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Abstract

In this paper we prove the following results (via a unified approach) for all
sufficiently large n:

(i) [1-factorization conjecture] Suppose that n is even and D > 2[n/4] — 1.
Then every D-regular graph G on n vertices has a decomposition into
perfect matchings. Equivalently, x'(G) = D.

(ii) [Hamilton decomposition conjecture] Suppose that D > |n/2]. Then every
D-regular graph G on n vertices has a decomposition into Hamilton cycles
and at most one perfect matching.

(iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on
n vertices with minimum degree § > n/2. Then G contains at least
regeyen(n,9)/2 > (n—2)/8 edge-disjoint Hamilton cycles. Here reg,,,.,,(n, )
denotes the degree of the largest even-regular spanning subgraph one can
guarantee in a graph on n vertices with minimum degree .

(i) was first explicitly stated by Chetwynd and Hilton. (ii) and the special case
d = [n/2] of (iii) answer questions of Nash-Williams from 1970. All of the above
bounds are best possible.
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CHAPTER 1

Introduction

1.1. Introduction

In this paper we provide a unified approach towards proving three long-standing
conjectures for all sufficiently large graphs. Firstly, the 1-factorization conjecture,
which can be formulated as an edge-colouring problem; secondly, the Hamilton
decomposition conjecture, which provides a far-reaching generalization of Walecki’s
result [26] that every complete graph of odd order has a Hamilton decomposition
and thirdly, a best possible result on packing edge-disjoint Hamilton cycles in Dirac
graphs. The latter two problems were raised by Nash-Williams |28}, 29}, [30] in 1970.

1.1.1. The 1-factorization Conjecture. Vizing’s theorem states that for
any graph G of maximum degree A, its edge-chromatic number x'(G) is either A
or A + 1. However, the problem of determining the precise value of x'(G) for an
arbitrary graph G is NP-complete [12]. Thus, it is of interest to determine classes
of graphs G that attain the (trivial) lower bound A — much of the recent book [34]
is devoted to the subject. For regular graphs G, x'(G) = A(G) is equivalent to
the existence of a 1-factorization: a 1-factorization of a graph G consists of a set
of edge-disjoint perfect matchings covering all edges of G. The long-standing 1-
factorization conjecture states that every regular graph of sufficiently high degree
has a 1-factorization. It was first stated explicitly by Chetwynd and Hilton [3], [5]
(who also proved partial results). However, they state that according to Dirac, it
was already discussed in the 1950s. Here we prove the conjecture for large graphs.

THEOREM 1.1.1. There exists an ng € N such that the following holds. Let
n,D € N be such that n > ng is even and D > 2[n/4] — 1. Then every D-regular
graph G on n vertices has a 1-factorization. Equivalently, x'(G) = D.

The bound on the minimum degree in Theorem [[LT] is best possible. To see
this, suppose first that n = 2 (mod 4). Consider the graph which is the disjoint
union of two cliques of order n/2 (which is odd). If n = 0 (mod 4), consider the
graph obtained from the disjoint union of cliques of orders n/2 — 1 and n/2 + 1
(both odd) by deleting a Hamilton cycle in the larger clique.

Note that Theorem [[.T] implies that for every regular graph G on an even
number of vertices, either G or its complement has a 1-factorization. Also, The-
orem [[LTJ] has an interpretation in terms of scheduling round-robin tournaments
(where n players play all of each other in n — 1 rounds): one can schedule the
first half of the rounds arbitrarily before one needs to plan the remainder of the
tournament.

The best previous result towards Theorem[[.TTlis due to Perkovic and Reed [32],
who proved an approximate version, i.e. they assumed that D > n/2 + en. This

1



2 1. INTRODUCTION

was generalized by Vaughan [35] to multigraphs of bounded multiplicity. In-
deed, he proved an approximate form of the following multigraph version of the
1-factorization conjecture which was raised by Plantholt and Tipnis [33]: Let G be
a regular multigraph of even order n with multiplicity at most r. If the degree of
G is at least rn/2 then G is 1-factorizable.

In 1986, Chetwynd and Hilton [4] made the following ‘overfull subgraph’ con-
jecture. Roughly speaking, this says that a dense graph satisfies x'(G) = A(G)
unless there is a trivial obstruction in the form of a dense subgraph H on an
odd number of vertices. Formally, we say that a subgraph H of G is overfull if
e(H) > A(G)||H|/2] (note this requires |H| to be odd).

CONJECTURE 1.1.2. A4 graph G onn vertices with A(G) > n/3 satisfies x'(G) =
A(Q) if and only if G contains no overfull subgraph.

It is easy to see that this generalizes the 1-factorization conjecture (see e.g. [2]
for the details). The overfull subgraph conjecture is still wide open — partial results
are discussed in [34], which also discusses further results and questions related to
the 1-factorization conjecture.

1.1.2. The Hamilton Decomposition Conjecture. Rather than asking
for a 1-factorization, Nash-Williams [28, [30] raised the more difficult problem of
finding a Hamilton decomposition in an even-regular graph. Here, a Hamilton de-
composition of a graph G consists of a set of edge-disjoint Hamilton cycles covering
all edges of G. A natural extension of this to regular graphs G of odd degree is
to ask for a decomposition into Hamilton cycles and one perfect matching (i.e. one
perfect matching M in G together with a Hamilton decomposition of G — M). The
following result solves the problem of Nash-Williams for all large graphs.

THEOREM 1.1.3. There exists an ng € N such that the following holds. Let
n,D € N be such that n > ng and D > |n/2]|. Then every D-regular graph G
on n vertices has a decomposition into Hamilton cycles and at most one perfect
matching.

Again, the bound on the degree in Theorem is best possible. Indeed,
Proposition [[L3] shows that a smaller degree bound would not even ensure con-
nectivity. Previous results include the following: Nash-Williams [27] showed that
the degree bound in Theorem ensures a single Hamilton cycle. Jackson [13]
showed that one can ensure close to D/2 — n/6 edge-disjoint Hamilton cycles.
Christofides, Kithn and Osthus [6] obtained an approximate decomposition un-
der the assumption that D > n/2 + en. Under the same assumption, Kiithn and
Osthus [22] obtained an exact decomposition (as a consequence of the main result
in [21] on Hamilton decompositions of robustly expanding graphs).

Note that Theorem [[LT.3] does not quite imply Theorem [[LI.I] as the degree
threshold in the former result is slightly higher.

A natural question is whether one can extend Theorem [[.T.3]to sparser (quasi)-
random graphs. Indeed, for random regular graphs of bounded degree this was
proved by Kim and Wormald [16] and for (quasi-)random regular graphs of linear
degree this was proved in [22] as a consequence of the main result in [21]. However,
the intermediate range remains open.

1.1.3. Packing Hamilton Cycles in Graphs of Large Minimum De-
gree. Although Dirac’s theorem is best possible in the sense that the minimum
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degree condition § > n/2 is best possible, the conclusion can be strengthened con-
siderably: a remarkable result of Nash-Williams [29] states that every graph G
on n vertices with minimum degree 6(G) > n/2 contains |5n/224] edge-disjoint
Hamilton cycles. He raised the question of finding the best possible bound, which
we answer in Corollary below.

We actually answer a more general form of this question: what is the number
of edge-disjoint Hamilton cycles one can guarantee in a graph G of minimum degree
07

A natural upper bound is obtained by considering the largest degree of an
even-regular spanning subgraph of G. Let reg,,.,(G) be the largest degree of an
even-regular spanning subgraph of G. Then let

reg, on(n, ) := min{reg,...(G) : |G| = n, §(G) = d}.

Clearly, in general we cannot guarantee more than reg,.,(n,d)/2 edge-disjoint
Hamilton cycles in a graph of order n and minimum degree 6. The next result
shows that this bound is best possible (if § < n/2, then reg.,,(n,d) = 0).

THEOREM 1.1.4. There exists an ng € N such that the following holds. Suppose
that G is a graph on n > ngy vertices with minimum degree § > n/2. Then G
contains at least regq en (n,0)/2 edge-disjoint Hamilton cycles.

The main result of Kiithn, Lapinskas and Osthus [19] proves Theorem [[.T.4]
unless G is close to one of the extremal graphs for Dirac’s theorem. This will
allow us to restrict our attention to the latter situation (i.e. when G is close to the
complete balanced bipartite graph or close to the union of two disjoint copies of a
clique).

An approximate version of Theorem [[.T. 4l for § > n/2+ en was obtained earlier
by Christofides, Kithn and Osthus [6]. Hartke and Seacrest [11] gave a simpler
argument with improved error bounds.

Precise estimates for reg, ., (n,d) (which yield either one or two possible values
for any n, §) are proved in [6, 0] using Tutte’s theorem: Suppose that n,0 € N
and n/2 < § < n. Then the bounds in [10] imply that

(1.1.1) 0+ +/n(20 —n)+8 <5—|—\/n(25—n)
o 2 - 2

where 0 < £ < 2 is chosen to make the left hand side of (LI an even integer.

Note that (LII) determines reg,, ., (n,n/2) exactly (the upper bound in this case

was already proved by Katerinis [15]). Moreover, (ILTI]) implies that if § > n/2

then regg ., (n,d) > (n — 2)/4. So we obtain the following immediate corollary of

Theorem [[L.T4] which answers a question of Nash-Williams [28|, [29], [30].

— e <regyon(n,d) +1,

COROLLARY 1.1.5. There exists an nog € N such that the following holds. Sup-
pose that G is a graph on n > ng vertices with minimum degree 6 > n/2. Then G
contains at least (n — 2)/8 edge-disjoint Hamilton cycles.

The following construction (which is based on a construction of Babai, see [28])
shows that the bound in Corollary[[.T.Hlis best possible for n = 8k+2, where k € N.
Consider the graph G consisting of one empty vertex class A of size 4k, one vertex
class B of size 4k + 2 containing a perfect matching and no other edges, and all
possible edges between A and B. Thus G has order n = 8k + 2 and minimum
degree 4k + 1 = n/2. Any Hamilton cycle in G must contain at least two edges
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of the perfect matching in B, so G contains at most ||B|/4] = k = (n — 2)/8
edge-disjoint Hamilton cycles. The lower bound on regg,.,(n,0) in (LII) follows
from a generalization of this construction.

The following conjecture from [19] would be a common generalization of both
Theorems [[LT3 and [LT4 (apart from the fact that the degree threshold in The-
orem is slightly lower). It would provide a result which is best possible for
every graph G (rather than the class of graphs with minimum degree at least ).

CONJECTURE 1.1.6. Suppose that G is a graph on n vertices with minimum
degree 6(G) > n/2. Then G contains regy,.,(G)/2 edge-disjoint Hamilton cycles.

For § > (2 — /2 + ¢)n, this conjecture was proved in [22], based on the main
result of [2I]. Recently, Ferber, Krivelevich and Sudakov [7] were able to obtain
an approximate version of Conjecture [[LI.0 i.e. a set of (1 — €)reguyen (G)/2 edge-
disjoint Hamilton cycles under the assumption that 6(G) > (1+¢)n/2. It also makes
sense to consider a directed version of Conjecture Some related questions for
digraphs are discussed in [22].

It is natural to ask for which other graphs one can obtain similar results. One
such instance is the binomial random graph G, ,: for any p, asymptotically almost
surely it contains |§(Gr, p)/2| edge-disjoint Hamilton cycles, which is clearly opti-
mal. This follows from the main result of Krivelevich and Samotij [18] combined
with that of Knox, Kithn and Osthus [17] (which builds on a number of previous
results). The problem of packing edge-disjoint Hamilton cycles in hypergraphs has
been considered in [8]. Further questions in the area are discussed in the recent
survey [23].

1.1.4. Overall Structure of the Argument. For all three of our main re-
sults, we split the argument according to the structure of the graph G under con-
sideration:

(i) G is close to the complete balanced bipartite graph Ky 202
(ii) G is close to the union of two disjoint copies of a clique K, /o;
(iii) G is a ‘robust expander’.

Roughly speaking, G is a robust expander if for every set S of vertices, its neigh-
bourhood is at least a little larger than |S|, even if we delete a small proportion
of the vertices and edges of G. The main result of [21I] states that every dense
regular robust expander has a Hamilton decomposition (see Theorem [[34]). This
immediately implies Theorems [[.T] and in Case (iii). For Theorem [[LT.4]
Case (iii) is proved in [19] using a more involved argument, but also based on the
main result of [21] (see Theorem [[3.7).

Case (i) is proved in Chapter [ whilst Chapter [2] tackles Case (ii). We defer
the proof of some of the key lemmas needed for Case (ii) until Chapter Bl (These
lemmas provide a suitable decomposition of the set of ‘exceptional edges’ — these
include the edges between the two almost complete graphs induced by G.) Case (ii)
is by far the hardest case for Theorems[[.T.Iland[[.T.3] as the extremal examples are
all close to the union of two cliques. On the other hand, the proof of Theorem [[L.T.4]
is comparatively simple in this case, as for this result, the extremal construction is
close to the complete balanced bipartite graph.

The arguments in Cases (i) and (ii) make use of an ‘approximate’ decomposition
result. We defer the proof of this result until Chapter Bl The arguments for both
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(i) and (ii) use the main lemma from [21] (the ‘robust decomposition lemma’) when
transforming this approximate decomposition into an exact one.

In Section [I.3] we derive Theorems [[LT.1] [[L.T.3] and [.1.4] from the structural
results covering Cases (i)—(iii).

The main proof in [21] (but not the proof of the robust decomposition lemma)
makes use of Szemerédi’s regularity lemma. So due to Case (iii) the bounds on ng
in our results are very large (of tower type). However, the case of Theorem [[L1.1]
when both § > n/2 and (iii) hold was proved by Perkovic and Reed [32] using
‘elementary’ methods, i.e. with a much better bound on ngy. Since the arguments
for Cases (i) and (ii) do not rely on the regularity lemma, this means that if we
assume that § > n/2, we get much better bounds on ng in our 1-factorization result

(Theorem [LIT]).

1.2. Notation

Unless stated otherwise, all the graphs and digraphs considered in this paper
are simple and do not contain loops. So in a digraph G, we allow up to two edges
between any two vertices, at most one edge in each direction. Given a graph or
digraph G, we write V(G) for its vertex set, E(G) for its edge set, e(G) := |E(G)|
for the number of edges in G and |G| := |V(G)] for the number of vertices in G.
We denote the complement of G by G.

Suppose that G is an undirected graph. We write 6(G) for the minimum degree
of G, A(G) for its maximum degree and x’(G) for the edge-chromatic number of G.
Given a vertex v of G, we write N¢(v) for the set of all neighbours of v in G. Given
a set A C V(G), we write dg(v, A) for the number of neighbours of v in G which
lie in A. Given A, B C V(G), we write Eg(A) for the set of edges of G which
have both endvertices in A and Eg (A4, B) for the set of edges of G which have one
endvertex in A and its other endvertex in B. We also call the edges in Eg (A, B)
AB-edges of G. We let e (A) := |Eg(A)| and eq(A, B) := |Eg(A, B)|. We denote
by G[A] the subgraph of G with vertex set A and edge set Eg(A). If AN B = 0,
we denote by G[A, B] the bipartite subgraph of G with vertex classes A and B and
edge set Eg(A4, B). If A = B we define G[A, B] := G[A]. We often omit the index
G if the graph G is clear from the context. An AB-path in G is a path with one
endpoint in A and the other in B. A spanning subgraph H of G is an r-factor of
G if the degree of every vertex of H is r.

Given a vertex set V' and two multigraphs G and H with V(G),V(H) CV, we
write G + H for the multigraph whose vertex set is V(G) UV (H) and in which the
multiplicity of xy in G + H is the sum of the multiplicities of xy in G and in H
(for all z,y € V(G) UV (H)). Similarly, if H := {Ha,..., H} is a set of graphs,
we define G+H =G+ H; +---+ Hy. If G and H are simple graphs, we write
G U H for the (simple) graph whose vertex set is V(G) UV (H) and whose edge set
is E(G)U E(H). We write G — H for the subgraph of G which is obtained from G
by deleting all the edges in E(G) N E(H). Given A C V(G), we write G — A for
the graph obtained from G by deleting all vertices in A.

We say that a graph or digraph G has a decomposition into Hy,..., H, if
G =H;+---+ H, and the H; are pairwise edge-disjoint.

A path system is a graph @ which is the union of vertex-disjoint paths (some
of them might be trivial). We say that P is a path in Q if P is a component of @
and, abusing the notation, sometimes write P € @ for this. A path sequence is a
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digraph which is the union of vertex-disjoint directed paths (some of them might
be trivial). We often view a matching M as a graph (in which every vertex has
degree precisely one).

If G is a digraph, we write zy for an edge directed from z to y. If zy € E(G),
we say that y is an outneighbour of x and z is an inneighbour of y. A digraph G
is an oriented graph if there are no z,y € V(G) such that zy,yr € E(G). Unless
stated otherwise, when we refer to paths and cycles in digraphs, we mean directed
paths and cycles, i.e. the edges on these paths/cycles are oriented consistently. If
is a vertex of a digraph G, then N (z) denotes the outneighbourhood of z, i.e. the
set of all those vertices y for which zy € E(G). Similarly, N (x) denotes the
inneighbourhood of x, i.e. the set of all those vertices y for which yx € E(G). The
outdegree of x is df(z) := |NJ (z)| and the indegree of x is dg(z) = |Ng(z)|.
We write dg (z, A) for the number of outneighbours of x lying inside A and define
dg(z, A) similarly. We denote the minimum outdegree of G by §7(G) and the
minimum indegree by 6~ (G). We write §(G) and A(G) for the minimum and
maximum degrees of the underlying simple undirected graph of G respectively.

Given a digraph G and A,B C V(G), an AB-edge is an edge with initial
vertex in A and final vertex in B, and eg(A, B) denotes the number of these edges
in G. If AN B = (}, we denote by G[A, B] the bipartite subdigraph of G whose
vertex classes are A and B and whose edges are all AB-edges of G. By a bipartite
digraph G = G[A, B] we mean a digraph which only contains AB-edges. A spanning
subdigraph H of G is an r-factor of G if the outdegree and the indegree of every
vertex of H is r.

If P is a path and z,y € V(P), we write Py for the subpath of P whose
endvertices are x and y. We define xPy similarly if P is a directed path and x
precedes y on P.

Let Vi,..., Vi be pairwise disjoint sets of vertices and let C' = V; ...V} be a
directed cycle on these sets. We say that an edge xy of a digraph R winds around
C if there is some ¢ such that z € V; and y € V;;;. In particular, we say that R
winds around C' if all edges of R wind around C.

In order to simplify the presentation, we omit floors and ceilings and treat large
numbers as integers whenever this does not affect the argument. The constants in
the hierarchies used to state our results have to be chosen from right to left. More
precisely, if we claim that a result holds whenever 0 < 1/n € a < b < ¢ <1
(where n is the order of the graph or digraph), then this means that there are non-
decreasing functions f : (0,1] — (0,1], g : (0,1] = (0,1] and A : (0,1] — (0, 1] such
that the result holds for all 0 < a,b,c¢ < 1 and all n € N with b < f(c), a < g(b)
and 1/n < h(a). We will not calculate these functions explicitly. Hierarchies with
more constants are defined in a similar way. We will write a = b £ ¢ as shorthand
forb—c<a<b+e.

1.3. Derivation of Theorems [I.1.1], I.1.3], I.1.4! from the Main
Structural Results

In this section, we combine the main auxiliary results of this paper (together
with results from [22] and [19]) to derive Theorems [LT.T] LT3 and [LT4l Before
this, we first show that the bound on the minimum degree in Theorem [[.T.3]is best
possible.
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PROPOSITION 1.3.1. For every n > 6, let D* := |n/2| — 1. Unless both D*
and n are odd, there is a disconnected D*-reqular graph G on n wvertices. If both
D* and n are odd, there is a disconnected (D* — 1)-regular graph G on n vertices.

Note that if both D* and n are odd, no D*-regular graph exists.

Proof. If n is even, take G to be the disjoint union of two cliques of order n/2.
Suppose that n is odd and D* is even. This implies n = 3 (mod 4). Let G be
the graph obtained from the disjoint union of cliques of orders |n/2] and [n/2] by
deleting a perfect matching in the bigger clique. Finally, suppose that n and D*
are both odd. This implies that n = 1 (mod 4). In this case, take G to be the
graph obtained from the disjoint union of cliques of orders |n/2| — 1 and [n/2] +1
by deleting a 3-factor in the bigger clique. (|

1.3.1. Deriving Theorems [1.1.7] and As indicated in Section[I.1] in
the proofs of our main results we will distinguish the cases when our given graph
G is close to the union of two disjoint copies of K, /s, close to a complete bipartite
graph K, /3 /2 or a robust expander. We will start by defining these concepts.

We say that a graph G on n vertices is e-close to the union of two disjoint copies
of Kz if there exists A C V(G) with [A| = |n/2] and such that e(A, V(G)\ A) <
en?. We say that G is e-close to K, /2 /2 if there exists A C V(G) with [A] = |n/2]
and such that e(A4) < en?. We say that G is e-bipartite if there exists A C V(G)
with |A| = [n/2] such that e(A),e(V(G) \ A) < en?. So every e-bipartite graph is
e-close to Ky, /24,/2. Conversely, if 1/n < ¢ and G is a regular graph on n vertices
which e-close to K,/ /2, then G is 2e-bipartite.

Given 0 < v < 7 < 1, we say that a graph G on n vertices is a robust (v, 7)-
expander, if for all S C V(G) with 7n < |S] < (1 — 7)n the number of vertices that
have at least vn neighbours in S is at least |S| 4+ vn.

The following observation from [19] implies that we can split the proofs of
Theorems [[T1] and into three cases.

LEMMA 1.3.2. Suppose that 0 < 1/n < k K v < 1, < 1. Let G be a graph on
n vertices of minimum degree § := §(G) > (1/2 — k)n. Then G satisfies one of the
following properties:
(i) G is e-close to Ky 2 /25
(ii) G is e-close to the union of two disjoint copies of K, /2;
(iii) G is a robust (v, T)-expander.

Recall that in Chapter [2l we prove Theorems [[L.T.1] and in Case (ii) when
our given graph G is e-close to the union of two disjoint copies of K, . The
following result is sufficiently general to imply both Theorems [[L.T.1] and in
this case. We will prove it in Section

THEOREM 1.3.3. For every cox > 0 there exists an ng € N such that the fol-
lowing holds for all n > ng. Suppose that D > n —2|n/4| — 1 and that G is a
D-regular graph on n vertices which is eex-close to the union of two disjoint copies
of Ky /a. Let F' be the size of a minimum cut in G. Then G' can be decomposed into
|min{D, F}/2| Hamilton cycles and D — 2|min{D, F'}/2]| perfect matchings.

Note that Theorem [[L3.3] provides structural insight into the extremal graphs
for Theorem [[.T.3] - they are those with a cut of size less than D.
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Throughout this paper, we will use the following fact.

n/2—1 ifn=0 (
(n—1)/2 ifn=1 (
n/2 ifn=2 (mod4
n+1)/2 ifn=3 (

(1.3.1) n—2n/4l—1=

The next result from [22] (derived from the main result of [21]) shows that
every even-regular robust expander of linear degree has a Hamilton decomposition.
It will be used to prove Theorems [[LT.1] and [[L.T.3]in the case when our given graph
G is a robust expander.

THEOREM 1.3.4. For every a > 0 there exists T > 0 such that for every v > 0
there exists ng = no(a, v, 7) for which the following holds. Suppose that

(i) G is an r-regular graph on n > ng vertices, where r > an is even;
(ii) G is a robust (v, T)-expander.

Then G has a Hamilton decomposition.

The following result implies Theorems [L.T.1] and [[L.T.3] in the case when our
given graph is e-close to K, /2 /2. Note that unlike the case when G is e-close to

the union of two disjoint copies of K, /5, we have room to spare in the lower bound
on D.

THEOREM 1.3.5. There are e > 0 and ng € N such that the following holds.
Letn > ng and suppose that D > (1/2—eqxx)n is even. Suppose that G is a D-regular
graph on n vertices which is €ex-bipartite. Then G has a Hamilton decomposition.

Theorem[I.3.5is one of the two main results proven in Chapter[d The following
result is an easy consequence of Tutte’s theorem and gives the degree threshold for

a single perfect matching in a regular graph. Note the condition on D is the same
as in Theorem [LT1]

PROPOSITION 1.3.6. Suppose that D > 2[n/4] — 1 and n is even. Then every
D-regular graph G on n vertices has a perfect matching.

Proof. If D > n/2 then G has a Hamilton cycle (and thus a perfect matching) by
Dirac’s theorem. So we may assume that D = n/2 — 1 and so n = 0 (mod 4). In
this case, we will use Tutte’s theorem which states that a graph G has a perfect
matching if for every set S C V(G) the graph G— S has at most |S| odd components
(i.e. components on an odd number of vertices). The latter condition holds if |S] < 1
and if S| > n/2.

If |S| =n/2—1 and G — S has more than |S| odd components, then G — S
consists of isolated vertices. But this implies that each vertex outside S is joined
to all vertices in S, contradicting the (n/2 — 1)-regularity of G.

If 2 < |S] < n/2—2, then every component of G—S has at least n/2—|S| vertices
and so G— S has at most |(n—1S|)/(n/2—|S|)] components. But |(n—|S])/(n/2—
|S])] <|S| unless n = 8 and |S| = 2. (Indeed, note that (n—|S|)/(n/2—|S]|) < |S] if
and only if n+|S|>—(n/2+1)|S| < 0. The latter holds for |S| = 3 and |S| = n/2—2,
and so for all values in between. The case |S| = 2 can be checked separately.) If
n =8 and |S| = 2, it is easy to see that G — S has at most two odd components.

O
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Proof of Theorem T.1.7l Let 7 = 7(1/3) be the constant returned by
Theorem [[34] for « := 1/3. Choose ng € N and constants v,eex such that
1/ng € v K T,e6x and eox < 1. Let n > ng and let G be a D-regular graph
as in Theorem [LT.J] Lemma implies that G satisfies one of the following
properties:
(i) G is gex-close to Ky, 2 n/2;
(ii) G is eex-close to the union of two disjoint copies of K, /2;
(iii) G is a robust (v, 7)-expander.

If (i) holds and D is even, then as observed at the beginning of this subsection, this
implies that G is 2ecx-bipartite. So Theorem implies that G has a Hamilton
decomposition and thus also a 1-factorization (as n is even and so every Hamilton
cycle can be decomposed into two perfect matchings). Suppose that (i) holds and
D is odd. Then Proposition [[.3.6] implies that G contains a perfect matching M.
Now G — M is still ecx-close to K, /2, /2 and so Theorem implies that G — M
has a Hamilton decomposition. Thus G has a 1-factorization. If (ii) holds, then
Theorem and (L3J) imply that G has a 1-factorization. If (iii) holds and
D is odd, we use Proposition to choose a perfect matching M in G and let
G':=G— M. If D is even, let G’ := G. In both cases, G' — M is still a robust
(v/2, 7)-expander. So Theorem [[33.4] gives a Hamilton decomposition of G’. So G
has a 1-factorization. O

The proof of Theorem is similar to that of Theorem [[L.T.11

Proof of Theorem [I.1.3] Choose ng € N and constants 7, v, ecx as in the proof
of Theorem [L Tl Let n > ng and let G be a D-regular graph as in Theorem
As before, Lemma implies that G satisfies one of (i)—(iii). Suppose first that
(i) holds. If D is odd, n must be even and so D > n/2. Choose a perfect matching
M in G (e.g. by applying Dirac’s theorem) and let G’ := G — M. If D is even, let
G' := G. Note that in both cases G’ is gex-close to Ky, /2 ,/2 and so 2e..-bipartite.
Thus Theorem implies that G’ has a Hamilton decomposition.

Suppose next that (ii) holds. Note that by (I3, D > n — 2|n/4] — 1 unless
n = 3 (mod 4) and D = |n/2]. But the latter would mean that both n and
D are odd, which is impossible. So the conditions of Theorem [[.3.3] are satisfied.
Moreover, since D > |n/2], Proposition[2:2.1)ii) implies that the size of a minimum
cut in G is at least D. Thus Theorem [[L3.3] implies that G has a decomposition
into Hamilton cycles and at most one perfect matching.

Finally, suppose that (iii) holds. If D is odd (and thus n is even), we can apply
Proposition again to find a perfect matching M in G and let G' := G — M.
If D is even, let G’ := G. In both cases, G’ is still a robust (v/2, 7)-expander. So
Theorem [[L3.4] gives a Hamilton decomposition of G’. O

1.3.2. Deriving Theorem [1.1.4l The derivation of Theorem [[L.T.4]is similar
to that of the previous two results. We will replace the use of Lemma and
Theorem [[L3.4] with the following result, which is an immediate consequence of the
two main results in [19].

THEOREM 1.3.7. For every cox > 0 there exists an ng € N such that the follow-
ing holds. Suppose that G is a graph on n > ng vertices with §(G) > n/2. Then G
satisfies one of the following properties:



10 1. INTRODUCTION

(i) G is cex-close to Ky /25725
(ii) G is eex-close to the union of two disjoint copies of Ky a;
(iii) G contains regy o, (n,9)/2 edge-disjoint Hamilton cycles.

To deal with the near-bipartite case (i), we will apply the following result which
we prove in Chapter [4]

THEOREM 1.3.8. For each o > 0 there are eox > 0 and ng € N such that the
following holds. Suppose that F' is an cox-bipartite graph on n > ng vertices with
§(F) > (1/2 — eex)n. Suppose that F has a D-regular spanning subgraph G such
that n/100 < D < (1/2 — a)n and D is even. Then F contains D/2 edge-disjoint
Hamilton cycles.

The next result immediately implies Theorem [[L.T.4] in Case (ii) when G is e-
close to the union of two disjoint copies of K, /. We will prove it in Chapter
(Section 2.H]). Since G is far from extremal in this case, we obtain almost twice as
many edge-disjoint Hamilton cycles as needed for Theorem [[LT.4

THEOREM 1.3.9. For every € > 0, there exist eex > 0 and ng € N such that
the following holds. Suppose n > ng and G is a graph on n vertices such that G
is €ex-close to the union of two disjoint copies of Ko and such that 6(G) > n/2.
Then G has at least (1/4 — €)n edge-disjoint Hamilton cycles.

We will also use the following well-known result of Petersen.

THEOREM 1.3.10. Ewery regular graph of positive even degree contains a 2-
factor.

Proof of Theorem [I.1.4L Choose ng € N and eqx such that 1/ny < eex < 1.
In particular, we choose eox < €l (1/12), where €, (1/12) is the constant returned
by Theorem [[3.9] for ¢ := 1/12, as well as eex < €2,(1/6)/2, where €2 (1/6) is the
constant returned by Theorem for @ := 1/6. Let G be a graph on n > ng
vertices with § := 0(G) > n/2. Theorem [[L37 implies that we may assume that G
satisfies either (i) or (ii). Note that in both cases it follows that 6(G) < (1/2+5eex)n.
So ([[I1) implies that n/5 < regg,en(n,6) < 3n/10.

Suppose first that (i) holds. As mentioned above, this implies that G is 2eqy-
bipartite. Let G’ be a D-regular spanning subgraph of G such that D is even and
D > reg, o, (n,0). Petersen’s theorem (Theorem [[L3.10) implies that by successively
deleting 2-factors of G’, if necessary, we may in addition assume that D < n/3.
Then Theorem [[3.8 (applied with o := 1/6) implies that G contains at least
D/2 > reg, ., (n,0)/2 edge-disjoint Hamilton cycles.

Finally suppose that (ii) holds. Then Theorem (applied with € := 1/12)
implies that G contains n/6 > reg,,.,(n,d)/2 edge-disjoint Hamilton cycles. ]

1.4. Tools

1.4.1. e-regularity. If G = (A, B) is an undirected bipartite graph with ver-
tex classes A and B, then the density of G is defined as

eg(A, B)

A B) = =ET
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For any € > 0, we say that G is e-regular if for any A’ C A and B’ C B with
|A’| > ¢|A| and |B’| > ¢|B| we have |d(A’, B") — d(A, B)| < e. We say that G is
(e, > d)-regular if it is e-regular and has density d’' for some d’ > d — e.

We say that G is [g, d]-superregular if it is e-regular and dg(a) = (d +¢)|B| for
every a € A and dg(b) = (d £ ¢)|A| for every b € B. G is [, > d]-superregular if it
is [e, d']-superregular for some d’' > d.

Given disjoint vertex sets X and Y in a digraph G, recall that G[X, Y] denotes
the bipartite subdigraph of G whose vertex classes are X and Y and whose edges
are all the edges of G directed from X to Y. We often view G[X, Y] as an undirected
bipartite graph. In particular, we say G[X,Y] is e-reqular, (g, > d)-regular, [e, d]-
superregular or [e,> d]-superregular if this holds when G[X,Y] is viewed as an
undirected graph.

The following proposition states that the graph obtained from a superregular
pair by removing a small number of edges at every vertex is still superregular (with
slightly worse parameters). We omit the proof which follows straightforwardly from
the definition of superregularity. A similar argument is for example included in [21].

PROPOSITION 1.4.1. Suppose that 0 < 1/m < e < d <« d < 1. Let G be a
bipartite graph with vertex classes A and B of size m. Suppose that G’ is obtained
from G by removing at most d'm vertices from each vertex class and at most d'm
edges incident to each vertex from G. If G is [g, d]-superregular then G' is [2/d', d)-
superreqular.

We will also use the following well-known observation, which easily follows from
Hall’s theorem and the definition of [e, d]-superregularity.

PROPOSITION 1.4.2. Suppose that 0 < 1/m < ¢ < d < 1. Suppose that G is
an [e, d]-superregular bipartite graph with vertex classes of size m. Then G contains
a perfect matching.

We will also apply the following simple fact.

Fact 1.4.3. Let € > 0. Suppose that G is a bipartite graph with vertex classes
of size n such that §(G) > (1 — e)n. Then G is [\/€, 1]-superregular.

1.4.2. A Chernoff-Hoeffding Bound. We will often use the following Cher-
noff-Hoeffding bound for binomial and hypergeometric distributions (see e.g. [14],
Corollary 2.3 and Theorem 2.10]). Recall that the binomial random variable with
parameters (n, p) is the sum of n independent Bernoulli variables, each taking value
1 with probability p or 0 with probability 1—p. The hypergeometric random variable
X with parameters (n,m, k) is defined as follows. We let N be a set of size n, fix
S C N of size |S| = m, pick a uniformly random 7' C N of size |T'| = k, then define
X :=|T'NnS|. Note that EX = km/n.

PRrOPOSITION 1.4.4. Suppose X has binomial or hypergeometric distribution
and 0 < a < 3/2. Then P(|X —EX| > aEX) < 2e~ % EX/3,

1.4.3. Other Useful Results. We will need the following fact, which is a
simple consequence of Vizing’s theorem and was first observed by McDiarmid and
independently by de Werra (see e.g. [37]).

PROPOSITION 1.4.5. Let G be a graph with x'(G) < m. Then G has a decom-
position into m matchings My, ..., My, with |e(M;) —e(M;)| <1 for alli,5 < m.
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It is also useful to state Proposition [[.4.5]in the following alternative form.

COROLLARY 1.4.6. Let H be a graph with maximum degree at most A. Then
E(H) can be decomposed into A + 1 edge-disjoint matchings M, ..., May1 such
that |e(M;) —e(M;)| <1 for all i,5 < A+1.

The following partition result will also be useful.

LEMMA 1.4.7. Suppose that 0 < 1/n < €,61 K g2 < 1/K < 1, that r < 2K,
that Km > n/4 and that r, K,n,m € N. Let G and F' be graphs on n vertices with
V(G) = V(F). Suppose that there is a vertex partition of V(G) into U, Ry, ..., R,
with the following properties:

o |U|=Km.

e §(G[U]) > en or A(G[U]) < en.

e For each j < r we either have dg(u, R;) <en for allu € U ordg(z,U) >
en for all z € R;.

Then there exists a partition of U into K parts Uy, ..., Uk satisfying the following
properties:

(1) Uil =m foralli < K.

)

) ec(Us, Uy) = 2(eq(U) £ eamax{n,eq(U)})/K? for all1 <i#i < K.

) ec(Us) = (eq(U) & eamax{n,eq(U)})/K? for alli < K.

) ec(Ui, R;) = (eq(U, Rj) + ea max{n,ec(U, R;)})/K for all i < K and
J<r.

(vi) dp(v,U;) = (dp(v,U) £en)/K for allv € V(F) and all i < K.

Proof. Consider an equipartition Uy, ..., Uk of U which is chosen uniformly at
random. So (i) holds by definition. Note that for a given vertex v € V(G), dg(v, U;)
has the hypergeometric distribution with mean dg(v,U)/K. So if dg(v,U) >
ein/ K, Proposition [[44] implies that

2
P((lG(U’Ui)_dG(;;U)’Zaldcl((v,U)> S%Xp(_M) <L

Thus we deduce that for all v € V(G) and all i < K,
P (lda(v,Us) — da(v,U)/K| > e1n/K) < 1/n”.

Similarly,
P (|dp(v,U;) — dp(v,U)/K| > exn/K) < 1/n”.

So with probability at least 3/4, both (ii) and (vi) are satisfied.

We now consider (iii) and (iv). Fix ¢,¢ < K. If i # 4, let X := eq(U;,Uy). It
i =1, let X := 2eq(U;). For an edge f € E(G[U]), let Ey denote the event that
f € EWU;,Uy). Soif f =zy and i # 4, then
o . _m
i ul-1

(141) ]P(Ef) = Q]P)(,T € Ul)]P)(y e Uy | xr € Ul) =

Similarly, if f and f’ are disjoint (that is, f and f/ have no common endpoint) and
1 # 4/, then

1 m-1
m B <o p(Ey).

(1.4.2) P(Ey | By) =2——— . < _m
P T ol =2 ul=3 = Cu] jul—1
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By (A1), if ¢ # 4/, we also have

) U 2\ 2e6(U) 2e6(U)
(143) B = 2= g = (1 ) T = (/) =1
If f =2y and i =/, then

-1
(1.4.4) P(E;) =P(x € U)P(y € U; | x € U;) = % : |Z”|7_1

Soif i =4/, similarly to (LZ2) we also obtain P(Ey | Ey) < P(E[) for disjoint f and
f" and we obtain the same bound as in (L43) on E(X) (recall that X = 2eq(U;)
in this case).

Note that if ¢ # ¢’ then

Var(X) = > > (P(EfNEp) —P(Ef)P(Ey))

fEEU) #'€E(U)

> P(Ey) D (P(Ep | Ef) —P(Ep))

feE) f'eE)
B2 s by ancw) N
feE)

IN

ec(U)A(GIU)).
Similarly, if i =4 then
Var(X)=4 > > (P(EynEyp)—PEP(Ep)) < ea(U)A(G[U]).
fEE(U) f'eE(U)

Let a := eq(U)A(G[U]). In both cases, from Chebyshev’s inequality, it follows that

P <|X —E(X)| > 1/@/51/2> <el/?,

Suppose that A(G[U]) < en. If we also have have eg(U) < n, then y/a/el/2 <
el/4n < eon/2K2. If eq(U) > n, then \/a/el/2 < e'/%eq(U) < egeq(U)/2K2.

If we do not have A(G[U]) < en, then our assumptions imply that 6(G[U]) >
en. So A(G|U]) < n < eeq(G|U]) with room to spare. This in turn means that
Va/el/?2 < ellteq(U) < eseq(U)/2K2. So in all cases, we have

(1.4.5) p(|x — B > 2maxineaU} e
2K?2
Now note that by (L43]) we have
26G(U) EQGG(U)
1.4. E(X)— .
(146) x) - 260 < el

So (LZH) and (6] together imply that for fixed ,4’ the bound in (iii) fails with
probability at most £'/2. The analogue holds for the bound in (iv). By summing
over all possible values of i,i’ < K, we have that (iii) and (iv) hold with probability
at least 3/4.

A similar argument shows that for all i < K and j < r, we have

(147) P ( e eG(Ua RJ) > €2 max{ni;G(Uv RJ)}> < 51/2.
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Indeed, fix i < K, j < r and let X := eq(U;, R;). For an edge f € G[U, R;], let
E; denote the event that f € E(U;, R;). Then P(Ef) = m/|U| = 1/K and so
E(X) = eq(U,Rj)/K. The remainder of the argument proceeds as in the previous
case (with slightly simpler calculations).

So (v) holds with probability at least 3/4, by summing over all possible values
of it < K and j < r again. So with positive probability, the partition satisfies all
requirements. (|



CHAPTER 2

The two cliques case

This chapter is concerned with proving Theorems [[LT.T] [LT.3] and [LT.4 in the
case when our graph is close to the union of two disjoint copies of a clique K, /o
(Case (ii)). More precisely, we prove Theorem[[3.9] (i.e. Case (ii) of Theorem [[.T4)
and Theorem[[.3.3] which is a common generalization of Case (ii) of Theorems[T.T.1]
and In Section 2] we give a sketch of the arguments for the ‘two cliques’
Case (ii) (i.e. the proofs of Theorems [[.3.3] and [[L39)). Sections (and part
of Section [2Z]) are common to the proofs of both Theorems [[.3:3 and Theo-
rem is proved in Section All the subsequent sections of this chapter are
devoted to the proof of Theorem

In this chapter (and Chapter B)) it is convenient to view matchings as graphs
(in which every vertex has degree precisely one).

2.1. Overview of the Proofs of Theorems [1.3.3] and

The proof of Theorem [[.3:9]is much simpler than that of Theorems[[L3:3] (mainly
because its assertion leaves some leeway — one could probably find a slightly larger
set of edge-disjoint Hamilton cycles than guaranteed by Theorem [[L3.9). Moreover,
the ideas used in the former all appear in the proof of the latter too.

2.1.1. Proof Overview for Theorem Let G be a graph on n vertices
with §(G) > n/2 which is close to being the union of two disjoint cliques. So there
is a vertex partition of G into sets A and B of roughly equal size so that G[A4]
and G[B] are almost complete. Our aim is to construct almost n/4 edge-disjoint
Hamilton cycles.

