72.8% (95% CI: 65.8-78.8) 

and 75.4% (95% CI: 68.1-81.5) compared with 50.9% (35.8-66.0) and 98.0% (95% CI: 95.4-

99.1) from tailored meta-analysis using the B2 method for selection. The increased specificity 

also accounts for the eight-fold increase in the positive likelihood ratio from 3.0 (95% CI: 

2.4-3.7) to 25.6 (95% 10.1- 65.0) between the conventional and tailored meta-analysis. The 

effect of this is that, for a background prevalence of CIN 1 of 2.2%, the post-test probability 

for CIN 1 increases from 6.2% to 36.6%. 

 

This example provides empirical evidence that basic information on the target setting may be 

required before applying the results of diagnostic test studies to clinical practice. 

 

 

4. Discussion
 

It is the observation that a test’s performance may vary between settings that makes 

determining when performance statistics are actually applicable to a particular setting, 

important.  Within the traditional paradigm, if the diagnostic process is to truly become 

evidence-based, then this is probably one of the most important questions to answer; 

especially, as it affects both primary and secondary research. 

 

When selecting primary studies for a meta-analysis the usual approach is to use qualitative 

criteria to decide on which studies to include. However, if meta-analyses are to produce 

results that are relevant to clinical practice, choosing studies based on qualitative criteria 

alone may be insufficient. In particular, if there is a wide variation in performances across 

different clinical settings, being clear on the target setting seems equally important. While 

this is usually made clear in the review question, the problem in defining the target setting 

qualitatively is that it may not accurately represent which studies are likely to be applicable. 

 

Here, the possibility of using data collected from the target setting has been highlighted and 

how they may be used to introduce greater objectivity to ascertaining a test’s performance in 

a particular setting. As a result it represents a departure from the usual methodology in meta-

analysis by selecting studies on the basis of their results and not on qualitative criteria alone. 
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However, this should be considered in context. In general, when conducting a meta-analysis 

no assumption is made on where the true performance lies and therefore, there is no 

justification in selecting studies based on their individual results. Nonetheless the studies are 

still constrained by mathematical plausibility.  

 

Similar to conventional meta-analysis potentially some of the included studies may report 

estimates which are either biased due to flaws in the primary study design or subject to 

sampling error. Whereas sampling error is largely accommodated by the models, a number of 

study design biases such as verification bias, participant selection bias, incorporation bias and 

reference standard bias are recognised and may lead to both the overstating and understating 

of test accuracy [29, 30, 31]. In principle part of the critical appraisal process should be 

aimed at mitigating these but it is not always possible. 

 

Other setting-specific factors such as differences in patient spectrum, the positioning of the 

test threshold and the way the test is executed by the clinician may also explain some of the 

variation in the reported test accuracies. Changes in patient spectrum may manifest as a 

change in prevalence [5,6], whilst the latter two may be precipitated by changes in prevalence 

between settings [4, 32]. 

 

The difficultly is in being able to distinguish unbiased estimates from biased estimates and 

there seems to be no straight forward way of achieving this. Usually any differences between 

studies are investigated as part of a general exploration of heterogeneity and since this gives 

some indication of the sources of between-study variation, it should always be carried out. 

 

Ideally, if all the relevant sources of variation were known and their individual and combined 

effects quantifiable, the estimate provided by each study could be modified accordingly to 

provide us with an unbiased estimate of the study parameter. Unfortunately, there are often 

multiple drivers to the accuracy of a test reported in a study and due to a lack of study-level 

data and the potential challenges of modelling multiple covariates, their overall combined 

effect on the reported accuracy is, in general, unknown.  

 

Thus, the method developed here represents a pragmatic approach which considers the 

reported estimate at face-value in terms of its compatibility with the intended target setting. 

Providing a meta-analysis for the test in question exists and test data may be collected from 
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the practice setting, decisions on the applicability of the primary studies to the setting may be 

made. This allows us to produce a summary estimate which is at least plausible for the 

setting, something which conventional meta-analysis is not always able to. 

 

There are two obvious roles for tailored meta-analysis in practice. For those diagnostic tests 

that are being applied in routine practice and where meta-analyses are available, there is the 

potential to use tailored meta-analysis to provide plausible estimates for the performance 

within the setting. This could improve diagnostic prediction and management decision-

making. 