Several techniques have recently been developed which yield approximate de-
compositions of dense (almost) regular graphs, i.e. a set of Hamilton cycles covering
almost all the edges (see e.g. [6) [}, [9], 24}, [31]). This leads to the following idea:
replace G[A] and G[B] by multigraphs G4 and Gp so that any suitable pair of
Hamilton cycles C4 and Cp of G4 and Gp respectively corresponds to a single
Hamilton cycle C' in the original graph G. We will construct G 4 and G g by delet-
ing some edges of G and introducing some ‘fictive edges’. (The introduction of
these fictive edges is the reason why G4 and Gp are multigraphs.)

We next explain the key concept of these ‘fictive edges’. The following graph G
provides an instructive example: suppose that n = 0 (mod 4). Let G be obtained
from two disjoint cliques induced by sets A and B of size n/2 by adding a perfect
matching M between A and B. Note that G is n/2-regular. Now pair up the edges
of M into n/4 pairs (e;,e;41) fori =1,3,...,n/2 —1. Write e; =: z;y; with 2; € A
and y; € B. Next let G4 be the multigraph obtained from G[A] by adding all the
edges x;x;y1, where i is odd. Similarly, let Gg be obtained from G[B] by adding all
the edges y;yi+1, where i is odd. We call the edges z;x;4+1 and y;y;+1 fictive edges.

15
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Note that G4 and Gp are regular multigraphs. Now pair off the fictive edges in
G4 with those in Gp, i.e. x;x;41 is paired off with y;y;+1. Suppose that Cy4 is a
Hamilton cycle in G 4 which contains z;z;41 (and no other fictive edges) and Cp is
a Hamilton cycle in Gp which contains y;y;+1 (and no other fictive edges). Then
together, C4 and Cp correspond to a Hamilton cycle C in the original graph G
(where fictive edges are replaced by the corresponding matching edges in M again).

So we have reduced the problem of finding many edge-disjoint Hamilton cycles
in G to that of finding many edge-disjoint Hamilton cycles in the almost complete
graph G4 (and Gp), with the additional requirement that each such Hamilton
cycle contains a unique fictive edge. This can be achieved via the ‘approximate
decomposition result’ (see Lemma [Z5.4] which is proved in Chapter ().

Additional difficulties arise from ‘exceptional’ vertices, namely those which have
high degree into both A and B. (It is easy to see that there cannot be too many
of these vertices.) Fictive edges also provide a natural way of ‘eliminating’ these
exceptional vertices. Suppose for example that G’ is obtained from the graph G
above by adding a vertex a so that a is adjacent to half of the vertices in A and
half of the vertices in B. (Note that §(G’) is a little smaller than |G’|/2, but
G’ is similar to graphs actually occurring in the proof.) Then we can pair off the
neighbours of @ into pairs within A and introduce a fictive edge f; between each pair
of neighbours. We also introduce fictive edges f; between pairs of neighbours of a
in B. Without loss of generality, we have fictive edges f1, f3,..., fn/2—1 (and recall
that |G'| = n+1). So we have V(G';) = A and V(G'5) = B again. We then require
each pair of Hamilton cycles Ca, Cp of G’ and G’ to contain z;x; 11, ¥iyi+1 and a
fictive edge f; (which may lie in A or B) where i is odd, see Figure ZZT.Il Then C4
and Cp together correspond to a Hamilton cycle C' in G’ again. The subgraph J of
G’ which corresponds to three such fictive edges z;x; 11, y;yi+1 and f; of C' is called
a ‘Hamilton exceptional system’. J will always be a path system. So in general, we
will first find a sufficient number of edge-disjoint Hamilton exceptional systems J.
Then we apply Lemma [2.5.4] to find edge-disjoint Hamilton cycles in G4 and G'g,
where each pair of cycles contains a suitable set J* of fictive edges (corresponding
to some Hamilton exceptional system J).

For Lemma 2.5.4] we need each of the Hamilton exceptional systems J to
be ‘localized’: given a partition of A and B into clusters, the endpoints of the
corresponding set J* of fictive edges need to be contained in a single cluster of A
and of B. The fact that the Hamilton exceptional systems need to be localized is one
reason for treating exceptional vertices differently from the others by introducing
fictive edges for them.

2.1.2. Proof Overview for Theorem [1.3.3l The main result of this chapter
is Theorem [[L3.3] Suppose that G is a D-regular graph satisfying the conditions of
that theorem.

Using the approach of the previous subsection, one can obtain an approximate
decomposition of G, i.e. a set of edge-disjoint Hamilton cycles covering almost all
edges of G. However, one does not have any control over the ‘leftover’ graph H,
which makes a complete decomposition seem infeasible. This problem was over-
come in [2I] by introducing the concept of a ‘robustly decomposable graph’ G*°P.
Roughly speaking, this is a sparse regular graph with the following property: given
any very sparse regular graph H with V(H) = V(G™P) which is edge-disjoint from
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A B

Ficure 2.1.1. Transforming the problem of finding a Hamilton
cycle on V(G') into finding two Hamilton cycles Cy and Cp on A
and B respectively.

G™°P, one can guarantee that G™P U H has a Hamilton decomposition. This leads
to a natural (and very general) strategy to obtain a decomposition of G:

(1) find a (sparse) robustly decomposable graph G in G and let G’ denote
the leftover;

(2) find an approximate Hamilton decomposition of G’ and let H denote the
(very sparse) leftover;

(3) find a Hamilton decomposition of G™P U H.

It is of course far from clear that one can always find such a graph G*™P. The main
‘robust decomposition lemma’ of [21] guarantees such a graph G™P in any regular
robustly expanding graph of linear degree. Since G is close to the disjoint union
of two cliques, we are of course not in this situation. However, a regular almost
complete graph is certainly a robust expander, i.e. our assumptions imply that G
is close to being the disjoint union of two regular robustly expanding graphs G4
and G g, with vertex sets A and B.

So very roughly, the strategy is to apply the robust decomposition lemma of [21]
to G4 and G p separately, to obtain a Hamilton decomposition of both G 4 and Gp.
Now we pair up Hamilton cycles of G 4 and Gp in this decomposition, so that each
such pair corresponds to a single Hamilton cycle of G and so that all edges of G
are covered. It turns out that we can achieve this as in the proof of Theorem
we replace all edges of G between A and B by suitable ‘fictive edges’ in G4 and
Gp. We then need to ensure that each Hamilton cycle in G4 and Gp contains a
suitable set of fictive edges — and the set-up of the robust decomposition lemma
does allow for this.

One significant difficulty compared to the proof of Theorem is that this
time we need a decomposition of all the ‘exceptional’ edges (i.e. those between
A and B and those incident to the exceptional vertices) into Hamilton exceptional
systems. The nature of the decomposition depends on the structure of the bipartite
subgraph G[A’, B'] of G, where A’ is obtained from A by including some subset Ag
of the exceptional vertices, and B’ is obtained from B by including the remaining
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set By of exceptional vertices. We say that G is ‘critical’ if many edges of G[A’, B'|
are incident to very few (exceptional) vertices. In our decomposition into Hamilton
exceptional systems, we will need to distinguish between the critical and non-critical
case (when in addition G[A’, B'] contains many edges) and the case when G[A’, B']
contains only a few edges. The lemmas guaranteeing this decomposition are stated
and discussed in Section [Z7] but their proofs are deferred until Chapter
Finding these localized Hamilton exceptional systems becomes more feasible if
we can assume that there are no edges with both endpoints in the exceptional set
Ag or both endpoints in By. So in Section 2.6 we find and remove a set of edge-
disjoint Hamilton cycles covering all edges in G[Ag] and G[By]. We can then find the
localized Hamilton exceptional systems in Section[Z7l After this, we need to extend
and combine them into certain path systems and factors in Section 2.8 before we
can use them as an ‘input’ for the robust decomposition lemma in Section
Finally, all these steps are combined in Section 2.10] to prove Theorem .33

2.2. Partitions and Frameworks

2.2.1. Edges between Partition Classes. Let A’, B’ be a partition of the
vertex set of a graph GG. The aim of this subsection is to give some useful bounds
on the number eg(A’, B") of edges between A’ and B’ in G.

PROPOSITION 2.2.1. Let G be a graph on n vertices with 6(G) > D. Let A’, B
be a partition of V(G). Then the following properties hold:
(i) eq(A', B') = (D — |B'| +1)|B|.
(ii) If D > n — 2[n/4] — 1, then eq(A’,B’) > D unless n = 0 (mod 4),
D=n/2—-1and |A'| =|B'| =n/2.
Proof. Since 6(G) > D we have d(v,A’) > D — |B’| 4+ 1 for all v € B’ and so
eq(A’',B") > (D — |B'| + 1)|B’|, which implies (i). (ii) follows from (3 and
(i). O

PROPOSITION 2.2.2. Let G be a D-reqular graph on n vertices together with a
vertex partition A', B'. Then

(i) eq(A’, B') is odd if and only if both |A’| and D are odd.
’ 11\2
(i) ea(4', B) = eg(A) + eg(B') + E2H2zmn _ (4'1-1B')
Proof. Note that eq(A’,B") =3 4 d(v,B") =% (D —d(v,A")) = |[A'|D -
2ec(A’). Hence (i) follows.
For (ii), note that

eq(A) = ('f') —eq(A) = (V;') - % (DIA] = ea(A', BY)),

and similarly eg(B’') = ('B;w) — (D|B'| —eg(A',B")) /2. Since |A'| + |B'| = n it
follows that

e(A', B) = ea(A') + eg(B') — % (A + B - n(D+1)
= e@(A/) + 66(3/) + (2D +i — n)n _ (|A/| _4:|B/|)27

as required. ([
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PROPOSITION 2.2.3. Let G be a D-regular graph on n vertices with D > |n/2].
Let A, B’ be a partition of V(G) with |A’|,|B’| > D/2 and A(G[A’,B']) < D/2.
Then
D-28 ifD>n/2,

ca-v(4, B = {D/2 —28 ifD=(n-1)/2

for every U C V(G) with |U| < 3.
Proof. Without loss of generality, we may assume that |A’| > |B’|. Set
G = G[A,B']. If |B'| < D —4, then ¢(G') > (D — |B'| +1)|B'| > 5D/2 by
Proposition Z271)i). Since A(G') < D/2 we have e(G' —U) > ¢(G') —3D/2 > D.
Thus we may assume that |B’| > D — 3. For every v € B’, we have
der(v) = dg(v, A') = D — dg(v, B)) = D — (|B'| — dg(v, B') = 1) < dg(v, B') + 4,
and similarly de/(v) < dg(v, A") + 4 for all v € A’. Thus

Y de(u) <124 > dg(u, A)+ > dg(u,B)

uelU uceUNA’ ueUNB’
(2.2.1) <15+ eg(A") +eg(B').

Note that |A’| — |B’| < 7 since |A’| > |B’| > D —3 > |n/2| — 3. By Proposi-
tion 22222(ii), we have

e(G'=U) > eG)- Z dgr(u)

uelU

eD+2=mn_ (A1= BV 5~ 4o

Z 66(14/) + 66(3/) + 4 4

uelU
@zD - " —|B'N2 _
Z @2D+2—-n)n  (JA'|-|B])* 15> 2D+2—-mn)n 03
4 4 4
Hence the proposition follows. O

The following result is an analogue of Proposition [2.2.3] for the case when G is
(n/2 — 1)-regular with n =0 (mod 4) and |A'| =n/2 = |B’|.

PROPOSITION 2.2.4. Let G be an (n/2 — 1)-regular graph on n wvertices with
n=0 (mod 4). Let A’, B’ be a partition of V(G) with |A’'| =n/2 = |B’|. Then

ea(A"\ X, B) z eq(X, B) — [ X|(|X] - 1)
for every vertex set X C A’. Moreover, A(G[A', B']) < eq(A’,B’)/2.
Proof. For every v € A’, we have

de(v,B")=n/2—1—dg(v,A") = |A'| -1 —dg(v,A") = dg(v, A").

Y dgla, A) - (';ﬂ))

reX

By summing over all v € A’ we obtain
SG(AI, BI) g 266(14/) Z 2 <
=2 da(x,B') - [X|(|X| - 1)

zeX
= 2eq(X, B') — |X|(|X] - 1).
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Therefore,
ec(A\ X,B')=eg(A,B") —ecq(X,B') > eq(X,B") — | X|(|X]| - 1).

In particular, this implies that for each vertex z € A’ we have eq(A’\ {z}, B") >
eqc({z},B") = dg(z,B’) and so 2dg(xz, B") < eq(A’,B’). By symmetry, for any
y € B’ we have 2d(y, A’) < eq(A’, B’). Therefore, A(G[A’, B']) < eq(A4’, B')/2.

O

2.2.2. Frameworks. Throughout this chapter, we will consider partitions
into sets A and B of equal size (which induce ‘near-cliques’) as well as ‘excep-
tional sets’ Ay and By. The following definition formalizes this. Given a graph G,
we say that (G, A, Ag, B, By) is an (e, K)-framework if the following holds, where
A= AyUA, B':= ByUB and n:= |V(G)|:

(FR1) A, Ao, B, By forms a partition of V(G).
(FR2) e(A’, B') < egn?.
(FR3) |A| |B| is divisible by K, |A0| > |B0| and |A0| + |Bo| < Eon.
(FR4) If v € A then d(v, B") < egn and if v € B then d(v, A’") < gon.
We often write Vj for Ag U By and think of the vertices in V as ‘exceptional

vertices’. Also, whenever (G, A, Ao, B, By) is an (g9, K)-framework, we will write
A= AgUA, B’ .= By U B.

PROPOSITION 2.2.5. Let 0 < 1/n K €ex, 1/ K € 1 and eex < €9 < 1. Let G be
a graph on n vertices with 6(G) = D > n—2|n/4| — 1 that is eex-close to the union
of two disjoint copies of K, /5. Then there is a partition A, Ao, B, By of V(G) such
that (G, A, Ao, B, By) is an (eo, K)-framework, d(v, A’) > d(v)/2 for allv € A" and
d(v,B’") > d(v)/2 for all v € B'.

Proof. Write € := €¢x. Since G is e-close to the union of two disjoint copies
of K, /s, there exists a partition A”, B” of V(G) such that [A"| = |n/2] and
e(A” B") < en?. If there exists a vertex v € A” such that d(v, A”) < d(v, B"),
then we move v to B”. We still denote the vertex classes thus obtained by A"
and B”. Similarly, if there exists a vertex v € B” such that d(v, B"”) < d(v, A"),
then we move v to A”. We repeat this process until d(v, A”) > d(v, B”) for all
v € A” and d(v,B") > d(v,A”) for all v € B”. Note that this process must
terminate since at each step the value of e(A”, B”) decreases. Let A’, B’ denote
the resulting partition. By relabeling the classes if necessary we may assume that
|A’| > |B’|. By construction, e(4’, B") < e(A”,B") < en? and so (FR2) holds.
Suppose that |B’| < (1 — 5¢)n/2. Then at some stage in the process we have that
|B”| = (1 — 5¢)n/2. But then by Proposition Z22711i),

(A" B") > (D~ |B"| + DIB'| > en®
a contradiction to the definition of e-closeness (as the number of edges between the
partition classes has not increased while moving the vertices). Hence, |A’| > |B’| >
(1 —5e)n/2. Let Bj, be the set of vertices v in B’ such that d(v, A") > v/en. Since
Ven|Bp| < e(A’, B') < en? we have |Bj| < y/en. Note that
(2.2.2) |B'| — |B| > (1 = 5e)n/2 — /en > (1 — 3v/g)n/2.
Similarly, let Af, be the set of vertices v in A’ such that d(v, B’) > \/en. Thus,
|AG] < ven and |A'| — |A)] > n/2 — |A)| > (1 — 24/e)n/2. Let m be the largest
integer such that Km < |A'| — |4, |B’| — |By|- Let A and B be Km-subsets of
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A"\ A}, and B’ \ Bj respectively. Set Ag := A’ \ A and By := B’ \ B. Note that
([22:2) and its analogue for A’ together imply that |Ag|+ |Bo| < 3v/en+2K < ggn.
Therefore, (G, A, Ay, B, By) is an (g9, K )-framework. O

2.3. Exceptional Systems and (K, m,eg)-Partitions

The definitions and observations in this section will enable us to ‘reduce’ the
problem of finding Hamilton cycles in G to that of finding suitable pairs Cy, Cp
of cycles with V(C4) = A and V(Cp) = B. In particular, they will enable us to
‘ignore’ the exceptional set Vj = Ay U By. Roughly speaking, for each Hamilton
cycle we seek, we find a certain path system J covering Vj (called an exceptional
system). From this, we derive a set J* of edges whose endvertices lie in AU B by
replacing paths of J with ‘fictive edges’ in a suitable way. We can then work with
J* instead of J when constructing our Hamilton cycles (see Proposition 231 and
the explanation preceding it).

Suppose that A, Ay, B, By forms a partition of a vertex set V of size n such
that |A| = |B|. Let Vo := AgUBy. An exceptional cover J is a graph which satisfies
the following properties:

(EC1) J is a path system with V5 C V(J) C V.
(EC2) dj(v) =2 for every v € Vp and dy(v) <1 for every v € V(J) \ V.
(EC3) 6(](14), 6(](B) =0.
We say that J is an exceptional system with parameter g, or an ES for short, if J
satisfies the following properties:

(ES1) J is an exceptional cover.
(ES2) One of the following is satisfied:
(HES) The number of AB-paths in J is even and positive. In this case we
say J is a Hamilton exceptional system, or HES for short.
(MES) e;(A’,B’) = 0. In this case we say J is a matching exceptional
system, or MES for short.
(ES3) J contains at most /gon AB-paths.

Note that by definition, every AB-path in J is maximal. So the number of AB-
paths in J is the number of genuine ‘connections’ between A and B (and thus
between A’ and B’). If we want to extend J into a Hamilton cycle using only
edges induced by A and edges induced by B, this number clearly has to be even
and positive. Hamilton exceptional systems will always be extended into Hamilton
cycles and matching exceptional systems will always be extended into two disjoint
even cycles which together span all vertices (and thus consist of two edge-disjoint
perfect matchings).

Since each maximal path in J has endpoints in A U B and internal vertices in
Vo, an exceptional system .J naturally induces a matching J; 5 on AU B. More
precisely, if Py,..., Py are the non-trivial paths in J and x;,y; are the endpoints
of P;, then we define J}p := {z;y; : i < £'}. Thus e;; (A, B) is equal to the
number of AB-paths in J. In particular, if J is a matching exceptional system,
then GJZB (A, B) =0.

Let z1y1,...,T20y2e be a fixed enumeration of the edges of J}z[A, B] with
x; € A and y; € B. Define

JZ = ']ZB[A] U {IQZ',l.IQi 01 S 7 S 6} and JE = ']:XB [B] U {yQiy2i+1 01 S 7 S é}
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% ? 5 B8 & 8
A B A B A B
(A) J (B) Jigp (c) J*

FIGURE 2.3.1. The thick lines illustrate the edges of J, J} 5 and
J* respectively.

(with indices considered modulo 2¢). Let J* := J} + J§, see Figure 231l Note
that J* is the union of one matching induced by A and another on B, and e(J*) =
e(J4p). Moreover, by (EC2) we have

(2.3.1) e(J*) =e(Jig) < [Vo| +es(A', B") < 2\/egn.

We will call the edges in J* fictive edges. Note that if J; and Jy are two edge-
disjoint exceptional systems, then J; and J5 may not be edge-disjoint. However,
we will always view fictive edges as being distinct from each other and from the
edges in other graphs. So in particular, whenever J; and Jy are two exceptional
systems, we will view J; and J35 as being edge-disjoint.

We say that a path P is consistent with J if P contains J% and (there is an
orientation of P which) visits the vertices x1,...,z2, in this order. A path P is
consistent with Jg if P contains Jj and visits the vertices ya,...,y2¢,y1 in this
order. In a similar way we define when a cycle is consistent with J3 or Jg.

The next result shows that if J is a Hamilton exceptional system and Cy4,Cp
are two Hamilton cycles on A and B respectively which are consistent with J} and
Jg, then the graph obtained from C4 + Cp by replacing J* = J} + Jp with J
is a Hamilton cycle on V' which contains J, see Figure 22371 When choosing our
Hamilton cycles, this property will enable us ignore all the vertices in Vj and to
consider the (almost complete) graphs induced by A and by B instead. Similarly,
if J is a matching exceptional system and both |A’| and |B’| are even, then the
graph obtained from C'4 + Cp by replacing J* with J is the edge-disjoint union of
two perfect matchings on V.

ProOPOSITION 2.3.1. Suppose that A, Ag, B, By forms a partition of a vertex set
V. Let J be an exceptional system. Let Ca and Cp be two cycles such that

o C4 is a Hamilton cycle on A that is consistent with J;
e Cp is a Hamilton cycle on B that is consistent with Jg.

Then the following assertions hold.

(i) If J is a Hamilton exceptional system, then Ca+Cp—J*+J is a Hamilton
cycle on V.

(ii) If J is a matching exceptional system, then Ca+Cpg— J*+J is the union
of a Hamilton cycle on A" and a Hamilton cycle on B’. In particular, if
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both |A'| and |B’| are even, then Ca + Cp — J* + J is the union of two
edge-disjoint perfect matchings on V.

Proof. Suppose that J is a Hamilton exceptional system. Let z1y1, ..., Z20y2¢ be
an enumeration of the edges of J} (A, B] with 2; € A and y; € B and such that
J:g = J;;B[A]U{,Tgi_lxgi 1< < f} and JE = J;}B[B]U{ygiyzi_ﬂ 1< < f} Let
P, PZA be the paths in Cq —{xg;—122; : 1 <1 < £}. Since Cy is consistent with
J7}, we may assume that PiA is a path from 9,5 to x9;—1 for all i < £. Similarly,
let PE, ..., PEB be the paths in Cg — {y2iy2:+1 : 1 <i < /¢}. Again, we may assume
that PZ-B is a path from y9;,_1 to yo; for all ¢ < £. Define C* to be the 2-regular
graph on AU B obtained from concatenating P{*, z1y1, PP, y2xa, P, x3y3, . . . ,PéB
and yapx2¢. Together with (HES), the construction implies that C* is a Hamilton
cycleon AUB and C* =Cy +Cp —J" 4+ Jig. Thus C :=C* - Jip+J is a
Hamilton cycle on V. Since C' = Cy + Cp — J* + J, (i) holds.

The proof of (ii) is similar to that of (i). Indeed, the previous argument shows
that C* is the union of a Hamilton cycle on A and a Hamilton cycle on B. (MES)
now implies that C' is the union of a Hamilton cycle on A’ and one on B’. O

In general, we construct an exceptional system by first choosing an exceptional
system candidate (defined below) and then extending it to an exceptional system.
More precisely, suppose that A, Ag, B, By forms a partition of a vertex set V. Let
Vo := AgU By. A graph F is called an exceptional system candidate with parameter
€g, or an ESC for short, if F satisfies the following properties:

(ESC1) F is a path system with V5 C V(F) C V and such that ep(A),er(B) = 0.
(ESC2) dp(v) <2forallve Vyand dp(v) =1 for all v € V(F) \ Vp.
(ESC3) erp(A',B") < /egn/2. In particular, |[V(F) N A[,|V(F) N B| < 2[Vo| +
VEon/2.
(ESC4) One of the following holds:
(HESC) Let b(F') be the number of maximal paths in F with one endpoint in
A" and the other in B’. Then b(F) is even and b(F') > 0. In this case
we say that F' is a Hamilton exceptional system candidate, or HESC
for short.
(MESC) ep(A’,B’) = 0. In this case, F' is called a matching exceptional
system candidate or MESC for short.

Note that if dp(v) = 2 for all v € Vp, then F is an exceptional system. Also,
if F'is a Hamilton exceptional system candidate with e(F') = 2, then F consists
of two independent A’ B’-edges. Moreover, note that (EC2) allows an exceptional
cover J (and so also an exceptional system J) to contain vertices in A U B which
are isolated in J. However, (ESC2) does not allow for this in an exceptional system
candidate F'.

Similarly to condition (HES), in (HESC) the parameter b(F') counts the number
of ‘connections’ between A’ and B’. In order to extend a Hamilton exceptional
system candidate into a Hamilton cycle without using any additional A’ B’-edges,
it is clearly necessary that b(F') is positive and even.

The next result shows that we can extend an exceptional system candidate
into an exceptional system by adding suitable AgA- and ByB-edges. In the proof
of Lemma 26T we will use that if G is a D-regular graph with D > n/100 (say) and
(G, A, Ao, B, By) is an (eg, K)-framework with A(G[A’, B']) < D/2, then conditions
(i) and (ii) below are satisfied.
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LEMMA 2.3.2. Suppose that 0 < 1/n < g9 < 1 and that n € N. Let G be a

graph on n vertices so that

(i) A, Ao, B, By forms a partition of V(G) with |Ag U By| < eon.

(ii) d(v,A) > \/eon for all v € Ay and d(v, B) > /eon for all v € By.
Let F' be an exceptional system candidate with parameter ey. Then there exists an
exceptional system J with parameter g such that F C J C G + F and such that
every edge of J — F lies in G[Ag, A] + G[Bo, B]. Moreover, if F is a Hamilton
exceptional system candidate, then J is a Hamilton exceptional system. Otherwise
J is a matching exceptional system.

Proof. For each vertex v € Ay, we select 2—dp(v) edges uv in G with u € A\V (F).
Since dg (v, A) > \/egn > |V (F) N A| + 2|V by (ESC3), these edges can be chosen
such that they have no common endpoint in A. Similarly, for each vertex v € By,
we select 2 —dp(v) edges wv in G with u € B\ V(F'). Again, these edges are chosen
such that they have no common endpoint in B. Let J be the graph obtained from
F by adding all these edges. Note that J is an exceptional cover such that every
edge of J — F lies in G[Ay, A] + G[Bo, B]. Furthermore, the number of AB-paths
in J is at most ep(A’, B") < \/gon/2.

Suppose F is a Hamilton exceptional system candidate with parameter £g. Our
construction of J implies that the number of AB-paths in J equals b(F'). So (HES)
follows from (HESC). Now suppose F' is a matching exceptional system candidate.
Then (MES) is satisfied since e;(A’, B') = ep(A’, B') = 0 by (MESC). This proves
the lemma. O

Let K,m € N and g9 > 0. A (K, m,e)-partition P of a set V of vertices
is a partition of V into sets Ag, A1,...,Ax and By, B1, ..., Bk such that |4;| =
|B;| =m for all ¢ > 1 and |Ag U By| < &9|V|. The sets Ay,...,Ax and By,..., Bk
are called clusters of P and Ay, By are called exceptional sets. We often write
Vo for Ag U By and think of the vertices in Vj as ‘exceptional vertices’. Unless
stated otherwise, whenever P is a (K, m,ep)-partition, we will denote the clusters
by Ai,...,Ax and By,..., Bg and the exceptional sets by Ag and By. We will
also write A := Ay U---UAg, B: =B U---UBg, A :=AyUA;U---U Ak and
B':=ByUB;U---UBg.

Given a (K, m,eq)-partition P and 1 < 4,4’ < K, we say that J is an (4,4)-
localized Hamilton exceptional system (abbreviated as (¢,7)-HES) if J is a Hamilton
exceptional system and V(J) C V5 U A; U By. In a similar way, we define
(i,1")-localized matching exceptional systems ((i,4")-MES),

(i,1")-localized exceptional systems ((i,i')-ES),

(i,1")-localized Hamilton exceptional system candidates ((i,i)-HESC),
(i,4")-localized matching exceptional system candidates ((i,i)-MESC),
(i,1")-localized exceptional system candidates ((i,i')-ESC).

To make clear with which partition we are working, we sometimes also say that J
is an (4,4)-localized Hamilton exceptional system with respect to P etc.

2.4. Schemes and Exceptional Schemes

It will often be convenient to consider the ‘exceptional’ and ‘non-exceptional’
part of a graph G separately. For this, we introduce a ‘scheme’ (which corresponds
to the non-exceptional part and also incorporates a refined partition of GG) and an
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‘exceptional scheme’ (which corresponds to the exceptional part and also incorpo-
rates a refined partition of G).

Given a graph G and a partition P of a vertex set V', we call (G, P) a (K, m, e,
¢)-scheme if the following properties hold:

(Schl) P is a (K, m,eg)-partition of V.

(Sch2) V(G) = AU B and eg(A, B) = 0.

(Sch3) For all 1 < ¢ < K and all v € A we have d(v, A;) > (1 — &)m. Similarly,
for all 1 <4< K and all v € B we have d(v, B;) > (1 —e)m

The next proposition shows that if (G, P) is a scheme and G’ is obtained from G
by removing a small number of edges at each vertex, then (G’, P) is also a scheme

with slightly worse parameters. Its proof is immediate from the definition of a
scheme.

PROPOSITION 2.4.1. Suppose that 0 < 1/m < e,¢' < 1 and that K,m € N.
Let (G, P) be a (K,m,ep,e)-scheme. Let G' be a spanning subgraph of G such that
A(G—=G") <e'm. Then (G',P) is a (K, m,eq,e + &')-scheme.

Given a graph G on n vertices and a partition P of V(G) we call (G,P) a
(K, m,eq,)-exceptional scheme if the following properties are satisfied:
(ESchl) P is a (K, m,ep)-partition of V(G).
(ESch2) e(A), e(B) = 0.
(ESch3) If v € A then d(v, B') < ggn and if v € B then d( A)<e
(ESch4) For all v € V(G) and all 1 <4 < K we have d(v, 4;) = (d

and d(v, B;) = (d(v,B) £ en)/K.

(ESch5) For all 1 < i,i < K we have

e(Ao, Ai) = (e(Ao, A) e max{e(Ao, A),n})/ K,
e(Bo, A;) = (e(Bo, A) + e max{e(By, A),n})/K,
e(Ao, B;) = (e(Ao, B) £ emax{e(Ag, B),n})/K,
e(Bo, B;) = (e(By, B) £ e max{e(By, B),n})/K,
e(A;, Bir) = (e(A, B) + emax{e(A, B),n})/K>

Suppose that (G, A, Ay, B, Bp) is an (g, K )-framework. The next lemma shows
that there is a refinement of the vertex partition A, Ay, B, By of V(G) into a
(K, m,ep)-partition P such that (G[A] + G[B],P) is a scheme and (G — G[A] —
G[B],P) is an exceptional scheme.

LEMMA 2.4.2. Suppose that 0 < 1/n < g9 K 1/K < 1, thatgg K 1 < &2 <K 1,
that 1/n < p < g9 and that n, K,m € N. Let G be a graph on n vertices such
that §(G) > (1 — u)n/2. Let (G, A, Ao, B, Bo) be an (g9, K)-framework with |A| =
|B| = Km. Then there are partitions A, ..., Ak of A and By,..., Bk of B which
satisfy the following properties:

(i) The partition P formed by Ao, By and all these 2K clusters is a (K, m,eq)-
partition of V(G).

(ii) (G[A] + G[B],P) is a (K, m,eo,e2)-scheme.

(ii) (G — G[A] — G[B],P) is a (K, m,eq,e1)-exceptional scheme.

(iv) For all v € V(G) and all 1 < i < K we have dg(v,4;) = (dg(v,A) £
eon)/K and dg(v, B;) = (dg(v, B) £ eon)/K.
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Proof. Define a new constant €] such that ¢g < ¢} <« ¢1,1/K. In order to
find the required partitions A;,..., Ax of A and By,..., Bk of B we will apply
Lemma [[.4.7 twice, as follows.

In our first application of Lemma[[.Z A we let F := G, U := A and let Ay, By, B
play the roles of Ry, Ra, R3. Note that 6(G[4]) > §(G) — |Ag| — eon > gon (with
room to spare) by (FR3), (FR4) and that d(a, R;) < |R;| < eon for all a € A and
j =1,2 by (FR3). Moreover, (FR4) implies that d(a, R3) < d(a, B") < gon for all
a € A. Thus we can apply Lemma [[L47] with €¢, 29 and €] playing the roles of ¢, ¢4
and €5 to obtain a partition of A into K clusters A1, ..., Ak, each of size m. Then
by Lemma [L47(ii) for all v € V(G) and all 1 < i < K we have

(2.4.1) de (v, A;) = (de (v, A) £ £on) /K.

Moreover, Lemma [[LZ7|(v) implies that the first two equalities in (ESch5) hold with
respect to €] (for G and thus also for G — G[A] — G[B]). Furthermore,

(2.4.2) ec(Ai, B) = (ecq(A, B) £ ¢\ max{n,eq(A, B)})/K.

For the second application of Lemmal[lLZ.Tlwe let F' := G, U := B and let By, Ag, A1,
..., Ak play the roles of Ry, ..., Rx42. As before, §(G[B]) > eon by (FR3), (FR4)
and d(b, R;) < |R;| < eon for all b € B and j = 1,2 by (FR3). Moreover, (FR4)
implies that d(b,R;) < d(b,A") <egn for all b€ B and all j =3,..., K + 2. Thus
we can apply Lemma [[L47 with g,e0 and €] playing the roles of ,¢; and 2 to
obtain a partition of B into K clusters B, ..., Bk, each of size m. Similarly as
before one can show that for all v € V(G) and all 1 <4 < K we have

(2.4.3) de (v, By) = (d (v, B) + eon) /K,

and that the third and the fourth equalities in (ESch5) hold with respect to &} (for
G and thus also for G — G[A] — G[B]). Moreover, Lemma [[L47(v) implies that for
all 1 <4 < K we have

ec(4;,By) = (eq(A;, B) £ &) max{n,eq(A;, B)})/K
@2 ec(A, B) £ &y max{n,eq(A, B)} £ K¢} max{n,eqc(Ai, B)}
K2
= (eq(A, B) £ ¢y max{n,eqg(A, B)})/K?,

i.e. the last equality in (ESch5) holds too. Let P be the partition formed by
Ao, Al, ey AK and Bo, Bl, ceey BK. Then (1) holds.

Let us now verify (ii). Clearly (G[A] + G[B],P) satisfies (Schl) and (Sch2). In
order to check (Sch3), let G; := G[A] + G[B] and note that for all v € A and all
1 < i < K we have

(FR4)
>

de, (v, 4;) = de (v, Ay) B (de(v, A) — egn) /K (5(G) — |Ag| — 2e0n) /K

(FR3)
> (1 —=p)n/2—3epn)/K > (1 — e2)m.

Similarly one can use [2.4.3) to show that dg, (v, B;) > (1 —e3)m for all v € B and
all 1 < i < K. This implies (Sch3) and thus (ii).

Note that (iv) follows from (ZZ1]) and 243). Thus it remains to check (iii).
Clearly (G — G[A] — G[B], P) satisfies (ESchl), (ESch2) and we have already ver-
ified (ESch5). (ESch3) follows from (FR4) and (ESch4) follows from (241 and

2.43). O
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2.5. Proof of Theorem

An important tool in the proof of Theorem [[.3.9]is Lemma 2.5.4] which guar-
antees an ‘approximate’ Hamilton decomposition of a graph G, provided that G is
close to the union of two disjoint copies of K, 5. This yields the required num-
ber of Hamilton cycles for Theorem As an ‘input’, Lemma [Z5.4] requires an
appropriate number of localized Hamilton exceptional systems.

To find these, we proceed as follows: the next lemma (Lemma 257]) guaran-
tees many edge-disjoint Hamilton exceptional systems in a given framework. We
will apply it to ‘localized subgraphs’ (obtained from Lemma [Z52]) of the original
graph to ensure that the exceptional systems guaranteed by Lemma [2.5.] are also
localized. These can then be used as the required input for Lemma [Z.5.4]

LEMMA 2.5.1. Suppose that 0 < 1/n € gp € € € a < 1 and that n,an €
N. Let G be a graph on n wvertices. Suppose that (G, A, Ao, B, By) is an (g9, K)-
framework which satisfies the following conditions:

(a) eq(A’,B') > 2(a+¢e)n.

(b) eg—w(A',B") > an for allv € Ay U By.
(c) d(v) >2(a+e)n for allv € Ag U By.
(d) d(v,A") > d(v,B’) —en for all v € Ay and d(v,B’) > d(v, A’") —en for all

v € By.

Then there exist an edge-disjoint Hamilton exceptional systems with parameter €g

mn G.

Proof. First we will find an edge-disjoint matchings of size 2 in G[A’, B']. If
A(G[A',B']) < (a + ¢/2)n, then by (a) and Proposition we can find such
matchings. So suppose that A(G[A’, B']) > (a + ¢/2)n and let v be a vertex such
that dgjar,p/)(v) > (a+¢/2)n. Thus v € Ag U By by (FR4). By (b) there are an
edges e1,...,ean in G[A', B'] —v. Since dgar,p(v) > (o +¢/2)n, for each ey in
turn we can find an edge e/, incident to v in G[A’, B’] such that €/, is vertex-disjoint
from e, and such that the e/, are distinct for different indices s < an. Then the
matchings consisting of e; and e/, are as required. Thus in both cases we can find
edge-disjoint matchings My, ..., My, of size 2 in G[A’, B'].

Our aim is to extend each M, into a Hamilton exceptional system Jg such that
all these J; are pairwise edge-disjoint. Initially, we set Fs := M, for all s < an.
So each F is a Hamilton exceptional system candidate. For each v € V{ in turn,
we are going to assign at most two edges joining v to AU B to each of Fy, ..., Fuy,
in such a way that now each Fj is a Hamilton exceptional system candidate with
dp,(v) = 2. Thus after we have carried out these assignments for all v € V;, every
F; will be a Hamilton exceptional system with parameter .

So consider any v € V5. Without loss of generality we may assume that v € Ay.
Moreover, by relabelling the Fy if necessary, we may assume that there exists an
integer 0 < r < an such that dp_ (v) = 1 forall s < randdp, (v) =0forr < s < an.
For each s < r our aim is to assign some edge vw, between v and A to Fs such that
ws ¢ V(F) and such that the vertices w; are distinct for different s < r. To check
that such an assignment of edges is possible, note that |V (Fs) N A|, |V (Fs) N B| <
2|Vo| + 2 < 3egn. Together with (¢) and (d) this implies that

d(v,A) > d(v,A") — |Ao| > (a+¢e/2 —eo)n > 1+ |V(F5) N A

Thus for all s < r we can assign an edge vws to Fy as required.
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It remains to assign two edges at v to each of F,y1,..., Fy,. We will do this
for each s = r +1,...,an in turn and for each such s we will either assign two
edges between v and A to F or two edges between v and B. (This will ensure that
we still have b(Fy) = 2, where b(Fy) is the number of vertex-disjoint A’ B’-paths
in the path system Fy.) So suppose that for some r < s < an we have already
assigned two edges at v to each of F,.i1,...,Fs_1. Set G4 := G — Es, 1 F
The fact that v has degree at most two in each Fy and (c) together imply that
dg.,(v) > dg(v) — 2an > 10egn. So either dg, (v, A") > 5egn or dg, (v, B') > begn.
If the former holds then

dg.(v,A) > dg, (v, A") — |Ag| > 4egn > |V (Fs) N A| + 2

and so we can assign two edges vw and vw’ of G to Fy such that w,w’ € A\ V (F5).
Similarly if dg, (v, B') > 5eon then we can assign two edges vw and vw’ in Gy to
F; such that w,w’ € B\ V(Fs). This shows that to each of F,1,..., Fy, we can
assign two suitable edges at v.

Let Ji,...,Jan be the graphs obtained after carrying out these assignments
for all v € Vj. Then the Js are pairwise edge-disjoint and it is easy to check that
each J; is a Hamilton exceptional system with parameter £9. (Note that (ES2) and
(ES3) hold since b(Js) = 2 and so the number of AB-paths is two.) O

The next lemma guarantees a decomposition of an exceptional scheme (G, P)
into suitable ‘localized slices’ G(i,¢") whose edges are induced by Ay, By and two
clusters of P. We will use it again in Chapter Bl

LEMMA 2.5.2. Suppose that 0 < 1/n < gy < ¢ < 1/K < 1 and that
n,K,m € N. Let (G,P) be a (K, m,ep,¢e)-exceptional scheme with |G| = n and
ec(Ap),eq(Bo) = 0. Then G can be decomposed into edge-disjoint spanning sub-
graphs H(i,i") and H'(i,i") of G (for alli,i’ < K ) such that the following properties
hold, where G(i,i") := H(i,i') + H'(i,4):

(a1) Each H(i,i') contains only AgA;-edges and ByBj; -edges.

(a2) All edges of H'(i,1") lie in G[Ag U A;, By U By/].

(a3) e(H'(i,i") = (eq(A’, B') + 4e max{n, ec(A’, B")})/K?.

(a4) dH/ (i z’)( ) (dg[A/)B/] (1)) + 25‘71)/K2 for all v € V.

(a5) da(i,iy(v) = (dg(v) £ 4en)/K? for all v € V4.

Proof. First we decompose G into K2 ‘random’ edge-disjoint spanning subgraphs
G(i,i") (one for all i,i" < K) as follows:

e Initially set V(G(4,4')) :== V(G) and E(G(i,i')) := 0 for all 1,7 < K.

e Add all the A;B;-edges of G to G(i,).

e Choose a partition of F(Ag, By) into K2 sets U, ; (one for all i, < K)
whose sizes are as equal as possible. Add the edges in U; i+ to G(4,7').

e For all ¢ < K, choose a random partition of E(Ag, A;) into K sets U, of
equal size (one for each ¢ < K) and add the edges in U}, to G(i,7). (If
e(Ao, A;) is not divisible by K, first distribute up to K —1 edges arbitrarily
among the U/, to achieve divisibility.) For all i’ < K proceed similarly to
distribute each edge in E(By, B;) to G(i,i’) for some i < K.

e For all i/ < K, choose a random partition of E(Ag, B;/) into K sets U/
of equal size (one for each ¢ < K) and add the edges in U/ to G(i,').
(If e(Ap, By) is not divisible by K, first distribute up to K — 1 edges
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arbitrarily among the U}’ to achieve divisibility.) For all ¢ < K proceed
similarly to distribute each edge in E(By, 4;) to G(i,¢") for some i’ < K.
Thus every edge of G is added to precisely one of the subgraphs G(i,i'). Set
H(i,i) = G@i,¢)[A'] + G(i,¢)[B'] and H'(,7) := G(4,i)[A", B']. So conditions
(a1) and (ag) hold. Fix any ¢, < K and set H := H(¢,4') and H' := H'(i,i). To
verify (as), note that
E(H/) = eH/(Ai, Bi/) + eH/(Ao, Bo) + eH/(Ao, Bi/) + eH/(Bo, Az)
= eg(Ai, Bl/) + €G(A0, BQ)/K2 + GG(A(), BZI)/K + GG(BQ, Az)/K +3
_eq(A,B) +ea(Ao, Bo) + eq(Ao, B) + eq(Bo, A) + 3¢ max{ec(A’, B'),n}
= =
eq(A’, B') £ 4e max{eg(A’, B'),n}
K2 '
Here the third equality follows from (ESch5).
To prove (a4), suppose first that v € Ag. If dg(v, Bi) < en/K? then clearly
0 < dpriiny(v) < en/K?+|Vy| < 2en/K?. Further by (ESch4) we have dg(v, B) <
Kdg(v,By)+en=en/K +en. So dg(v, B") < 2en. Together this shows that (a4)
is satisfied.
So assume that dg (v, Bi) > en/K?2. Proposition [LZ4] implies that with prob-
ability at least 1 — e~ V™ (with room to spare) we have

+3

(25.1) deg. (v, Bi) = (da(v, Bi) = en/2K) /K "2 (dg (v, B) % 3en/2) /K2,
Since
dH’(i,i/) (’U) = dg(iyi/)(v, Bl/) =+ dG(i,i/) (’U, Bo) = dG(i,i/) (’U, Bi/) + Eon

=" (dg(v,B') +2en)/K?,

it follows that v satisfies (a4). The argument for the case when v € By is similar.
Thus (a4) holds with probability at least 1 — ne™=v™.

Similarly as (Z5.1) one can show that with probability at least 1 — ne~ V" we
have dg(m-/)(v,Ai) = (dg(v,A) + 35‘71/2)/K2 for all v € Ay and dg(i7i/)(v,Bi/) =
(da(v, B)£3en/2)/K? for allv € By. Together with the fact that eq(Ao), eq(Bo) =
0 and (a4) this now implies (as). O

The next lemma first applies the previous one to construct localized subgraphs
G(i,4") and then applies Lemma 25.T] to find many Hamilton exceptional systems
within each of the localized slices G(i,4"). Altogether, this yields many localized
Hamilton exceptional systems in G.

LEMMA 2.5.3. Suppose that 0 < 1/n € g9 € ¢ € ¢,1/K < 1 and that
n, K,m,(1/4—¢)n/K? € N. Suppose that (G, A, Ay, B, By) is an (g9, K )-framework
with |G| = n, §(G) > n/2 and such that dg(v,A") > dg(v)/2 for allv € A" and
dg(v,B") > dg(v)/2 for allv € B'. Suppose that P = {Ao, A1, ..., Ak, Bo, B1, ...,
Bk} is a refinement of the partition A, Ay, B, By such that (G — G[A] — G[B],P) is
a (K, m, e, e)-exceptional scheme. Then there is a set J of (1/4—¢)n edge-disjoint
Hamilton exceptional systems with parameter g in G such that, for each i,i’ < K,
J contains precisely (1/4 — ¢)n/K? (i,i')-HES.
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Proof. Let a := (1/4 — ¢)/K? and choose a new constant &’ such that ¢ <
¢/ « ¢,1/K. Note that (FR3) implies that |A’| > |B’|. If |B'| < n/2, then
Proposition ZZ2(i) implies that eg(A’, B') > 2|B'| > (1 — go)n > 3K?an (where
the second inequality follows from (FR3) and there is room to spare in the final
inequality). Since dgpar,pj(v) < n/2 for every vertex v € V(G), it follows that
eg—v(A',B") > (1/2—¢¢)n > 3K2an/2. If |B'| = n/2, then |A’'| = |B’| and Propo-
sition 2221i) implies that eg(A’, B') > |B'| = n/2 > 2K?*(a + €')n. Moreover,
|A’| = | B'| together with the fact that 6(G) > n/2 also implies that dgar, p(v) > 1
for any vertex v € V(G). Hence eg—,(A’, B') > n/2—1 > 3K2an/2. Thus regard-
less of the size of B’, we always have

(2.5.2) eq(A',B") > 2K*(a +£')n

and

(2.5.3) ec—v(A',B") > 3K?an/2 > K*(a+¢')n  for any v € V(G).

Set G° := G — G|A] — G[B] — G[A¢] — G[By]. Note that each vertex v € V; satisfies
(2.5.4) dge(v) > (1/2 —eo)n > 2K%(a + €')n.

Moreover, both ([25.2]) and ([25.3)) also hold for G°, and since (G — G[A] — G[B], P)
is a (K,m,ep,e)-exceptional scheme, (G°,P) is also a (K, m,eq,e)-exceptional
scheme. Thus we can apply Lemma to G° to obtain edge-disjoint span-
ning subgraphs H (4,4"), H'(i,i") of G° (for all ¢,i’ < K) which satisfy (a;)—(as) of
Lemma 252 Set G(i,i') := H(i,i')+ H'(¢,4') for all i,4’ < K. We claim that each
G(i,4") satisfies the following properties:
(i) All edges of G(i,4") lie in G°[Ap U A; U By U By].

(il) eq(i,in(A’, B') > 2(a+ ve)n.
iii) eqi,in—v(A’, B") > an for all v € V.
(iv) dgg,iry(v) > 2(a 4 /e)n for all v € 1.
(v) da,in(v, A") > dgg,in (v, B') — \/en for all v € Ag and dg ;i (v, B') >

daiiy (v, A') — \/en for all v € By.
Indeed, (i) follows from (a;) and (az). To prove (ii), note that eq,q)(A4’, B')
e(H'(i,i")). Now apply (a3) and (Z5.2]). For (iii), note that (as) and A(G[A’, B'])
n/2 imply that for all v € Vj,

dG(i,i’)[A’,B’] (’U) = dH’(i,i’)('U) S (dG[A’,B’] (’U) + 28”)/1{2 S (1/2 + 2€)TL/K2.
If eq(A’, B') > n, then (a3) implies that e (A", B') > (1 —4e)n/K? > an +
daiiyar,p(v) and so (iii) follows. If eg(A’, B') < n, then for all v € Vg
ea(iin-v(A', B") = e(H'(3,7)) — dpr(i,iry (v)

(a3),(aa) E53)
2 (eg_u(A, B') —6en) /K2 > an.

So (iii) follows again. (iv) follows from (a5) and (Z54). For (v), note that (a;) and
(az) imply that for v € Ay,

Sy
IA I

(a1),(as)

daiin(v, A') = dgin(v) — dgrin(v) = (da(v, A') — 6en)/K?

(a4)
Z (dG(U, B/) - 6671)/K2 24 dH’(i,i’)(v) — 8en = dG(i,i’)(vv B/) — 8en.

The second part of (v) follows similarly.
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Note that each (G(i,i"), A, Ao, B, By) is an (g9, K)-framework since this holds
for (G, A, Ay, B, By). Thus for all 4,7’ < K we can apply Lemma 251] (with /¢
playing the role of €) to the (g9, K)-framework (G(i,4), A, Ag, B, By) in order to
obtain an edge-disjoint Hamilton exceptional systems with parameter eq in G(i,14’).
By (i), we may delete any vertices outside Ag U A; U By U By from these systems
without affecting their edges. So each of these Hamilton exceptional systems is in
fact an (i,i')-HES. The set J consisting of all these K?an Hamilton exceptional
systems is as required in the lemma. ([

Given the appropriate set J of localized Hamilton exceptional systems, the
next lemma guarantees a set of | 7| edge-disjoint Hamilton cycles in a graph G
such that each of them contains one exceptional system from 7, provided that G is
sufficiently close to the union of two disjoint copies of K, /5. The lemma also allows
J to contain matching exceptional systems (each of these will then be extended into
a perfect matching of G). Note that with a suitable J and an appropriate choice of
parameters we can achieve that the ‘uncovered’ graph has density 2p + 2/K < 1,
i.e. we do have an approximate decomposition. We defer the proof of the lemma
until Chapter

LEMMA 2.5.4. Suppose that 0 < 1/n K g K 1/ K < p<< 1 and 0 < p < 1,
where n, K € N and K is odd. Suppose that G is a graph on n vertices and P is
a (K, m,eo)-partition of V(G). Furthermore, suppose that the following conditions
hold:

(a) d(v,A4;) = (1—4p£4/K)m and d(w, B;) = (1—4pu+4/K)m for allv € A,
weBandl1 <i< K.

(b) There is a set J which consists of at most (1/4 — p — p)n edge-disjoint
exceptional systems with parameter ¢ in G.

(c) J has a partition into K? sets Jiiw (one for all 1 < i,i’ < K) such that
each J; i consists of precisely | J|/K? (i,i')-ES with respect to P.

(d) If J contains matching exceptional systems then |A’| = |B’| is even.

Then G contains |J| edge-disjoint spanning subgraphs Hy, ..., H| 7| which satisfy
the following properties:

e For each Hy there is some Js € J such that J3 C Hy.

o If Js is a Hamilton exceptional system, then Hs is a Hamilton cycle of G.
If Js is a matching exceptional system, then H is the edge-disjoint union
of two perfect matchings in G.

Matching exceptional systems do no play any role in the current application to
prove Theorem [[L3.9] but they will occur when we use Lemma 2.5.4] again in the
proof of Theorem

To prove Theorem [[.3.9, we first apply Lemma 2.5.3] to find suitable localized
Hamilton exceptional systems and then apply Lemma [Z5.4] to transform these into
Hamilton cycles.

Proof of Theorem [1.3.9. Choose new constants cqx, €0, €1, €2, ¢ and an odd
number K € N such that

I/ng<Kex €K1 KK 1/K K ¢ K e
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Further, we may assume that ¢ < 1. Let n > ny and let G be any graph on n
vertices such that §(G) > n/2 and such that G is ecx-close to two disjoint copies of
K, /. By modifying ¢ slightly, we may assume that (1/4 — ¢)n/K? € N.

Apply Proposition to obtain a partition A, Ag, B, By of V(G) such that
such that (G, A, Ay, B, By) is an (g9, K )-framework, d(v, A") > d(v)/2 for all v €
A" and d(v,B’) > d(v)/2 for all v € B’. Let m := |A|/K = |B|/K. Ap-
ply Lemma with g playing the role of u to obtain partitions Aj,..., Ak
of A and Bi,...,Bg of B which satisfy the following properties, where P =
{Ao,Al, “ee ,AK, Bo, Bl, v ,BK}:

o (G[A] + G[B|,P) is a (K, m, €9, €2)-scheme.
e (G—GJA] - G[B],P) is a (K, m,eo,e1)-exceptional scheme.

Apply Lemma to obtain a set J of (1/4 — ¢)n edge-disjoint Hamilton excep-
tional systems with parameter £y in G such that, for each 7,7’ < K, J contains
precisely (1/4 — ¢)n/K? (i,i')-HES. Finally, our aim is to apply Lemma 2.5.4] with
w:=1/K and p := ¢—1/K. So let us check that conditions (a)—(c) of Lemma 254
hold (note that (d) is not relevant). Clearly (b) and (c) hold. To verify (a) note
that (Sch3) implies that for all v € A we have d(v, 4;) > (1—e2)m > (1—-1/K)m >
(1 —4p — 4/K)m. Similarly, for all w € B we have d(w, B;) > (1 —4u — 4/K)m.
So we can apply Lemma [Z57] to obtain |J| > (1/4 — e)n edge-disjoint Hamilton
cycles. O

2.6. Eliminating the Edges inside Ay and By

This and the remaining sections of the chapter are all devoted to the proof of
Theorem Suppose that G is a D-regular graph and (G, A, Ao, B, By) is an
(€0, K)-framework with A(G[A’, B']) < D/2. The aim of this section is to construct
a small number of Hamilton cycles (and perfect matchings if appropriate) which
together cover all the edges of G[Ay] and G[By]. The first step is to construct a
small number of exceptional systems containing all the edges of G[Ag] and G[By].

LEMMA 2.6.1. Suppose that 0 < 1/n < g9 < X\ < 1 and that n, n, D, K € N.
Let G be a D-regular graph on n wvertices with D > n — 2|n/4] — 1. Suppose that
(G, A, Ao, B, By) is an (g9, K)-framework with A(G[A’, B']) < D/2. Let

_ oY . .
0. {maX{O,D eq(A', B )}J and o= 2xn +1 sz z.s odd,
2 2\n if D is even.

Let wy and wa be vertices of G such that dgiar p(w1) > darar, gy (w2) > dgpar, g (v)
for all v € V(G) \ {wy,wz2}. Then there exist An + 1 edge-disjoint subgraphs
Jo, J1, -, Jan of G which cover all the edges in G[Ao] + G|Bo] and satisfy the
following properties:

(i) If D is odd, then Jy is a perfect matching in G with ej,(A’, B") < 1. If D
is even, then Jy is empty.
(ii) Js is a matching exceptional system with parameter o for all 1 < s <
min{¢, \n}.
(iii) Js s a Hamilton exceptional system with parameter €9 and such that

ej, (A, B =2 for all { < s < In.
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(iv) Let J be the union of all the Js and let H® := G[A',B']| — J. Then
eg(A',B") < ¢n and dy(v) = ¢n for all v € Vy. Moreover, e(H®) is
even.

(v) dge(w1) < (D — ¢n)/2. Furthermore, if D = n/2 — 1 then dgo(ws) <
(D —¢n)/2.

(vi) If eg(A’, B") < D, then e(H®) < D — ¢n and A(H®) < e(H®)/2.

As indicated in Section 2] the main proof of Theorem [[.3.3] splits into three
cases: (a) the non-critical case with eg(A’, B’) > D, (b) the critical case with
eg(A',B’) > D and (c) the case with eq(A4’,B’) < D. The formal definition of
‘critical’ and a more detailed discussion of the different cases is given in Section 2.7

The above lemma will be used in all three cases. In these different cases, we
will need that the Hamilton cycles or perfect matchings produced by the lemma
use appropriate edges between A’ and B’ (and thus the ‘leftover’ H® has suitable
properties). In particular, (v) will ensure that we can apply Lemma 274 in case
(b). Similarly, (vi) will ensure that we can apply Lemma 2775 in case (c). (ii) and
(vi) will only be relevant in case (c).

Proof of Lemma [2.6.11 Set H := G[A’,B’] and W := {wy,ws}. First, we
construct Jo. If D is even, then (i) is trivial, so we may assume that D is odd (and
so n is even). We will construct Jy such that it satisfies (i) as well as the following
additional property:

(i") If wywse is an edge in G[A'] + G[B’], then wyws lies in Jy. Moreover,
ejo (A, B")=1if |A’] is odd and e, (A’, B’) = 0 if |A’| is even.

Suppose first that |A’| is even (and so |B’| is even as well). Since our assumptions
imply that 6(G[A']) > [D/2] > 3egn, there exists a matching M/, in G[A'] of size at
most | Ag|+2 covering all the vertices of AgU(A’NW). Moreover, if wyws is an edge
in G[A’], then we can ensure that wijws € M/. Note that A” := A"\ V(M}) is a
subset of A and |A”| is even. (FR4) implies that 6(G[A”]) > D—eon—2(|Ag|+2) >
|A”|/2. Therefore, there exists a perfect matching M’ in G[A”] (e.g. by Dirac’s
theorem). Hence, M4 := M/, + M/} is a perfect matching in G[A’]. Similarly, there
is a perfect matching Mp in G[B’] such that if wjws is an edge in G[B’], then w;ws
is in MB. Set J() = MA +MB.

Next assume that |A’| is odd. If D > |n/2], then Proposition 223 implies that
e(H-W)>0.If D=n/2-1, then n =0 (mod 4) and so |B’| < n/2 — 1 since
|A’| is odd. Together with Proposition 2ZZ2711(ii) this implies that e(H) > n/2 — 1.
Since in this case we also have that A(H) < |D/2] = n/4 — 1, it follows that
e(H—-W) > e(H) —2A(H) > 0. Thus in both cases there exists an edge ab in
H — W with a € A’ and b € B’. Note that both |4’ \ {a}| and |B’ \ {b}| are even.
Moreover, §(G[A'\{a}]) > [D/2]—1 > 3epn and 6(G[B'\{b}]) > [D/2]—1 > 3eon.
Thus we can argue as in the case when |A’| is even to find perfect matchings M4
and Mp in G[A"\ {a}] and G[B’\ {b}] respectively such that if wjws is an edge in
G[A'] + G[B’] then wiws € My + Mp. Set Jo := My + Mp + ab.

This completes the construction of Jy. (If D is even we set Jy := §.) So (i)
and (') hold. Let G’ := G — Jy and H' := G'[A’, B']. Since |Ag|+|Bo| < gon < An,
Vizing’s theorem implies that we can decompose G’'[Ag] + G'[By] into An edge-
disjoint (possibly empty) matchings M, ..., My,. By relabeling these matchings
if necessary, we may assume that if wiws € Eg/(Ag) or wiwe € Eg/(By), then
wiws € M.
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Case 1: ¢(H) > D.

Note that in this case £ = 0 and e(H') > D — 1. For each s = 1,...,An in turn
we will extend M into a Hamilton exceptional system Jg with e, (A’, B') = 2 and
such that J; and Jy are edge-disjoint for all 0 < s’ < s. In order to do this, we
will first extend M into a Hamilton exceptional system candidate Fs by adding
two independent A’ B’-edges fs and f.. We will then use Lemma 232 to extend Fj
into a Hamilton exceptional system J;. For all s with 1 < s < An, we will choose
these edges and sets to satisfy the following:

(1) Js is a Hamilton exceptional system with parameter ey such that

es, (A, B") =2.

(a2) Suppose that dg(w1) > 2An. Then w; is an endpoint of f;.

(o) Suppose that di(wz) > 2An. Then ws is an endpoint of f7, unless both

s =1 and wywy € M.

(aq) Js contains M, as well as the edges fs and f.. J, — My — fs — f!

only contains ApA-edges and ByB-edges of G. Js is edge-disjoint from

Jo, ceey Jsfl.
First suppose that wiyws € M;. We construct J; satisfying the above. Our assump-
tion means that wjws is an edge in G[A'] + G[B’], so D is even (or else wiws € Jy
by (i’)). Moreover, H' = H and D > |n/2]| by (IL31]) and the fact that D is even.
Together with Proposition [Z2.3] this implies that e(H' — W) = e(H — W) > 0. Pick
an A'B’-edge f{ in H' — W. Let U; be the connected component in M; + f] con-
taining f1. So |U1| <4 and wy ¢ Uy. If dg(w1) > 2An, we can find an A’ B’-edge f1
such that w, is one endpoint of f; and the other endpoint of f; does not lie in Uy. If
dg(w1) < 2An, then the choice of wy implies that A(H) < 2An. So there exists an
A'B’-edge f1in H =V (Uy) = H—V(Uy) since e(H—-V (U1)) > e(H)— |U1|A(H) >
e(H)—8An > 0. Set F} := My + f1+ fi. Note that f; satisfies () and that F} is
a Hamilton exceptional system candidate with ep, (A’, B") = 2. By Lemma 2337
we can extend Fj into a Hamilton exceptional system J; with parameter €y in G
such that F; C J; and such that J; — F; only contains Ay A-edges and ByB-edges
of G.

Next, suppose that for some 1 < s < An we have already constructed Jy, ...,
Js—1 satistying (a1)—(aq). So s > 2 if wywy € M. Let G := G — Z;‘fs M; —
S92 Jj and H, := G,[A’, B']. Note that
(2.6.1) e(Hs) > e(H)—2(s—1)—1> D —2\n.

Moreover, note that dg, (v, A) > dg(v,A) —2(s —1) =1 > /eon for all v € Ag and
da, (v, B) > \/eon for all v € By.

We first pick the edge f. as follows. If dg(w2) > 2An, then dp (we) > dy(ws)—
s > An. So we can pick an A’B’-edge f! of H, such that ws is an endpoint of f!
and the connected component U, of My + f! containing f/ does not contain wy. If
dp(we2) < 2An, then pick an A’ B’-edge f! of H; such that the connected component
Us of M5+ f! containing f! does not contain wy. To see that such an edge exists, note
that in this case the neighbour w) of wy in M satisfies dy(w]) < dg(w2) < 2An
(if w) exists) and that (Z6.0]) implies that e(Hs) > D — 2An > D/2 + 2\n >
dp(w1) + 2An. Observe that in both cases |Us| < 4.

We now pick the edge fs as follows. If dg (w1) > 2An, then dy, (w1) > dpg(wi)—
s > An. So we can find an A’B’-edge fs of H, such that w; is one endpoint of f;
and the other endpoint of fs does not lie in Us. If dy(w1) < 2An, then A(H) < 2An
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and thus (Z6.1]) implies that
e(Hs —V(Uy)) > D —2xn — 2\n|Us| > 1.

So there exists an A’B’-edge fs in Hy — V(Us).

In all cases the edges f, and f! satisfy («2) and (a3). Set Fs := M + fs + f1.
Clearly, F is a Hamilton exceptional system candidate with ep (A’, B') = 2. Recall
that dg, (v, A) > /gn for all v € Ay and dg, (v, B) > (/gon for all v € By. Thus
by Lemma 2.3.2] we can extend Fs into a Hamilton exceptional system .Js with
parameter g such that Fy C Js C G5 + Fs and such that J; — F only contains
ApA-edges and By B-edges of G5. Hence we have constructed Jy, . .., Jy, satisfying
(a1)—(aq). So (iii) holds. Note (ii) and (vi) are vacuously true.

To verify (iv), recall that J := JyU---U Jx, and H® = G[A’, B'] — J. For all
1 < s < An we have ey (A’, B') = 2 by (iii). Moreover, (i) and (i’) together imply
that ey, (A’, B") = 1if and only if both | 4’| and D are odd. Therefore, e 7(A’, B') <
¢n. Moreover, since e(H®) = e(H) — 2 n —e,(A’, B'), Proposition [Z22.2(i) implies
that e(H?) is even. Thus (iv) holds.

To verify (v), note that if dg(wq1) < 2An then clearly dpyo(wy) < 2An < (D —
#n)/2. If dg(w1) > 2An then (o) implies that dj (4. pj(w1) = 1foralll < s < An.
Hence dgo (w1) < |D/2] —An = (D—¢n)/2. Now suppose that D = n/2—1 and so
n =0 (mod 4) by (L31]). Thus D is odd and so (i") implies that if wiws is an edge
in G[A’] + G[B’], then wywsy € Jy. In particular wyws ¢ M. (Note that if wiws €
G[A’, B'], then wyws is not contained in M; either since My C G[Ao] + G[By].)
Thus in the case when dy(w2) > 2An, (a3) implies that dj 4/, p(w2) = 1 for all
1 < s < An. Hence dgo(w2) < |D/2] —An = (D — ¢n)/2. If dg(wz) < 2An then
clearly dgo(w2) < 2XAn < (D — ¢n)/2. Therefore (v) holds.

Case 2: ¢(H)< D

Together with Proposition [Z2.1[ii) this implies that n = 0 (mod 4), D =n/2 —1
and |A'| = n/2 = |B’|. So D is odd and |A’| is even. In particular, by Propo-
sition ZZ2(i) e(H) is even and by (i) and (i) Jy is a perfect matching with
ejo(A’,B’) = 0. Moreover, Proposition [Z2.4] implies that A(H) < e(H)/2 in
this case (recall that H := G[A', B']).

Note that each My is a matching exceptional system candidate. By Lemmal[2.3.2]
for each 1 < s < min{¥¢, An} in turn, we can extend M; into a matching exceptional
system J, with parameter ¢y in G’ = G — Jy such that M, C .J,, and such that J
and Jy are edge-disjoint whenever 1 < s’ < s < min{¢, An}. Thus (ii) holds.

If £ > An, then e(H) < D —2M = D — ¢n + 1. But since e(H) is even and
D — ¢n + 1 is odd this means that e(H) < D — ¢n. Thus A(H) < e(H)/2 <
(D — ¢n)/2. Moreover, d7(v) =2 n + dj,(v) = ¢n for all v € V. Hence (iv)—(vi)
hold since H® = H. ((iii) is vacuously true.)

Therefore, we may assume that £ < An. Using a similar argument as in Case 1,
for all £ < s < An we can extend the matchings M; into edge-disjoint Hamil-
ton exceptional systems J satisfying (aq)—(ay) and which are edge-disjoint from
Jo,-..,Je. Indeed, suppose that for ¢ < s < An we have already constructed
Jog1, ..., Js—1 satisfying (a1)—(ay). (Note that (i’) implies that the exception
in (a3) is not relevant.) The fact that D is odd and e(H) is even implies that
¢= (D —e(H)—1)/2. Then defining H analogously to Case 1, we have

e(Hs) > e(H)—2(s—1—4)=D —2s> D —2)\n,
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where in the first inequality we use that e, (A, B’) = 0 by (I’). So the analogue
of ([26.0)) holds. Hence we can proceed exactly as in Case 1 to construct J, (the
remaining calculations go through as before). Thus (iii) holds.

To verify (iv), note that ez (A", B') = 2(An — £). So

(2.6.2) e(H®)=¢e(H)—2(An—¥¢)=e(H)—2Mn+ (D —e(H)—1)=D — ¢n.

In particular, e(H?) is even and ey (A’, B') = e(H) — e(H®) < ¢n. So (iv) holds.
In order to verify (vi), recall that A(H) < e(H)/2. Moreover, note that (as)
implies that if dg(w1) > 2An, then dj 4/ p(w1) = 1 for all £ < s < An. Hence

dHo(’wl) = dH(wl) — (/\TL — f) = A(H) —An +£

< e(H)/2 = An+ (D — e(H) = 1)/2 = (D — ¢n)/2 P2 c(°) /2.

Similarly if dg(w2) > 2An, then dpo(ws) < e(H®)/2. If dy(wy) < 2An, then
dpo(wy) < 2Mn < e(H®)/2 by ([26.2) and the analogue also holds for ws. Thus in
all cases dg(w1), dg(w2) < e(H®)/2. Our choice of wy and we implies that for all
v € V(G)\ W we have

) < (e(H)+3)/3 < (D +3)/3 “22 o(H%))2.

(v
Therefore, A(H®) < e(H?®)/2. Together with (Z6.2]) this implies (vi) and thus (v).
(]

The next lemma implies that each of the exceptional systems J; guaranteed by
Lemma[Z6.T] can be extended into a Hamilton cycle (if J; is a Hamilton exceptional
system) or into two perfect matchings (if Js is a matching exceptional system and
both |A’| and |B’| are even).

LEMMA 2.6.2. Suppose that 0 < 1/n < g9 < A < 1 and thatn, An, K € N. Sup-
pose that (G, A, Ao, B, By) is an (e, K)-framework such that 6(G[A]) > 4|A|/5 and
5(G[B)) > 4|B|/5. Let Jy,. .., xn be exceptional systems with parameter £g. Sup-
pose that G and J1, ..., Jx, are pazrwise edge-disjoint. Then there are edge-disjoint
subgraphs Hy, .. H,\n mn G+ ZS 1 Js which satisfy the following properties:

(i) Js € Hs and E(Hs; — J5) C E(G[A] + G[B)) for all 1 < s < An.
(ii) If Js is a Hamilton exceptional system, then Hy is a Hamilton cycle on
V(G).

(i) If Js is a matching exceptional system, then H is an union of a Hamilton

cycle on A = AU Ay and a Hamilton cycle on B’ = B U By.

Proof. Recall that, given an exceptional system .J, we have defined matchings .J7,
Jp and J* = J3+Jp in Section 23l We will write J7 4 := (J5)% and J; 5 := (Js)5-
For each s < An in turn, we will find a subgraph H* of G[A]+ G[B]+J: containing
J¥ such that H} is edge-disjoint from HY, ..., H}_ ;. Moreover, H} will be the union
of two cycles C'4 and Cp such that C4 is a Hamilton cycle on A which is consistent
with J 4 and Cp is a Hamilton cycle on B which is consistent with J; 5. (Recall
from Sect1on | that we always view different J; as being edge- dlSJOlIlt from each
other. So asking H} to be edge-disjoint from HY,..., H} ; is the same as asking

— J¥ to be edge-disjoint from Hf — Jf,...,H | — J ;.

Suppose that for some 1 < s < An we have already found Hf,...,H! . For
all i < s, let H; := Hf — J" + J;. Let G5 :== G — (H; -U Hs_1). First we

construct Cy as follows. Recall from m that Talsa matchlng of size at most
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2,/gn. Note that 0(Gs[A]) > §(G[A]) — 25 > (4/5 — 5An)|A|. So we can greedily
find a path P4 of length at most 6,/2on in G4[A] + J 4 such that Py is consistent
with Jg 4. Let u and v denote the endpoints of P4. Let Gf be the graph obtained
from G4[A] — V(Pa) by adding a new vertex w whose neighbourhood is precisely
(Ng.(u) N Ng,(v)) \ V(Pa). Note that 6(G2) > |G2|/2 (with room to spare).
Thus G4 contains a Hamilton cycle C’; by Dirac’s theorem. But C’; corresponds
to a Hamilton cycle C4 of G5[A] + J; 4 that is consistent with J ,. Similarly, we
can find a Hamilton cycle Cp of Gs[B] + J; p that is consistent with J7 5. Let
H} = C4 + Cp. This completes the construction of Hy,..., Hy,,.

For each 1 < s < An we take Hg := Hf — J* + Js. Then (i) holds. Proposi-
tion 2330 implies (ii) and (iii). O

By combining Lemmas 2.6.1] and we obtain the following result, which
guarantees a set of edge-disjoint Hamilton cycles covering all edges of G[Ap] and
G|[Bo].

LEMMA 2.6.3. Suppose that 0 < 1/n < g9 < ¢ < 1 and that D,n,(D —
¢n)/2, K € N. Let G be a D-reqular graph on n vertices with D > n —2|n/4] — 1.
Suppose that (G, A, Ay, B, By) is an (€9, K)-framework with A(G[A’, B']) < D/2.
Let wy and wy be (fived) vertices of G such that dgpar py(wi) > dgpar,p(w2) >
darar,p(v) for all v € V(G) \ {w1,wa}. Then there exists a ¢n-regular spanning
subgraph Gy of G which satisfies the following properties:

(i) G[Ao] + G[Bo] C Go.

(i) eg, (A", B") < ¢n and eg—q,(A’, B') is even.

(iii) Go can be decomposed into |eq,(A’,B’)/2| Hamilton cycles and ¢n —
2leq, (A, B")/2]| perfect matchings. Moreover, if eq(A’,B') > D, then
this decomposition of Go uses |¢n/2] Hamilton cycles and one perfect
matching if D s odd.

(iv) Let H® := G[A',B'] — Go. Then dpo(wy) < (D — ¢n)/2. Furthermore, if
D =n/2—1 then dgo(ws2) < (D — ¢n)/2.

(v) Ifeq(A’,B’") < D, then A(H®) < e(H®)/2 < (D — ¢n)/2.

Proof. Let

0= {max{o, D —eg(A',B")}

2 J and A\n = \_qﬁn/% :{(¢n— 1)/2 if D is odd,

¢on/2 if D is even.

(The last equality holds since our assumption that (D — ¢n)/2 € N implies that D
is odd if and only if ¢n is odd.) So ¢, ¢ and X are as in Lemma 261l Thus we can
apply Lemma[2.6.Tlto G in order to obtain An+1 subgraphs Jy, . .., Jx, as described
there. Let G’ be the graph obtained from G[A’] + G[B’] by removing all the edges
in JyU---UJy,. Recall that Jj is either a perfect matching in G or empty. Since
each of Jy,...,Jy, is an exceptional system and so by (EC3) we have e; (A) =0
for all 1 < s < An, it follows that 6(G'[A]) > §(G[A]) — 1 > 4|A|/5, where the final
inequality follows from (FR3) and (FR4). Similarly §(G’[B]) > 4|B|/5. So we can
apply Lemma with G’ playing the role of G in order to extend Ji,..., JJx,
into edge-disjoint subgraphs Hy, ..., Hy, of G’ + E:‘Zl Js such that

(a) Hs is a Hamilton cycle on V(G) which contains precisely two A’ B’-edges
for all £ < s < An;
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(b) Hj is the union of a Hamilton cycle on A" and a Hamilton cycle on B’ for
all 1 < s <min{l, \n}.

Indeed, the property eg, (A’,B’) = 2 in (a) follows from Lemma 2:6.1\iii) and
26.2(i). Let Gy := Jo + 2221 H,. Then (i) holds since by Lemma [2.6.7] all the
Jo, -+, Jan together cover all edges in G[Ag] and G[By]. Let Juc be the union
of all J; with ¢ < s < An and let J be the union of all J, with 0 < s < An.
The definition of Gy, Lemma [Z:6.1((ii),(iii) and Lemma 2:6.2(i) together imply that
Gol4',B'] = J[A,B'] = Jo[A', B'] + Juc|4’, B'] and so

(2.6.3) ec,(A',B") =es(A",B)
(2.6.4) = ey, (A, B") + 2(max{0, A\n — £}).

Together with Lemmal[Z6.1|(iv), (26.3) implies (ii). Moreover, the graph H® defined
in (iv) is the same as the graph H® defined in Lemma Z61(iv). Thus (iv) and (v)
follow from Lemma [Z6.T(v) and (vi).

So it remains to verify (iii). Note that if £ > 0 then eg(A’, B’) < D and so
n =0 (mod 4), D =n/2—-1 and |A’| = n/2 = |B’| by Proposition 2Z221ii). In
particular, both A’ and B’ are even and so for all 1 < s < ¢ the graph H, can be de-
composed into two edge-disjoint perfect matchings. Recall that by Lemma 2Z.6.T](i)
the graph Jy is a perfect matching if D is odd and empty if D is even. Thus,
if £ < An, then Gy can be decomposed into An — ¢ edge-disjoint Hamilton cycles
and Npaten edge-disjoint perfect matchings, where npaten = 2¢ if D is even and
Nmatch = 2¢ + 1 if D is odd. In particular, this implies the ‘moreover part’ of
(iil) (since £ = 0 if eq(A’,B’) > D). Also, (Z64)) together with the fact that
ejo(A’,B’) <1 by Lemma [Z61[(i) implies that An — ¢ = |eg,(4’, B’)/2] and so
¢n — 2|eg, (A", B')/2] = Nmaten- Thus (iii) holds in this case. If £ > An, then (a)
implies that there are no Hamilton cycles at all in the decomposition. Also (2.6.4)
implies that |eg,(A4’,B’)/2| = 0, as required in (iii). Similarly, (b) implies that
Nmatch = 2An if D is even and nymaten = 2An + 1 if D is odd, which also agrees
with (iii). O

2.7. Constructing Localized Exceptional Systems

Suppose that (G, A, Ay, B, By) is an (g9, K )-framework and that Gy is the span-
ning subgraph of our given D-regular graph G obtained by Lemma [Z6.3 Set
G’ := G — Gy. (So G’ has no edges inside Ag or By.) Roughly speaking, the aim
of this section is to decompose G’ — G'[A] — G'[B] into edge-disjoint exceptional
systems. Each of these exceptional systems J will then be extended into a Hamil-
ton cycle (in the case when J is a Hamilton exceptional system) or into two perfect
matchings (in the case when J is a matching exceptional system). We will ensure
that all but a small number of these exceptional systems are localized (with respect
to some (K, m,eq)-partition P of V(G) refining the partition A, Ay, B, By). More-
over, for all 1 < 4,7 < K, the number of (4,4")-localized exceptional systems in our
decomposition will be the same. (Recall that (7,i)-localized exceptional systems
were defined in Section 2.3])

However, rather than decomposing the above ‘leftover’ G’ — G'[A] — G'[B] in
a single step, we actually need to proceed in two steps: initially, we find a small
number of exceptional systems J which have some additional useful properties
(e.g. the number of A'B’-edges of J is either zero or two). These exceptional
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systems will be used to construct the robustly decomposable graph G*P. (Recall
that the role of G*P was discussed in Section211) Let G” := G — Gy — G™P. Some
of the additional properties of the exceptional systems contained in G™P then allow
us to find the desired decomposition of G® := G — G"[A] — G"[B]. (We need to
proceed in two steps rather than one as we have little control over the structure of
Grob.)

Recall that in order to construct the required (localized) exceptional systems,
we will distinguish three cases:

(a) the case when G is ‘non-critical’ and contains at least D A’ B’-edges (see

Lemma 273));

b) the case when G is ‘critical’ and contains at least D A’B’-edges (see
g

Lemma 2.7.4);
(c) the case when G contains less than D A’ B’-edges (see Lemma [Z775]).

Each of the three lemmas above is formulated in such a way that we can apply
it twice: firstly to obtain the small number of exceptional systems needed for the
robustly decomposable graph G*P and secondly for the decomposition of the graph
G° into exceptional systems. The proofs of all the results in this section are deferred
until Chapter

2.7.1. Critical Graphs. Roughly speaking, G is critical if most of its A’B’-
edges are incident to only a few vertices. More precisely, given a partition A’, B’ of
V(G) and D € N, we say that G is critical (with respect to A’, B’ and D) if both
of the following hold:

e A(G[A',B’]) > 11D/40;

e ¢(H) < 41D/40 for all subgraphs H of G[A’, B'] with A(H) < 11D/40.
Note that the property of G being critical depends only on D and the partition
A" = AU Ay and B' = BU By of V(G), which is fixed after we have applied
Proposition[ZZH to obtain a framework (G, A, Ay, B, By). In particular, it does not
depend on the choice of the (K, m,¢eq)-partition P of V(G) refining A, Ag, B, By.
(In the proof of Theorem we will fix a framework (G, A, Ay, B, Bp), but will
then choose two different partitions refining A, Ay, B, By.)

One example of a critical graph is the following: Gt consists of two disjoint
cliques on (n — 1)/2 vertices with vertex set A and B respectively, where n = 1
(mod 4). In addition, there is a vertex a which is adjacent to exactly half of the
vertices in each of A and B. Also, add a perfect matching M between those vertices
of A and those vertices in B not adjacent to a. Let A’ := AU {a}, B’ :== B and
D := (n—1)/2. Then Ge; is critical, and D-regular with e(A’, B’) = D. Note
that e(M) = D/2. To obtain a Hamilton decomposition of G, we will need
to decompose Git[A’, B'] into D/2 Hamilton exceptional system candidates Js
(which need to be matchings of size exactly two in this case). In this example, this
decomposition is essentially unique: every Js has to consist of exactly one edge in
M and one edge incident to a. Note that in this way, every edge between a and B
yields a ‘connection’ (i.e. a maximal path) between A’ and B’ required in (ESC4).

The following lemma (proved in Section B]) collects some properties of critical
graphs. In particular, there is a set W consisting of between one and three vertices
with many neighbours in both A and B. We will need to use A’ B’-edges incident
to one or two vertices of W to provide ‘connections’ between A’ and B’ when
constructing the Hamilton exceptional system candidates in the critical case (b).
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LEMMA 2.7.1. Suppose that 0 < 1/n < 1 and that D,n € N with D > n —
2|n/4] — 1. Let G be a D-regular graph on n vertices and let A’, B' be a partition
of V(G) with |A’|,|B’| > D/2 and A(G[A’, B']) < D/2. Suppose that G is critical.
Let W be the set of vertices w € V(G) such that dgar pj(w) > 11D /40. Then the
following properties are satisfied:

(i) 1< (W] <3.
(ii) Fither D = (n —1)/2 and n = 1 (mod 4), or D =n/2—1 and n = 0
(mod 4). Furthermore, if n =1 (mod 4), then |[W| = 1.
(i) eq(A’, B') <17D/10+5 < n.

Recall from Proposition Z2ZT[(ii) that we have eq(A’,B’) > D unless D =
n/2 —1, n = 0 (mod 4) and |A| = |B| = n/2. Together with Lemma [Z7T[ii)
this shows that in order to find the decomposition into exceptional systems, we can
distinguish the following three cases.

COROLLARY 2.7.2. Suppose that 0 < 1/n < 1 and that D,n € N with D >
n—2|n/4|—1. Let G be a D-regular graph on n vertices and let A', B’ be a partition
of V(G) with |A'|,|B’| > D/2 and A(G[A’,B']) < D/2. Then exactly one of the
following holds:

(a) eq(A’,B") > D and G is not critical.

(b) eq(A’,B") > D and G is critical. In particular, eq(A’, B') < n and either
D=n-1)/2andn=1 (mod 4), or D=n/2—1 and n =0 (mod 4).

(c) eq(A’,B") < D. In particular, D = n/2 -1, n =0 (mod 4) and |A| =
|B| =n/2.

2.7.2. Decomposition into Exceptional Systems. Recall from the begin-
ning of Section [Z77] that our aim is to find a decomposition of G — Gy — G[A] — G[B]
into suitable exceptional systems (in particular, most of these exceptional systems
have to be localized). The following lemma (proved in Section [32) states that this
can be done if we are in Case (a) of Corollary 2772 i.e. if G is not critical and
eq(A’,B") > D.

LEMMA 2.7.3. Suppose that 0 < 1/n < g9 € e K \,1/K < 1, that D > n/3,
that 0 < ¢ < 1 and that D,n, K,m, n/K? (D —¢n)/(2K?) € N. Suppose that the
following conditions hold:

(i) G is a D-regular graph on n vertices.
(ii) P is a (K, m,eg)-partition of V(G) such that D < eg(A’, B") < gon?® and
A(G[A', B']) < D/2. Furthermore, G is not critical.
(i) Go is a subgraph of G such that G[Ag] + G[Bo] C Gy, eq,(A’,B’) < ¢n
and dg,(v) = ¢n for all v € V.
(iv) Let G° := G — G[A] — G[B] — Gy. ego(A',B’) is even and (G°,P) is a
(K, m,e9,)-exceptional scheme.
Then there exists a set J consisting of (D — ¢n)/2 edge-disjoint Hamilton excep-
tional systems with parameter €y in G° which satisfies the following properties:
(a) Together all the Hamilton exceptional systems in J cover all edges of G°.
(b) Foralll <i,i' < K, the set J contains (D—(¢+2\)n)/(2K?) (i,i')-HES.
Moreover, An/K? of these (i,i')-HES J are such that e;(A’, B') = 2.