 

Another use may be to aid the decision process of whether a particular test should be used at 

all in practice. Before a new diagnostic technology is introduced into practice, there is often 

substantial uncertainty on how it will actually perform in the intended setting and such 

decisions to implement the technology are most often based on appraisals of the literature and 

economic considerations. However, post-implementation there is the opportunity to re-

appraise the decision to introduce the technology. By collecting setting-specific data and 

defining an applicable region, tailored-meta analysis could be used to re-assess the 

performance of the test and see if it is compatible with those estimates made prior to 

implementation. Ultimately this may lead to a decision on disinvestment.  

 

The apparent theoretical advantage of constraining studies to an applicable region, to 

calculate summary estimates, needs to be validated empirically. This could take the form of 

comparing the results of a primary study in the target setting with the results of a tailored 

meta-analysis based on the available studies or alternatively could be done by way of a 

simulation study. The latter has the advantage of allowing other statistical properties of the 

method to be explored. 

 

Limitations of the analysis and potential areas of research 

The foregoing analysis has demonstrated that the summary estimate derived using only those 

studies which lie in the applicable region is at least feasible for the target setting which is not 

always the case for those estimates derived from conventional meta-analysis. Although, this 

follows from the mathematical constraints, uncertainty in the estimates of the test positive 

rate and the prevalence may result in inaccurate boundaries being drawn for the applicable 

region. However, this is minimised by using interval estimates with a high coverage 
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probability. In the case example, our estimate of the test positive rate in the NHS was to five 

standard errors - the sort of significance demanded by particle physicists when confirming the 

existence of the Higgs Boson [26]! 

 

In tailored-meta-analysis studies are included if they are either inside or ‘close enough’ to the 

applicable region that they cannot be confidently excluded. Although it was not the case with 

the Pap test example used earlier, potentially, some studies of small sample sizes which are 

close to the applicable region could be included because uncertainty in the estimate does not 

allow them to be confidently excluded. However, such studies will have less influence on the 

summary estimate which is weighted towards studies with larger sample sizes. 

 

A potential consequence of selecting only those studies lying in the applicable region for 

meta-analysis is that it is feasible there will be none to aggregate. In such instances, it is 

worth considering whether the data used to define r and p for the setting are reliable. If they 

are then it must be concluded that none of the studies accurately represents how the test 

performs within the target setting. 

 

In summary, the foregoing analysis demonstrates the possibility of using quantitative data 

collected from clinical practice to augment the process of study selection by determining 

quantitatively which studies may be applicable to a setting. Such an approach suggests 

tailoring the meta-analysis to include only the applicable studies before deriving summary 

estimates.  
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Appendix 1. Derivation of the applicable region 

 

1.1 Using the test positive rate to define the test performances feasible in practice 

In the unverified population, all that may be known are the test results without the 

corresponding reference standard results. This is represented by the 2 by 2 below, where x 

(the total number tested positive) and y (the total number tested negative) are known and a, b, 

c and d are unknown. We do know that a,b,c,d ≥ 0, otherwise negative numbers of subjects 

are possible. 

  DISEASE  

  Positive Negative Totals 

TEST 

Positive a b x 

Negative c d y 

 Totals a + c b + d x + y 

 

From definitions of sensitivity, s and FPR, f`  
s

)s(a
c




1
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f
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From re-arranging we have for f ≠ s   
)sf(

x)f(ssfy
a






1
       

 

Now for a  0 consider the 2 possibilities a = 0 and a > 0. Trivially if a = 0 we have s = 0 

   

For a > 0       

either  f > s  and 
)yx(

x
fx)f(ssfy


 01  

or  f < s  and  
)yx(

x
fx)f(ssfy


 01  
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for  f = s   
)yx(

x
f


   

 

Similarly, solving for b, c and d then setting them all >0 we get the following 2 inequalities. 

 

For f ≥ s  we have 
)yx(

x
s


  and   for  f < s we have 

)yx(

x
s


   

 

Thus we have the results 

f < r and s > r  whenever f < s   (1)   

f  r and s  r  whenever f  s    (2) 

where  
)yx(

x
r


  

 

An alternative derivation of (1) may be obtained from assuming that the probability of a test 

positive and the presence of disease are correlated. This approach was used by Kraemer [18] 

to derive (1). Kraemer’s use of the inequality was confined to single primary studies and not 

used to select studies for meta-analysis. 