Note that (b) implies that J contains An Hamilton exceptional systems which
might not be localized. This will make them less useful for our purposes and we
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extend them into Hamilton cycles in a separate step. On the other hand, the lemma
is ‘robust’ in the sense that we can remove a sparse subgraph G before we find
the decomposition J into Hamilton exceptional systems. In our first application of
Lemma (i.e. to construct the exceptional systems for the robustly decompos-
able graph G™P), we will let Gy be the graph obtained from Lemma Z6.3. In the
second application, G also includes G™P. In our first application of Lemma P7.3,
we will only use the (4,7')-HES J with e;(A4’, B') = 2.

The next lemma is an analogue of Lemma [Z.7.3] for the case when G is critical
and eg(A’, B") > D. By Corollary 2.7.2(b) we know that in this case D = (n—1)/2
or D=n/2—1. (Again we defer the proof to Section B.3])

LEMMA 2.7.4. Suppose that 0 < 1/n € g9 < ¢ < \1/K < 1, that D >
n—2|n/4| — 1, that 0 < ¢ < 1 and that n, K,m,\n/K?, (D — ¢n)/(400K?) € N.
Suppose that the following conditions hold:

(i) G is a D-regular graph on n vertices.

(ii) P is a (K, m,eo)-partition of V(G) such that eq(A’,B") > D and
A(G[A', B']) < D/2. Furthermore, G is critical. In particular, eq(A’, B")
<nand D= (n—-1)/2 or D=n/2—1 by Lemmal3Z11(%i) and (iii).

(i) Go is a subgraph of G such that G[Ao] + G[Bo] C Gy, eg,(4’,B') < ¢n
and dg,(v) = ¢n for all v € V.

(iv) Let G® := G — G[A] — G[B] — Gy. eg-(A',B’) is even and (G°,P) is a
(K, m,eq,€)-exceptional scheme.

(v) Letwy and ws be (fived) vertices such that dgar pr(w1) > dgpar, g (w2) >
darar,p(v) for all v € V(G) \ {w1,wa}. Suppose that

(271) dGO[A’,B’] (wl), dGO[A/,B/] (’wg) < (D — ¢n)/2

Then there exists a set J consisting of (D — ¢n)/2 edge-disjoint Hamilton excep-
tional systems with parameter o in G® which satisfies the following properties:

(a) Together the Hamilton exceptional systems in J cover all edges of G°.
(b) For each 1 <i,i’ < K, the set J contains (D — (¢ + 2X\)n)/(2K?) (i,4')-
HES. Moreover, An/K? of these (i,i')-HES are such that
(b1) es(A',B') =2 and
(b2) djjar,py(w) =1 for all w € {wy,wa} with dgpar pr(w) > 11D /40.

Similarly as for Lemma 273, (b) implies that J contains An Hamilton ex-
ceptional systems which might not be localized. Another similarity is that when
constructing the robustly decomposable graph G™P, we only use those Hamilton
exceptional systems J which have some additional useful properties, namely (b1)
and (bz) in this case. This guarantees that (2771 will be satisfied in the second
application of Lemma .74 (i.e. after the removal of G™P), by ‘tracking’ the de-
grees of the high degree vertices wi and ws. Indeed, if dgar,p(w2) > 11D/40,
then (bz) will imply that dgrovar, g (w;) is large for @ = 1,2. This in turn means
that after removing G*°?, in the leftover graph G°, dgorar, g (w;) is comparatively
small, i.e. condition [277.0]) will hold in the second application of Lemma 2741

Condition ([Z7.T)) itself is natural for the following reason: suppose for example
that it is violated for w; and that wy € Ag. Then for some Hamilton exceptional
system J returned by the lemma, both edges of J incident to w; will have their
other endpoint in B’. So (the edges at) wy cannot be used as a ‘connection’ between
A’ and B’ in the Hamilton cycle which will extend J, and it may be impossible to
find these connections elsewhere.
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The next lemma is an analogue of Lemma [2.73] for the case when eq(A’, B') <
D. (Again we defer the proof to Section B4l) Recall that Proposition 2:2.11(ii) (or
Corollary 227.2)) implies that in this case we have n = 0 (mod 4), D =n/2 —1 and
|A’| = |B’| = n/2. In particular, |A’| and |B’| are both even. This agrees with
the fact that the decomposition may also involve matching exceptional systems in
the current case: we will later extend each such system to a cycle spanning A’ and
one spanning B’. As |A’| and |B’| are both even, these cycles correspond to two
edge-disjoint perfect matchings in G.

LEMMA 2.7.5. Suppose that 0 < 1/n € eg K e K \,1/K <1, that 0 < ¢ < 1
and that n/4, K,m, An/K?, (n/2 — 1 — ¢n)/(2K?) € N. Suppose that the following
conditions hold:

(i) G is an (n/2 — 1)-reqular graph on n vertices.
(ii) P is a (K, m,eo)-partition of V(G) such that A(G[A',B']) < n/4 and

|A'| = |B'| =n/2.
(i) Go is a subgraph of G such that G[Ao]+ G[Bo] C Gy and dg,(v) = ¢n for
allv e V.

(iv) Let G® := G — G[A] — G[B] — Gy. eg-(A',B’) is even and (G°,P) is a
(K, m, e, e)-exceptional scheme.

(v) A(G°[A",B']) <eg-(A",B')/2<(n/2—1—¢n)/2.

Then there exists a set J consisting of (n/2 —1 — ¢n)/2 edge-disjoint exceptional
systems in G° which satisfies the following properties:

(a) Together the exceptional systems in J cover all edges of G°. Each J in J
is either a Hamilton exceptional system with ej(A’, B") = 2 or a matching
exceptional system.

(b) For all 1 < i,i’ < K, the set J contains (n/2 — 1 — (¢n + 2)))/(2K?)
(i,i)-ES.

As in the other two cases, we will use the exceptional systems in (b) to construct
the robustly decomposable graph G™P. Unlike the critical case with eg(A4’, B') >
D, there is no need to ‘track’ the degrees of the vertices w; of high degree in
G[A’, B'] this time. Indeed, let G” := G — Gy — G*P, where G| is the graph defined
by Lemma Then G”[A’, B'] is the union of all those J in J (from the first
application of Lemma .7.5) not used in the construction of G*™P. So (a) implies
that G”"[A’, B'] is a union of matchings of size two. So (v) will be trivially satisfied
when we apply Lemma for the second time (i.e. with Go + G™P playing the
role of Gy).

2.8. Special Factors and Exceptional Factors

As discussed in the proof sketch, the main proof proceeds as follows. First
we remove a sparse ‘robustly decomposable’ graph G™P from the original graph
G. Then we find an approximate decomposition of G — G™P. Finally we find
a decomposition of G™P + G’, where G’ is the (very sparse) leftover from the
approximate decomposition.

Both the approximate decomposition as well as the actual decomposition step
assume that we work with a graph with two components, one on A and the other
on B. So in both steps, we would need Ay U By to be empty, which we clearly
cannot assume. We build on the ideas of Section 2.3] to deal with this problem.
In both steps, one can choose ‘exceptional path systems’ in G with the following
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crucial property: one can replace each such exceptional path system EPS with a
path system EPS* so that

(1) EPS* can be partitioned into EPS% and EPS} with the vertex sets of
EPS% and EPS}E being contained in A and B respectively;

(ca2) the union of any Hamilton cycle C% in G% := G[A] — EPS + EPS}
containing EPS% and any Hamilton cycle C% in G := G[B] — EPS +
EPS}% containing EPSE corresponds to either a Hamilton cycle of G
containing EPS or to the union of two edge-disjoint perfect matchings in
G containing EPS.

Each exceptional path system EPS will contain one of the exceptional systems J
constructed in Section 271 EPS* will then be obtained from EPS by replacing J
by J*. (Recall that J* was defined in Section and that we view the edges of J*
as ‘fictive edges’ which are different from the edges of G.) So G is obtained from
G[A] by adding J} = J*[A]. Furthermore, J determines which of the cases in (a2)
holds: If J is a Hamilton exceptional system, then (aq) will give a Hamilton cycle
of G, while in the case when J is a matching exceptional system, (aq) will give the
union of two edge-disjoint perfect matchings in G.

So, roughly speaking, this allows us to work with G% and G rather than G
in the two steps. A convenient way of handling these exceptional path systems is
to combine many of them into an ‘exceptional factor’ EF (see Section .82 for the
definition).

One complication is that the ‘robust decomposition lemma’ (Lemma 2.9.4]) we
use from [21] deals with digraphs rather than undirected graphs. So in order to be
able to apply it, we need to suitably orient the edges of G and so we will actually
consider a directed path system EPS}. instead of the EPS* above (the exceptional
path system EPS itself will still be undirected). Moreover, we have to apply the
robust decomposition lemma twice, once to G and once to G%.

The formulation of the robust decomposition lemma is quite general and rather
than guaranteeing (aw) directly, it assumes the existence of certain directed ‘spe-
cial paths systems’ SPS which are combined into ‘special factors’” SF. These are
introduced in Section 22811 Each of the Hamilton cycles produced by the lemma
then contains exactly one of these special path systems. So to apply the lemma, it
suffices to check that each of our exceptional path systems EP.S corresponds to two
path systems EPS} j;, and EPSE ;;, which both satisfy the conditions required of
a special path system. '

2.8.1. Special Path Systems and Special Factors. As mentioned above,
the robust decomposition lemma requires ‘special path systems’ and ‘special factors’
as an input when constructing the robustly decomposable graph. These are defined
in this subsection.

Let K,m € N. A (K, m)-equipartition Q of a set V of vertices is a partition
of V into sets Vi,..., Vi such that |V;] = m for all i < K. The V; are called
clusters of Q. Suppose that Q@ = {V4,...,Vk} is a (K, m)-equipartition of V' and
L,m/L € N. We say that (Q, Q') is a (K, L, m)-equipartition of V if Q' is obtained
from Q by partitioning each cluster V; of Q into L sets V; 1,...,V; 1 of size m/L.
So Q' consists of the KL clusters V; ;.

Let (Q, Q') be a (K, L, m)-equipartition of V. Consider a spanning cycle C' =
Vi ... Vi on the clusters of Q. Given an integer f dividing K, the canonical interval
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partition T of C' into f intervals consists of the intervals

Vi—yr/ s Vii—vr/r+2 - - Vik/ s+
for all ¢ < f (with addition modulo K).

Suppose that G is a digraph on V and h < L. Let I = V;V;41...V; be an
interval in Z. A special path system SPS of style h in G spanning the interval I
consists of m /L vertex-disjoint directed paths Py, ..., P,/ such that the following
conditions hold:

(SPS1) Every Ps has its initial vertex in Vj;, and its final vertex in Vi .
(SPS2) SPS contains a matching Fict(SPS) such that all the edges in Fict(SPS)
avoid the endclusters V; and Vjs of I and such that E(P;) \ Fict(SPS) C
E(G).
(SPS3) The vertex set of SPSis Vj, UVjy1 5 U---UVj .
The edges in Fict(SPS) are called fictive edges of SPS.

Let Z = {I,...,Is}. A special factor SF with parameters (L, f) in G (with
respect to C, Q') is a 1-regular digraph on V which is the union of Lf digraphs
SPS; (one for all 5 < f and h < L) such that each SPS;} is a special path
system of style h in G which spans I;. We write Fict(SF) for the union of the sets
Fict(SPS; ) over all j < f and h < L and call the edges in Fict(SF) fictive edges
of SF.

We will always view fictive edges as being distinct from each other and from the
edges in other digraphs. So if we say that special factors SFy,...,SF, are pairwise
edge-disjoint from each other and from some digraph @ on V, then this means that
Q and all the SF; — Fict(SF;) are pairwise edge-disjoint, but for example there
could be an edge from z to y in @ as well as in Fict(SF;) for several indices i < r.
But these are the only instances of multiedges that we allow, i.e. if there is more
than one edge from x to y, then all but at most one of these edges are fictive edges.

2.8.2. Exceptional Path Systems and Exceptional Factors. We now
introduce ‘exceptional path systems’ which will be combined into ‘exceptional fac-
tors’. These will satisfy the requirements of special path systems and special factors
respectively. So they can be used as an ‘input’ for the robust decomposition lemma.
Moreover, they will satisfy the properties (a;) and (a3) described at the beginning
of Section (see Proposition [Z8T]). More precisely, suppose that

PZ{Ao,Al,...,AK,Bo,Bl,...,BK}

is a (K, m,eq)-partition of a vertex set V and L,m/L € N. We say that (P,P’) is
a (K, L,m,eq)-partition of V if P’ is obtained from P by partitioning each cluster
A; of P into L sets A;1,...,A; 1 of size m/L and partitioning each cluster B; of P

into L sets B;1,...,B; 1 of size m/L. (So P’ consists of the exceptional sets Ao,
By, the KL clusters A; ; and the KL clusters B; ;.) Set
(281) QA = {Al,...,AK}, Q;l = {A171,...,AK)L},

Qp :={B1,..., Bk}, Qg :={Bi1,....,Bk,L}.

Note that (Qa, Q') and (Qp, Q) are (K, L, m)-equipartitions of A and B respec-
tively (where we recall that A = U1K:1 A; and B = U1K:1 B)).

Suppose that J is a Hamilton exceptional system (for the partition A, Ay, B, By)
with ej(A’, B') = 2. Thus J contains precisely two AB-paths. Let Py = ay...b;
and P, = as ... by be these two paths, where a1,a2 € A and by, by € B. Recall from
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Section[Z3lthat J% is the matching consisting of the edge a1a2 and an edge between
any two vertices a,a’ € A for which J contains a path P,, whose endvertices are a
and a’. We also defined a matching J5 in a similar way and set J* := J§ U J5. We
say that an orientation of J is good if every path in J is oriented consistently and
one of the paths P;, P is oriented towards B while the other is oriented towards
A. Given a good orientation Jqi, of J, the orientation J3;. of J* induced by Jair is
defined as follows:

e For every path P,, in J whose endvertices a,a’ both belong to A, we
orient the edge aa’ of J* towards its endpoint of the (oriented) path P,
in Jdir-

e If in Jy;; the path P; is oriented towards b; (and thus P is oriented
towards ag), then we orient the edge ajas of J* towards ay and the edge
b1by of J* towards b;. The analogue holds if P; is oriented towards a;
(and thus P; is oriented towards bg).

If J is a matching exceptional system, we define good orientations of J and the
corresponding induced orientations of J* in a similar way.

We now define exceptional path systems. As mentioned at the beginning of
Section 2.8, each such exceptional path system EPS will correspond to two directed
path systems EPS} y, and EPSE j;, satisfying the conditions of a special path
system (for (Q4, Q') and (Qp, Qz) respectively).

Let (P,P’) be a (K, L, m,eg)-partition of a vertex set V. Suppose that K/f €
N. The canonical interval partition Z(f,K) of [K] := {1,..., K} into f intervals
consists of the intervals

{G=DK/f+1,6 - DK/f+2,....iK/f+1}

for all ¢ < f (with addition modulo K).

Suppose that G is an oriented graph on AU B such that G = G[A] 4+ G[B]. Let
h < L and suppose that I € Z(f, K) is an interval with I = {j,j+1,...,5'}. An
exceptional path system EPS of style h for G spanning I consists of 2m/L vertex-
disjoint undirected paths Py, P, PlA, el Pr‘:/Lfl, PP, ... =P£/L71= such that the
following conditions hold:

(EPS1) V(PA) C A and PA has one endvertex in A, j, and its other endvertex in
Ajrp, (for all 1 < s < m/L). The analogue holds for every PB.

(EPS2) Each of Py and P has one endvertex in A, 5, UB; ), and its other endvertex
in Aj/ﬁh U Bj/yh.

(EPS3) J := EPS — EPS[A] — EPS[B] is either a Hamilton exceptional system
with ej(A’, B') = 2 or a matching exceptional system (with respect to the
partition A, Ay, B, By). Moreover E(J) C E(Py)U E(Pj) and no edge of
J has an endvertex in A, U A 5, U Bj U Bjs .

(EPS4) Let Py qir and P(;,dir be the paths obtained by orienting Py and P} towards
their endvertices in A;: j, U By 1. Then the orientation Jg;, of J obtained
in this way is good. Let J3;, be the orientation of J* induced by Jgir. Then
(Po,dir + P ai;) — Jaix + J3j;, consists of two vertex-disjoint paths Pgly;. and
Pfdir such that V(PO“}dir) C A, POI?dir has one endvertex in Aj;; and its
other endvertex in A; ; and such that the analogue holds for Pfdir.

(EPS5) The vertex set of EPS is VoUA; nUAj41n - UAy pUBj o UBji1 -+ -U
Bj/yh.
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FIGURE 2.8.1. An example of an exceptional path system EPS
and the corresponding directed version EPS];. in the case when
|Ao| =2, Bo =@, m/L = 3 and |I| = 6. The thick edges indicate
J and Jj;, respectively.

(EPS6) For each 1 < s < m/L, let PS“}dir be the path obtained by orienting
PA towards its endvertex in A j,. Define Pfdir in a similar way. Then
E(P34) \ E(Jair), E(PPy;,) \ E(Jair) € E(G) and E(P2y,), E(P5y,) €
E(G) for every 1 < s <m/L.

We call EPS a Hamilton exceptional path system if J (as defined in (EPS3))
is a Hamilton exceptional system, and a matching exceptional path system oth-
erwise. Let EPS} 4, be the (directed) path system consisting of Po‘?dir,Pf}dir,
e, ang/Lfl,dir' Then EPSY 4, is a special path system of style h in G[A] which
spans the interval AjA; 11 ... Ay of the cycle A; ... Ag and satisfies Fict(EPS% 4;,)
= Jii[A]. Define EPSg 4, similarly and let EPSy;, := EPS} 4, + EPSp 4, and
Fict(EPSy;,) := Fict(EPS} 4;,) U Fict(EPSE 4;,) (see Figure 2.8.1)).

Let Z(f, K) = {I1,...,I;}. An exceptional factor EF with parameters (L, f)
for G (with respect to (P,P’)) is the union of Lf edge-disjoint undirected graphs
EPS;p (one for all j < f and h < L) such that each EPS;), is an exceptional
path system of style h for G which spans I;. We write FF 4, for the union of
EPS? ), gai over all j < f and h < L. Note that EF;di; is a special factor
with parameters (L, f) in G[A] (with respect to C' = A;... Ak, Q) such that
Fict(EF} 4,) is the union of J7, o [A] over all j < f and h < L, where J;, is the
exceptional system contained in EPSj ), (see condition (EPS3)). Define EFy 4,
similarly and let EFy, = EF} 4, + EFp 4, and Fict(EFy;,) = Fict(EF} 4,) U
Fict(EFY} 4,)- Note that EF}], is a l-regular directed graph on AU B while in
EF is an undirected graph on V with

(2.8.2) dgrp(v)=2 forallveV\Vy, and dgrp(v)=2Lf forallve V.
Given an exceptional path system EPS, let J be as in (EPS3) and let

EPS*:= EPS —J+J*, EPS%:=EPS*[A] and EPS}:= EPS*[B].
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(Hence EPS*, EPSY and EPS}, are the undirected graphs obtained from EPS};
EPS} 4, and EPSE g;, by ignoring the orientations of all edges.) The follow-
ing result is an immediate consequence of (EPS3), (EPS4) and Proposition 2311
Roughly speaking, it implies that to find a Hamilton cycle in the ‘original’ graph
with vertex set V, it suffices to find a Hamilton cycle on A and one on B, containing
(the edges corresponding to) an exceptional path system.

PROPOSITION 2.8.1. Let (P, P’) be a (K, L, m,eo)-partition of a vertex set V.
Suppose that G is a graph on V' \ Vp, that Gair is an orientation of G[A] + G[B]
and that EPS is an exceptional path system for Gai,. Let J be as in (EPS8) and
J% as defined in Section[2.3 Let Cy and Cp be two cycles such that

o Cy4 is a Hamilton cycle on A which contains EPS% ;
o Cp is a Hamilton cycle on B which contains EPST.

Then the following assertions hold.

(i) If EPS is a Hamilton exceptional path system, then Cy + Cp — EPS* +
EPS is a Hamilton cycle on V.

(ii) If EPS is a matching exceptional path system, then C4 + Cp — EPS* +
EPS is the union of a Hamilton cycle on A’ and a Hamilton cycle on B'.
In particular, if both |A’| and |B’| are even, then Cx+Cp— EPS*+ EPS

is the union of two edge-disjoint perfect matchings on V.

Proof. Note that Cy +Cp — EPS*+ EPS = Cs+Cp —J*+J. Recall that J} g
was defined in Section 23l (EPS3) implies that |E(J%)\ E(J45)| < 1. Recall from
Section 23] that a path P is said to consistent with J% if P contains J% and (there
is an orientation of P which) visits the endvertices of the edges in E(J}) \ E(J}p)
in a prescribed order. Since E(J}) \ E(J} ) contains at most one edge, any path
containing J} is also consistent with J}. Therefore, C'4 is consistent with J}
and, by a similar argument, Cp is consistent with J5. So the proposition follows
immediately from Proposition 2311 O

2.8.3. Finding Exceptional Factors in a Scheme. The next lemma (Lem-
ma282) will allow us to extend a suitable exceptional system J into an exceptional
path system. In particular, we assume that J is ‘localized’. This allows us to choose
the path system in such a way that it spans only a few clusters. The structure within
which we find the path system is called a ‘scheme’. Roughly speaking, this is the
structure we obtain from G[A]+G|[B] (i.e. the union of two almost complete graphs)
by considering a random equipartition of A and B and a random orientation of its
edges.

We now define this ‘oriented’ version of the (undirected) schemes which were
introduced in Section 241 Given an oriented graph G and partitions P and P’ of a
vertex set V', we call (G, P,P’) a [K, L, m, g, e]-scheme if the following conditions
hold:

(Schl’) (P,P’)is a (K, L, m,¢ep)-partition of V.

(Sch2’) V(G) = AU B and eg(4, B) =0.

(Sch3’) G[A,; ;, A y] and G[B, j, By j/] are [e,1/2]-superregular for all 7,7’ < K
and all j,j/ < L such that (i,j) # (¢,5'). Moreover, G[4;, A;] and
G[B;, By] are [e,1/2]-superregular for all ¢ # i’ < K.
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(Schd’) INJ(2) N NG (y)NA; ;| > (1/5—e)m/Lfor all z,y € A, all i < K and all
j < L. Similarly, [N} ()N Ng (y)NB; ;| > (1/5—¢)m/L for all 2,y € B,
alli < K and all j < L.

Note that if L = 1 (and so P = P’), then (Schl’) just says that P is a (K, m, €g)-
partition of V.

Suppose that J is an (¢,¢')-ES with respect to P. Given h < L, we say that J
has style h (with respect to the (K, L,m,&q)-partition (P,P’)) if all the edges of J
have their endvertices in Vo U A; 5 U By p.

LEMMA 2.8.2. Suppose that K,L,n,m/L € N, that 0 < 1/n < €,e0 < 1 and
g0 < 1/K,1/L. Let (G,P,P’) be a [K, L,m,eq,¢c|-scheme with |V (G) U V| = n.
Let I ={j,74+1,...,5'} C[K] be an integer interval with |I| > 4. Let J be either
an (i1,12)-HES of style h < L with ej(A’, B') = 2 or an (i1,12)-MES of style h < L
(with respect to (P, P’)), for some i1,is € {j+1,...,5' —1}. Then there exists an
exceptional path system of style h for G which spans the interval I and contains all
edges of J.

Proof. Let Jgi: be a good orientation of J and let J3;, be the induced orientation of
J*. Let 122, ..., 725 —122¢ be the edges of J} 4, = J3,,[A]. Since J is an (i1, d2)-
ES of style h with e (A", B") < 2 it follows that s’ = e(J}) < |Vo| + 1 < 2¢on and
x; € Ajy p forall i < 2¢'. Since [I| > 4 wehaveiy+1€ {j+1,...,57/=1}oriz—1¢€
{j+1,...,7 —1}. We will only consider the case wheni; +1€ {j+1,...,5 —1}.
(The argument for the other case is similar.)

Our assumption that g <« 1/K,1/L implies that eon < m/100L (say). To-
gether with (Sch4’) this ensures that for every 1 < r < s/, we can pick a ver-
tex w, € A 41, such that xe,w, and w,xe,41 are (directed) edges in G and
such that wi,...,ws_1 are distinct from each other. We also pick a vertex wy €
Aiy+1.n \ {wr, ..., w1} such that zasws is a (directed) edge in G. Let Qo be
the path z1xowix3T4ws . .. T2 —1T25ws . Thus Qo is a directed path from A;, j, to
Aiy 41,0 in G+J3;, which contains all edges of J 4;,. Note that [V(Qo)N A, n| = 25
and |V(Qo) N Ajy+1.1] = s'. Moreover, V(Qo) N A; = 0 for all 7 ¢ {i1,i; + 1} and
V(Qo)N B = 0.

Pick a vertex wg € A; p so that woz1 is an edge of G. Find a path Qp from wy
to Ajr p, in G such that the vertex set of Q) consists of wy and precisely one vertex
in each A;, for alli e {j+1,...,5} \ {é1,41 + 1} and no other vertices. (Schd’)
ensures that this can be done greedily. Define Péi‘dir to be the concatenation of
woz1, Qo and Qf. Note that P(fdir is a directed path from A; j to Aj p in G+ J3;,
which contains J} 4. Moreover,

1 forie {j,...,7 \ {ir, i1 + 1},
25’ for i =1,

V(Piy) N Ain| = ’
| ( O,dlr) ,h| s’ fori:i1—|—1,

0 otherwise,

while V(P(fdir) NB =0 and V(P(fdir) NAip =0 foralli < K and all b’ # h.
(Sch4’) ensures that we can also choose 25’ —1 (directed) paths Py, ..., Psh 4 g
in G such that the following conditions hold:

e Foralll <r<2s, PA

i 1S a path from A;p, to Ay p.
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eForalll <r < ¢, Prf‘dir contains precisely one vertex in A;j for each
i€{4,...,7'} \ {i1} and no other vertices.
e For all s’ < r < 24, Pfdir contains precisely one vertex in A;j for each
i€{J,...,7'} \ {¢1,41 + 1} and no other vertices.
® Bydips- s P{;_Ldir are pairwise vertex-disjoint.

Let @ be the union of P(j‘)‘dir, . 7P£/—17dir' Thus @ is a path system consisting
of 2¢" vertex-disjoint directed paths from A;; to A; 5. Moreover, V(Q) consists
of precisely 2s’ vertices in A; ), for every j < ¢ < j' and no other vertices. Set
Al = A\ V(Q) for all i < K. Note that

, m ,_m m m
8. = 2 > > > (1— m
(2.8.3) | A T 2" > T deon > T 10egmK > (1 \/Eo)L

since g < 1/K,1/L. Pick a new constant ¢’ such that ¢,eg < ¢’ <« 1. Then
Proposition [LAT] (Sch3’) and [28.3) together imply that G[A;,, Aj,, ;] is still
[¢/,1/2]-superregular and so by Proposition we can find a perfect match-
ing in G[A],, A}, ;] for all j < i < j'. The union Q" of all these matchings
forms m/L — 2s’ vertex-disjoint directed paths P{;,’dir, o =P;2/L—1,dir' Note that
P(fdir, Pf}dir, ey Pﬁ JL—1,dir A€ pairwise vertex-disjoint and together cover precisely

the vertices in Ug:j A; . Moreover, P(j‘)‘dir contains J27dir.
Similarly, we find m/L vertex-disjoint directed paths P, PP ...,

Prff/Ldeir from B;j to Bj p such that P(fdir contains Jp 4, and together the

paths cover precisely the vertices in UZ;J Bip. For each 1 < r < m/L, let PA
and PP be the undirected paths obtained from P;f‘dir and Pfdir
directions of all the edges.

Since Jj"dir - P(j‘)‘dir and Jg,dir - P(fdir and since JJ;, is the orientation of J*

by ignoring the

induced by Jqgir, it follows that P(fdir + Pfdir — JJir + Jair consists of two vertex-
disjoint paths Py qir and Pé)dir from A;p U Bjj to Ay p U By, with V(P qir) U
V(Py.a) = Vo U V(P(fdir) UV(Pg,). Let Py and Py be the undirected paths
obtained from Fp qi; and Pé)dir by ignoring the directions of all the edges. Let
EPS be the union of Po,Pé,PlA, .. .,P;é/Lfl,PfB, e anL?/Lfr Then EPS is an
exceptional path system for G, as required. To see this, note that J = EPS —
EPS[A] — EPS[B] since ej(A),e;(B) = 0 by the definition of an exceptional
system (see (EC3) in Section [2.3]). O

The next lemma uses the previous one to show that we can obtain many edge-
disjoint exceptional factors by extending exceptional systems with suitable proper-
ties.

LEMMA 2.8.3. Suppose that L, f,q,n,m/L,K/f € N, that K/f > 3, that
0<1/n <K ee0 <1, that eg < 1/K,1/L and Lqg/m < 1. Let (G,P,P’) be a
[K, L, m, e, e]-scheme with |V (G) U Vy| = n. Suppose that there exists a set J of
Lfq edge-disjoint exceptional systems satisfying the following conditions:

(i) Each J € J is either a Hamilton exceptional system with ej(A’, B') = 2
or a matching exceptional system.

(ii) For all i < f and all h < L, J contains precisely q (i1,i2)-ES of style h
(with respect to (P, P’)) for which i1,i2 € {(i — 1)K/f +2,...,iK/f}.
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Then there exist q edge-disjoint exceptional factors with parameters (L, f) for G
(with respect to (P, P'")) covering all edges in |JJ .

Recall that the canonical interval partition Z(f, K') of [K] into f intervals con-
sists of the intervals {(i — 1)K/f +1,...,iK/f 4+ 1} for all « < f. So (ii) ensures
that for each interval I € Z(f, K) and each h < L, the set J contains precisely
q exceptional systems of style h whose edges are only incident to vertices in Vj
and vertices belonging to clusters A;, and B;, for which both i; and i lie in the
interior of I. We will use Lemma 2.82] to extend each such exceptional system into
an exceptional path system of style h spanning I.

Proof of Lemma [2.8.3l Choose a new constant ¢’ with ¢, Lqg/m < ¢’ < 1. Let
Ji,...,Jq be a partition of J such that for all j < ¢, h < L and i < f, the set J;
contains precisely one (i1,2)-ES of style h with 41,i2 € {(i —1)K/f+2,...,iK/f}.
Thus each J; consists of Lf exceptional systems. For each j < ¢ in turn, we will
choose an exceptional factor E'F; with parameters (L, f) for G (with respect to
(P,P’)) such that EF; and EF} are edge-disjoint for all j/ < j and E'F; contains
all edges of the exceptional systems in J;. Assume that for some 1 < j < ¢
we have already constructed EFy,..., EF;_;. In order to construct EF;, we will
choose the L f exceptional path systems forming EF; one by one, such that each of
these exceptional path systems is edge-disjoint from E'Fy,..., EF;_; and contains
precisely one of the exceptional systems in J;. Suppose that we have already
chosen some of these exceptional path systems and that next we wish to choose
an exceptional path system of style h which spans the interval I of the canonical
interval partition Z(f, K) and contains J € J;. Let G’ be the oriented graph
obtained from G by deleting all the edges in the path systems already chosen for
EF; as well as deleting all the edges in EFY, ..., EF;_1. Recall that V(G) = AUB.
Thus A(G — G') < 25 < 3q by (Z82)). Together with Proposition [[L41] this implies
that (G',P,P’) is still a [K, L, m,eo,e']-scheme. (Here we use that A(G — G') <
3qg = 3Lg/m-m/L and ¢, Lqg/m < ¢ < 1.) So we can apply Lemma with
¢’ playing the role of € to obtain an exceptional path system of style h for G’ (and
thus for G) which spans I and contains all edges of J. This completes the proof of
the lemma. O

2.9. The Robust Decomposition Lemma

The aim of this section is to state the robust decomposition lemma (Lem-
ma [Z94). This is the key lemma proved in [21I] and guarantees the existence of a
‘robustly decomposable’ digraph Gé?f within a ‘setup’. For our purposes, we will
then derive an undirected version in Corollary 2.9.5] to construct a robustly decom-
posable graph G™P. Then G™P + H will have a Hamilton decomposition for any
sparse regular graph H which is edge-disjoint from G™P. The crucial ingredient
of a setup is a ‘universal walk’, which we introduce in the next subsection. The
(proof of the) robust decomposition lemma then uses edges guaranteed by this uni-
versal walk to ‘balance out’ edges of the graph H when constructing the Hamilton

decomposition of G* + H.

2.9.1. Chord Sequences and Universal Walks. Let R be a digraph whose
vertices are Vi,...,V; and suppose that C' = V; ...V} is a Hamilton cycle of R.
(Later on the vertices of R will be clusters. So we denote them by capital letters.)
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A chord sequence C'S(V;, V;) from V; to V; in R is an ordered sequence of edges

of the form
CS(‘/Zv VJ) = (Vilflviwvhfl‘/isv sy Vitflviwd)v
where V;;, = V;, V;,,, = V; and the edge V;, _1V;,, belongs to R for each s <t.

If i = j then we consider the empty set to be a chord sequence from V; to Vj.
Without loss of generality, we may assume that C'S(V;,V;) does not contain any
edges of C. (Indeed, suppose that V;,_1V;, ., is an edge of C. Then iy = i,4; and
so we can obtain a chord sequence from V; to V; with fewer edges.) For example,
if V;_1Vi41 € E(R), then the edge V;_1V;41 is a chord sequence from V; to Vi41.

The crucial property of chord sequences is that they satisfy a ‘local balance’
condition. Suppose that CS is obtained by concatenating several chord sequences

CS(‘/Z17‘/’L2)7CS(‘/12)‘/Z'§)7 '7CS(‘/ik—17‘/’i )

so that V;, = V;,. Then for every cluster V;, the number of edges of C'S leaving V;_;
equals the number of edges entering V;. We will not use this property explicitly,
but it underlies the proof of the robust decomposition lemma (Lemma 2:0.4) that
we apply and appears implicitly e.g. in (U3).

A closed walk U in R is a universal walk for C with parameter ¢’ if the following
conditions hold:

(Ul) For every i < k there is a chord sequence ECS(V;, Vi11) from V; to Vi1
such that U contains all edges of all these chord sequences (counted with
multiplicities) and all remaining edges of U lie on C.

(U2) Each ECS(Vi, Vii1) consists of at most v/#//2 edges.

(U3) U enters each V; exactly £ times and leaves each V; exactly ¢’ times.

Note that condition (Ul) means that if an edge V;V; € E(R)\ E(C) occurs in total
5 times (say) in ECS(V1,Vs),..., ECS(V}, V1) then it occurs precisely 5 times in
U. We will identify each occurrence of V;V; in ECS(V4,Va),..., ECS(Vy, Vi) with
a (different) occurrence of V;V; in U. Note that the edges of ECS(V;,Vit1) are
allowed to appear in a different order within EC'S(V;, V;4+1) and within U.

LEMMA 2.9.1. Let R be a digraph with vertices Vi,...,Vi. Suppose that C =
Vi ... Vi is a Hamilton cycle of R and that V;Vi1o € E(R) for every 1 <i < k. Let
¢ > 4 be an integer. Let Uy the multiset obtained from ¢/ — 1 copies of E(C) by
adding V;Viyo € E(R) for every 1 < i < k. Then the edges in Uy can be ordered
so that the resulting sequence forms a universal walk for C' with parameter ¢'.

In the remainder of this section, we will also write Uy for the universal walk
guaranteed by Lemma [Z.9.1]

Proof. Let us first show that the edges in Uy can be ordered so that the result-
ing sequence forms a closed walk in R. To see this, consider the multidigraph U
obtained from Uy by deleting one copy of F(C). Then U is (¢’ — 1)-regular and
thus has a decomposition into 1-factors. We order the edges of Uy as follows: We
first traverse all cycles of the 1-factor decomposition of U which contain the cluster
V1. Next, we traverse the edge V1 V5 of C. Next we traverse all those cycles of the
1-factor decomposition which contain V5 and which have not been traversed so far.
Next we traverse the edge VoV3 of C and so on until we reach V7 again.

Recall that, for each 1 < i < k, the edge V;_1V;41 is a chord sequence from V;
to Vit1. Thus we can take ECS(V;,Viy1) := Vio1Viy1. Then Uy satisfies (Ul)-
(U3). O
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2.9.2. Setups and the Robust Decomposition Lemma. The aim of this
subsection is to state the robust decomposition lemma (Lemma[2.9.4] proved in [21])
and derive Corollary 2.9.5] which we shall use later on in order to prove Theo-
rem[.3:3]l The robust decomposition lemma guarantees the existence of a ‘robustly
decomposable’ digraph Gfﬁ}f within a ‘setup’. Roughly speaking, a setup is a di-
graph G together with its ‘reduced digraph’ R, which contains a Hamilton cycle
C and a universal walk U. In our application, we will have two setups: G[A] and
G|[B] will play the role of G, and R will be the complete digraph in both cases. To
define a setup formally, we first need to define certain ‘refinements’ of partitions.

Given a digraph G and a partition P of V(G) into k clusters V1, ..., V} of equal
size, we say that a partition P’ of V' is an ¢ -refinement of P if P’ is obtained by
splitting each V; into ¢ subclusters of equal size. (So P’ consists of £’k clusters.)
P’ is an e-uniform (-refinement of P if it is an f-refinement of P which satisfies
the following condition: Whenever z is a vertex of G, V is a cluster in P and
NG () N V| > €|V] then |NZ (z) N V| = (1 £&)|NZ(x) NV|/¢ for each cluster
V' € P’ with V/ C V. The inneighbourhoods of the vertices of G satisfy an
analogous condition. We need the following simple observation from [2I]. The
proof proceeds by considering a random partition to obtain a uniform refinement.

LEMMA 2.9.2. Suppose that 0 < 1/m < 1/k,e < €',d,1/¢ < 1 and that
n,k,0,m/¢ € N. Suppose that G is a digraph on n = km vertices and that P
is a partition of V(G) into k clusters of size m. Then there exists an e-uniform
L-refinement of P. Moreover, any e-uniform {-refinement P’ of P automatically
satisfies the following condition:

e Suppose that V., W are clusters in P and V', W' are clusters in P’ with
V' CV and W CW. If GIV,W] is [e,d]-superregular for some d' > d
then G[V',W'] is [¢/, d']-superregular.

We will also need the following definition from [21]. (G,P,P’,R,C,U,U’) is
called an (¢, k,m, e, d)-setup if the following properties are satisfied:

(ST1) G and R are digraphs. P is a partition of V(G) into k clusters of size m.
The vertex set of R consists of these clusters.

(ST2) For every edge VW of R the corresponding pair G[V,W] is (g,> d)-
regular.

(ST3) C'is a Hamilton cycle of R and for every edge VW of C' the corresponding
pair G[V, W] is [e, > d]-superregular.

(ST4) U is a universal walk for C' with parameter ¢ and P’ is an e-uniform
¢'-refinement of P.

(ST5) Suppose that C' = V; ... Vi and let V}!,.. ., Vjé/ denote the clusters in P’
which are contained in V; (for each 1 < j < k). Then U’ is a closed walk
on the clusters in P’ which is obtained from U as follows: When U visits
V; for the ath time, we let U’ visit the subcluster V* (for all 1 <a </').

(ST6) Each edge of U’ corresponds to an [, > d]-superregular pair in G.

In [21], in a setup, the digraph G could also contain an exceptional set, but since
we are only using the definition in the case when there is no such exceptional set,
we have only stated it in this special case.

Suppose that (G,P,P’) is a [K, L, m,ep,e|-scheme. Recall that A;,..., Axg
and Bi,..., Bk denote the clusters of P. Let Q4 := {A41,...,Ax}, Qp =
{B1,...,Brx} and let C4 = A;...Ax and Cp = B ... Bk be (directed) cycles.
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Suppose that ¢/,m/¢ € N with ¢/ > 4. Let Q/, be an e-uniform ¢'-refinement of
Q4. Let Ry be the complete digraph whose vertices are the clusters in Q4. Let
Ua,e be a universal walk for C4 with parameter ¢’ as defined in Lemma [Z9.1] Let
U’y o be the closed walk obtained from Uy s as described in (ST5). We will call

(G[A], Qa, Q4 Ra, Ca, Un e, Ul )

the A-setup associated to (G, P,P'). Define Qs, R, Up,¢ and Up ,, similarly. We
will call

(G[B]7 QBv Q/Bv RB, OB’ UBj/, U/B,f')

the B-setup associated to (G, P,P’). The following lemma shows that both the
A-setup and the B-setup indeed satisfy all the conditions in the definition of a
setup.

LEMMA 2.9.3. Suppose that 1/m < 1/K,ep,e < €¢',1/¢' and K,L,m/L,?,
m/l € N with ' > 4. Suppose that (G,P,P’') is a [K,L,m,¢eg,c]-scheme. Then
each of

(G[A],Qa, Q4 Ra,Ca,Unp, Uy p)  and (G[B],Qp, Q. Rp,Cp,Up ¢, Up ¢)
is an (¢, K,m,e’,1/2)-setup.

Proof. It suffices to show that (G[A], Qa, Q'y, Ra,Ca,Uaw, U} 4) is an (¢, K, m,
¢’,1/2)-setup. Clearly, (ST1) holds. (Sch3’) implies that (ST2) and (ST3) hold.
Lemma 2.9.1] implies (ST4). (ST5) follows from the definition of U} ,. (ST6)
follows from Lemma since @/, is an e-uniform ¢'-refinement of Q4. O

We now state the robust decomposition lemma from [2I]. Recall that this
guarantees the existence of a ‘robustly decomposable’ digraph G*:P, whose crucial
property is that H + Gfﬁ}f has a Hamilton decomposition for any sparse regular
digraph H which is edge-disjoint from G¢P.

GP consists of digraphs C'Agix(r) (the ‘chord absorber’) and PC Aqgi.(r) (the
‘parity extended cycle switcher’) together with some special factors. GE‘;E is con-
structed in two steps: given a suitable set SF of special factors, the lemma first
‘constructs’ C'Ag;; (1) and then, given another suitable set SF’ of special factors, the
lemma ‘constructs’ PC' Agi(r). The reason for having two separate steps is that
in [21], it is not clear how to construct C'Aq; (1) after constructing SF’ (rather
than before), as the removal of SF’ from the digraph under consideration affects

its properties considerably.

LEMMA 2.94. Suppose that 0 < 1/m < 1/k < e K 1/qg < 1/f < r11/m <
d<1/0',1/g <1 and that rk* < m. Let

ro :=960'g*kr, r3:=rfk/q, r®i=ri+ro+r—(¢—1rs, §:=rfk+7r°

and suppose that k/14,k/f, k/g,q/f,m/4l, fm/q,2fk/3g(g—1) € N. Suppose that
(G,P,P',R,C,U,U") is an (', k,m,e,d)-setup and C = V; ... V. Suppose that P*
is a (q/ f)-refinement of P and that SFy,...,SF,, are edge-disjoint special factors
with parameters (q/ f, ) with respect to C, P* in G. Let SF := SFy +---+ SF,,.
Then there exists a digraph CAqair(r) for which the following holds:
(1) CAair(r) is an (r1 + ro)-regular spanning subdigraph of G which is edge-
disjoint from SF.
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(ii) Suppose that SF,...,SF/. are special factors with parameters (1,7) with
respect to C, P in G which are edge-disjoint from each other and from
CAgir(r)+SF. Let SF' := SF|+---+ SF!.. Then there exists a digraph
PCAqir(r) for which the following holds:

(a) PCAqir(r) is a 5re-regular spanning subdigraph of G which is edge-
disjoint from CAqir(1) + SF + SF'.

(b) Let SPS be the set consisting of all the s’ special path systems con-
tained in SF+SF'. Suppose that H is an r-regular digraph on V(G)
which is edge-disjoint from GE?E = CAgir (1) +PCAgiy () +SF+SF'.
Then H + GE‘;;’ has a decomposition into s’ edge-disjoint Hamilton
cycles Cy,...,Cs. Moreover, C; contains one of the special path
systems from SPS, for each i < s'.

Recall from Section 2.8.1] that we always view fictive edges in special factors as
being distinct from each other and from the edges in other graphs. So for example,
saying that C'Agi(r) and SF are edge-disjoint in Lemma .94 still allows for a
fictive edge zy in SF to occur in CAgir(r) as well (but CAg;(r) will avoid all
non-fictive edges in SF).

In the proof of Theorem [[L3.3] we will use the following ‘undirected’ consequence
of Lemma 294

COROLLARY 2.9.5. Suppose that 0 < 1/m < £9,1/K < e K 1/L < 1/f <
ri/m <1/, 1/g < 1 and that rK? < m. Let

re = 960'¢*Kr, r3:=rK/L, 1°:=ri+ro+r—(Lf—1rs, s =rfK+7r°

and suppose that K/14,K/f, K/g,m/4¢',m/L,2fK/3g(g — 1) € N. Suppose that
(Gair, P, P’) is a [K, L,m, eo, €]-scheme and let G’ denote the underlying undirected
graph of Gair. Suppose that EF, ..., EF,, are edge-disjoint exceptional factors with
parameters (L, f) for Gair (with respect to (P,P’)). Let EF :== EFy + -+ + EF,,.
Then there exists a graph C'A(r) for which the following holds:

(i) CA(r) is a 2(r1+7r2)-regular spanning subgraph of G’ which is edge-disjoint
from EF.

(ii) Suppose that EFY, ..., EF}s are exceptional factors with parameters (1,7)
for Gaiy (with respect to (P, P)) which are edge-disjoint from each other
and from CA(r) + EF. Let EF' := EF] + ---+ EF's. Then there exists
a graph PCA(r) for which the following holds:

(a) PCA(r) is a 10r°-regular spanning subgraph of G' which is edge-
disjoint from CA(r) + EF + EF'.

(b) Let EPS be the set consisting of all the s’ exceptional path systems
contained in EF + EF'. Suppose that H, is a 2r-reqular graph on
A= Uszl A; and Hp is a 2r-reqular graph on B = Uszl B;. Suppose
that H := H+ Hp is edge-disjoint from G™P := CA(r)+ PCA(r) +
EF+EF'. Then H+G™P has a decomposition into s' edge-disjoint 2-
factors Hy, ..., Hy such that each H; contains one of the exceptional
path systems from EPS. Moreover, for each i < &', the following
assertions hold:

(b1) If the exceptional path system contained in H; is a Hamil-
ton exceptional path system, then H; is a Hamilton cycle on

V(Gdir) U V.
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(be) If the exceptional path system contained in H; is a matching
exceptional path system, then H; is the union of a Hamilton
cycle on A’ = AU Ay and a Hamilton cycle on B = B U By.
In particular, if both |A’| and |B’| are even, then H; is the
union of two edge-disjoint perfect matchings on V(Gair) U V.

We remark that, as usual, in Corollary 295l we write Ay and By for the excep-
tional sets of P, Vy for Ag U By, and A4, ..., Ak, B1,..., Bk for the clusters in P.
Note that the vertex set of each of £F, EF', G™P includes Vj while that of Gy,
CA(r), PCA(r), H does not.

Moreover, note that matching exceptional systems are only constructed if both
|A’| and |B’| are even. Indeed, we only construct matching exceptional systems in
the case when eg(A’, B') < D. But by Proposition Z2711(ii), in this case we have
that n =0 (mod 4) and |A’| = |B’| = n/2. Therefore, Corollary 2ZZ0.5)(ii)(b) implies
that H + G*™P has a decomposition into Hamilton cycles and perfect matchings.
The proportion of Hamilton cycles (and perfect matchings) in this decomposition
is determined by £F + £F’, and does not depend on H.

Proof of Corollary Choose new constants €', d such that e € ¢/ < 1/L
and 1 /m < d < 1/¢',1/g. Consider the A-setup (Gair[A], Qa, Q4, Ra,Ca,Ua s,
U,Iax,ef) associated to (Ggir, P, P’). By Lemma [2.9.3 this is an (¢, K,m,&’,1/2)-
setup and thus also an (¢, K, m, €', d)-setup.

Recall that P’ is obtained from P by partitioning each cluster A; of P into
L sets Aj1,..., A of equal size and partitioning each cluster B; of P into L
sets Bi1,...,B; 1 of equal size. Let Q% := {A11,..., Ak} (So Q) plays the
role of Q) in (Z81).) Let EF;, ;;, be as defined in Section Recall from
there that, for each i < r3, EF}, 4, is a special factor with parameters (L, f)
with respect to C4 = A1 ... Ax, Q) in Gair[A] such that Fict(EF;A’dir) is the
union of J*[A] over all the Lf exceptional systems J contained in EF;. Thus we
can apply Lemma 294 to (Gai[4], Qa, Q%,RA,CA,UAW,UA)Z,) with K, Lf, €
playing the roles of k, ¢, € in order to obtain a spanning subdigraph C'A 4 qi,(7) of
Gir[A] which satisfies Lemma 2:9.4(i). Similarly, we obtain a spanning subdigraph
CAp qir (1) of Gair[B] which satisfies Lemma 2.9.4(i) (with Gg;;[B] playing the role
of G). Thus the underlying undirected graph CA(r) of CA4 ai(r) + CAp air(r)
satisfies Corollary [Z9.5(i).

Now let EFY, ..., EF]. be exceptional factors as described in Corollary 2.0.5(ii).
Similarly as before, for each i < r°, (EF])} y;, is a special factor with param-
eters (1,7) with respect to Ca, Qa in Gair[A] such that Fict((EF))% 4,) is the
union of J*[A] over all the 7 exceptional systems J contained in EF]. Thus we
can apply Lemma .04 (with Gqai:[A] playing the role of G) to obtain a spanning
subdigraph PCAy4 qir(r) of Gair[A] which satisfies Lemma 2.0.4(ii)(a) and (ii)(b).
Similarly, we obtain a spanning subdigraph PCAp 4ir(r) of Gair[B] which satis-
fies Lemma [2.9.4(ii)(a) and (ii)(b) (with Gai;[B] playing the role of G). Thus the
underlying undirected graph PCA(r) of PC A 4 4ix(r) + PCAp 4ir (1) satisfies Corol-
lary 29.5(ii)(a).

It remains to check that Corollary[Z9.5(ii)(b) holds too. Thuslet H = Hy+Hp
be as described in Corollary Z29.5(ii)(b). Let Hy4 qir be an r-regular orientation of
H,. (To see that such an orientation exists, apply Petersen’s theorem, i.e. Theo-
rem [[L3.10, to obtain a decomposition of H 4 into 2-factors and then orient each
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2-factor to obtain a (directed) 1-factor.) Let EF7 gy, 1= EFY 4 g+ -+ EFY 4 gi,
and let (EF')% g = (EF{)% i + -+ + (EF/e)% 4i- Then Lemma M(u)( )
implies that Ha qir + CAa air(r) + PCAA qir(r) + EF 4 g3 + (g]:l)*A,dir has a decom-
position into s” edge-disjoint (directed) Hamilton cycles C] 4,...,Cl 4 such that
each C’A contains EPS 4 g, for some exceptional path system EPSZ/ e EPS.
Similarly, let Hp qir be an r-regular orientation of Hg. Then Hp 4ir + CAp aic(r) +
PCAp air(r) + EFp air + (EF') 5 a5 has a decomposition into s’ edge-disjoint (di-
rected) Hamilton cycles C] z,...,C} p such that each C} p contains EPS}, p 4,
for some exceptional path ’system EPSZN € EPS. By relabehng the C] A and
C} p if necessary, we may assume that C] 4 contains EPS; , 4, and C; p contains
EPS;‘B air- Let C; 4 and C; g be the undirected cycles obtained from C'A and
C{ p by ignoring the directions of all the edges. So C; 4 contains EPS 4 and C; g
contains EPS} . Let H; := C; o + C; p — EPS; + EPS;. Then Proposmlonm
(applied with G’ playing the role of G) implies that Hy, ..., Hy is a decomposition
of H+ G™ = H + CA( )+ PCA(r) + EF + EF' into edge-disjoint 2-factors sat-
isfying Corollary 229.5(ii)(b;) and (bs). O

2.10. Proof of Theorem

Before we can prove Theorem[1.3.3] we need the following two observations. Re-
call that a (K, m, €9, €)-scheme was defined in Section[Z4land that a [K, L, m, g9, &']-
scheme was defined in Section 283

PROPOSITION 2.10.1. Suppose that 0 < 1/m < e,e0 € ¢’ < 1/K,1/L < 1 and
that K,L,m/L € N. Suppose that (G,P’) is a (KL,m/L,eg,c)-scheme. Suppose
that P is a (K, m,eq)-partition such that P’ is an L-refinement of P. Then there
exists an orientation Gair of G such that (Gair, P, P’') is a [K, L,m,eq,']-scheme.

Proof. Randomly orient every edge in G to obtain an oriented graph Gai,. (So
given any edge xy in G with probability 1/2, 2y € F(Gqi;) and with probability 1/2,
yx € E(Gair).) (Schl’) and (Sch2’) follow immediately from (Schl) and (Sch2).
Note that (Sch3) imply that G[A;, ;, Bir ;] is [1, /€]-superregular with density at
least 1 —¢, for all 4,7’ < K and j,j’ < L. Using this, (Sch3’) follows easily from the
large deviation bound in Proposition [[L44l (Sch4’) follows from Proposition [[4.4]
in a similar way. ([l

PROPOSITION 2.10.2. Suppose that G is a D-reqular graph on n vertices which
is e-close to the union of two disjoint copies of Ky sa. Then D < (1/2 4 4e)n.

Proof. Let B C V(G) with |B| = |n/2] be such that e(B,V(G) \ B) < en?.
Note that B exists since G is e-close to the union of two disjoint copies of K, /5.
Let A = V(G)\ B. If D > (1/2 + 4¢)n, then Proposition Z221](i) implies that
e(A, B) > en?, a contradiction. O

We can now put everything together and prove Theorem [[L3.3]in the following
steps. We choose the (localized) exceptional systems needed as an ‘input’ for Corol-
lary 2205 to construct the robustly decomposable graph G™P in Step 3. For this, we
first choose appropriate constants and a suitable vertex partition in Steps 1 and 2
respectively (in Step 1, we also find some Hamilton cycles covering ‘bad’ edges). In
Step 4, we then apply Corollary 2:9.5] to find G*P. Similarly, we then choose the
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(localized) exceptional systems needed as an ‘input’ for the ‘approximate decom-
position lemma’ (Lemma [25.4) in Step 6 (in this step, we also find some Hamilton
cycles which extend those exceptional systems which are not localized). For Step 6,
we first choose a suitable vertex partition in Step 5. In Step 7, we find an approxi-
mate decomposition using Lemma [2.5.4] and in Step 8, we decompose the union of
the ‘leftover’ and G*™P via Corollary 9.5

Proof of Theorem [1.3.3l

Step 1: Choosing the constants and a framework. Choose ng € N to be
sufficiently large compared to 1/eqx. Let G and D be as in Theorem [[3.3 By
Proposition

(2.10.1) n/2—1< D < (1/2 4+ dee)n.
Define new constants such that
0<1/np <K tex K&K ey el e KAk, K 1/Ky <y < 1/K;
el K LKl/f<m<]l/g<eh L <e<1,

where K1, Ko, L, f,g € N and K> is odd. Note that we can choose the constants
such that

D — gf)o’ﬂ
400( K1 LK)

/\Kan /\K2n K1 2fK1

2.10.2 , : ,
( ) (K1L)? K3 "14fg’ 3g(g—1)

e N.

2 ¢0n7

Apply Proposition to obtain a partition A, Ay, B, By of V(G) such that
(G, A, Ao, B, By) is an (g, 49K, LK>)-framework with A(G[A’, B']) < D/2 (where
A" := AU Ay and B’ := BU By). Let w; and wy be two vertices of G such that
dG[A@B/](wl) > dG[A@B/](wg) > dg[A/yB/](’U) for all v € V(G) \ {w1,ws2}. Note
that the partition A, Ag, B, By of V(G) and the two vertices wy and wq are fixed
throughout the proof. Moreover, in the remainder of the proof, given a graph H
on V(G), we will always write H® for H — H[A] — H[B.
Next we apply Lemma with ¢g and 49K LK> playing the roles of ¢ and
K to find a spanning subgraph H} of G. Let Gy := G — H. Thus the following
properties are satisfied:
(1) G[Ao] + G[By] C H} and H] is a ¢ggn-regular spanning graph of G.
(a2) eay (A, B') < ¢on and eg, (A’, B') is even.
(a3) The edges of H; can be decomposed into |eyy;, (A’, B')/2] Hamilton cycles
and ¢on — 2| ey (A’, B') /2] perfect matchings. Moreover, if eq(A’, B') >
D, then this decomposition consists of |pgn,/2] Hamilton cycles and one
perfect matching if D is odd.
() dg,(ar,py(w1) < (D — ¢on)/2. Furthermore, if D =n/2 — 1 then
dg, (47,57 (w2) < (D — ¢on)/2.
(a5) If eq(A’, B’) < D, then A(G1[A’, B']) < e(G1[A’,B’])/2 < (D — ¢on)/2.

Let H1 be the collection of Hamilton cycles and perfect matchings guaranteed by
(a3). (So Hy = UH1.) Note that

(2.10.3) Dy :=D — ¢on

is even (since (2I10.2) implies that D and ¢on have the same parity) and that Gy
is Di-regular. Moreover, (G, A, Ag, B, By) is an (g9, 49gK1LK>)-framework with
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A(Gy[A', B')) < D/2. Let

A B
my = % = %, ri=yma, T i=y1ma, ry i= 96g° Ky,
K
rg,::—rLl, ri=ri+ro+r—(Lf—1)rs,
Al _ IB] o
2.10.4 === — Dy =Dy —2(L .
(2.10.4)  mao % K, 4 1—2(Lfrs+17r°)
Note that (FR3) implies m1/L € N. Moreover,
(2.10.5) ro, 3 < AY?my < Y3, r1/2 <r® < 2rp.

Furthermore, by changing v, 1 slightly, we may assume that r/400L K3, /400K2
€ N. This implies that ro/400K3,73/400K3,7°/400K3 € N. Together with the
fact that Dq/400K3 = (D — ¢on)/400K2 € N by (ZI0.2), this in turn implies that

(2.10.6) D4/400K3 € N.

Step 2: Choosing a (K, L, mi,ep)-partition (P;,P;). We now prepare the
ground for the construction of the robustly decomposable graph G™P, which we
will obtain via the robust decomposition lemma (Corollary [Z9.3]) in Step 4.

Since (G1, A, Ao, B, By) is an (eg, 4g K1 LK5)-framework, it is also an (gg, K1 L)-
framework. Recall that G is Dy-regular and Dy = D — ¢on > (1 — 3¢o)n/2 (as
D > n/2—1). Apply Lemma 2432 with Gy, m1/L, 3¢9, K1L, €., €. playing the
roles of G, m, 1, K, €1, €2 to obtain partitions A7, ..., A% ; of Aand BY,..., By |
of B into sets of size m1/L such that the following properties are satisfied:

(S1a) Together with Ag and By all these sets A} and B form a (KL, m1/L,o)-

partition Pj of V(G1).
(S1b) (G1[A] + G1[B],P;) is a (K1L,m1/L, g, 4)-scheme.
(S1c) (GS,P1) is a (K1L,mq/L,e0,¢e4)-exceptional scheme (where G§ := G —
G1[A] — G2[B)).

Note that (1 —eg)n < n —|4g U By| = 2K1m; < n by (FR3). For all i < K,
and all h < L, let A; = A’(i_l)LJrh. (So this is just a relabeling of the sets
Al.) Define B;j similarly and let A4; := Uth A;p and B; = Uth B; . Let
Py = {4y, By, A1,...,Ak,, B1,..., Bk, } denote the corresponding (K7, m,¢eq)-
partition of V(G). Thus (P1,Py) is a (K1, L, m1,€p)-partition of V(G), as defined
in Section
Step 3: Exceptional systems for the robustly decomposable graph. In
order to be able to apply Corollary [Z.9.5]to obtain the robustly decomposable graph
G™°P, we first need to construct suitable exceptional systems with parameter e.
The construction of these exceptional systems depends on whether G is critical and
whether eg(A’, B') > D. First we show that in each case, for all 1 <i},i, < KL,
we can always find sets Jy i» of A, .n/(K1L)* (i4,i5)-ES with respect to Pj.
Case 1: eg(A’,B’) > D and G is not critical. Our aim is to apply Lemma 2.7.3]
to G with H{, m1/L, K1L, Pj, €«, ¢, Ak,r playing the roles of Gy, m, K, P,
g, ¢, A. First we verify that Lemma 27.3(i)—(iv) are satisfied. Lemma 2Z7.3(i)
holds trivially. (FR2) implies that eg(A’, B') < egn®. Moreover, recall from (S;a)
that P} is a (K1L,m1/L,ep)-partition of V(G) and that A" and B’ were chosen
(by Proposition 2:2.5) such that A(G[A’, B']) < D/2. Altogether this shows that
Lemma [273(ii) holds. Lemma 2.7.3(iii) follows from (c;) and (ag). To verify
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Lemma[Z73(iv), note that G plays the role of G° in Lemma273land G$[A, B'] =
G1[A’, B']. So egs(A’, B') is even by (). Together with the fact that (G7,P7) is
a (K1L,mq /L, &g, e.)-exceptional scheme by (Sic), this implies Lemma [Z73[iv).
By Lemma[2.73] we obtain a set J of Ak, ,n edge-disjoint Hamilton exceptional
systems J in GY such that ej(A’,B’) = 2 for each J € J and such that for all
1 < i},iy < KL the set J contains precisely \g,rn/(K1L)? (i}, i)-HES with
respect to the partition Pj. For all 1 <i,i5 < K1L, let Jis ;; be the set of these
Ak, on/(K1L)? (i,i5)-HES in J. So J is the union of all the sets J;: i;. (Note
that the set J here is a subset of the set J in Lemma [Z7.3] i.e. we do not use all
the Hamilton exceptional systems constructed by Lemma 273l So we do not need
the full strength of Lemma [Z773] at this point.)
Case 2: eg(A’,B’) > D and G is critical. Recall from Lemma [Z71[ii) that in
this case we have D = (n—1)/2 or D =n/2—1. Our aim is to apply Lemma 2.7.4]
to G with H{, m1/L, K1 L, P, e«, ¢o, Ak, DPlaying the roles of Gy, m, K, P, ¢, ¢,
A. Similar arguments as in Case 1 show that Lemma [2Z77.4(i)—(iv) hold. Recall that
wy and wy are (fixed) vertices in V/(G) such that dgpar py(w1) > dear, gy (w2) >
dorar,p(v) for all v € V(G) \ {wi,ws}. Since GJ[A',B'] = Gi[A",B’], (a4)
implies that dgsiar,p(w1) < (D — ¢on)/2. Moreover, if D = n/2 — 1, then
dasiar,p(w2) < (D — ¢on)/2. Let W be the set of vertices w € V(G) such
that dgpar,py(w) > 11D/40, as defined in Lemma B7Tl If D = (n —1)/2, then
|[W| =1 by Lemma TIJii). This means that wy ¢ W and so dge(ar, pj(w2) <
darar,py(we) < 11D/40. Thus in both cases we have that

(2107) de[AlﬁB/] (wl), dG?[A’,B’] (’wg) < (D — ¢07’L)/2

Therefore, Lemma [2°7.4(v) holds.

By Lemma 274 we obtain a set J of Ak, rn edge-disjoint Hamilton excep-

tional systems J in GY such that, for all 1 < ¢{,i, < K;L, the set J contains
precisely Ak, n/(K1L)? (i}, i,)-HES with respect to the partition Pj. Moreover,
each J € J satisfies e;(A’, B') = 2 and d 4/ p(w) = 1 for all w € {wy, w2} with
dgiar,py(w) > 11D/40. For all 1 < 44,15 < KiL, let Ji; iy be the set of these
Ak, pn/(K1L)? (if,1)-HES. So J is the union of all the sets J; ;. (So similarly
as in Case 1, we do not use all the Hamilton exceptional systems constructed by
Lemma .74 at this point.)
Case 3: eg(A’,B’) < D. Recall from Proposition 2.2.I[(ii) that in this case we
have D = n/2 —1, n = 0 (mod 4) and |A'| = |B’| = n/2. Our aim is to apply
Lemma 278 to G with H}, m1/L, K1L, Pi, €., 0, Ak, 1 playing the roles of Gy,
m, K, P, €, ¢, . Similar arguments as in Case 1 show that Lemma 277.5(i)—(iv)
hold. Since G§[A’, B'] = G1[A’, B’] and D =n/2 — 1, Lemma 27.5(v) follows from
(as).

By Lemma 278 G$ can be decomposed into a set J' of D;/2 edge-disjoint
exceptional systems such that each of these exceptional systems J is either a Hamil-
ton exceptional system with ej(A’, B') = 2 or a matching exceptional system. (So
J’ plays the role of the set J in Lemma[2775) LemmaR75(b) guarantees that we
can choose a subset J of J’ such that J consists of Ag, pn edge-disjoint exceptional
systems J in G$ such that for all 1 < ¢{,i, < K;L the set J contains precisely
A, pn/(K1L)? (i},45)-ES with respect to the partition P;. Forall 1 < #},i < KL,
let Jir i be the set of these A, ,n/(K1L)? (i},i5)-ES. So J is the union of all the
sets Jir it - (Note that to construct the robustly decomposable graph we will only
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use the exceptional systems in 7. However, in order to prove condition (85) below,
we will also use the fact that G¢ has a decomposition into edge-disjoint exceptional
systems.)

Thus in each of the three cases, J is the union of all the sets Jix ;; , where for
all 1 <idf,ih < KL, the set J consists of precisely Ak, n/(K1L)? (i},i5)-ES with
respect to the partition Pj. Moreover, all the Ak, .n exceptional systems in J are
edge-disjoint.

Our next aim is to choose two disjoint subsets Jca and Jpca of J with the
following properties:

(a) In total Jca contains L frs exceptional systems. For each i < f and each
h < L, Joa contains precisely 73 (i1,12)-ES of style h (with respect to
the (K1, L, m1,e0)-partition (P, Pq)) such that i1,i2 € {(i — 1)K1/f +
2,...,iK1/f}.

(b) In total Jpca contains 7r° exceptional systems. For each i < 7, Jpca
contains precisely r° (i1,42)-ES (with respect to the partition P;) with
11,72 € {(’L — 1)K1/7+ 2,... ,’LKl/?}

(¢) Each exceptional system J € Joa UJpca is either a Hamilton exceptional
system with e;(A’, B") = 2 or a matching exceptional system.

(Recall that we defined in Section 2.83 when an (i1, i2)-ES has style h with respect
to a (K1, L, mq,eo)-partition (P1,P;).) To see that it is possible to choose Jca
and Jpca, split J into two sets J1 and J2 such that both J; and J> contain
at least A\g,rn/3(K1L)? (i},i%)-ES with respect to Pj, for all 1 < i},i5 < K;L.
Note that, for each i < f, there are (K;i/f — 1)? choices of pairs (i1,i2) with
i1,i2 € {(i—1)K1/f+2,...,iK1/f}. Moreover, for each such pair (i1,i2) and each
h < L there is precisely one pair (#},i,) with 1 <4}, < K;L and such that any
(i1, 15)-ES with respect to Pj is an (i1,i2)-ES of style h with respect to (P1, Py).
Together with the fact that v < Ag,r,1/L,1/f and

(K1/f —1)?Ag,n _ n S B -
= - =Ts,
3(K1L)? L L L

this implies that we can choose a set Joa C J1 satisfying (a).

Similarly, for each i < 7, there are (K;/7 — 1)? choices of pairs (i1,42) with
i1,02 € {(i — 1)K1/7+ 2,...,iK1/7}. Moreover, for each such pair (i1,i2) there
are L? distinct pairs (i}, %) with 1 < 4,i}, < K;L and such that any (i}, })-ES
with respect to Pp is an (i1, 42)-ES with respect to P;. Together with the fact that
Y1 < Ak, 1, and

(K1/7 - 1)2L2/\K1Ln
3(K1L)?
this implies that we can choose a set Jpca C J2 satisfying (b). Our choice of
J 2 Jca U Jpca guarantees that (¢) holds too. Let
(2.10.8) TP := Joa UTpca, o° := (Lfrs+7r°)/n and GS := G5 — Ujmb.

(In Step 5 below we will define a graph G4 which will satisfy G§ = G4 — G4[4] —
G4[B]. So this will fit with our definition of the operator ¢.) Note that
(2.10.9)

'yKlml TK1

>

>yn>2ymy =2r; > 1r°

- )

7r° @103 3 3 104
(bBObZL > ﬂ:ﬂ>l>2¢o and 2¢6°bn =  D;— D,.

n n n — Ki
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Moreover, we claim that |J J*°P is a subgraph of G$ C G satisfying the following
properties:

(B1) dy geov (v) = 2(Lfrs 4 Tr°) = 2¢5°°n for each v € Vj.

(B2) ey gron (A, B') < 24 n is even.

(B3) J™P contains exactly ¢f°Pn exceptional systems, of which precisely
ey grov(A’, B')/2 are Hamilton exceptional systems. If eq(A’, B") > D,
then J™P consists entirely of Hamilton exceptional systems. If 7™ con-
tains a matching exceptional system, then |A’| = |B’| = n/2 is even.

(Bs) If eq(A',B') > D and G is critical, then d|j gronar pj(w) = ¢f°Pn for
all w € {’wl,’LUQ} with dG[A/,B’] (’LU) > 11D/40 Moreover, dGZ[A/,B’] (wl),
dasiar, g (w2) < (D = (¢o + 2¢5°°)n) /2.

(Bs) If eq(A’, B") < D, then A(GS[A", B']) < e(G3lA",B’])/2 < Dy/2 = (D —
(do + 20°°)n) /2.

rob

To verify the above, note that J*°" consists of precisely ¢5°°n exceptional systems .J
(each of which is an exceptional cover). So (1) follows from (EC2). Moreover, each
such J is either a Hamilton exceptional system with e;(A’, B’) = 2 or a matching
exceptional system (with e;(A’, B') = 0 by (MES)), which implies (f2) and the first
part of (83). If eq(A’, B') > D, then we are in Case 1 or 2 and so the second part of
(B3) follows from our construction of 7 2O J*°P. The first part of (34) follows from
our construction of 7 2 J*°" in Case 2. Since 11D/40 < (D — (¢o +2¢5°P)n) /2, we
can combine the first part of (84) with (2I0.7) to obtain the ‘moreover part’ of (84).
Thus it remains to verify (85). So suppose that eq(A’, B') < D. Recall from Case 3
that G§ has a decomposition into a set 7' of D1 /2 edge-disjoint exceptional systems
J, each of which is either a Hamilton exceptional system with e;(A’, B") = 2 or
a matching exceptional system. This means that J[A’, B] is either empty or a
matching of size 2. Note that G[A’, B'] is precisely the union of J[A’, B’] over all
those D1/2 — ¢i°Pn = D, /2 exceptional systems J € J'\ J*P. So (85) holds.

Step 4: Finding the robustly decomposable graph. Let Gy := G[4] +
G1[B]. Recall from (S1b) that (G2,P;) is a (K1L,m1/L,ep,e4)-scheme. Apply
Proposition ZTI0T with G, Py, Py, K1, m1, €., £, playing the roles of G, P, P/,
K, m, e, ¢’ to obtain an orientation G giy of G2 such that (Ggair, P1,P;) is a
[K1, L,mq, €0, €,]-scheme.

Our next aim is to use Lemma [2.8.3] in order to extend the exceptional systems
in Joa into 73 edge-disjoint exceptional factors with parameters (L, f) for Gz gir
(with respect to (P1,P])). For this, note that (a) and (c) guarantee that Jca
satisfies Lemma 2:83)(i),(ii) with r3 playing the role of q. Moreover, Lr3/m; =
rKi/my = vK; < 1. Thus we can indeed apply Lemma to (Gz,dirs P1, P})
with Joa, m1, €., K1, r3 playing the roles of J, m, ¢, K, q in order to obtain r3
edge-disjoint exceptional factors EFy,..., EF,, with parameters (L, f) for G2 gir
(with respect to (P1,P;)) such that together these exceptional factors cover all
edges in |JJca. Let EFca := EFy + -+ 4+ EF,,. Since Gy = G1[A] + G1[B], we
have (EFca)® = Joa. Moreover, each exceptional path system in EFca contains
a unique exceptional system in Jca (in particular, their numbers are equal).

Note that m1/4g,m1/L € Nsince my = |A|/ K7 and |A] is divisible by 49K L as
(G, A, Ao, B, By) is an (g9, 49K LK3)-framework. Furthermore, rK? = ym; K? <
y'/?my < my. Thus we can apply Corollary ZL9.5] to the [K1, L, my, g, £”]-scheme
(G2.4ir, P1,Py) with K1, ma, €/, g playing the roles of K, m, ¢, £’ to obtain a
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spanning subgraph CA(r) of G2 as described there. (Note that Gy equals the
graph G’ defined in Corollary [Z9.5]) In particular, CA(r) is 2(rq + r2)-regular and
edge-disjoint from EFca.

Let G5 be the graph obtained from G2 by deleting all the edges of CA(r) +
EFca. Thus G is obtained from Ga by deleting at most 2(ry + 73 + r3) < 611 =
6v1m; edges at every vertex in AU B. Let G3aqir be the orientation of G in
which every edge is oriented in the same way as in Ga gir. Since (Ga,dgir, P1,P1) is
a [K1,L,mq,e, e, ]-scheme, Proposition [[41] and the fact that /,v1 < & imply
that (Gs,gir, P1,P1) is a [K1,1,m, €0, €]-scheme. Moreover,

re 271

S G S T

my my
Together with (b) and (c) this ensures that we can apply Lemma 283 to (G3 qir, P1,
Py) with Jpca, m1, K1, 1, 7, r° playing the roles of 7, m, K, L, f, g in order to
obtain r° edge-disjoint exceptional factors EFY, ..., EF/, with parameters (1, 7) for
G air (with respect to (P1,P1)) such that together these exceptional factors cover
all edges in |J Jpca. Let EFpoa := EF| +---+ EF/s. Since G5 C G1[A] + G41[B]
we have (EFpca)® = | Ipca. Moreover, each exceptional path system in EFpca
contains a unique exceptional system in Jpca -

Apply Corollary[Z9Hto obtain a spanning subgraph PC' A(r) of G5 as described
there. In particular, PC A(r) is 10r°-regular and edge-disjoint from C A(r)+EF ca+
EFpca.

Let G™ := CA(r) + PCA(r) + EFca + EFpca. Note that by (Z8.2) all the
vertices in Vj := Ay U By have the same degree 7“6°b :=2(Lfrs+7Tr°) = 2¢6°bn in
G™P. So

Emsn | @I
(2.10.10) Ty < P < 30m.

Moreover, ([2:82) also implies that all the vertices in A U B have the same degree
r*°P in G™P | where 1P 1= 2(r1 +79) 4+ 107° + 273 + 2r° = 2(ry + 72 + 73+ 67°). So

P — P = O (Lfrs +1° — (1 + 1o +13)) =2(Lfrs+r — (Lf — 1)rs —r3) = 2r,

Note that (G™P)° = |J(Jca U Jpca) = J T™P. Recall that the number of Hamil-
ton exceptional path systems in EF ca equals the number of Hamilton exceptional
systems in Joa, and that the analogue holds for EFpca. Hence, (81), (82) and
(B3) imply the follow statements:

(B1) dgrov (v) = rE°P = 2¢5°Pn for all v € V4.

(B3) egreon (A, B') = e geon (A, B') < P> = 2¢7°"n is even.

(By) EFca + EFpca contains exactly ¢i°Pn exceptional path systems (and
each such path system contains a unique exceptional system in J*P,
where |77 = ¢f°Pn). Precisely e zwon(A’, B')/2 of these are Hamil-
ton exceptional path systems. If eq(A’, B’) > D, then every exceptional
path system in EFca + EFpca is a Hamilton exceptional path system.
If EFca + EFpca contains a matching exceptional path system, then
|A’| = |B'| =n/2 is even.

Step 5: Choosing a (K3, ms,cq)-partition P2. We now prepare the ground
for the approximate decomposition step (i.e. to apply Lemma [Z5.4). For this, we
need to work with a finer partition of AU B than the previous one (this will ensure
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that the leftover from the approximate decomposition step is sufficiently sparse
compared to G*°P).
So let G4 := Gy — G™P (where G was defined in Step 1) and note that

(2.10.11) Dy eza Dy —rf°® = Dy — ™ — 2r,

So
(2.10.12)
dg,(v) =Dy +2r forallve AUB and dg,(v) = Dy for all v € Vj.
Hence
Gy = py EID s, OB

as ¢i°P > 2¢g by ([ZI0.9). Moreover, note that

(60 +205°")n > (1 — 667 )n/2

I0I0)
2¢6°bn = rBOb < 30r1 = 30y1my < 30yin/K;,

so ¢i°P < £ Since (G, A, Ao, B, By) is an (g¢, 49K LK>)-framework, (G4, A, Ao,
B, By) is an (&g, K3)-framework. Now apply Lemma[ZZ2to (G4, A, Ag, B, By) with
Ka, ma, €}, €h, 6P playing the roles of K, m, €1, €2, 1 in order to obtain partitions
Aiy,..., Ak, and By, ..., Bk, of A and B satisfying the following conditions:
(Sea) The vertex partition Py := {Ag, Bo, 41,... Ak,,B1,...,Bk,} is a (K,
ma, £o)-partition of V(G).
(S2b) (GalA] + G4[B],P2) is a (K2, me, €9, £5)-scheme.
(S2¢) (G, P2) is a (K2, ma, €, €] )-exceptional scheme.
(Recall that G§ := G$ — |JJ™P was defined towards the end of Step 3. Since
G4 = G1 —G™ we have (G4)° = G$ — (G™P)° = G$ — J TP, so (G4)° is indeed
the same as G5.) Moreover, by Lemma [Z4.2(iv) we have
(2.10.13)
da,(v, A;) = (dg, (v, A) £ egn) /K> and dg, (v, B;) = (dg, (v, B) £ eon)/ K2

for all v € V(G) and 1 < i < K. (Note that the previous partition of A and B
plays no role in the subsequent argument, so denoting the clusters in P2 by A; and
B, again will cause no notational conflicts.)

Since (G4, A, Ao, B, By) is an (g9, Ks)-framework, (FR3) and (FR4) together
imply that each v € A satisfies dg, (v, Ao) < [Vo| < gon and dg, (v, B’) < gon. So
dg,(v,A) = dg,(v) £ 2egn. Therefore, for all v € A and all 1 <4 < K5 we have

(2.10.14)
dg, (v, A;) 2L dg, (v, A) £ eon _ dg,(v) £ 3eon _ da, (v) & Teg Kama
Gy \Us 44 K2 K2 K2 '

The analogue holds for dg, (v, B;) (where v € B and 1 <i < K»).

Step 6: Exceptional systems for the approximate decomposition. In order
to apply Lemma [2.5.4] we first need to construct suitable exceptional systems. We
will show that G§ can be decomposed completely into Ds/2 exceptional systems
with parameter €y. Moreover, these exceptional systems can be partitioned into
sets Jy and J/ ;, (one set for each pair 1 < ij,4ip < Ky) such that the following
conditions hold, where 7" denotes the union of i’11i2 over all 1 < iy,is < Ko:

(m1) Each J/ ,, consists of precisely (Dy — 2Ax,n)/2K3 (i1,i2)-ES with pa-

rameter €9 with respect to the partition Ps.
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(v2) Jj contains precisely Ag,n exceptional systems with parameter e.
(v3) If eq(A’, B") > D, then all exceptional systems in Jj U J” are Hamilton
exceptional systems.
(va) Ifeq(A’, B') < D, then each exceptional system J € JjUJ" is a Hamilton
exceptional system with e;(A’, B’) = 2 or a matching exceptional system.
In particular, Jj contains precisely e 7/(A’, B')/2 Hamilton exceptional
systems and J" contains precisely e\ 7 (A’, B')/2 Hamilton exceptional
systems.
As in Step 3, the construction of Jj and the J/ ; will depend on whether G is
critical and whether eg(A’, B') > D. Recall that G4 = G; — G™ and note that

D — ¢on — 2¢6°bn Dy
400K2 ~ 400K3

(2.10.15)

by 2I10.6).

Case 1: eg(A4’,B’) > D and G is not critical. Our aim is to apply Lemma 273
to G with G — Gy, ma, Ko, Pa, &}, o + 20, Ak, playing the roles of Go, m, K,
P, e, ¢, A\. (So G5 will play the role of G°.) First we verify that the conditions
in Lemma 2.73(i)—(iv) are satisfied. Clearly, Lemma 2.7.3(i) and (ii) hold. Note
that G — Gy = H} + G™P, so (a1), (a2), (B1) and (B5) imply Lemma E7.3(iii).
By (a2) and (8), egs(A’, B') is even. Together with the fact (Sgr) that (G§,Pa)
is a (K2, ma, €0, €} )-exceptional scheme, this shows that Lemma B773(iv) holds.
Together with (2I0.15) this ensures that we can indeed apply Lemma to
obtain a set of (D — (¢o + 2¢5°°)n)/2 = D4 /2 edge-disjoint Hamilton exceptional
systems with parameter ¢y in G4. Moreover, these Hamilton exceptional systems
can be partitioned into sets Jy and J;, ;, (for all 1 <iy,ip < Kj) such that (y1)-
(73) hold.

Case 2: eg(A’,B’) > D and G is critical. Our aim is to apply Lemma 2.7.4]
to G with G — G4, ma, Ko, Pa, €1, ¢o + 265, Ak, playing the roles of Gy, m,
K, P, e, ¢, \. (So as before, G§ will play the role of G°.) Similar arguments
as in Case 1 show that Lemma [2Z774(i)—(iv) hold. (B4) implies Lemma Z74(v).
Together with (ZI0.I5) this ensures that we can indeed apply Lemma 274 to
obtain a set of Dy/2 edge-disjoint Hamilton exceptional systems with parameter ¢
in G4. Moreover, these Hamilton exceptional systems can be partitioned into sets
Jo and J;, ;, (for 1 <iy,iy < Kj) such that (y1)—(v3) hold.

Case 3: eq(A’,B’) < D. Recall from Proposition 2.2.1[(ii) that in this case we
have D = n/2 —1, n = 0 (mod 4) and |A'| = |B’| = n/2. Our aim is to apply
Lemma 75 to G with G — G4, ma, K2, Pa, €}, ¢o+2¢™P, Ak, playing the roles of
Go, m, K, P, e, ¢, \. (So as before, G§ will play the role of G°.) Similar arguments
as in Case 1 show that Lemma [Z775(i)—(iv) hold. (Bs) implies Lemma Z7.4(v).
Together with (2I0.I5) this ensures that we can indeed apply Lemma to
obtain a set of D4/2 edge-disjoint exceptional systems in G4. Moreover, these
exceptional systems can be partitioned into sets Jj and 1-’1)1-2 (for all 1 <iq,is <
K5) such that (v1), (72) and (74) hold. (In particular, (7y4) implies that each
exceptional system in these sets has parameter &g.)

eN

Therefore, in each of the three cases we have constructed sets Jj and J;, ;, (for
all 1 <iq,io < Ko) satistying (y1)—(74)-

We now find Hamilton cycles and perfect matchings covering the ‘non-localized’
exceptional systems (i.e. the ones in Jj). Let G}y = G4 — G5. So G is obtained
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from G4 by keeping all edges inside A as well as all edges inside B, and delet-
ing all other edges. Note that (G}, A, Ao, B, By) is an (g9, K2)-framework since
(G4, A, Ay, B, By) is an (e, Ka)-framework. Apply Lemma 2.6.2 to (G, A, Ay, B,
By) with K, Ak,, J§ playing the roles of K, A, {Ji1,...,Jxn}. (Recall from (S2b)
that (G4[A] + G4[B], P2) is a (Ka,ma2, €, e5)-scheme, so §(G4[A]) = §(G4[4]) >
4]A|/5 and §(G[B]) = §(G4[B]) > 4|B|/5 by (Sch3).) We obtain edge-disjoint
subgraphs Hl, ceey H\j{;‘ of Gﬁl + Uj(; such that, Writing Ho = {Hl, S aHIJ(;I}a
the following conditions hold:
(61) For each Hs € Hso there is some J; € J such that J, C Hy.
(62) If Js is a Hamilton exceptional system, then Hg is a Hamilton cycle on
V(QG). If Js is a matching exceptional system, then Hy is the edge-disjoint
union of two perfect matchings on V(G).
(63) Let Hy := Hi+---+ H)g1. If eg(A’, B') < D, then Hz contains precisely
ey, (A’, B')/2 Hamilton cycles on V(G).
Indeed, (d1) follows from Lemma 2.:6.2(i). (d2) follows from Lemma 2.6.2(ii), (iii).
(For the second part, note that (v3) and (y4) imply that Jj contains matching
exceptional systems only in the case when eg(A’, B’) < D. But in this case,
Proposition 22771(ii) implies that n = 0 (mod 4) and |A’| = |B'| = n/2, i.e. |4’
and |B'| are even.) For (J3), note that G has no A’ B’-edges and so e(j 7, (A’, B') =
ey, (A’, B'). Together with (02) and (74), this now implies (J3).
Recall that J” is the union of ilm'z overall 1 <iy,is < Ky. Let G5 := G4—H))
and Ds := Dy — 2|Ha| = Dy — 2Ak,n. So 210.12) implies that
(2.10.16)
dg,(v) = D5+ 2r for allve AUB and dg, (v) = D5 for all v € V.