 

1.2 Incorporating the prevalence of the target disorder 

Suppose the prevalence of the target disorder, p may be estimated, then, from the definition 

of prevalence, p, sensitivity, s and false positive rate f we have 

 

   
s

a
)yx(p     and  

f

b
)yx)(p( 1  

 

Since a + b = x  r
)yx(

x
)p(fsp 


 1   

 

Hence, we have   f
p

)p(

p

r
s




1
    (3) 

 

Comparing (1) and (3) it can be seen that the size of the applicable region is most dependent 

on having precise knowledge of r. Thus, if p is known perfectly and r is not known, (ie 0 ≤ r 



≤ 1) then all values for f and s in ROC space are still possible. It follows from (3) that for a 

fixed value of p, allowing r to vary between 0 and 1 changes only the intercept. This 

produces a plane of parallel lines which covers all values of ROC space. To appreciate this, 

consider the extreme values of f. For f = 0, s has a value r/p, and since 0 ≤ r ≤ 1 this implies 

that  0 ≤ s ≤ (1/p). Hence, s can take on all values between 0 and 1 since (1/p) ≥1.  

 

Similarly, for f = 1, s has a value of  (r/p) –(1-p)/p. For values of 0 ≤ r ≤ 1, this implies  

–(1-p)/p ≤ s ≤ 1. Hence s takes on values between zero and 1 since –(1-p)/p ≤ 0. For f=1, s 

again covers all values between 0 and 1 in ROC space. Thus, without knowledge of r, even 

perfect knowledge of p is unhelpful. 



Appendix 2 - Selection of studies based on the applicable region 

2.1 Binomial B2 method 

In all three methods we make the assumption that the parameters μr and μp for the test positive 

rate, r and prevalence, p, respectively, lie in their corresponding interval estimates. This is 

only reasonable if the level of significance is chosen so that there is a high coverage 

probability. 

 

For a study i, (fi, si) are the FPR and sensitivity, )ŝ,f̂( ii are the study estimates and (μf,i, μs,i) 

are the study parameters. Also nf,i and ns,i are the total number without and with the target 

disorder. We are interested only in studies which have (μf,i, μs,i) pairs in the applicable region. 

For a study estimate )ŝ,f̂( ii lying outside of the applicable region, the maximum likelihood 

estimate (MLE) for a (μf,i, μs,i) pair which actually lies in the applicable region must be 

located on the boundary closest to )ŝ,f̂( ii .  Since si and fi are independent with 

si~Bin(ns,i,μs,i) and fi ~Bin(nf,i, μf,i), respectively, the likelihood function, L(μf,i, μs,i | ii ŝ,f̂ ) for a 

study i is given by 

 

 

),n|a(Bin),n|b(Bin)ŝs,f̂f|,(L i,si,sii,fi,fiiiiii,si,f    

 

 

where bi and ai are the number of false positives and true positives for study i respectively. 

This is maximised for (μf,i, μs,i) pairs lying on the closest boundary to )ŝ,f̂( ii and provides   

(μmax,f,i ,μmax,s,i). If this is written in terms of Log (L(μf,i, μs,i | ii ŝ,f̂ )), the maximum likelihood 

estimate may be obtained by finding the real root to a cubic equation. Alternatively, it may be 

found by sampling points on the boundary closest to )ŝ,f̂( ii and finding the pair (μf,i, μs,i) 

which yields the maximum value for L(μf,i, μs,i | ii ŝ,f̂ ). The latter method was used here. 

 

The tail area probability, P(fi ≥ if̂ , si ≥ iŝ  | μf,i= μmax,f,i,, μs,i= μmax,s,i) is given by  
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Studies are rejected if Pi < β for level of significance β, where β was set to 0.025. 