Note that

(2.10.17) 0i=G5—Gs[A] - G5Bl =G5 - Hy =G, - | T = 7"
Since dy(v) =2 for all v € Vp and all J € J”, it follows that
(2.10.18) D5 =217".

Moreover, since (G4[A] + G4[B], P2) is a (K2, ma, €9, £5)-scheme and €}, + 2k, < e,
Proposition 4] implies that (G5[A] + G5[B], P2) is a (K2, ma, €o, €)-scheme.
Step 7: Approximate Hamilton cycle decomposition. Our next aim is to
apply Lemma [2.5.4] to obtain an approximate decomposition of G5. Let

o= (1P — 2r) /(4K amy) and p:=v/(4Ky).

We will apply the lemma with G5, Pa, Ko, ma, J”, € playing the roles of G, P, K,
m, J, €. Clearly, conditions (¢) and (d) of Lemma [Z5.4 hold.

In order to see that condition (a) is satisfied, recall that mi K7 = |A| = maKo.
So

7T1 —2r (PRURW) (PRURW) 30T1 30")/1
0<—— < p < = <1
4K2m2 4K2m2 4K1
Therefore, every vertex v € AU B satisfies
dg, (v) = Dy+2r =" D — 7“6°b +2r = D — ¢on — 4Komopu
(PATINI)

= (1/2 + 4deex)n — pon — 4Kamap
(210.19) = (1 — 4p % 3¢0) Kams,
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where in the last equality we recall that (1 —eg)n/2 < |A] = Kams < n/2 and
€0, Eex K ¢o. Recall that G5 = G4 — H), and note that

A(HS) = 2[Ha| = 2Ak,n < 5Ak, Kamo.
Altogether this implies that for each v € A and for all 1 < i < Ky we have

dG5 (1}, Az) = dG4(U,Ai) - d?—[é (1}, Az) = dG4 (’U,Ai) + 5)\K2K2m2

= (dG4(U) :|:750K2m2)/K2:|:5)\K2K2m2

= (1 —4p =+ (3¢ + Teo + BAk, K2)) ma.
Since ¢g, €0, Ak, < 1/Ka, it follows that dg, (v, A;) = (1—4p+4/K3)ms. Similarly
one can show that dg, (w, B;) = (1—4pu+4/Ks)ms for allw € B. So Lemma[2Z5.4(a)
holds.
To check condition (b), note that r = v|A|/K; > yn/3K;. So

__ prob ZI0) rob
o) TR Do D@Dt S
2 2 2 4 2
1
= %+250Xn—2K2m2u—r < <Z + 20x — (1 — o)t — SLK1> n

IN

Lo o N (Lt ),
1 Frag )T \g TR

Thus Lemma 2.5.4(b) holds.

So we can indeed apply Lemma [2Z5.4] to obtain a collection Hs of | J"| edge-
disjoint spanning subgraphs H7,..., H " 77 of G5 which satisfy the following prop-
erties:

(e1) For each H. € Hg there is some J, € J" such that J, C H].

(e2) If J] is a Hamilton exceptional system then H/ is a Hamilton cycle on
V(G). If J, is a matching exceptional system then H! is the edge-disjoint
union of two perfect matchings on V(G).

(e3) Let Hy:= Hi+---+H|;,. If eq(A’, B') < D, then H3 contains precisely
ey, (A’, B')/2 Hamilton cycles on V(G).

For (e3), note that (ZI0.IT) implies G§ = (JJ" and thus we have e 7+ (A’, B") =
ey, (A’, B'). Together with (e2) and (74), this now implies (e3).

Step 8: Decomposing the leftover and the robustly decomposable graph.
Finally, we can apply the ‘robust decomposition property’ of G*P guaranteed by
Corollary to obtain a decomposition of the leftover from the previous step
together with G™P into Hamilton cycles (and perfect matchings if applicable).

To achieve this, let H' := G5 — H5. Thus (2ZI0.16) and (ZI0.I8) imply that
every vertex in Vj is isolated in H’ while every vertex v € AU B has degree dg, (v) —
2|T"| = Ds + 2r — 2|J"| = 2r in H' (the last equality follows from (ZI0.IS)).
Moreover, (H')® contains no edges. (This holds since | JJ” C H% and so H' C
Gs —JJ" = G5 — G2 by @I0I7).) Now let Hy := H'[A], Hp := H'[B], H :=
H, + Hp. Note that H is the 2r-regular subgraph of H' obtained by removing all
the vertices in V. Let

s i=rfKy+ 7 @ Lfrs+7r° @ ol
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Recall from (/%) that each of the s’ exceptional path systems in EFca + EFpca
contains a unique exceptional system and J'" is the set of all these s’ excep-
tional systems. Thus Corollary ZZ0.5(ii)(b) implies that H + G*™P has a decompo-
sition into edge-disjoint spanning subgraphs HY', ..., H?, such that, writing H4 :=
{H{,...,H}}, we have:
(¢1) For each H! € H,4 there is some exceptional system J € J™P such that
JI! C HY.
((2) If JY is a Hamilton exceptional system then H! is a Hamilton cycle on
V(G). If J” is a matching exceptional system then H. is the edge-disjoint
union of two perfect matchings on V(G).
(G3) Let Hy := HY +---+ H[. Then H4 contains precisely ey (A’, B')/2
Hamilton cycles on V(G).
Indeed, (¢1) and ((2) follow from Corollary 2.9.5(ii)(b) (recall that if J*°P contains
a matching exceptional system, then |A’'| = |B’| = n/2 is even by (33%)). For ((3),
note that ey (A, B') = egron(A', B') = ey grv (A, B') by (B3). Now ((3) follows
from (/5%) and ((2).

Note that H1 UH2 UH3zUH,4 corresponds to a decomposition of G into Hamilton
cycles and perfect matchings. It remains to show that the proportion of Hamilton
cycles in this decomposition is as desired.

First suppose that eq(A’, B') > D. By (as), H1 consists of Hamilton cycles and
one perfect matching if D is odd. By (73), (d2) and (e2), both Ha and H3 consist
of Hamilton cycles. By (8%) and (2) this also holds for H4. So Hi UHa UHs U Hy
consists of Hamilton cycles and one perfect matching if D is odd.

Next suppose that eq(A’,B’) < D. Then by (as), (d3), (¢3) and ((3) the
numbers of Hamilton cycles in H1, Ha, Hz and H4 are precisely |ey: (A, B)/2],
ey, (A, B')/2, eqy, (A, B')/2 and ey (A’, B') /2. Hence, H1UH2UH3UH4 contains
precisely

2 2 2
edge-disjoint Hamilton cycles, where F' is the size of the minimum cut in G. Since
clearly G cannot have more than |F/2] edge-disjoint Hamilton cycles, it follows

that we have equality in the final step, as required. (Il

{eHiuHéquUHQ(AIaBI)J _ VG(A/,B/)J N {FJ






CHAPTER 3

Exceptional systems for the two cliques case

In this chapter we prove all the results that were stated in Section 2.7 Recall
that the exceptional edges are all those edges incident to Ag and By as well as all
those edges joining A’ to B’. The results stated in Section 2.7 generated a decom-
position of these exceptional edges into exceptional systems: Each such exceptional
system was then extended into a Hamilton cycle. (Recall that actually, the excep-
tional systems may contain some non-exceptional edges as well.) This is the most
difficult part of the construction of the Hamilton cycle decomposition and so forms
the heart of the argument for the two clique case.

Let G be a D-regular graph and let A’, B’ be a partition of V(G). Recall that
we say that G is critical (with respect to A’, B’ and D) if both of the following
hold:

e A(G[A',B’]) > 11D/40;
e ¢(H) < 41D/40 for all subgraphs H of G[A’, B'] with A(H) < 11D/40.

Recall that Lemmas guarantee our desired decomposition of the
exceptional edges into exceptional systems. Lemma covers the non-critical
case when G[A’, B'] contains many edges, Lemmal[ZT 4] covers the critical case when
G[A’, B'] contains many edges and Lemma tackles the case when G[A’, B]
contains only a few edges.

3.1. Proof of Lemma [2.7.7]

The following lemma (which collects some basic properties of critical graphs)
immediately implies Lemma 2711

LEMMA 3.1.1. Suppose that 0 < 1/n < 1 and that D,n € N are such that

mod 4)
mod 4),
mod 4),
mod 4).

7

n/2—1 ifn=0
(n—1)/2 ifn=1
n/2 ifn=2
(n+1)/2 ifn=3

(3.1.1) D>n—2n/4|—1=

S~~~ o~

Let G be a D-regular graph on n vertices and let A', B’ be a partition of V(G) with
|A'|,|B’| > D/2 and A(G[A’,B']) < D/2. Suppose that G is critical. Let W be
the set of vertices w € V(G) such that dgiar,pj(w) > 11D/40. Then the following
properties are satisfied:
(i) 1 < W] <3.
(ii) Fither D = (n —1)/2 and n = 1 (mod 4), or D =n/2—1 and n = 0
(mod 4). Furthermore, if n =1 (mod 4), then |[W| = 1.
(iii) eq(A',B') <17D/10+5 < n.

69
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(iv)
3D/4+5  if [W]=1,
eq-w(A,B") < {19D/40+5 if |[W|=2,
D/5+5 if [W| = 3.

(v) There exists a set W' of vertices such that W C W', |W'| < 3 and for all
w €W andv € V(G) \ W' we have

21D 11D D
darar,p(w') > o dola.B (v) < 0 2nd dea, p(w') = darar,pn(v) > 5.

— 240
Proof. Let wq,...,ws be vertices of G such that
derar,py(wi) 2 -+ = dglar,p(wa) = derar,p(v)

forallv € V(G)\{w1,...,ws}. Let Wy := {w1,...,ws}. Suppose that dgas p/j(ws

> 21D/80. Let H be a spanning subgraph of G[A’, B’] such that dy(w;) =
[21D/80] for all ¢ < 4 and such that every vertex v € V(G) \ Wy satisfies Ny (v) C
W,. Thus A(H) = [21D/80] and so e(H) < 41D /40 since G is critical. On the
other hand, e(H) > 4-[21D/80] — 4, a contradiction. (Here we subtract four to
account for the edges of H' between vertices in W.) Hence, dgjar, g (ws) < 21D/80
and so |[W/| < 3. But [W] > 1 since G is critical. So (i) holds.

Let j be minimal such that dgpa p(w;) < 21D/80. So 1 < j < 4. Choose
an index 4 with 1 < i < j such that W C {wy,...,w;} and dgpa p(wi) —
darar,pr)(wiy1) > D/240. Then the set W' := {wy, ..., w;} satisfies (v).

Let H' be a spanning subgraph of G[A’, B’] such that G[A’\ W, B’ \ W] C H'
and dgs(w) = [11D/40] for all w € W. Similarly as before, e(H') < 41D /40 since
G is critical. Thus

41D/40 > e(H') > e(H' — W) + [11D/40]|W| — 2
=eq-w(A',B")+ [11D/40||W| - 2.
This in turn implies that
(3.1.2) ea—w(A',B) < (41 — 11|W|)D/40 + 5.

Together with (i) this implies (iv). If D > n/2, then by Proposition we
have eq_w(A’,B") > D — 28. This contradicts (iv). Thus (B8] implies that
D=(n-1)/2and n =1 (mod 4), orD—n/2—1andn_O (mod 4). If n =1
(mod 4) and D = (n — 1)/2, then Proposition  implies that eq_w (A’, B") >
D/2 — 28. Hence, by (iv) we deduce that [W| =1 and so (ii) holds. Since |W| < 3
and A(G[A’, B']) < D/2, we have

WDm 41 + 9|W 17D
Wip | < W1+9wphb +4(|) D +5< g Fh<n

(The last inequality follows from (11).) This implies (iii). O

ec(A',B') <eq-w(A', B') +

3.2. Non-critical Case with e(A’, B') > D.

In this section we prove Lemma [2.7.3] Recall that Lemma [2.7.3] gives a decom-
position of the exceptional edges into exceptional systems in the non-critical case
when e(A’, B') > D. The proof splits into the following four steps:
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Step 1 We first decompose G° into edge-disjoint ‘localized’ subgraphs H (i,4’)
and H'(i,i") (where 1 < 4,7/ < K). More precisely, each H(i,4") only
contains AgA;-edges and ByB;-edges of G® while all edges of H'(i,4) lie
in G°[Ap U A;, Bp U By, and all the edges of G° are distributed evenly
amongst the H(i,4") and H'(i,i') (see Lemma [25.2]). We will then move a
small number of A’ B’-edges between the H'(7,7’) in order to obtain graphs
H"(i,4") such that e(H"(i,4")) is even (see Lemma .

Step 2 We decompose each H”(i,i') into (D — ¢n)/(2K?) Hamilton exceptional
system candidates (see Lemma B.2.3)).

Step 3 Most of the Hamilton exceptional system candidates constructed in Step 2
will be extended into an (4,4')-HES (see Lemma B:27)).

Step 4 The remaining Hamilton exceptional system candidates will be extended
into Hamilton exceptional systems, which need not be localized (see Lem-
maB2ZH). (Altogether, these will be the An Hamilton exceptional systems
in J which are not mentioned in Lemma 2773|(b).)

3.2.1. Step 1: Constructing the Graphs H"(i,4'). Let H(i,4") and H'(,4")
be the graphs obtained by applying Lemma to G°. We would like to decom-
pose each H'(i,4’) into Hamilton exceptional system candidates. In order to do this,
e(H'(i,i")) must be even. The next lemma shows that we can ensure this property
without destroying the other properties of the H'(%,4") too much by moving a small
number of edges between the H'(3,4’).

LEMMA 3.2.1. Suppose that 0 < 1/n € g9 € ¢ € ¢/ < A\ 1/K < 1, that
D >n/3, that 0 < ¢ < 1 and that D,n, K,m, (D — ¢n)/(2K?) € N. Define o by

D —¢n 2\
702 and let ¥i=a— eh

Suppose that the following conditions hold:

(3.2.1) 2an =

(i) G is a D-regular graph on n vertices.
(ii) P is a (K, m,¢eq)-partition of V(G) such that D < eq(A’, B') < eon?* and
A(G[A', B']) < D/2. Furthermore, G is not critical.
(i) Go is a subgraph of G such that G[Ao] + G[Bo] C Go, eq,(A’,B’) < ¢n
and dg,(v) = ¢n for all v € V.
(iv) Let G® := G — G[A] — G[B] — Gy. eg-(A',B’) is even and (G°,P) is a
(K, m, e, e)-exceptional scheme.

Then G° can be decomposed into edge-disjoint spanning subgraphs H(i,i') and
H"(i,i") of G° (for all 1 < i,i < K) such that the following properties hold,
where G'(i,i") = H(i,i') + H" (i,1'):
(b1) Each H(i,i") contains only AgA;-edges and BoB;:-edges.
(be) H"(i,i") C G°|A’, B']. Moreover, all but at most 'n edges of H' (i,i') lie
mn GQ[AO UA;, BpU Bl/]
) e(H"(i,i")) is even and 2an < e(H"(i,i')) < 11egn?/(10K?).
) A(H"(i,7")) < 31an/30.
5) dgriiny(v) = 2axe)n for allv e V.
) Let H be any spanning subgraph of H"(i,i") which mazimises e(H) under
the constraints that A(H) < 3vn/5, H"(i,i')[Ao, Bo] € H and e(H) is

even. Then e(H) > 2an.
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Proof. Since ¢ <« 1/3 < D/n, we deduce that
(3.2.2)
a>1/(TK?), (1-14\)a<y<a and e<é& <\1/K,a,v7< 1.

Note that (ii) and (iii) together imply that

B2.2)
(3.2.3) ege(A',B')> D —¢n G20 2K%an > n/4.
By (i) and (iii), each v € V; satisfies
(3.2.4) dgo(v) =D —¢n = 2K?an.

Apply Lemma to decompose G° into subgraphs H(i,4'), H'(i,i") (for all 1 <
i, < K) satisfying the following properties, where G(i,4') := H(4,4') + H'(4,4'):
(a}) Each H(i,4") contains only AgA;-edges and By Bj-edges.
(a5) All edges of H'(4,4") lie in G°[Ap U A;, Bo U By/].
(a}) e(H'(i,i'")) = (1 + 16¢)ege(A’, B')/K?. In particular,
2(1 — 16e)an < e(H'(i,4')) < (1 + 16¢)egn®/ K>

(ay) dpriiry(v) = (dgopar,pry(v) £ 2en)/K? for all v € V.
(a5) dgii(v) = 2o £4e/K?)n for all v € V4.
Indeed, (aj5) follows from ([B.2.3), Lemma 2.5.2(a3) and (ii), while (af) follows from
BZ4) and Lemma 252 a5). We now move some A’B’-edges of G® between the
H'(i,4") such that the graphs H"'(i,7") obtained in this way satisfy the following
conditions:
e Each H"(i,i) is obtained from H’(,i") by adding or removing at most
32K%can < \/en edges.
e ¢(H"(i,i)) > 2an and e(H"(i,4")) is even.
Note that this is possible by (a}) and since an € N and ego(A’, B') > 2K2%an is
even by (iv).
We will show that the graphs H(¢,4") and H" (i,i’) satisfy conditions (by)—(bg).
Clearly both (by) and (bz) hold. (a%) implies that

(3.2.5)
e(H"(i,i")) = (1£16e)egs(A’, B')/K* £ \/en 22,623 (14" )ege (A, B")/K*.

Together with (i) and our choice of the H”(i,i') this implies (bs). (bs) follows
from (a5) and the fact that dg/(;,)(v) = dg,iy(v) £ +/en. Similarly, (a}) implies
that for all v € Vj we have

(326) dH”(i,i/)('U) = (dGO[A/,B/] (’U) + 5'n)/K2.
Recall that A(G[A’, B']) < D/2 by (ii). Thus

BZ3 pD/2 ! 2¢’ G232 31
sty T DL D (), T

so (by) holds.

So it remains to verify (bg). To do this, fix 1 < 4,4’ < K and set H” := H"(4,4').
Let H be a subgraph of H” as defined in (bg). We need to show that e(H) > 2an.
Suppose the contrary that e(fNI ) < 2an. We will show that this contradicts the
assumption that G is not critical. Roughly speaking, the argument will be that if
H is sparse, then so is H”. This in turn implies that G° is also sparse, and thus
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any subgraph of G[A’, B'] of comparatively small maximum degree is also sparse,
which leads to a contradiction.
Let X be the set of all those vertices 2 for which d(z) > 3yn/5—-2. So X C 1}

by (iv) and (ESch3). Note that if X = 0, then H = H” and so e(H) > 2an by (bs).
If | X| > 4, then e(H) > 4(3yn/5 — 2) — 4 > 2an by @2Z2). Hence 1 < |X| < 3.
Note that H — X contains all but at most one edge from H” — X. Together with
the fact that H[X] contains at most two edges (since |X| < 3 and H is bipartite)
this implies that

2an > e(H) > e(H — X) (Zd )

zeX
>e(H" — X)—1+|X|(3yn/5—2) — 2

>e(H") = > dyr(x) + |X|(3yn/5 - 2) — 3
rzeX
(3.2.7) =e(H") =Y (dur(x) —3yn/5+2) — 3
rzeX
and so
d < ’ ’ /
(3.2.8) e(H") . 20n+ Y ( callogtil HE T 3yn/5+ 2) +3.

zeX

Note that (bs) and F2Z7) together imply that if e(H”) > 4an then e(H) > e(H")—
|X|(31lan/30 — 3yn/5 4+ 2) — 3 > 2an. Thus e(H"”) < 4an and by [B238]) we have
ego(A',B') < 4K?%an/(1 —¢') < 5K%an < 3n. Hence

3.2.5)
eqo(A',B") < KZ?(H")+¢eqe(A',B") < K?e(H") + 3¢'n

B23
(3.2.9) < D—¢n+7n+ Y (dgoiap(z) — K*(3yn/5)) .
rzeX

Let G’ be any subgraph of G°[A’, B’] which maximises e(G’) under the constraint
that A(G") < K?(3v/54 2¢’)n. Note that if dgopar pj(v) = K2(3v/5+ 2¢')n, then
v € Vp (by (iv) and (ESch3)) and so dgr(v) > 3yn/5 by (B2Z06). This in turn
implies that v € X. Hence

e(G) < eg(A,B)— Z (dgoar,py(z) — K*(3v/5 +2¢")n) + 2
zeX
(EwRe)) 9
(3.2.10) < D—-¢n+T7Kcn.
Note that ([B.2.6) together with the fact that X # () implies that

A(G[A', B']) > A(G°[A",B']) > K*(3yn/5 —2) —e'n j ! | 11D /40.

Since G is not critical this means that there exists a subgraph G” of G[A’, B’] such
that A(G”) < 11D/40 < K%(37/5+ 2¢')n and e(G") > 41D /40. Thus

B210
D—¢n+T7K%'n >  e(G)>e(G") —eq, (A, B') > 41D /40 — ¢n,

which is a contradiction. Therefore, we must have e(H) > 2an. Hence (bg) is
satisfied. 0
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3.2.2. Step 2: Decomposing H"(i,i') into Hamilton Exceptional Sys-
tem Candidates. Our next aim is to decompose each H” (i,7’) into an Hamilton
exceptional system candidates (this will follow from Lemma [B.2.3]). Before we can
do this, we need the following result on decompositions of bipartite graphs into
‘even matchings’. We say that a matching is even if it contains an even number of
edges, otherwise it is odd.

PROPOSITION 3.2.2. Suppose that 0 < 1/n < v < 1 and that n,yn € N. Let
H be a bipartite graph on n vertices with A(H) < 2yn/3 and where e(H) > 2vyn is
even. Then H can be decomposed into yn edge-disjoint non-empty even matchings,
each of size at most 3e(H)/(yn).

Proof.  First note that since e(H) > 2+vn, it suffices to show that H can be
decomposed into at most yn edge-disjoint non-empty even matchings, each of size
at most 3e(H)/(yn). Indeed, by splitting these matchings further if necessary, one
can obtain precisely yn non-empty even matchings.

Set n' := |2yn/3]. Konig’s theorem implies that x'(H) < n’. So Proposi-
tion [[L 4.5 implies that there is a decomposition of H into n’ edge-disjoint matchings
My, ..., M, such that |e(M;) — e(My )| <1 for all s,s" <n’. Hence we have
e(H) e(H) < 3e(H)

! n’ -
for all s < n’. Since e(H) is even, there are an even number of odd matchings. Let
M and My be two odd matchings. So e(M;), e(My) > 3 and thus there exist two
disjoint edges e € M, and ¢’ € M. Hence, My — e, My — ¢’ and {e, e’} are three
even matchings. Thus, by pairing off the odd matchings and repeating this process,
the proposition follows. O

2< —1<e(M;) < +1

n

LEMMA 3.2.3. Suppose that 0 < 1/n < eg < v < 1, that v+’ < 1 and that
n,yn,y'n € N. Let H be a bipartite graph on n vertices with vertex classes AUAg
and BUBy, where |Ao| + |Bo| < eon. Suppose that

(i) e(H) is even, A(H) < 16yn/15 and A(H[A, B]) < (37/5 — €o)n.
Let H' be a spanning subgraph of H which mazimises e(H') under the constraints
that A(H') < 3yn/5, H[Ag, Bo] C H' and e(H') is even. Suppose that

(i) 2(y +9")n < e(H’) < 10g9yn?.
Then there exists a decomposition of H into edge-disjoint Hamilton exceptional

system candidates F, ..., Fyn, F{,..., F,’Y,n with parameter g such that e(F.) = 2
for all s < +'n.

Since we are in the non-critical case with many edges between A’ and B’, we
will be able to assume that the subgraph H' satisfies (ii).

Roughly speaking, the idea of the proof of Lemma [3.2.3]is to apply the previous
proposition to decompose H' into a suitable number of even matchings M; (using
the fact that it has small maximum degree). We then extend these matchings into
Hamilton exceptional system candidates to cover all edges of H. The additional
edges added to each M; will be vertex-disjoint from M; and form vertex-disjoint
2-paths uvw with v € Vy. So the number of connections from A’ to B’ remains the
same (as H is bipartite). Each matching M; will already be a Hamilton exceptional
system candidate, which means that M; and its extension will have the correct
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number of connections from A’ to B’ (which makes this part of the argument
simpler than in the critical case).

Proof of Lemma[3.2.3l Set A’ := Ay U A and B’ := By U B. We first construct
the F.. If 4/ = 0, there is nothing to do. So suppose that 4/ > 0. Note that each
F! has to be a matching of size 2 (this follows from the definition of a Hamilton
exceptional system candidate and the fact that e(F?) = 2). Since H’ is bipartite
and so

e(H’) e(H') S 2(y++)n - 10

X' (H') A(H') = 3yn/5 37

we can find a 2-matching F] in H’'. Delete the edges in F] from H’ and choose
another 2-matching Fj. We repeat this process until we have chosen 7'n edge-
disjoint 2-matchings Fy, ..., F.,,.

We now construct Fi,. .., Fy, in two steps: first we construct matchings M,
.., M, in H" and then extend each M; into the desired F;. Let H; and Hj
be obtained from H and H' by removing all the edges in Fj,...,F,,. So now
2yn < e(H;) < 10egyn? and both e(H;) and e(H;) are even. Thus Proposi-
tion 3222 implies that there is a decomposition of H] into edge-disjoint non-empty
even matchings My, ..., M,,, each of size at most 30ggn.

Note that each M; is a Hamilton exceptional system candidate with parame-
ter g9. Soif H{ = Hj, then we are done by setting Fy := M, for each s < yn. Hence,
we may assume that H” := H; — H{ = H — H' contains edges. Let X be the set of
all those vertices © € AgU By for which dg~ (z) > 0. Note that each x € X satisfies
Ny (x) € AU B (since H[Ag, Bg] C H'). This implies that each z € X satisfies
dp(x) > [3yn/5] — 1 or dg(x) = 1. (Indeed, suppose that dg (z) < [3yn/5] — 2
and dg(z) > 2. Then we can move two edges incident to x from H” to H'. The
final assumption in (i) and the assumption on dg(x) together imply that we would
still have A(H') < 3yn/5, a contradiction.) Since A(H) < 16yn/15 by (i) this in
turn implies that dg () < 7yn/15+ 2 for all x € X.

Let M be a random subset of {Mj, ..., M,,} where each M; is chosen inde-
pendently with probability 2/3. By Proposition [L44] with high probability, the
following assertions hold:

ri= M| =(2/3£e0)yn
(3.211)  [{Ms € M :dp, (v) = 1} = 2dp; (v)/3 £eoyn  for allv e V(H).

By relabeling if necessary, we may assume that M = {My, Ms, ..., M,}. For each
s < r, we will now extend M, to a Hamilton exceptional system candidate Fj
with parameter g by adding edges from H”. Suppose that for some 1 < s < r
we have already constructed Fi,...,Fs_1. Set H := H" — ZKS F;. Let Wy be
the set of all those vertices w € X for which dys, (w) = 0 and dgy(w) > 3259n >
2|Ao U By| + e(Mj). Recall that X C Ay U By and Ny (w) € Ngv(w) C AUB
for each w € X and thus also for each w € W;. Thus there are |Wj| vertex-disjoint
2-paths vwu' with w € Wy and u,uw’ € Ngrv(w) \ V(M;). Assign these 2-paths
to M and call the resulting graph F,. Observe that Fs is a Hamilton exceptional

system candidate with parameter €y. Therefore, we have constructed Fy,..., F,. by
extending M1, ..., M,.
We now construct Fy41,...,F,,. For this, we first prove that the above con-

struction implies that the current ‘leftover’ H,’ ; has small maximum degree. In-
deed, note that if w € Wi, then dyr, (w) = duy(w) — 2. By B.ZII)), for each
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x € X, the number of My € M with dp, (z) =0 is

r—|{Ms e M:dy (x) =1} > (2/3 —eo)yn — (2dH£ (x)/3 + goyn)
>2yn/3 —2dp (x)/3 — 2e0yn
>2vyn/3 —2/3-[3yn/5] — 2e0yn
> (4/15 = 2g0)yn > dpr (x)/2.

Hence, we have dH;/H(:v) < 32¢9n for all x € X (as we remove 2 edges at x each
time we have dyy, (x) = 0 and dpv(x) > 32¢on). Note that by definition of H’,
all but at most one edge in H” must have an endpoint in X. So for z ¢ X,
dir(x) < | X[+ 1< |AgU Byl 4+ 1 < ggn + 1. Therefore, A(H)” ;) < 32¢qn.

Let H" := Hy—(F1+---+F,). So H" is the union of H'_, and all the M, with
r < s < yn. Since each of H; and Fi,..., F, contains an even number of edges,
e(H') is even. In addition, Ms C H" for each r < s < yn, so e(H") > 2(yn —r).
By B.2.11)), since A(H], ;) < 32egn, we deduce that for every vertex v € V(H""),
we have

dg (v) < <

du; (v)

3yn/5 2(yn —r)
3 3

+ 507n> +A(H) ) < + eoyn + 32¢9n <

In the second inequality, we used that dp (v) < dp/(v). Moreover, we have
e(H") = e(H;’_H) +e(Myj1+---+My,) < 32e9n? + 30egn(yn — r) < 62on?.

Thus, by Proposition B:22.2 applied with H”" and v — r/n playing the roles of H
and ~, there exists a decomposition of H"” into yn —r edge-disjoint non-empty even

matchings Fyq1, ..., Fyp, each of size at most 3e(H"')/(yn —r) < \/on/2. Thus
each such Fy is a Hamilton exceptional system candidate with parameter 9. This
completes the proof. O

3.2.3. Step 3: Constructing the Localized Exceptional Systems. The
next lemma will be used to extend most of the exceptional system candidates guar-
anteed by Lemma into localized exceptional systems. These extensions are
required to be ‘faithful” in the following sense. Suppose that F' is an exceptional
system candidate. Then J is a faithful extension of F if the following holds:

e J contains F and F[A’, B'| = J[A', B'].

e If F' is a Hamilton exceptional system candidate, then J is a Hamilton
exceptional system and the analogue holds if F' is a matching exceptional
system candidate.

LEMMA 3.2.4. Suppose that 0 < 1/n < g9 < 1, that 0 < v < 1 and that
n, K,m,yn € N. Let P be a (K, m,eg)-partition of a set V of n wvertices. Let
1 <i,¢/ < K. Suppose that H and F,...,F,, are pairwise edge-disjoint graphs
which satisfy the following conditions:
(i) V(H) =V and H contains only AgA;-edges and By B -edges.
(ii) Fach Fs is an (i,i')-ESC with parameter .
(iii) Each v € Vy satisfies dpys p, (v) > (27 + /Eo)n.
Then there exist edge-disjoint (i,1')-ES Ji, ..., Jyn with parameter g in H+ )" F
such that Js is a faithful extension of Fs for all s < yn.
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Proof. For each s < yn in turn, we extend Fj into an (i,¢')-ES J, with parameter
€oin H+Y Fy such that J; and Jg are edge-disjoint for all s’ < s. Since H does not
contain any A’B’-edges, the J, will automatically satisfy J,[A’, B'] = F;[A’, B'].
Suppose that for some 1 < s < yn we have already constructed Jy,...,Js—1. Set
H, .= H — ZS,<S Jgr. Consider any v € Vj. Since v has degree at most 2 in an
exceptional system and in an exceptional system candidate, (iii) implies that

dy, (v) = dyyy r,(v) = 290 = \/Eon.

Together with (i) this shows that condition (ii) in Lemma holds (with H,
playing the role of G). Since P is a (K, m,eo)-partition of V, Lemma [Z3.2(i) holds
too. Hence we can apply Lemma to obtain an exceptional system J; with
parameter ¢ in H, + F, such that J, is a faithful extension of Fy. (i) and (ii)
ensure that Js is an (i,4')-ES, as required. O

3.2.4. Step 4: Constructing the Remaining Exceptional Systems. Due
to condition (iii), Lemma[B.2:4] cannot be used to extend all the exceptional system
candidates returned by Lemma B.2.3] into localized exceptional systems. The next
lemma will be used to deal with the remaining exceptional system candidates (the
resulting exceptional systems will not be localized).

LEMMA 3.2.5. Suppose that 0 < 1/n < g9 < &/ < A < 1 and that n, An € N.
Let A, Ay, B, By be a partition of a set V' of n vertices such that |Ag| + |Bo| < eon
and |A| = |B|. Suppose that H, F,..., Fx, are pairwise edge-disjoint graphs which
satisfy the following conditions:
(i) V(H) =V and H contains only AgA-edges and ByB-edges.

(ii) Each F is an exceptional system candidate with parameter €.

(iii) For all but at most e'n indices s < An the graph Fs is either a matching
exceptional system candidate with e(Fs) = 0 or a Hamilton exceptional
system candidate with e(Fs) = 2. In particular, all but at most 'n of the
Fy satisfy dp,(v) <1 for all v € Vp.

(iv) Allv € Vi satisfy dgis F, (v) = 2Xn.

(v) Allv e AU B satisfy dg1y g, (v) < 2e0n.

Then there exists a decomposition of H+Y_, Fs into edge-disjoint exceptional systems
J1, .y Jan with parameter €y such that Js is a faithful extension of Fs for all
s < An.

Proof. Let Vy := Ag U Bg and let vy, ..., vy, denote the vertices of Vy. We will
decompose H into graphs J. in such a way that the graphs J; := J, 4+ F; satisfy
dj,(v;) =2 for all i < |Vp| and dj, (v) <1 for all v € AU B. Hence each Js will be
an exceptional system with parameter £9. Condition (i) guarantees that J, will be
a faithful extension of Fs. Moreover, the J,; will form a decomposition of H+ )" F.
We construct the decomposition of H by considering each vertex v; of Ag U By in
turn.

Initially, we set V/(J.) = E(J]) = 0 for all s < An. Suppose that for some
1 <4 < |Vh| we have already assigned (and added) all the edges of H incident with
each of vq,...,v,_1 to the J/. Consider v;. Without loss of generality assume that
v; € Ag. Note that Ny (v;) € A by (i). Define an auxiliary bipartite graph @; with
vertex classes V7 and Va as follows: Vi := Ng(v;) and Vo consists of 2 — dp, (v;)
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copies of Fy for each s < An. Moreover, ; contains an edge between v € V; and
F, € V if and only if v ¢ V(Fs + J.).

We now show that @; contains a perfect matching. For this, note that |Vi| =
2\ — dy g, (v;) = [Va| by (iv). (v) implies that for each v € V3 C A we have
ds:(ro+ay(v) < duysp(v) < 2gon. So v lies in at most 2gon of the graphs
Fs + J.. Therefore, dg,(v) > |Vo| — degn > |V2|/2 for all v € V4. (The final
inequality follows since (iii) and (iv) together imply that dy (v;) = 2An—ds~ p, (v;) >
2xn — (An —&'n) — 2¢'n > An/2 and so |Va| = |Vi| > An/2.) On the other hand,
since each Fy + J. is an exceptional system candidate with parameter g, (ESC3)
implies that |V (Fs+J.)NA| < (\/€0/242¢0)n < /egn for each F; € V5. Therefore
dg,(Fs) > || — |V(Fs + J.) N Al > |V1|/2 for each F; € V5. Thus we can apply
Hall’s theorem to find a perfect matching M in @;. Whenever M contains an edge
between v and F, we add the edge v;v to J.. This completes the desired assignment
of the edges of H at v; to the J.. O

3.2.5. Proof of Lemma In our proof of Lemma 2.7.3] we will use
the following result, which is a consequence of Lemmas [3.2.4] and Given a
suitable set of exceptional system candidates in an exceptional scheme, the lemma
extends these into exceptional systems which form a decomposition of the excep-
tional scheme. We prove the lemma in a slightly more general form than needed
for the current case, as we will also use it in the other two cases.

LEMMA 3.2.6. Suppose that 0 < 1/n < g9 < ¢ € € < N\ 1/K < 1, that
1/(7TK?) < a < 1/K? and that n, K,m,an, \n/K? € N. Let

. A p_ A
vE=a- and V=

Suppose that the following conditions hold:

(i) (G*,P) is a (K, m,eq,e)-exceptional scheme with |G*| = n.

(i) G* is the edge-disjoint union of H(i,i'), Fi(i,7'),...,Fy,(i,7) and
Fy(i,d"), ..., F.,,(i,i") over all 1 <4,i' < K.

(iii) Each H(i,i") contains only AgA;-edges and ByBy -edges.

(iv) Fach Fs(i,i') is an (i,i')-ESC with parameter .

(v) FEach F.(i,i") is an exceptional system candidate with parameter ey. More-
over, for all but at most €'n indices s < v'n the graph F.(i,i') is either a
matching exceptional system candidate with e(F.(i,i")) =0 or a Hamilton
exceptional system candidate with e(F.(i,1")) = 2.

(vi) dg-(v) = 2K2%an for all v € V.

(vil) Forall 1 <i,i' < K let G*(i,i') := H(i,i') + X, Fu(i, i)+
>os<yn Folisi'). Then dg«(i,iny(v) = 2a £ €")n for all v € Vp.

Then G* has a decomposition into K2an edge-disjoint exceptional systems

Ji(iyi), o To(iyd’) and TG, Tl ()

y'n
with parameter o, where 1 < i,i" < K, such that Js(i,4") is an (i,i')-ES which is
a faithful extension of Fs(i,i") for all s < yn and J.(i,7) is a faithful extension of
Fl(i,1) for all s < ~'n.

Proof. Fix any ¢,¢ < K and set H := H(i,?) and Fs := F(i,4') for all s < yn.
Our first aim is to apply Lemma [B.2.4]in order to extend each of Fi, ..., F,, into
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a (i,4")-HES. (iii) and (iv) ensure that conditions (i) and (ii) of Lemma B.2.4] hold.
To verify Lemma B.2.4((iii), note that by (v) and (vii) each v € Vj satisfies

diyy 1, (v) = da= i,y (V) = ds prin(v) > (20— )n = (v —')n - 2¢'n

= (2a — ' = 2¢)n > (2 + /Eo)n.

(Here the first inequality follows since (v) implies that dpr(; ) (v) < 1 for all but
at most ¢'n indices s < 4'n.) Thus we can indeed apply Lemma B:2.4 to find edge-
disjoint (z,4")-ES Ji(4,7'),..., Jyn(i,4") with parameter g in H + ) F, such that
Js(i,1") is a faithful extension of Fy for all s < yn. We repeat this procedure for all
1 <i,i’ < K to obtain K%yn edge-disjoint (localized) exceptional systems.

Our next aim is to apply Lemma B:2.5 in order to construct the J.(i,47"). Let
Hy be the union of H(i,i")— (J1(4,7')+- - -+ Jyn(i,7')) over all 4,7’ < K. Relabel the
F!(i,i") (for all s <+'n and all i,7" < K) to obtain exceptional system candidates
F{,...,F},. Note that by (vi) each v € Vj satisfies

(3.2.12) dg+s pr(v) = dg=(v) — 2K%yn = 2K?an — 2K*yn = 2)\n.

Thus condition (iv) of Lemma[B.25holds with Hy, F. playing the roles of H, F. (iii)
and (v) imply that conditions (i)—(iii) of Lemma hold with K?2¢’ playing the
role of ¢’. To verify Lemma B.2.5(v), note that each v € A satisfies dp, 5~ r/(v) <
dg+(v, Ag) + dg+(v, B") < 2egn by (iii), (i) and (ESch3). Similarly each v € B
satisfies dp, 15~ pr(v) < 2eon. Thus we can apply Lemma with Hy, F!, K%'
playing the roles of H, F,e’ to obtain a decomposition of Ho + >, F. into An
edge-disjoint exceptional systems J{,...,J}, with parameter ¢y such that J. is a
faithful extension of F} for all s < An. Recall that each F} is a F! (i,i') for some
i,9 < K and some s’ < 'n. Let J., (i,4') := J,. Then all the J,(¢,4') and all the
J!(i,1") are as required in the lemma. O

We now combine Lemmas [3.2.7] B.2.3] and B.2.6l in order to prove Lemma 2.7.3

Proof of Lemma 273l Let G° be as defined in Lemma [Z73|iv). Choose a
new constant &’ such that ¢ < ¢’ < A\, 1/K. Set

D~ ¢n 22 2\
(3.2.13) 2am = 72 V= — e and fyi = ek
Similarly as in the proof of Lemma B2 since ¢ < 1/3 < D/n, we have
(3.2.14)

a>1/(TK?), (I1-14N)a<vyi<a and e<e <KMI/K am <1,

Apply Lemma B 2T with v; playing the role of y in order to obtain a decomposition
of G° into edge-disjoint spanning subgraphs H (i,4') and H" (¢,7") (for all 1 <i,i <
K) which satisfy the following properties, where G'(i,4') := H(i,i') + H" (i,1):
(by) Each H(i,4') contains only AgA;-edges and BjB;-edges.
(be) H"(i,i") C G°[A’, B']. Moreover, all but at most 'n edges of H"(i,4") lie
in GO[AO U Ai, BO U Bll]
b3) e(H"(i,i")) is even and 2an < e(H"(i,i')) < 11g9n?/(10K?).
bs) A(H"(i,i")) < 31an/30.
bs) dgr i,y (v) = 2a £&')n for all v € V.
bs)

~ N S

Let H any spanning subgraph of H”(,4") which maximises e(H) under
the constraints that A(H) < 3yin/5, H" (i,i')[A¢, Bo] C H and e(H) is
even. Then e(H) > 2an.
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Fix any 1 < 4,¢/ < K. Set H := H(i,i") and H” := H"(3,7'). Our next aim
is to decompose H' into suitable ‘localized’ Hamilton exceptional system candi-
dates. For this, we will apply Lemma B.2:3 with H”,~;,7, playing the roles of
H,~,v. Note that A(H”) < 31lan/30 < 16v1n/15 by (bs) and B2I4). More-
over, A(H"[A, B]) < A(G°[A,B]) < egn by (iv) and (ESch3). Since e(H") is
even by (bs), it follows that condition (i) of Lemma holds. Condition (ii)
of Lemma follows from (bg) and the fact that any H as in (be) satisfies
e(H) < e(H") < 11egn2/(10K2) < 10sgyin? (the last inequality follows from
B214)). Thus we can indeed apply Lemma [B:2.3 in order to decompose H” into

an edge-disjoint Hamilton exceptional system candidates Fi, ..., Fy,pn, F{,..., F. 'Iyin
with parameter € such that e(F.) = 2 for all s < yin. Next we set
A , A
M= o and "2 = g
Condition (bs) ensures that by relabeling the Fy’s and F.’s we obtain an edge-
disjoint Hamilton exceptional system candidates Fy(i,4'),..., Fy,n(i,4"), Fi(i,4'),
ce F’;én(i’ i) with parameter ¢ such that properties (a’) and (b’) hold:

(&) Fs(i,7) is an (4,4")-HESC for every s < yan. Moreover, at least y4n of
the Fy(i,4") satisfy e(Fs(i,i)) = 2.

(b’) e(F.(i,i")) = 2 for all but at most 'n of the F.(i,i’).

Indeed, we can achieve this by relabeling each Fs which is a subgraph of G°[4y U
A;, Bo U By/] as one of the Fy (4,4') and each Fy for which is not the case as one of
the F!, (i,4").

Our next aim is to apply Lemma with G°,~2,v5 playing the roles of
G*,v,7'. Clearly conditions (i) and (ii) of LemmaB.2.6hold. (iii) follows from (by).
(iv) and (v) follow from (a’) and (b’). (vi) follows from Lemma[2.7.3(i),(iii). Finally,
(vii) follows from (bs) since G’(4,4") plays the role of G*(i,i’). Thus we can indeed
apply Lemma 326 to obtain a decomposition of G° into K2?an edge-disjoint Hamil-
ton exceptional systems Ji(2,1'), ..., Jy,n(i,4") and Ji(2,7), ..., ;én(i, ") with pa-
rameter ¢, where 1 < ¢, < K, such that J4(i,4') is an (¢,¢')-HES which is a
faithful extension of Fy(i,i’) for all s < von and J.(i,i') is a faithful extension of
F!(i,7") for all s < ~4n. Then the set J of all these Hamilton exceptional systems
is as required in Lemma 2.7.3] O

3.3. Critical Case with e(A’,B') > D

The aim of this section is to prove Lemma [2.7.4l Recall that Lemma 2.7.4] gives
a decomposition of the exceptional edges into exceptional systems in the critical
case when e(A’, B') > D. The overall strategy for the proof is similar to that of
Lemma As before, it consists of four steps. In Step 1, we use Lemma [3.3.]
instead of Lemma [3.2.1] In Step 2, we use Lemma instead of Lemma
We still use Lemma [3.2.6 which combines Steps 3 and 4.

3.3.1. Step 1: Constructing the Graphs H"(i,i’). The next lemma is an
analogue of Lemma[321] We will apply it with the graph G° from Lemma 2774](iv)
playing the role of G. Note that instead of assuming that our graph G given
in Lemma [2.74] is critical, the lemma assumes that ego(A’, B’) < 2n. This is
a weaker assumption, since if G is critical, then ego(A4’,B’) < eq(A’,B’) < n
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by Lemma BITII(iii). Using only this weaker assumption has the advantage that
we can also apply the lemma in the proof of Lemma 2.7.5 i.e. the case when
ecg(A',B") < D. (by) is only used in the latter application.

LEMMA 3.3.1. Suppose that 0 < 1/n < gy < ¢ < 1/K < 1 and that
n,K,m € N. Let (G,P) be a (K, m,eo,¢e)-exceptional scheme with |G| = n and
ec(Ao),eq(Bo) = 0. Let Wy be a subset of Vy of size at most 2 such that for each
w € Wy, we have

(3.3.1) K? < dgar,p(w) < eq(A',B')/2.

Suppose that eq(A’, B') < 2n is even. Then G can be decomposed into edge-disjoint
spanning subgraphs H(i,i") and H"(i,i') of G (for all 1 < i,i’ < K ) such that the
following properties hold, where G'(i,i") := H(i,i") + H"(i,1"):
(b1) Each H(i,i') contains only AgA;-edges and BoB;:-edges.
(ba) H"(i,i") C G[A', B']. Moreover, all but at most 20en/K? edges of H" (i, 1)
lie in G[AO U Ai, BO U Bz/]
) e(H"(i,i")) =2 [eq(A", B")/(2K?)| ore(H"(i,i')) =2 |eq(A’, B")/(2K?)].
) iy (v) = (dapar, g (v) £ 25en) /K2 for all v € V.
bs) deriiy(v) = (da(v) £ 25en) /K? for allv € V.
) Each w € Wy satisfies dgr i ) (w) = [darar,py(w) /K] or dpn ) (w) =
ldGiar, 5] (w)/K?].
(br) Each w € Wy satisfies 2d g (; iy (w) < e(H"(i,1")).

Proof. Since eg(A’, B') is even, there exist unique non-negative integers b and ¢
such that eq(A’, B') = 2K?2b + 2q and ¢ < K2. Hence, for all 1 < i,i’ < K, there
are integers b; ;v € {2b,2b+ 2} such that }°, ., biiw = eg(A’, B'). In particular,
the number of pairs ¢,¢ for which b; ;s = b+ 2 is precisely g. We will choose the
graphs H"(i,4") such that e(H"”(i,4')) = b; . (In particular, this will ensure that
(bs) holds.) The following claim will help to ensure (bg) and (br).
Claim. For each w € Wy and all i,i' < K there is an integer a; v = a; i (w) which
satisfies the following properties:

o aiy = [dgar,p(w)/K?] or aiy = |dgiar, pr(w)/K?].

o 2a;y < by

[ Z'L,i/SK Qg 40 = dG[A',B/] (w)
To prove the claim, note that there are unique non-negative integers a and p such
that dgar py(w) = K?a+p and p < K?. Note that a > 1 by .31]). Moreover,

B3
(3.3.2) 2(K%a+p) =2dgar,py(w) <  eg(Ad,B') =2K%b+2q.

This implies that a < b. Recall that b; ;; € {2b,20+ 2}. So if b > a, then the
claim holds by choosing any a;;+ € {a,a+ 1} such that >, ;o @i = dgjar B (w).
Hence we may assume that a = b. Then (3.3.2) implies that p < ¢q. Therefore, the
claim holds by setting a; i+ := a + 1 for exactly p pairs 7,4 for which b; ;7 = 2b + 2
and setting a; ;» := a otherwise. This completes the proof of the claim.

Apply Lemma to decompose G into subgraphs H (i,4"), H'(i,4") (for all 4,7’ <
K) satisfying the following properties, where G(i,4") = H(i,i') + H'(i,4):

(a}) Each H(i,i) contains only AgA;-edges and By B;-edges.

(a5) All edges of H'(,4") lie in G[Ao U A;, By U By/].
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(a}) e(H'(i,i")) = (eq(A’, B') £ 8en)/K>.

(aﬁl) dH’(i,i’)(v) = (dG[A/,B/] (1)) + 25‘71)/K2 for all v € V.

(a5) dgiin(v) = (da(v) £ 4en)/K? for all v € V.

Indeed, (a%) follows from Lemma 25.2a3) and our assumption that eq(A’, B") <
2n.

Clearly, (a}) implies that the graphs H(i,4') satisfy (b;). We will now move
some A’ B’-edges of G between the H'(i,i’) such that the graphs H”(i,i’) obtained
in this way satisfy the following conditions:

e Each H"(i,i’) is obtained from H’(i,i') by adding or removing at most
20en/K? edges of G.
o c(H"(i,i)) =b;p.
o dyiiin(w) = a;i(w) for each w € Wy, where a; i (w) are integers satis-
fying the claim.
Write WO = {wl} if |W0| = 1 and WO = {wl,wg} if |W0| = 2. If WO 7£ 0,
then (a}) implies that dp(; ) (w1) = ;¢ (w1) £ (2en/K? +1). For each 4,7’ < K,
we add or remove at most 2en/K? + 1 edges incident to w; such that the graphs
H"(i,i") obtained in this way satisfy dg(; ) (w1) = a;i(w1). Note that since
aiv(w1) > |dgpar,py(w1)/K?] > 1 by B3d), we can do this in such a way that
we do not move the edge wyws (if it exists). Similarly, if [Wy| = 2, then for each
1,7 < K we add or remove at most 25n/K2 + 1 edges incident to wy such that the
graphs H"(i,1’) obtained in this way satisfy dg» ;i) (w2) = @i (w2). As before,
we do this in such a way that we do not move the edge wyws (if it exists).

Thus dgriny(w1) = ase(wr) and dgo oy (we) = ag 0 (w2) for all 1 <4,i" <
K (if wy,we exist). In particular, together with the claim, this implies that
dg iy (W), dge i (w2) < by /2. Thus the number of edges of H”(4,i") inci-
dent to Wy is at most

(333) Z dH//(i)i/)(w) S bi,i/-

weWy
(This holds regardless of the size of Wy.) On the other hand, (aj) implies that for
all 7,7 < K we have

e(H"(i,i')) = (eq(A’, B') £ 8en)/K? £ 2(2en/K? + 1) = b; ;s + 13en/ K>

Together with ([3.3.3) this ensures that we can add or delete at most 13en/K?
edges which do not intersect Wy to or from each H”(i,i’) in order to ensure that
e(H"(i,1")) = b; 4+ for all 4,7’ < K. Hence, (bs), (bg) and (br) hold. Moreover,

(3.3.4)  e(H"(i,i') — H'(i,i")) < |Wo|(2en/K? +1) + 13en/K? < 20en/K?,

So (bg) follows from (a}). Finally, (bs) and (bs) follow from (3.3.4), (a}) and (af).
(]

3.3.2. Step 2: Decomposing H"(i,i’) into Hamilton Exceptional Sys-
tem Candidates. Before we can prove an analogue of Lemma B.2.3] we need the
following result. It will allow us to distribute the edges incident to the (up to three)
vertices w; of high degree in G[A’, B'] in a suitable way among the localized Hamil-
ton exceptional system candidates F};. The degrees of these high degree vertices w;
will play the role of the a;. The ¢; will account for edges (not incident to w;) which
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have already been assigned to the Fj. (b) and (c) will be used to ensure (ESC4),
i.e. that the total number of ‘connections’ between A’ and B’ is even and positive.

LEMMA 3.3.2. Let 1 < ¢ <3 and 0 < n <1 and r,nr € N. Suppose that
ai,...,aq € N and cy,...,c. € {0,1,2} satisfy the following conditions:
i)er>>c¢>c—1.
(i) Dicq@i+2j<rci =21 +n)r
(iii) 31r/60 < a1,a2 < r and 31r/60 < az < 31r/30.
Then for all i < q and all j < r there are a;; € {0,1,2} such that the following
properties hold:
(a) 3j<,aij = ai for alli<gq.
(b) ¢j+> <y ai; =4 forallj <nrandcj+3 ., ai; =2 forallnr <j<r.
(c) For all j <71 there are at least 2 — ¢; indices i < q with a; ; = 1.
Proof. We will choose a;1,...,a;, for each i < ¢ in turn such that the following
properties (a;)—(p;) hold, where we write cgi) =c; + Zi/gi ay j for each 0 <i <g¢q
(so c;o) =¢j):
() If i > 1 then Z]<r a;; = a;.
Bi) 4> > >0
() If Z]<T J ) < 2r, then |c(Z (i)| <1forall j,j" <r.
(6:) IfZJ<T J >2r thenc() > 2 for all j <77Tandc()—2f0rallnr<j§

(pi) If 1<i<qand c§i_l) < 2 for some j < r, then a, ; € {0, 1}.
We will then show that the a; ; defined in this way are as required in the lemma.
Note that (i) and the fact that ¢1,...,¢. € {0,1,2} together imply (8o)—(do).
Moreover, (ap) and (pg) are vacuously true. Suppose that for some 1 < i < ¢ we
have already defined a; ; for all ¥’ < ¢ and all j < r such that (a;)—(pi) hold. In
order to define a; ; for all j < r, we distinguish the following cases.
i—1
Case 1: Ejgr c§- ) > 2r.
Recall that in this case cngl) > 2 for all j <r by (§;—1). For each j < r in turn we
choose a; ; € {0,1,2} as large as possible subject to the constraints that
° aw- —|— C;iil) S 4 and
[ ] Z,/<jaij/ <ai
Since CE-) =aij+ C(l 2 , (B;) follows from (B;—1) and our choice of the a; ;. (Vi)
is vacuously true. To verify (d;), note that ng) > c§z_l) > 2 by (6;_1). Suppose
that the second part of (d;) does not hold, i.e. that cf;;)lﬂ > 2. This means that

aimnt+1 > 0. Together with our choice of the a; ; this implies that cg.i) = 4 for all
7 < nn. Thus

204 n)r =4nr+2(r—nr) < ZCZ) Zalj+2az+zc]<zaz+zc]

j<r j<r i <i Ij<r ' <i i<r

contradicting (ii). Thus the second part of (J;) holds too. Moreover, 0577)1 1=
cf,l,:i = 2 also means that a; nn41 = 0. So Zj’gnn a; j = a;, i.e. (a;) holds. (p;) is

vacuously true since cg-i_l) > 2 by (0;—1).
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Case 2: 2r —a; <) <o,

If i € {1, 2} then together with (iii) this implies that

j<r ]

3.3.5 MY > >,
( j
J<r

If 1 = 3 then

i— 31
3.3.6 ) > ap ;= a1+ ag > or > a3

7 3] 30

Jj<r J<ri'<2

by (iii). In particular, in both cases we have > AT > g Together with (y;—1)

i<r €
this implies that c(l D e {1,2} for all j <r. Let 0 < ¢/ < r be the largest integer
such that ¢V = 2. So 7/ < 7 and > j<r€ §z Y =y 44/, Together with B33) and

B30) this in turn implies that a; < r + 1/ (regardless of the value of 7).
Set a; ; =1 for all ¥’ < j < r. Note that

Z Qi ;=1T—"T —27“—26(1 1)<0Ji,

r'<j<r j<r

where the final inequality comes from the assumption of Case 2. Take a; 1,...,a;
to be a sequence of the form 2,...,2,0,...,0 (in the case when a; — Zr’<j§r @i,
is even) or 2,...,2,1,0,...,0 (in the case when a; — Er’<j§r a; ; is odd) which is
chosen in such a way that > . . ai; =ai —> ;<. ai; = a; —r +r'. This can
be done since a; < r + ' implies that the right hand side is at most 2r'.

Clearly, (a;), (8;) and (p;) hold. Since Z]<r J =ait) <, JZ Y > 9 as we
are in Case 2, (v;) is vacuously true. Clearly, our choice of the a; ; guarantees that
ng') > 2 for all j < r. As in Case 1 one can show that cg-i)
Thus (;) holds.

=2forallpr < j <r.

Case 3: .. "V < 2r —aq,.

j<r Cj
Note that in this case

2r > ch-i_l) +a; = Zai/ +ch7

j<r i <i j<r

and so ¢ < ¢ by (ii). Together with (iii) this implies that a; < r. Thus for all
j < r we can choose a; ; € {0,1} such that (o;)—(vi) and (p;) are satisfied. (J;) is
vacuously true.

This completes the proof of the existence of numbers a; ; (for all ¢ < ¢ and all
j < r) satisfying (a;)—(p;). It remains to show that these a;; are as required in
the lemma. Clearly, (o1)—(eg) imply that (a) holds. Since CEQ) = Cj + D icq i
the second part of (b) follows from (d4). Since cg-q) < 4 for each j < nr by (8y),
together with (ii) this in turn implies that the first part of (b) must hold too. If
¢; < 2, then (p1)—(pg) and (b) together imply that for at least 2 — ¢; indices ¢ we
have a; ; = 1. Therefore, (c) holds. O
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We can now use the previous lemma to decompose the bipartite graph induced
by A’ and B’ into Hamilton exceptional system candidates.

LEMMA 3.3.3. Suppose that 0 < 1/n € g9 < a < 1, that 0 < n < 199/200
and that n,an/200,nan € N. Let H be a bipartite graph on n vertices with vertex
classes AUAg and BUBqy where |Ag| + |Bo| < eon. Furthermore, suppose that the
following conditions hold:

(c1) e(H) =2(14+n)an.

(co) There is a set W CV(H) with 1 < |W’| <3 and such that

e(H—W') <199an/100 and dg(w) > 13an/25 for all w € W'.

(c3) There exists a set Wy C W' with |Wy| = min{2, |W’'|} and such that

di(w) < an for allw € Wy and dg(w') < 41an/40 for all w' € W'\ Wy.
(ca) Forallw e W’ and allv e V(H)\ W' we have dg(w) — dg(v) > an/150.
(c5) For allv € AU B we have dg(v) < gon.

Then there exists a decomposition of H into edge-disjoint Hamilton exceptional
system candidates Iy, ..., Fo, such that e(Fs) = 4 for all s < nan and e(Fy) = 2
for all nan < s < an. Furthermore, at least an/200 of the Fy satisfy the following
two properties:

o dp,(w) =1 for all w € Wy,
o ¢(Fs)=2.

Roughly speaking, the idea of the proof is first to find the F which satisfy the
final two properties. Let H; be the graph obtained from H by removing the edges
in all these F;. We will decompose Hy — W’ into matchings M of size at most two.
Next, we extend these matchings into Hamilton exceptional system candidates Fj
using Lemma 332l In particular, if e(M;) < 2, then we will use one or more edges
incident to W’ to ensure that the number of A’ B’-connections is positive and even,
as required by (ESC4). (Note that it does not suffice to ensure that the number of
A’ B’-edges is positive and even for this.)

Proof. Set H':= H—-W', Wy =: {w1, wyw,} and W’ =: {wy, ..., wyw}. Hence,
if [W/| = 3, then W'\ Wy = {ws}. Otherwise W’ = W,

We will first construct ey (W’) Hamilton exceptional system candidates Fy,
such that each of them is a matching of size two and together they cover all edges
in H[W’]. So suppose that e (W’) > 0. Thus |[W'| =2 or |[W'| =3. If |W'| = 2,
let f denote the unique edge in H[W’]. Note that

e(H') > e(H) — (dg(wy) +dg(wz) — 1) > 2(1 + n)an — (2an —1) > 1

by (c1) and (c3). So there exists an edge f’ in H'. Therefore, M| := {f, f'} is
a matching. If [W’'| = 3, then eg(W’) < 2 as H is bipartite. Since by (c3) each
w € W' satisfies dy(w) > 13an/25, it is easy to construct ey (W’) 2-matchings
Mi, M,y such that dyy(w) =1 for all w € W’ and all s < ey (W’) and such
that HW'] C M{ U MéH(W,). Set Fon—st1 := M, for all s < ey (W’) (regardless
of the size of W’).

We now greedily choose an/200—eg(W') additional 2-matchings Figgan /20041
s Fan—ey(wr in H which are edge-disjoint from each other and from Fip,
Fon—cyw+1 and such that dp, (w) = 1 for all w € Wy and all 199an/200 <
s < an —eg(W’). To see that this can be done, recall that by (c2) we have
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dp(w) > 13an/25 for all w € W’ (and thus for all w € Wy) and that (c1) and (c3)
together imply that e(H — Wp) > 2(1 +n)an —an > an if [Wy| = 1.

Thus Figgan /200415 - - - » Fan are Hamilton exceptional system candidates satis-
fying the two properties in the ‘furthermore part’ of the lemma. Let H; and Hj
be the graphs obtained from H and H’ by deleting all the an/100 edges in these
Hamilton exceptional system candidates. Set

(3.3.7) r = 199an /200 and n' :=nan/r = 200n/199.
Thus 0 <7’ <1 and we now have
(3.3.8) H1[W'|=0, e(H))=e(H)—an/100=2(1+7n")r and e(Hj) < 2r.

(To verify the last inequality note that e(H;) < e(H — W') < 2r by (c2).) Also,
(c2) and (c4) together imply that for all w € W’ and all v € V(H) \ W’ we have

(3.3.9) dp, (w) > an/2 > 4egn and dpr, (w) — dp, (v) > 2e9n.
Moreover, by (c2) and (c3), each w € Wy satisfies

31r/60 < 13an/25 — an/200 < dy(w) — dy—p, (w) = dg, (w)
(3.3.10) < an —an/200 = r.

Similarly, if [W'| = 3 and so w3 exists, then

31r/60 < 13an/25 — an/200 < dg(w3) — dg—g, (w3) = dg, (ws)
(3.3.11) < 41an/40 < 317/30.

(6.3.9) and B.3.10) together imply that dp; (v) < dpg,(v) < dp,(w1) < r for all
veV(H)\W’'. Thus x'(H]) < A(Hj) < r. Together with Proposition [[4.5] this
implies that Hj can be decomposed into r edge-disjoint matchings M, ..., M, such
that |m; —my /| < 1forall 1 <j,j" <r, where we set m; := e(M;).

Our next aim is to apply Lemma with |W'|, d, (w;), mj;, 7’ playing the
roles of g, a;, ¢j, n (for all ¢ < [W’| and all j < ). Since > ., m; = e(Hj) < 2r
by B38) and since |m; — mj| < 1, it follows that m; € {0,1,2} for all j <
r. Moreover, by relabeling the matchings M; if necessary, we may assume that
my > mg > -+ > m,. Thus condition (i) of Lemma holds. (ii) holds too
since 3, <y diy (W) + 30 <,my = e(H1) = 2(1 +n')r by B.3.8). Finally, (iii)
follows from (B3.10) and (B311]). Thus we can indeed apply Lemma B3.2in order
to obtain numbers a; ; € {0,1,2} (for all ¢ < |W’| and j < r) which satisfy the
following properties:

(a’) ngr Q5 = dHl (wz) for all 7 < |W/|

(b") my + X i< iy = 4 for all j < n'r and m; + 3,y ai; = 2 for all

n'r<j<r.

(¢’) If m; < 2 then there exist at least 2 — m; indices i such that a; ; = 1.
For all j < r, our Hamilton exceptional system candidate F; will consist of the
edges in M, as well as of a;; edges of H; incident to w; (for each ¢ < |[W’|). So
let FJQ := M, for all j < r. For each i = 1,...,|W’| in turn, we will now assign
the edges of H; incident with w; to Fi ', ..., Fi~! such that the resulting graphs
Fi, ..., F! satisfy the following properties:

(i) If i > 1, then e(F}) — e(Fjl_l) = a; ;.
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(B:) F} is a path system. Every vertex v € AU B is incident to at most one
edge of F}. For every v € Vo \ W’ we have dpi (v) < 2. If e(F}) < 2, we
even have dp: (v) < 1.

(vi) Let b be the number of vertex-disjoint maximal paths in F; with one
endpoint in A’ and the other in B'. Ifa; j = 1 and i > 1, then b} = b;_1+1.
Otherwise bé = b;fl.

We assign the edges of H;y incident with w; to Ff_l, ..., Fi=1in two steps. In the
first step, for each index j < r with a;; = 2 in turn, we assign an edge of H;
between w; and V} to Fji_1 whenever there is such an edge left. More formally, to
do this, we set Ny := Ng, (w;). For each j < rin turn, if a; ; = 2 and N;_1 NV, # 0,
then we choose a vertex v € N;_1 NV and set Fj := Fi*1 + w;v, Nj = N1\ {v}
and a i.; = 1. Otherwise, we set F’ = Fl ! , Nj := N;_; and a = Q.
Therefore after having dealt w1th all 1ndlces 7 < rin this Way, we have that

(3.3.12) either a; ; <1 for all j <7 or N, NVy =0 (or both).

Note that by (b’) we have e(F’) <my+D i ar; < 4forall j <r. Moreover, (a')
implies that |[N,| =3 Also, N, \Vp = NHl (w;)\ Vo, and so Ny, (w;)\ N, C
Vo. Hence

(3.3.13)  [Ny| =[Ng, (wi)| — [Na, (wi) \ Ny| = dp, (wi) — [Vo| = dm, (wi) — eon.

In the second step, we assign the remaining edges of H; incident with w; to
Fy, ..., F/. We achieve this by finding a perfect matching M in a suitable auxiliary
graph.

J<r 1]

Claim. Define a graph Q with vertex classes N, and V' as follows: V' consists of

aj; ; copies of F] for each j <r. Q contains an edge between v € N, and I € V' if
and only v is not an endpoint of an edge in F Then @ has a perfect matchmg M.

To prove the claim, note that

B3I

(3.3.14) V| = Zag,j =|N:| > du,(w;) —eon.

Jj<r
Moreover, since F]’ C H is bipartite and so every edge of FJ' has at most one
endpoint in N,., it follows that
(3.3.15) do(F)) = IN,| = e(F)) = [N | — 4
for each Fj € V'. Consider any v € N,.. Clearly, there are at most dp, (v) indices
J < rsuch that v is an endpoint of an edge of Fj. If v € N, \ Vo € AU B, then

by (c5), v lies in at most 2dp, (v) < 2dg (v) < 2egn elements of V. (The factor 2
accounts for the fact that each F’ occurs in V' precisely a ; <2 times.) So

, BE313) m
do(w) > |V'|=2eon >  dp,(w;) —3gon > eon.
If v € N. NVp, then [B.3.12) implies that a; ; <1 for all j <r. Thus

B339 (B3R3e))
do() > V' =du,(v) >  (dg,(w;) —dm, (v)) —eon > 2eon —eon = gon.

To summarize, for all v € N, we have dg(v) > egn. Together with (B3.15]) and the
fact that |N,.| = |[V'| by (B3.14) this implies that @ contains a perfect matching M
by Hall’s theorem. This proves the claim.
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For each j < r, let F ; be the graph obtained from F J’ by adding the edge w;v
whenever the perfect matching M (as guaranteed by the claim) contains an edge
between v and F]’

Let us now verify (c;)—(vi) for all i < |W’[. Clearly, (ag)-(70) hold and b9 =
m;. Now suppose that ¢ > 1 and that (c;—1)—(y;—1) hold. Clearly, (o;) holds by
our construction of F},..., F'. Now consider any j < r. If a; ; = 0, then (8;) and
(7i) follow from (B;—1) and (yi—1). If a;; = 1, then the unique edge in F} — F;_l
is vertex-disjoint from any edge of Fji_1 (by the definition of Q) and so (8;) holds.
Moreover, b = b;'-*l + 1 and so (7;) holds. So suppose that a; ; = 2. Then the
unique two edges in FJZ — F;_l form a path P = v'w;v"” of length two with internal
vertex w;. Moreover, at least one of the edges of P, w;v” say, was added to F ;_1
in the second step of our construction of F}. Thus dFj (v") = 1. The other edge
w;v' of P was either added in the first or in the second step. If w;v" was added
in the second step, then dF; (v') = 1. Altogether this shows that in this case (7;)
holds and (8;) follows from (8;—1). So suppose that w;v" was added to Fji*1 in the
first step of our construction of Fj. Thus v" € Vo \ W'. But since a;; = 2, (b')
implies that e(Fji*l) =my; + Y ;i j < 2. Together with (8;_1) this shows that
dFJ;‘fl(’U) <1forallve Vy\W’'. Hence dFJ;‘fl(’U/) < 1andso dp; (v") < 2. Together
with (8;—1) this implies (8;). (Note that if e(F;_l) = 0, then the above argument
actually shows that dF;(U/) < 1, as required.) Moreover, the above observations
also guarantee that (7;) holds. Thus FY, ..., F} satisfy (a;)—(7y:)-

After having assigned the edges of H; incident with w; for all ¢ < |[W'|, we
have obtained graphs Fl‘W/‘, e ,F,lW/‘. Let Iy := FJ!WII for all 5 < r. Note that
by (yyw|) for all j < r the number of vertex-disjoint maximal A’B’-paths in Fj is
precisely b‘jW/I.

We now claim that bIjW/‘ is positive and even. To verify this, recall that bg =m;.
Let odd; be the number of a; ; with a;; = 1 and i < [W’|. So b = m; + odd;.

Together with (¢’) this immediately implies that bIjW/‘ > 2. Moreover, since a; ; €
{0,1,2} we have

W/
o = m; + odd; = m; + > i
i<|W'|, a;,; is odd

Together with (b’) this now implies that b‘jW/‘ is even. This proves the claim.
Together with (a’), (b’) and («;), (B;) for all ¢ < |W’| this in turn shows
that Fy, ..., F, form a decomposition of H; into edge-disjoint Hamilton exceptional
system candidates with e(F;) =4 for all j < n'r and e(F;) =2 for all n'r < j <r.
Recall that n'r = nan by B37) and that we have already constructed Hamilton

exceptional system candidates Fig9an /200415 - - - s Fan Which satisfy the ‘furthermore
statement’ of the lemma, and thus in particular consist of precisely two edges. This
completes the proof of the lemma. O

3.3.3. Proof of Lemma [2.7.4. We will now combine Lemmas 3.3.7] B.3.3]
and [3.2.6lin order to prove Lemma[2. 74l This will complete the construction of the
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required exceptional sequences in the case when G is both critical and e(G[A’, B']) >
D.

Proof of Lemma [2.7.4l Let G° be as defined in Lemma 2.7.4(iv). Our first aim
is to decompose G° into suitable ‘localized’ subgraphs via Lemma [3.3.I1 Choose a
new constant ¢’ such that ¢ < ¢’ < A\, 1/K and define a by
D — ¢n

K2 -
Recall from Lemma 274(ii) that D = (n — 1)/2 or D = n/2 — 1. Together with
our assumption that ¢ < 1 this implies that
1-2/n—2¢ 1-26
e et

ak? ~ Y AR

Note that by Lemma 274(ii) and (iii) we have ege(A’, B') > D — ¢n = 2K2an.
Together with Lemma BIT(iii) this implies that
(3.3.18)

(3.3.16) 2an =

(3.3.17)

IN

and e<e < \1/K,a< 1.

B3.10) @317
2K?an < ege(A',B') <eq(A',B') <17D/10+5 < 18K?an/5 < n.

Moreover, recall that by Lemma [2774(i) and (iii) we have
(3.3.19) dge(v) = 2K?an for all v € V.

Let W be the set of all those vertices w € V(G) with dgjas, g (w) > 11D/40. So W
is as defined in Lemma BT Tland 1 < |W| < 3 by Lemma BTI{i). Let W’ C V(G)
be as guaranteed by Lemma BI.I(v). Thus W C W' |W'| < 3,

(3.3.20)

dG[A,)B/](w’) Z %, dG[A’,B’] (’U) S % and dG[A,)B/](w’) — dG[A’,B’] (’U) Z 2740
for all w’ € W’ and all v € V(G) \ W’. In particular, W’ C V. (This follows since
Lemma Z74(iii),(iv) and (ESch3) together imply that dgiar, g (v) = dgofar, B (v)+
daorar,B(v) < eon +egy (A, B') < egn + ¢n for all v € AU B.) Let wy, w2, w3 be
vertices of G such that

derar,p(w1) = dgrar,py(w2) 2 dapar,pry(ws) = darar,p(v)
for all v € V(G)\{w1, w2, ws}, where wy and wy are as in Lemma2T4(v). Hence W
consists of wy, ..., wy| and W’ consists of wy, ..., wyy|. Set Wy := {wy, wa} NW'.
Since dg, (v) = ¢n for each v € Vj (and thus for each v € Wy), each w € Wy satisfies

B320) B3I
(3.321) K?<21D/80—¢n <  dgepapy(w) < K?an < eqo(A,B)/2.

(Here the third inequality follows from Lemma 2774 v).) Apply Lemma B3] to
G° in order to obtain a decomposition of G° into edge-disjoint spanning subgraphs
H(i,4") and H"(3,7") (for all 1 < 4,4’ < K) which satisfy the following properties,
where G(i, 1) := H(i, ') + H" (i,i'):
(b}) Each H(i,4") contains only AgA;-edges and By B;/-edges.
(bh) H"(i,i") C G°[A’,B']. Moreover, all but at most 20en/K? edges of
Hll(i,i/) lie in GQ[AO UA;, BpU Bi/].
(bh) e(H"(i,1")) = 2[ege(A’,B')/(2K?)]| or e(H"(i,i')) = 2|eqs(A’,B’)/
(2K?)|. In particular, 2an < e(H" (i,i')) < 19an/5 by [B.3.13).
(bﬁl) dH“(i,i’)('U) = (dGQ[A/,B’] (’U) + 25671)/K2 for all v € V().
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(bf) dr(i,iny(v) = (dge(v) £ 25en)/K? = (2a+25¢/K?)n for all v € Vp
by B.3.19).

(blﬁ) Eachw € W() satisfies dH”(i,i/)(w) S ’VdGO[A@B/] (w)/K2] S an by m
Our next aim is to apply Lemma B33 to each H” (i,i’) to obtain suitable Hamilton
exceptional system candidates (in particular almost all of them will be ‘localized’).
So consider any 1 < 4,7 < K and let H"” := H"(i,i"). We claim that there exists
0 <7 <9/10 such that H"” satisfies the following conditions (which in turn imply
conditions (c1)—(c5) of Lemma B.3.3):

(c}) e(H") =2(1+n)an and nan € N.

(ch) e(H”" —W') <199an/100 and dg (w) > 13an/25 for all w € W.

%) dpr(w) < anfor allw € Wy and dgr (w') < 41an/40 for all w' € W\ W,,.
(cﬁl) For allw € W’ and all v € V(G)\W' we have dg (w)—dg (v) > an/150.
c;) For all v € AU B we have dg (v) < ggn.
Clearly, (b%) implies the first part of (c}). Since e(H") is even by (b%) and an € N,
it follows that nan € N. To verify the first part of (c5), note that (b%) and (b))
together imply that

e(H" —W') =e(H") = > dpn(w) + e(H" W)
weW’
S 2 ’VEGO (A/, B/)/(2K2)“ — Z (dGQ[A/,B’] (’UJ) — 25571)/K2 + 3

weWw’

< (ege_w+ (A, B') +80en)/ K2

Together with Lemma BITI{iv) this implies that
e(H"—W') < (eg_w(A’, B')+80en)/K? < ((3D/4+5)+80en)/K?* < 199an/100.

To verify the second part of (c5), note that by (3.20) and Lemma 27.4iii) each
w € W' satisfies dgopar, g (w) > dgar,py(w) — ¢n > 21D /80 — ¢n. Together with
(b)) this implies dg (w) > 26an/50. Thus (c4) holds. By (bg) we have dg (w) <
an for all w € Wy. If w' € W'\ Wy, then Lemma 2 74(ii) implies dgar,p(w’) <
D/2 < 51K2an/50. Thus, dg~(w') < 41an/40 by (b}). Altogether this shows
that (c3) holds. (c}) follows from ([B.3.20), (b}) and the fact that dgopa pj(v) >
darar,p(v) — ¢n for all v € V(G) by Lemma E74(iii). (c5) holds since dg~ (v) <
dGO[A/,B']( ) < gon forallv e AUB by (ESCh3)

Now we apply Lemma in order to decompose H" into an edge-disjoint
Hamilton exceptional system candidates Fi, ..., F,, such that e(Fy) € {2,4} for
all s < an and such that at least an/200 of F; satisfy e(Fs) = 2 and dp, (w) =1
for all w € W,. Let

”y::a—% and v = %
Recall that by (b)) all but at most 20en/K? < &'n edges of H” lie in G°[Ag U
Ai, Bo U By]. Together with (83.17) this ensures that we can relabel the Fj
if necessary to obtain an edge-disjoint Hamilton exceptional system candidates
Fy(id'), ... Fyn(i,4') and FY(3,7'), ..., F.,, (4,4) such that the following properties
hold:

(a") Fy(i,7") is an (i,i')-HESC for every s < yn. Moreover, v'n of the Fy(i,3)

satisfy e(Fs(i,1")) = 2 and dp, ;) (w) = 1 for all w € Wp.

(b") e(Fl(i,i')) = 2 for all but at most e'n of the F.(4,4').
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(¢) e(Fs(i, i), e(FL(i, i) € {2,4}.
For (b') and the ‘moreover’ part of (a’), we use that an/200—&'n > 2An/K? = 2v'n.
Our next aim is to apply Lemma[B.2.6 with G° playing the role of G* to extend the
above exceptional system candidates into exceptional systems. Clearly conditions
(i) and (ii) of Lemma 326 hold. (iii) follows from (b}). (iv) and (v) follow from
(a)—(c’). (vi) follows from Lemma 274(i),(iii). Finally, (vii) follows from (bf)
since G'(4,4') plays the role of G*(i,i"). Thus we can indeed apply Lemma
to obtain a decomposition of G° into K2an edge-disjoint Hamilton exceptional
systems Ji(3,4'), ..., Jyn(i,4") and J{(2,7),. .., Qn(i, i") with parameter ¢g, where
1 <i,i < K, such that Js(4,4") is an (¢,4')-HES which is a faithful extension of
Fy(i,7") for all s <~yn and J.(i,4') is a faithful extension of F!(i,i) for all s < ~'n.
Then the set J of all these exceptional systems is as required in Lemma 2.7.4
(Since Wy contains {wy,ws} N W, the ‘moreover part’ of (a’) implies the ‘moreover
part’ of Lemma 274(b).) O

3.4. The Case when ¢(4',B') < D

The aim of this section is to prove Lemma This lemma provides a de-
composition of the exceptional edges into exceptional systems in the case when
e(A’, B") < D. In this case, we do not need to prove any auxiliary lemmas first, as
we can apply those proved in the other two cases (Lemmas and B.3.7)).

Proof of Lemma 2.7.5l Let ¢/ be a new constant such that ¢ < ¢’ < A\, 1/K and
set

_n/2—1—¢n

T K2

Similarly as in the proof of Lemma 2.7.4] we have

(34.1) 2an

(3.4.2) e<e < \1/K,a< 1.

We claim that G° can be decomposed into edge-disjoint spanning subgraphs H (4, )
and H"(i,7") (for all 1 < 4, < K) which satisfy the following properties, where
G'(i,4') :== H(i,i') + H"(i,7):

(b}) Each H(i,4") contains only AgA;-edges and By B;/-edges.

(by) H"(i,i") C G°[A’, B']. Moreover, all but at most e'n edges of H"(i,4") lie

in GO[AQ UA;, BoU Bi/].

(by) e(H"(i,4")) is even and e(H" (i,i")) < 2an.

(by) A(H"(i,i")) < e(H"(i,i")) /2.

(bs) dgri,in(v) = 2a £&")n for all v € V.

To see this, let us first consider the case when ego(A’,B’) < 300en. Apply
Lemma to G° in order to obtain a decomposition of G° into edge-disjoint
spanning subgraphs H(i,7") and H'(i,i’) (for all 1 < 4,4’ < K) which satisfy
Lemma 2.5.2(a1)~(as). Set H"(1,1) := U, < H'(i,i") = G°[A", B'] and H"(i,i’)
:= () for all other pairs 1 < i,i’ < K. Then (b}) follows from (a1). (bj) follows
from our definition of the H” (i,4’) and our assumption that ego (A’, B") < 300en <
g'n < an. Together with Lemma 27.5(iv) this also implies (b%). (b}) follows from
Lemma Z75(v). Note that by Lemma R7.5(i) and (iii), every v € V; satisfies
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dge(v) = n/2 —1— ¢n = 2K?an. So, writing G(i,i') := H(i,i') + H'(i,i), (as)
implies that

dr(i.in(v) = dg(i,iny(v) £ 300en = (20 £ 42/ K*)n £ 300en = (20 £ ')n.

Thus (b}) holds too.

So let us next consider the case when ego(A’, B’) > 300en. Let Wy be the
set of all those vertices v € V(G) for which dgeiar g (v) > 3ege(A’, B')/8. Then
clearly |Wp| < 2. Moreover, each v € V(G) \ W, satisfies

3.4.3 dgerar g (V) + 26en < 3ege A/,B/ 8+ ego A/,B/ 8 =ego A/,B/ 2.
[A7,B']

Recall from Lemma 275|(v) that dgerar,p(w) < ege(A’, B')/2 for each w € Wy.
So we can apply Lemma B.3.1]to G° in order to obtain a decomposition of G into
edge-disjoint spanning subgraphs H (i,4") and H"(i,i’) (for all 1 < ¢,i’ < K) which
satisfy Lemma[B3.1b1)—(b7). Then (by) and (bz) imply (b}) and (b%). (b%) follows
from (bs), B4I) and Lemma 275(v). Note that (bs), (bs) and [B43) together

imply that

ego(A',B")/2 —en _ e(H"(i,4
(3.4.4) Qi oy () < € ’KZ)/ <A é 7))
for all v € Vo \ Wo. Note that each v € AU B satisfies dg(; i) (v) < dgofar, p1(v) <
gon by Lemma 2X7H(iv) and (ESch3). Together with the fact that e(H"(i,i")) >
2|300en/(2K?)] > 2egn by (bs), this implies that (3.4.4)) also holds for all v € AUB.
Together with (b7) this implies (bj). (b%) follows from (bs) and the fact that by
Lemma Z7.5(i) and (iii) every v € Vp satisfies dgo(v) = n/2 — 1 — ¢n = 2K2an.
So (b} )—(bg) hold in all cases.