 

 

2.2 Mahalanobis distance, D
2
method 

If we assume si and fi to have independent normal distributions such 

that, ),(N~s i,si,si
2 and ),(N~f i,fi,fi

2  then the Mahalanobis distance, 2
iD  for a study 

i, may be written as  
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Unlike the Euclidean distance between points this allows us to weight the variates according 

to the inverse of their individual variances. As such it represents a ‘statistical’ distance 

between points. The optimum (μf,i , μs,i) point on the boundary, that is, the point which 

maximises the probability of a study estimate for a given (μf,i , μs,i), is that which 

minimises 2
iD . It is straight forward to show that this corresponds to the MLE for (μf,i , μs,i) 

since si and fi are assumed to have independent normal distributions. 

 

It may be shown that 2
iD  is minimised for a point with μf,i  on the boundary when it is given 

by 
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Similarly, μs,i is given by substituting μf,i into  
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Where (r,p) correspond to either (rucl, plcl) or (rlcl, pucl) depending on which boundary we are 

considering. The parameter μf,i is obtained iteratively by first making initial estimates for the 

variances 
i,f

ii
i,f

n

)f̂(f̂ 


12  and 
i,s

ii
i,s

n

)ŝ(ŝ 


12 .  

 

Once we have our first estimates μs,i and μf,i these are then substituted into the variances 

instead of if̂   and iŝ  and the process continued until we have convergence. 

 

Since 2
iD here is the sum of two squared standardised normal variables it has an approximate  

2
2 )( distribution. Thus, for level of significance, β =0.025, the critical value is 7.38. Studies 

are excluded if 2
iD  >7.38. 

 



Appendix 3 Results of inclusion/ exclusion decisions using the applicable region. 

 

    
Binomial (B1) 

AR (r only) 
Binomial (B2) 
AR (r and p) 

Mahalanobis (D
2
) 

AR (r and p) 

Name Year Sens FPR Probability Decision Probability Decision D
2 

Decision 

Chomet 1987 33.3 20.0 0.20439 Include 0.0059 Exclude 2.97 Include 

Cox 1995 38.0 4.2 0.62166 Include 1.0 Include 0.00 Include 

Davis 1981 69.5 0.0 1.0 Include 1.0 Include 0.00 Include 

Davison 1994 53.3 0.0 1.0 Include 1.0 Include 0.00 Include 

DiBonito 1993 61.0 4.3 0.59327 Include 0.1777 Include 0.04 Include 

Fung 1997 86.6 9.5 0.03428 Include 0.0033 Exclude 6.45 Include 

Giles 1989 81.3 0.0 1.0 Include 1.0 Include 0.00 Include 

Glenthoj 1988 81.6 0.0 1.0 Include 1.0 Include 0.00 Include 

Gonzalez 1996 38.1 12.2 0.03512 Include 0.0030 Exclude 6.20 Include 

Gundersen 1988 15.4 10.0 0.14879 Include 0.0152 Exclude 2.22 Include 

Jones 1987 17.2 2.2 0.95960 Include 0.2166 Include 0.26 Include 

Morrison 1992 83.3 0.0 1.0 Include 1.0 Include 0.00 Include 

Spitzer 1987 18.2 4.8 0.56556 Include 0.1161 Include 0.01 Include 

Stafl 1981 43.8 10.0 0.36701 Include 0.0257 Include 0.80 Include 

Tay 1987 33.3 0.0 1.0 Include 0.5026 Include 0.13 Include 

Wright 1994b 26.7 1.5 0.9993 Include 0.2987 Include 0.08 Include 

Skehan 1990 82.4 82.8 0 Exclude 0 Exclude 0.00 Exclude 

Cox 1992 43.8 7.8 0.0039 Exclude 0.0005 Exclude 10.64 Exclude 

Coibion 1994 22.0 15.0 0.0083 Exclude 0.0007 Exclude 10.76 Exclude 

Naslund 1986 100.0 23.1 0.0182 Exclude 0.0000 Exclude 12.38 Exclude 

Jones 1992 36.6 13.1 0.0057 Exclude 0.0005 Exclude 11.47 Exclude 

Korn 1994 62.9 15.8 0.0064 Exclude 0.0004 Exclude 12.80 Exclude 

Hellberg 1987 88.9 33.3 0.0266 Include 0.0005 Exclude 13.26 Exclude 

Frisch 1994 35.0 27.3 0.0112 Exclude 0.0004 Exclude 14.03 Exclude 

MacCormac 1988 84.6 5.4 0.0024 Exclude 10
-06

 Exclude 19.60 Exclude 

Korn 1994 63.6 26.3 0.0012 Exclude 10
-05

 Exclude 23.30 Exclude 

Garutti 1994 41.7 14.1 10
-05

 Exclude 10
-06

 Exclude 29.84 Exclude 

Kealy 1986 86.0 12.1 10
-06

 Exclude 10
-07

 Exclude 34.14 Exclude 

Del Priore 1995 80.0 25.0 10
-05

 Exclude 10
-06

 Exclude 35.64 Exclude 

Andrews 1989 26.3 12.3 10
-06

 Exclude 10
-08

 Exclude 35.86 Exclude 

Herrington 1995 68.8 38.5 0.0002 Exclude 10
-06

 Exclude 38.51 Exclude 

Tait 1988 74.5 18.4 10
-06

 Exclude 10
-07

 Exclude 39.36 Exclude 

Ferris 1998 37.0 14.5 10
-07

 Exclude 10
-09

 Exclude 45.32 Exclude 

Giles 1988 53.1 14.9 10
-07

 Exclude 10
-09

 Exclude 47.03 Exclude 

Mayeaux 1995 43.8 19.2 10
-08

 Exclude 10
-09

 Exclude 53.87 Exclude 

Singh 1985 75.2 66.7 10
-05

 Exclude 10
-07

 Exclude 59.51 Exclude 

Herrington 1995 68.8 29.7 10
-07

 Exclude 10
-09

 Exclude 60.91 Exclude 

Wheelock 1989 48.1 18.6 10
-10

 Exclude 10
-11

 Exclude 70.51 Exclude 

Parker 1986 74.5 15.4 10
-10

 Exclude 10
-12

 Exclude 72.81 Exclude 

Oyer 1986 75.1 21.0 10
-09

 Exclude 10
-11

 Exclude 75.43 Exclude 

Johansen 1979 90.2 28.3 10
-10

 Exclude 10
-12

 Exclude 91.35 Exclude 

Syrjanen 1987 72.8 17.9 10
-14

 Exclude 10
-16

 Exclude 107 Exclude 

Koonings 1992 79.5 29.0 10
-11

 Exclude 10
-13

 Exclude 109 Exclude 

Chomet 1987 67.0 38.9 10
-10

 Exclude 10
-12

 Exclude 109 Exclude 

Haddad 1988 86.7 56.3 10
-09

 Exclude 10
-11

 Exclude 112 Exclude 

Smith 1987 78.0 41.9 10
-10

 Exclude 10
-12

 Exclude 113 Exclude 

Young 1993 72.0 27.4 10
-12

 Exclude 10
-14

 Exclude 115 Exclude 

Nyirjesy 1972 60.0 50.0 10
-11

 Exclude 10
-13

 Exclude 136 Exclude 

Koonings 1992 69.3 36.4 10
-13

 Exclude 10
-16

 Exclude 144 Exclude 



 

    
Binomial (B1)  

AR (r only) 
Binomial (B2)  
AR (r and p) 

Mahalanobis (D
2
) 

AR (r and p) 

Name Year Sens FPR Probability Decision Probability Decision D
2 

Decision 

Walker 1986 76.9 46.9 10
-12

 Exclude 10
-14

 Exclude 149 Exclude 

Bolick 1998 85.1 63.6 10
-14

 Exclude 10
-16

 Exclude 200 Exclude 

Lozowski 1982 93.0 50.0 0 Exclude 0 Exclude 219 Exclude 

Germain 1994 66.7 21.0 0 Exclude 0 Exclude 220 Exclude 

Beeby 1993 65.7 21.9 0 Exclude 0 Exclude 288 Exclude 

Baldauf 1995 92.9 68.8 0 Exclude 0 Exclude 347 Exclude 

Maggi 1989 76.9 47.8 0 Exclude 0 Exclude 436 Exclude 

Soutter 1986 83.2 56.9 0 Exclude 0 Exclude 464 Exclude 

Bigrigg 1990 96.4 66.0 0 Exclude 0 Exclude 469 Exclude 

Kwikkel 1986 98.0 91.9 0 Exclude 0 Exclude 744 Exclude 

Rasbridge 1995 86.6 49.7 0 Exclude 0 Exclude 872 Exclude 

Wetrich 1986 81.2 33.1 0 Exclude 0 Exclude 928 Exclude 

Upadhyay 1984 99.6 77.9 0 Exclude 0 Exclude 970 Exclude 

Fahim 1991 85.1 38.0 0 Exclude 0 Exclude 1283 Exclude 

Melnikow 1997 88.6 88.5 0 Exclude 0 Exclude 2075 Exclude 

Melnikow 1997 98.7 88.5 0 Exclude 0 Exclude 2103 Exclude 

Parham 1991 98.5 82.2 0 Exclude 0 Exclude 2500 Exclude 

Soost 1991 86.6 65.3 0 Exclude 0 Exclude 6701 Exclude 

Jones 1996 74.5 25.3 0 Exclude 0 Exclude 6871 Exclude 

 

Data from McCrory et al [28] 

 

Notes: 

Probability = probability of study estimate given parameter pair on the boundary 

Decision = decision to include or exclude study from tailored meta-analysis 

AR = applicable region defined by either r only, or r and p. 

 

A study was excluded if the probability was <0.025. Using the Mahalanobis distance this 

corresponded to a critical value of 7.38 
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Figure 1. Hypothetical example demonstrating how the constraints define the applicable 

region (the bold continuous line).  

 

The bold lines represent the constraint imposed by rlcl ≤ r ≤ rucl, on s and f (inequality (1) in 

text), where rlcl and rucl correspond to the lower and upper confidence limits for r. Here rlcl = 

0.15 and rucl = 0.30. 
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Figure 2. Hypothetical example demonstrating how the constraints define the applicable 

region (the bold continuous trapezium) after including estimates of the test positive rate, r 

and prevalence, p. The outer dashed lines represent the constraint imposed by 0.15 ≤ r ≤ 0.3 

on s and f . The lines represented by 1-4 are the result of imposing equation (2) in addition to 

(1) for 0.05 ≤p ≤ 0.12 and 0.15 ≤ r ≤ 0.3. For example line 1 combines s= (r/p) –((1-p)f/p) for 

(r =rlcl= 0.15, p=pucl = 0.12) and (s≥r and f≤r) for (r= rlcl= 0.15). Lines 2 and 3 are 

dominated by 1 and 4 and are therefore surplus (see text for explanation). 
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Threshold 1999-2000 2000-01 2001-02 2002-03 

borderline 0.0919 0.0900 0.0861 0.0851 

mild 0.0442 0.0431 0.0406 0.0406 

moderate 0.0173 0.0166 0.0158 0.0156 

severe 0.0076 0.0075 0.0071 0.0071 

 

Table 1. The test positive rate, r, for each of the cytology thresholds in the NHS Cervical 

screening programmes over 4 years 
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  AR (r only) AR ( both r and p) 

 All Binomial (B1) Mahalanobis, (D
2
) Binomial (B2) 

Included studies (n) 68 17 16 12 

     

sensitivity 72.8% (65.8-78.8) 52.6% (37.9-66.9) 49.6% (35.4-63.8) 50.9% (35.8-66.0) 

specificity 75.4% (68.1-81.5) 96.0% (93.0-97.8) 96.6% (93.8-98.1) 98.0% (95.4-99.1) 

LR+ 2.96 (2.37-3.68) 13.21 (7.22-24.17) 14.4 (7.4-28.2) 25.6 (10.1-65.0) 

LR- 0.36 (0.30-0.44) 0.49 (0.36-0.67) 0.52 (0.39-0.70) 0.50 (0.36-0.69) 

 

Table 2. Performance characteristics of the Pap test using conventional meta-analysis, the B1 

method, D
2 

method and the B2 method. Note AR = applicable region. 95% confidence 

intervals in brackets. 
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Figure 3. Tailored meta-analysis of the Pap test in the NHS using the B2 method.  

The dotted line represents the applicable region using interval estimates for the test positive 

rate r and prevalence p. The bold squares are the included studies under the B2 method and 

the unfilled triangles are the excluded studies. The grey ‘elliptical region’ represents the 

confidence region (point estimate in centre) using conventional meta-analysis. The black 

ellipse is the associated confidence region enclosing the point estimate for tailored meta-

analysis. 
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