We now decompose the localized subgraphs H”(i,i’) into exceptional system
candidates. For this, fix 4,¢’ < K and write H"” for H"(i,i"). By (b};) we have
A(H") < e(H")/2 and so x'(H") < e(H")/2. Apply Proposition with
e(H")/2 playing the role of m to decompose H” into e(H")/2 edge-disjoint match-
ings, each of size 2. Note that an—e(H")/2 > 0 by (b%). So we can add some empty

matchings to obtain a decomposition of H” into an edge-disjoint My, ..., My, such
that each M is either empty or has size 2. Let
A A
V=g and A = /e

Recall from (b}) that all but at most e'n < v'n edges of H” lie in G°[AgU A;, By U
Bj/]. Hence by relabeling if necessary, we may assume that My C G°[AgU A;, By U
By/] for every s < yn. So by setting Fs(i,i") := M, for all s < yn and F.(i,i') :=
My for all s < 4'n we obtain a decomposition of H” into edge-disjoint ex-
ceptional system candidates Fi(i,i’),. .., [}y, (i,i') and Fy(4,4'),..., F.,, (i,i") such
that the following properties hold:
(a") Fs(i,7") is an (¢,7)-ESC for every s < yn.
(b") Each Fs(i,i") is either a Hamilton exceptional system candidate with
e(Fs(i,4")) = 2or a matching exceptional system candidate with e(Fy(i,4"))
= 0. The analogue holds for each F), (i,i).
Our next aim is to apply Lemma 3260l with G° playing the role of G*, to extend the
above exceptional system candidates into exceptional systems. Clearly conditions
(i) and (ii) of Lemma 328 hold. (iii) follows from (b}). (iv) and (v) follow from
(') and (b’). (vi) follows from Lemma 2.7.5)i),(iii). Finally, (vii) follows from (b})
since G'(i,4") plays the role of G*(7,7) in Lemma B.2.6l Thus we can indeed apply
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Lemma to obtain a decomposition of G° into K2an edge-disjoint exceptional
systems J1(4,4'), ..., Jyn(i,7") and J{(¢,7),. .., ;,n(i,i’), where 1 < i,¢ < K, such
that Js(4,4') is an (4¢,4')-ES which is a faithful extension of Fs(¢,4") for all s < yn
and J/(i,4") is a faithful extension of F!(i,4') for all s < 4'n. Then the set J of all

these exceptional systems is as required in Lemma O






CHAPTER 4

The bipartite case

The aim of this chapter is to prove Theorems and Recall that The-
orem[[L3.8 guarantees many edge-disjoint Hamilton cycles in a graph G when G has
large minimum degree and is close to bipartite, whilst Theorem guarantees
a Hamilton decomposition of G when G has sufficiently large minimum degree, is
regular and is close to bipartite. In Section 1] we give an outline of the proofs.
The results from Sections £.2] and [£.3] are used in both the proofs of Theorems
and In Sections 4] and we build up machinery for the proof of The-
orem We then prove Theorem [[.3.8 in Section and Theorem [[.3.5] in
Section [£.7}

Unlike in the previous chapters, in this chapter we view a matching M as a set
of edges. (So |M| for example, denotes the number of edges in M.)

4.1. Overview of the Proofs of Theorems [1.3.5] and [1.3.§

Note that, unlike in Theorem [[L3.5] in Theorem [[.3.8 we do not require a com-
plete decomposition of our graph F into edge-disjoint Hamilton cycles. Therefore,
the proof of Theorem is considerably more involved than the proof of The-
orem Moreover, the ideas in the proof of Theorem [[L3.8 are all used in the
proof of Theorem too.

4.1.1. Proof Overview for Theorem [1.3.8 Let I be a graph on n vertices
with §(F) > (1/2 — o(1))n which is close to the balanced bipartite graph K, /3 ,, /2.
Further, suppose that G is a D-regular spanning subgraph of F as in Theorem [[.3.§
Then there is a partition A, B of V(F') such that A and B are of roughly equal size
and most edges in F' go between A and B. Our ultimate aim is to construct D/2
edge-disjoint Hamilton cycles in F.

Suppose first that, in the graph F, both A and B are independent sets of
equal size. So F' is an almost complete balanced bipartite graph. In this case, the
densest spanning even-regular subgraph G of F' is also almost complete bipartite.
This means that one can extend existing techniques (developed e.g. in [6}, [T} [9]
111, [31]) to find an approximate Hamilton decomposition. (In Chapter B using
such techniques, we prove an approximate decomposition result (Lemma 6]
which is suitable for our purposes. In particular, Lemma [£.6.1] is sufficient to prove
Theorem [[L38 in this special case.) The real difficulties arise when

(i) F is unbalanced (i.e. |A| # |B|);
(ii) F has vertices having high degree in both A and B (these are called
exceptional vertices).

To illustrate (i), recall the following example due to Babai (which is the ex-
tremal construction for Corollary [LT.0). Consider the graph F on n = 8k + 2
vertices consisting of one vertex class A of size 4k + 2 containing a perfect matching

95
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and no other edges, one empty vertex class B of size 4k, and all possible edges
between A and B. Thus the minimum degree of F' is 4k + 1 = n/2. Then one can
use Tutte’s factor theorem to show that the largest even-regular spanning subgraph
G of F has degree D = 2k = (n — 2)/4. Note that to prove Theorem in this
case, each of the D/2 = k Hamilton cycles we find must contain exactly two of the
2k + 1 edges in A. In this way, we can ‘balance out’ the difference in the vertex
class sizes.

More generally we will construct our Hamilton cycles in two steps. In the first
step, we find a path system J which balances out the vertex class sizes (so in the
above example, J would contain two edges in A). Then we extend .J into a Hamilton
cycle using only AB-edges in F. It turns out that the first step is the difficult one.
It is easy to see that a path system J will balance out the sizes of A and B (in the
sense that the number of uncovered vertices in A and B is the same) if and only if

(4.1.1) es(4) = e;(B) = |A] - |B].

Note that any Hamilton cycle also satisfies this identity. So we need to find a set
of D/2 path systems J satisfying (A1) (where D is the degree of G). This is
achieved (amongst other things) in Sections and

As indicated above, our aim is to use Lemma [£.6.1] (our approximate decompo-
sition result for the bipartite case) in order to extend each such J into a Hamilton
cycle. To apply Lemma 6.1l we also need to extend the balancing path systems J
into ‘balanced exceptional (path) systems’ which contain all the exceptional vertices
from (ii). This is achieved in Section 134l Lemma 6.1l also assumes that the path
systems are ‘localized’ with respect to a given subpartition of A, B (i.e. they are
induced by a small number of partition classes). Section 3] prepares the ground
for this. The balanced exceptional systems are the analogues of the exceptional
systems which we use in the two cliques case (i.e. in Chapter [2).

Finding the balanced exceptional systems is extremely difficult if G contains
edges between the set A of exceptional vertices in A and the set By of exceptional
vertices in B. So in a preliminary step, we find and remove a small number of
edge-disjoint Hamilton cycles covering all AyBy-edges in Section We put all
these steps together in Section (Sections [£4] and [£7] are only relevant for
the proof of Theorem [[.3.5])

4.1.2. Proof Overview for Theorem The main result of this chapter
is Theorem Suppose that G is a D-regular graph satisfying the conditions
of that theorem. Using the approach of the previous subsection, one can obtain an
approximate decomposition of G, i.e. a set of edge-disjoint Hamilton cycles covering
almost all edges of G. However, one does not have any control over the ‘leftover’
graph H, which makes a complete decomposition seem infeasible. As in the proof
of Theorem [[33 we use the following strategy to overcome this issue and obtain
a decomposition of G:

(1) find a (sparse) robustly decomposable graph G™ in G and let G’ denote
the leftover;

(2) find an approximate Hamilton decomposition of G’ and let H denote the
(very sparse) leftover;

(3) find a Hamilton decomposition of G™" U H.

As before, it is of course far from obvious that such a graph G™P exists. By
assumption our graph G can be partitioned into two classes A and B of almost
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equal size such that almost all the edges in G go between A and B. If both A
and B are independent sets of equal size then the ‘bipartite’ version of the robust
decomposition lemma of [21] guarantees our desired subgraph G™P of G. Of course,
in general our graph G will contain edges in A and B. Our aim is therefore to replace
such edges with ‘fictive edges’ between A and B, so that we can apply this version of
the robust decomposition lemma (Lemma [L53]). (We note here that Lemma
is designed to deal with bipartite graphs. So its statement is slightly different to
the robust decomposition lemma (Lemma [2.9.4) that was applied in the proof of
Theorem [[.3.3])

More precisely, similarly as in the proof of Theorem [[.3.8] we construct a collec-
tion of localized balanced exceptional systems. Together these path systems contain
all the edges in G[A4] and G[B]. Again, each balanced exceptional system balances
out the sizes of A and B and covers the exceptional vertices in G (i.e. those vertices
having high degree into both A and B).

Similarly as in the two cliques case, we now introduce fictive edges. This time,
by replacing edges of the balanced exceptional systems with fictive edges, we obtain
from G an auxiliary (multi)graph G* which only contains edges between A and B
and which does not contain the exceptional vertices of G. This will allow us to ap-
ply the robust decomposition lemma. In particular this ensures that each Hamilton
cycle obtained in G* contains a collection of fictive edges corresponding to a sin-
gle balanced exceptional system (as before the set-up of the robust decomposition
lemma does allow for this). Each such Hamilton cycle in G* then corresponds to a
Hamilton cycle in G.

We now give an example of how we introduce fictive edges. Let m be an integer
so that (m —1)/2 is even. Set m' := (m —1)/2 and m” := (m + 1)/2. Define the
graph G as follows: Let A and B be disjoint vertex sets of size m. Let A1, A5 be a
partition of A and By, B2 be a partition of B such that |4;| = |B1| =m”. Add all
edges between A and B. Add a matching M; = {e1,...,ens/2} covering precisely
the vertices of A; and add a matching Mo = {ef,... e}, /2} covering precisely
the vertices of By. Finally add a vertex v which sends an edge to every vertex
in A; UBj. So G is (m + 1)-regular (and v would be regarded as an exceptional
vertex).

Now pair up each edge e, with the edge e;. Write e; = x2;,_179; and e, =
Y2i—1Y2i for each 1 S ) S m’/2. Let Al = {al, [P ,am//} and Bl = {bl, . .,bm//}
and write f; := a;b; for all 1 <4 < m”. Obtain G* from G by deleting v together
with the edges in M7 UM and by adding the following fictive edges: add f; for each
1 <i<m” and add z;y; for each 1 < j < m/. Then G* is a balanced bipartite
(m + 1)-regular multigraph containing only edges between A and B.

First, note that any Hamilton cycle C* in G* that contains precisely one fictive
edge f; for some 1 < i < m” corresponds to a Hamilton cycle C in G, where we
replace the fictive edge f; with a;v and b;v. Next, consider any Hamilton cycle C*
in G* that contains precisely three fictive edges; f; for some 1 < i < m/ together
with xg;_1y2;—1 and x9;y2; for some 1 < j < m//2. Further suppose C* traverses
the vertices a;, b;, Toj—1,%2j—1,%2j,y2; in this order. Then C* corresponds to a
Hamilton cycle C in G, where we replace the fictive edges with a;v, b;v, e; and e;»
(see Figure A.IT]). Here the path system J formed by the edges a,;v, bjv,e; and €,

J
is an example of a balanced exceptional system. The above ideas are formalized in

Section (141
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s
L =3
K

FIGURE 4.1.1. Transforming the problem of finding a Hamilton
cycle in G into finding a Hamilton cycle in the balanced bipartite
graph G*

We can now summarize the steps leading to proof of Theorem In Sec-
tion [£2] we find and remove a set of edge-disjoint Hamilton cycles covering all
edges in G[Ag, Bo]. We can then find the localized balanced exceptional systems
in Section [£.3] After this, we need to extend and combine them into certain path
systems and factors (which contain fictive edges) in Section [£.4] before we can use
them as an ‘input’ for the robust decomposition lemma in Section Finally, all
these steps are combined in Section [£.7] to prove Theorem

4.2. Eliminating Edges between the Exceptional Sets

Suppose that G is a D-regular graph as in Theorem The purpose of this
section is to prove Corollary 22121 Roughly speaking, given K € N, this corollary
states that one can delete a small number of edge-disjoint Hamilton cycles from G
to obtain a spanning subgraph G’ of G and a partition A, Ag, B, By of V(G) such
that (amongst others) the following properties hold:

e almost all edges of G’ join AU Ag to B U By;

e |A| = |B]| is divisible by K;

e every vertex in A has almost all its neighbours in BU By and every vertex
in B has almost all its neighbours in A U Ag;

e AgU By is small and there are no edges between Ag and By in G'.

We will call (G', A, Ag, B, By) a bi-framework. (The formal definition of a bi-
framework is stated before Lemma L2.TTl) Both A and B will then be split into
K clusters of equal size. Our assumption that G is eox-bipartite easily implies that
there is such a partition A, Ag, B, By which satisfies all these properties apart from
the property that there are no edges between Ag and By. So the main part of this
section shows that we can cover the collection of all edges between Ay and By by a
small number of edge-disjoint Hamilton cycles.

Since Corollary will also be used in the proof of Theorem [[.3.§] instead
of working with regular graphs we need to consider so-called balanced graphs. We
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also need to find the above Hamilton cycles in the graph F' O G rather than in G
itself (in the proof of Theorem [[3.5] we will take F' to be equal to G).

More precisely, suppose that G is a graph and that A’, B’ is a partition of
V(G), where A’ = AgUA, B’ = ByUB and A, Ay, B, By are disjoint. Then we say
that G is D-balanced (with respect to (A, Ao, B, Byp)) if

(B1) eq(A’) —eq(B') = (|A'| = |B'|)D/2;

(B2) all vertices in Ag U By have degree exactly D.

Proposition L2 Tl below implies that whenever A, Ag, B, By is a partition of the ver-
tex set of a D-regular graph H, then H is D-balanced with respect to (4, Ay, B, By).
Moreover, note that if G is Dg-balanced with respect to (A4, Ag, B, By) and H is a
spanning subgraph of G which is Dg-balanced with respect to (4, Ao, B, By), then
G—H is (D¢ — Dy )-balanced with respect to (A, Ag, B, By). Furthermore, a graph
G is D-balanced with respect to (A, Ay, B, By) if and only if G is D-balanced with
respect to (B, By, A, Ap).

PROPOSITION 4.2.1. Let H be a graph and let A’, B’ be a partition of V(H).
Suppose that Ay, A is a partition of A" and that By, B is a partition of B’ such
that |A| = |B|. Suppose that dg(v) = D for every v € AgU By and dg(v) = D’ for
every v € AUB. Then eg(A’) —en(B’) = (JA'| — |B’|)D/2.

Proof. Note that

> du(z,B)=eu(A,B) = du(y,A).

TE A’ yeB’
Moreover,
2en(A)= > (D—du(x,B)+ Y (D' —du(z,B"))
T€AQ z€A
= D|Ao| + D'|A| = > du(x, B
zeA’
and
2e(B') = Y (D —du(y, A))+ > (D' —duly,A))
y€Bo yEB
=DI|Bo|+ D'[B| = > du(y, A).
yeB’
Therefore
2ep(A")—2en(B') = D(|Ao|=|Bo|)+D'(|A|-|B|) = D(|Ao|—|Bol) = D(|A'|-|B']),
as desired. [l

The following observation states that balancedness is preserved under suitable
modifications of the partition.

PROPOSITION 4.2.2. Let H be D-balanced with respect to (A, Aoy, B, By). Sup-
pose that Ay, Bjy is a partition of Ag U By. Then H is D-balanced with respect to
(A, A, B, By).

Proof. Observe that the general result follows if we can show that H is D-balanced
with respect to (A, Ay, B, Bj), where A = Ao U {v}, Bj = By \ {v} and v € By.
(B2) is trivially satisfied in this case, so we only need to check (B1) for the new
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partition. For this, let A’ := AgU A and B’ := By U B. Now note that (B1) for the
original partition implies that

GH(A6 U A) — eH(36 U B) = eH(A/) + dH(’U, A/) — (GH(B/) — dH(’U, B/))
= (|41 =|B')D/2+ D = (|Ag U A| - |By U B)D/2.
Thus (B1) holds for the new partition. (]

Suppose that G is a graph and A’, B’ is a partition of V(G). For every vertex
v € A" we call dg(v, A’) the internal degree of v in G. Similarly, for every vertex
v € B’ we call dg(v, B') the internal degree of v in G.

Given a graph F' and a spanning subgraph G of F' , we say that (F,G, A, Ay, B,
By) is an (g,¢’, K, D)-weak framework if the following holds, where A’ := Ay U A,
B':=ByUB and n:= |G| = |F|:

(WF1) A, Ay, B, By forms a partition of V(G) = V(F);
(WF2) G is D-balanced with respect to (A, Ag, B, By);
(WF3) eg(A),eq(B’) < en?;
(WF4) |A| = |B] is divisible by K. Moreover, a + b < en, where a := |Ap| and
b := |Bol;

(WF5) all vertices in AU B have internal degree at most ¢'n in F;
(WF6) any vertex v has internal degree at most dg(v)/2 in G.

Throughout the chapter, when referring to internal degrees without mentioning the
partition, we always mean with respect to the partition A’, B’, where A’ = AgU A
and B’ = By U B. Moreover, a and b will always denote |Ag| and | By.

We say that (F,G, A, Ay, B, By) is an (e,¢&’, K, D)-pre-framework if it satisfies
(WF1)-(WF5). The following observation states that pre-frameworks are preserved
if we remove suitable balanced subgraphs.

PROPOSITION 4.2.3. Lete,e’ > 0 and K, D¢, Dy € N. Let (F,G, A, Ay, B, By)
be an (e,e', K, Dg)-pre framework. Suppose that H is a Dg-regular spanning sub-
graph of F such that G N H is Dy-balanced with respect to (A, Ag, B, By). Let
F':=F-H andG' :=G—H. Then (F',G', A, Ao, B, By) is an (¢,¢', K, Dg—Dp)-
pre framework.

Proof. Note that all required properties except possibly (WF2) are not affected by
removing edges. But G’ satisfies (WF2) since G N H is Dy-balanced with respect
to (A,Ao,B,Bo). [l

LEMMA 4.24. Let 0 < 1/n < e < €',1/K < 1 and let D > n/200. Suppose
that F is a graph on n wvertices which is e-bipartite and that G is a D-reqular
spanning subgraph of F. Then there is a partition A, Ag, B, By of V(G) = V(F) so
that (F,G, A, Ao, B, By) is an (¢'/3,¢', K, D)-weak framework.

Proof. Let S1,S2 be a partition of V(F') which is guaranteed by the assumption
that F' is e-bipartite. Let S be the set of all those vertices x € S7 with dp(z,S1) >
Vven together with all those vertices z € So with dp(z,S2) > /en. Since F is
e-bipartite, it follows that |S| < 44/en.

Given a partition X,Y of V(F), we say that v € X is bad for X,Y if dg(v, X) >
da(v,Y) and similarly that v € Y is bad for X, Y if dg(v,Y) > dg(v, X). Suppose
that there is a vertex v € S which is bad for Sy, So. Then we move v into the class
which does not currently contain v to obtain a new partition Sj, S5. We do not
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change the set S. If there is a vertex v € S which is bad for S7, S5, then again we
move it into the other class.

We repeat this process. After each step, the number of edges in G between the
two classes increases, so this process has to terminate with some partition A’, B’
such that A’ A S; C S and B’ A Sy C S. Clearly, no vertex in S is now bad for A,
B’. Also, for any v € A"\ S we have

(4.2.1) dg(v,A') <dp(v,A") <dp(v,S1) +|S] < Ven +4yen < e'n
<D/2=dg(v)/2.

Similarly, dg(v, B') < ¢'n < dg(v)/2 for all v € B’\ S. Altogether this implies that
no vertex is bad for A’, B’ and thus (WF6) holds. Also note that eg(A4’, B’) >
ec(S1,92) > e(Q) — 2en?. So

(4.2.2) eq(A),eq(B') < 2en?.

This implies (WF3).

Without loss of generality we may assume that |A’| > |B’|. Let A} denote the
set of all those vertices v € A’ for which dp(v, A") > ¢'n. Define B C B’ similarly.
We will choose sets A C A’\ A and Ay 2 A} and sets B C B\ B} and By 2 B such
that |A| = |B| is divisible by K and so that A, Ay and B, By are partitions of A" and
B’ respectively. We obtain such sets by moving at most ||A"\ Aj| — |B'\ Bi|| + K
vertices from A"\ Aj to Aj and at most ||A"\ Aj| — |B"\ B}|| + K vertices from
B\ B, to B{. The choice of A, Ay, B, By is such that (WF1) and (WF5) hold.
Further, since |A| = | B|, Proposition [L.2.1] implies (WF2).

In order to verify (WF4), it remains to show that a+b = |AgUBy| < '/?n. But
(21 together with its analogue for the vertices in B’\ S implies that AjUB{ C S.
Thus |Aj|+ |Bj| < |S| < 44/en. Moreover, (WF2), (£.2.2) and our assumption that
D > n/200 together imply that

4| = |B| = (ea(A') — e(B)/(D/2) < 2en?/(D/2) < 800en.
So altogether, we have
a+b < |AyU By +2[|A"\ Ay| — |B"\ Byl + 2K
< 4ven+2||A'| = [B'| - (|4 — [Bg|)| + 2K
< 4y/en + 1600en + 8/en 4+ 2K < £'/3n.
Thus (WF4) holds. O

Our next goal is to cover the edges of G[Ag, By] by edge-disjoint Hamilton
cycles. To do this, we will first decompose G[Ag, By] into a collection of matchings.
We will then extend each such matching into a system of vertex-disjoint paths
such that altogether these paths cover every vertex in G[Ay, By], each path has its
endvertices in A U B and the path system is 2-balanced. Since our path system
will only contain a small number of nontrivial paths, we can then extend the path
system into a Hamilton cycle (see Lemma .2.9]).

We will call the path systems we are working with Ay Bg-path systems. More
precisely, an AgBy-path system (with respect to (A, Ao, B, Bp)) is a path system Q
satisfying the following properties:

e Every vertex in Ay U By is an internal vertex of a path in Q.
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e AU B contains the endpoints of each path in @ but no internal vertex of
a path in Q.

The following observation (which motivates the use of the word ‘balanced’) will
often be helpful.

PROPOSITION 4.2.5. Let Ag, A, By, B be a partition of a vertex set V.. Then an
AgBy-path system Q with V(Q) C V is 2-balanced with respect to (A, Ao, B, By) if
and only if the number of vertices in A which are endpoints of nontrivial paths in
Q@ equals the number of vertices in B which are endpoints of nontrivial paths in Q.

Proof. Note that by definition any AgBy-path system satisfies (B2), so we only
need to consider (B1). Let n4 be the number of vertices in A which are endpoints of
nontrivial paths in @ and define np similarly. Let a := |Ag|, b := |By|, A" := AU A,
and B’ := BU By. Since dg(v) = 2 for all v € Ay and since every vertex in A is
either an endpoint of a nontrivial path in @ or has degree zero in ), we have

2eq(A') + eq(A',B)) = Y do(v) =2a+na.
veEA’!

Sona =2(eq(A")—a)+eq(A’,B’), and similarly np = 2(eq(B’) —b) +eq(A’, B).
Therefore, ny = np if and only if 2(eg(A’) — eq(B’) —a +b) = 0 if and only if Q
satisfies (B1), as desired. O

The next observation shows that if we have a suitable path system satisfying
(B1), we can extend it into a path system which also satisfies (B2).

LEMMA 4.2.6. Let 0 < 1/n < a < 1. Let G be a graph on n vertices such that
there is a partition A', B' of V(G) which satisfies the following properties:

(i) A=Ay UA, B'=ByUB and Ay, A, By, B are disjoint;
(ii) |A] =|B| and a + b < an, where a := |Ag| and b := |By|;
(iii) if v € Ag then dg(v, B) > 4an and if v € By then dg(v, A) > 4an.

Let Q' C G be a path system consisting of at most an nontrivial paths such that
AUB contains no internal vertez of a path in Q' and eq/(A")—eq/ (B') = a—b. Then
G contains a 2-balanced AgBy-path system Q (with respect to (A, Ao, B, By)) which
extends Q' and consists of at most 2an nontrivial paths. Furthermore, E(Q)\ E(Q")
consists of AgB- and ABgy-edges only.

Proof. Since A U B contains no internal vertex of a path in Q' and since @’
contains at most an nontrivial paths, it follows that at most 2an vertices in AU B
lie on nontrivial paths in Q’. We will now extend @’ into an AgBy-path system Q
consisting of at most a + b + an < 2an nontrivial paths as follows:

e for every vertex v € Ag, we join v to 2 — dg (v) vertices in B;
e for every vertex v € By, we join v to 2 — dg/(v) vertices in A.

Condition (iii) and the fact that at most 2an vertices in AUB lie on nontrivial paths
in Q' together ensure that we can extend @’ in such a way that the endvertices
in AU B are distinct for different paths in Q. Note that eg(A’) — eq(B’) =
eq (A")—eq/(B’) = a—b. Therefore, Q) is 2-balanced with respect to (A, Ag, B, By).

O
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The next lemma constructs a small number of 2-balanced Ay Bp-path systems
covering the edges of G[Ap, By]. Each of these path systems will later be extended
into a Hamilton cycle.

LEMMA 42.7. Let 0 < 1/n < e < e'|1/K < a < 1. Let F be a graph on n
vertices and let G be a spanning subgraph of F'. Suppose that (F,G, A, Ao, B, By) is
an (e,e', K, D)-weak framework with 6(F) > (1/4+ a)n and D > n/200. Then for
some r* < en the graph G contains r* edge-disjoint 2-balanced AgBg-path systems
Q1,...,Qr which satisfy the following properties:

(i) Together Q1,...,Q~ cover all edges in G[Ao, Bol;
(ii) For each i < r*, Q; contains at most 2en nontrivial paths;

(iii) For each i < r*, Q; does not contain any edge from G[A, B].

Proof. (WF4) implies that |Ag|+ |Bo| < en. Thus, by Corollary [[L4.6] there exists
a collection Mj,..., M]. of r* edge-disjoint matchings in G[Ao, By] that together
cover all the edges in G[Ay, Bo], where r* < en.

We may assume that a > b (the case when b > a follows analogously). We
will use edges in G[A’] to extend each M/ into a 2-balanced AyBy-path system.
(WF2) implies that eq(A’) > (a — b)D/2. Since dg(v) = D for all v € Ay U By
by (WF2), (WF5) and (WF6) imply that A(G[A]) < D/2. Thus Corollary [[Z.0
implies that E(G[A']) can be decomposed into | D/2] + 1 edge-disjoint matchings
Maj,.. -7MA1LD/2J+1 such that ||MA,i| — |MA,j|| <1lforalli,j <|D/2]+1.

Notice that at least en of the matchings M4 ; are such that [Ma ;| > a — b.
Indeed, otherwise we have that

(a—b)D/2<eg(A") <en(a—b)+ (a—b—1)(D/2+1—en)
—(a—b)D/2+a—b—D/2—1+en
<(a—=b)D/2+2en—-D/2 < (a—0b)D/2,

a contradiction. (The last inequality follows since D > n/200.) In particular,
this implies that G[A’] contains 7* edge-disjoint matchings M7, ..., M/, that each
consist of precisely a — b edges.

For each i < r*, set M; := M/ U M. So for each ¢ < r*, M; is a path system
consisting of at most b+ (a —b) = a < en nontrivial paths such that AU B contains
no internal vertex of a path in M; and en, (A’) — en, (B') = enr(A') = a —b.

Suppose for some 0 < r < r* we have already found a collection @1, ...,Q, of r
edge-disjoint 2-balanced Ay By-path systems which satisfy the following properties
for each 7 < r:

(a); Q; contains at most 2en nontrivial paths;

(B): M; C Qi

(7)i Qi and M; are edge-disjoint for each j < r* such that ¢ # j;

(6); @Q; contains no edge from G[A, B].
(Note that («)o—(d)o are vacuously true.) Let G’ denote the spanning subgraph of
G obtained from G by deleting the edges lying in Q1 U --- U Q.. (WF2), (WF4)
and (WF6) imply that, if v € Ay, de/(v,B) > D/2 —en —2r > 4en and if v € By
then dgr(v, A) > 4en. Thus Lemma implies that G’ contains a 2-balanced
AgBy-path system @41 that satisfies (a)r+1—(0)r41.

So we can proceed in this way in order to obtain edge-disjoint 2-balanced Ay By-
path systems Q1,...,Q,~ in G such that («a);—(0); hold for each i < r*. Note that
(i)—(iii) follow immediately from these conditions, as desired. O
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The next lemma (Corollary 5.4 in [20]) allows us to extend a 2-balanced path
system into a Hamilton cycle. Corollary 5.4 concerns so-called ‘(A, B)-balanced’-
path systems rather than 2-balanced AgBy-path systems. But the latter satisfies
the requirements of the former by Proposition [£.2.5

LEMMA 4.2.8. Let 0 < 1/n < &' < ae < 1. Let F be a graph and suppose that
Ao, A, Bo, B is a partition of V(F) such that |A| = |B| =n. Let H be a bipartite
subgraph of F with vertex classes A and B such that 6(H) > (1/2 + a)n. Suppose
that Q is a 2-balanced AgBy-path system with respect to (A, Ay, B, By) in F which
consists of at most €'n nontrivial paths. Then F contains a Hamilton cycle C which
satisfies the following properties:

e QCC;
e E(C)\ E(Q) consists of edges from H.

Now we can apply Lemma [4.2.8 to extend a 2-balanced AgBy-path system in
a pre-framework into a Hamilton cycle.

LEMMA 4.29. Let 0 < 1/n < e < e 1/K < a < 1. Let F be a graph on n
vertices and let G be a spanning subgraph of F. Suppose that (F,G, A, Ao, B, By) is
an (e,&', K, D)-pre-framework, i.e. it satisfies (WF1)-(WF5). Suppose also that
5(F) > (1/4 + a)n. Let Q be a 2-balanced AgBy-path system with respect to
(A, Ay, B, By) in G which consists of at most e'n nontrivial paths. Then F contains
a Hamilton cycle C' which satisfies the following properties:

() QCC;
(ii) E(C)\ E(Q) consists of AB-edges;
(iii) C NG is 2-balanced with respect to (A, Ag, B, Bp).

Proof. Note that (WF4), (WF5) and our assumption that d(F) > (1/4 + a)n
together imply that every vertex = € A satisfies

dp(z,B) > dp(x,B")—|Bo| > dp(z) —e'n—|Bo| > (1/44+ a/2)n > (1/2+ «/2)|B|.

Similarly, dp(z, A) > (1/2 + a/2)|A| for all x € B. Thus, §(F[4,B]) > (1/2 +
a/2)|A|. Applying Lemma with F[A, B] playing the role of H, we obtain a
Hamilton cycle C in F that satisfies (i) and (ii). To verify (iii), note that (ii) and
the 2-balancedness of @ together imply that

ecnc(A') —ecna(B') = eg(4’) —eq(B') =a—b.
Since every vertex v € Ag U By satisfies dong(v) = dg(v) = 2, (iii) holds. O

We now combine Lemmas 27] and to find a collection of edge-disjoint
Hamilton cycles covering all the edges in G[Ay, Bo].

LEMMA 4.2.10. Let 0 < 1/n < e € ¢',1/K <« o < 1 and let D > n/100.
Let F be a graph on n vertices and let G be a spanning subgraph of F. Suppose
that (F,G, A, Ao, B, By) is an (e,&', K, D)-weak framework with §(F) > (1/4 +
a)n. Then for some r* < en the graph F contains edge-disjoint Hamilton cycles
Ci,...,Cr+ which satisfy the following properties:

(i) Together Ci,...,Crs cover all edges in G[Ag, Bo|;
(ii) (C1U---UCy) NG is 2r*-balanced with respect to (A, Ag, B, By).



4.2. ELIMINATING EDGES BETWEEN THE EXCEPTIONAL SETS 105

Proof. Apply Lemma .27 to obtain a collection of r* < en edge-disjoint 2-
balanced AgBy-path systems Q1, ..., Q.+ in G which satisfy Lemma [£.2.7)i)—(iii).
We will extend each @; to a Hamilton cycle C;.

Suppose that for some 0 < r < r* we have found a collection Cy,...,C; of r
edge-disjoint Hamilton cycles in F' such that the following holds for each 0 < i < r:
()i Qi € Cy;

(8): E(Ci)\ E(Q;) consists of AB-edges;

(7); GNC; is 2-balanced with respect to (A, Ag, B, By).

(Note that (a)o—(7)o are vacuously true.) Let H, := C1 U---UC, (where Hy :=
(V(G),0)). So H, is 2r-regular. Further, since G N C; is 2-balanced for each
i < r, GN H, is 2r-balanced. Let G, := G — H, and F, := F — H,. Since
(F,G, A, Ao, B, By) is an (e,¢’, K, D)-pre-framework, Proposition 2.3 implies that
(Fy,Gr A, Ap, B, By) is an (e,e’, K, D — 2r)-pre-framework. Moreover, §(F,) >
§(F)—2r > (1/4 4+ a/2)n. Lemma [A27(iii) and (8)1—(5), together imply that
Qr+1 lies in G,.. Therefore, Lemma [4.2.9 implies that F. contains a Hamilton cycle
Cy41 which satisfies (@)p41—(7)r41-

So we can proceed in this way in order to obtain r* edge-disjoint Hamilton
cycles Cy,...,Cp+ in F such that for each ¢ < r*, («);—(7); hold. Note that this
implies that (ii) is satisfied. Further, the choice of Q1,...,Q,~ ensures that (i)
holds. (]

Given a graph G, we say that (G, A, Ao, B, By) is an (g, ¢, K, D)-bi-framework
if the following holds, where A’ := AgU A, B’ := By U B and n := |G|:
(BFR1) A, Ap, B, By forms a partition of V(G);
(BFR2) G is D-balanced with respect to (A, Ay, B, By);
(BFR3) eg(A'),eq(B’) < en?;
(BFR4) |A| = |B| is divisible by K. Moreover, b < a and a + b < en, where

a = |Ap| and b := | Byl;

(BFR5) all vertices in AU B have internal degree at most ¢'n in G;
(BFRG) E(G[Ao, Bo]) = O;
(BFRYT) all vertices v € V(G) have internal degree at most dg(v)/2 + en in G.
Note that the main differences to a weak framework are (BFR6) and the fact that
a weak framework involves an additional graph F. In particular (BFR1)-(BFR4)
imply (WF1)-(WF4). Suppose that e; > ¢, ¢} > ¢’ and that K; divides K. Then
note that every (g,¢’, K, D)-bi-framework is also an (e1,¢], K, D)-bi-framework.

LEMMA 4.2.11. Let 0<1l/n < e <&, 1/K < a < 1 and let D > n/100. Let
F be a graph on n vertices and let G be a spanning subgraph of F. Suppose that
(F,G, A, Ao, B, By) is an (g,&', K, D)-weak framework. Suppose also that §(F) >
(1/44+ a)n and |Ao| > |Bo|. Then the following properties hold:
(i) there is an (g,¢', K, Dgr)-bi-framework (G', A, Ao, B, By) such that G’ is
a spanning subgraph of G with Dgr > D — 2en;
(i) there is a set of (D —Dgr)/2 < en edge-disjoint Hamilton cycles in F'— G’
containing all edges of G — G'. In particular, if D is even then Dg/ is
even.

Proof. Lemma [4.2.T0 implies that there exists some r* < en such that F' contains
a spanning subgraph H satisfying the following properties:
(a) H is 2r*-regular;
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(b) H contains all the edges in G[Ag, Bol;
(¢) GN H is 2r*-balanced with respect to (A, Ao, B, Bo);
(d) H has a decomposition into 7* edge-disjoint Hamilton cycles.

Set G’ :== G — H. Then (G', A, Ay, B, By) is an (e,¢’, K, D¢r)-bi-framework
where Dg/ := D — 2r* > D — 2en. Indeed, since (F,G, A, Ag, B, By) is an (g,¢&’, K,
D)-weak framework, (BFR1) and (BFR3)—(BFRS5) follow from (WF1) and (WF3)—
(WF5). Further, (BFR2) follows from (WF2) and (c) while (BFR6) follows from
(b). (WF6) implies that all vertices v € V(G) have internal degree at most dg(v)/2
in G. Thus all vertices v € V(G’) have internal degree at most dg(v)/2 < (dg(v)+
2r*)/2 < dg/(v)/2 +en in G'. So (BFRT) is satisfied. Hence, (i) is satisfied.

Note that by definition of G’, H contains all edges of G — G’. So since r* =
(D — Dgr)/2 < en, (d) implies (ii). O

The following result follows immediately from Lemmas 2.4 and 2111

COROLLARY 4.2.12. Let 0 < 1/n € ¢ € ¢ < ¢/,1/K < a < 1 and let
D > n/100. Suppose that F is an e-bipartite graph on n vertices with §(F) >
(1/4 + a)n. Suppose that G is a D-regular spanning subgraph of F. Then the
following properties hold:
(i) there is an (¢*,&', K, Dgr)-bi-framework (G', A, Ag, B, By) such that G’ is
a spanning subgraph of G, Dg: > D — 2e'/3n and such that F satisfies
(WF5) (with respect to the partition A, Ay, B, By);
(ii) there is a set of (D — Dgr)/2 < €'/3n edge-disjoint Hamilton cycles in
F — G’ containing all edges of G — G'. In particular, if D is even then
D¢ is even.

4.3. Finding Path Systems which Cover All the Edges within the
Classes

The purpose of this section is to prove Corollary which, given a bi-
framework (G, A, Ay, B, By), guarantees a set C of edge-disjoint Hamilton cycles
and a set J of suitable edge-disjoint 2-balanced AgBy-path systems such that the
graph G* obtained from G by deleting the edges in all these Hamilton cycles and
path systems is bipartite with vertex classes A’ and B’ and Ay U By is isolated in
G*. Each of the path systems in J will later be extended into a Hamilton cycle by
adding suitable edges between A and B. The path systems in J will need to be
‘localized’ with respect to a given partition. We prepare the ground for this in the
next subsection.

We will call the path systems in J balanced exceptional systems (see Sec-
tion L34 for the definition). These will play a similar role as the exceptional
systems in the two cliques case (i.e. in Chapter [2I).

Throughout this section, given sets S, S’ C V(G) we often write E(S), E(S, S"),
e(S) and e(S,5’) for Eq(S), Eg(S,S5"), eq(S) and eq(S, S’) respectively.

4.3.1. Choosing the Partition and the Localized Slices. Let K,m € N
and € > 0. Recall that a (K, m,e)-partition of a set V of vertices is a partition of
V into sets Ag, A1,...,Ax and By, By, ..., Bk such that |4;| = |B;| = m for all
1 <i < K and |Ap U By| < ¢|V]|. We often write V; for Ag U By and think of the
vertices in Vj as ‘exceptional vertices’. The sets Aj,...,Ax and Bji,..., Bg are
called clusters of the (K, m,ep)-partition and Ay, By are called exceptional sets.
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Unless stated otherwise, when considering a (K, m,¢)-partition P we denote the
elements of P by Ag, A1,...,Ax and By, B1,..., Bk as above. Further, we will
often write A for Ay U---U Ag and B for By U---U Bg.

Suppose that (G, A4, Ay, B, By) is an (e,¢’, K, D)-bi-framework with |G| = n
and that £1,e2 > 0. We say that P is a (K, m, ¢, €1, e2)-partition for G if P satisfies
the following properties:

(P1) P is a (K, m,e)-partition of V(G) such that the exceptional sets Ag and

By in the partition P are the same as the sets Ay, By which are part of

the bi-framework (G, A, Ag, B, By). In particular, m = |A|/K = |B|/K;

d(v,A;) = (d(v,A) £en)/K for all 1 <i < K and v € V(G);

e(Ai, 4j) = 2(e(A) £ eamax{n,e(A)})/K? forall 1 <i < j < K;

e(A;) = (e(A) £ eamax{n,e(A)})/K? for all 1 <i < K;
(

and the analogous assertions hold if we replace A by B (as well as A; by B; etc.)
n (P2)-(P5).

Our first aim is to show that for every bi-framework we can find such a partition
with suitable parameters.

LEMMA 4.3.1. Let 0 < 1/n < e € &' € g1 € e2 € 1/K < 1. Suppose that
(G, A, Ao, B, By) is an (g,¢’, K, D)-bi-framework with |G| = n and §(G) > D >
n/200. Suppose that F is a graph with V(F) = V(G). Then there exists a partition
P = {AQ,Al, ce ,AK,BQ,Bl, . ,BK} OfV(G) so that

(i) P is a (K, m,¢,e1,e2)-partition for G.
(ii) dp(v,A;) = (dp(v,A) £ en)/K and dp(v, B;) = (dp(v,B) £ e1n)/K for
al1<i< K andv € V(G).

Proof. In order to find the required partitions A;,...,Ax of A and Bi,...,Bg
of B we will apply Lemma [[L47 twice, as follows. In the first application we
let U := A, Ry := Ay, Ry := By and R3 := B. Note that A(G[U]) < €'n by
(BFR5) and dg(u, Rj) < |R;j| < en < é&'nforall u e U and j = 1,2 by (BFR4).
Moreover, (BFR4) and (BFR7) together imply that dg(z,U) > D/3 > &'n for each
2 € Ry = B. Thus we can apply Lemma [ L7l with ¢’ playing the role of € to obtain
a partition Uy, ..., Uk of U. We let A; := U, for all i < K. Then the A; satisfy
(P2)—(P5) and

(4.3.1) eg(A;, B) = (eq(A, B) £ eamax{n,eq(A4,B)})/K = (1 £ e2)eq(4, B)/K.
Further, Lemma [[L47|(vi) implies that
dF(’U, Al) = (dF(’U, A) + El’n)/K

forall1 <i< K and v € V(G).

For the second application of Lemma [[.4. 7 we let U := B, Ry := By, Ry := Ay
and R; := Aj_o for all 3 < j < K + 2. As before, A(G[U]) < ¢'n by (BFR5) and
da(u,Rj) < en < ¢&'n for all w € U and j = 1,2 by (BFR4). Moreover, (BFR4)
and (BFRT) together imply that dg(z,U) > D/3 > &'n for all 3 < j < K + 2 and
each r € R; = Aj_». Thus we can apply Lemma [[.Z7] with ¢’ playing the role of
€ to obtain a partition Uy,..., Uk of U. Let B; := U; for all i < K. Then the B;
satisfy (P2)—(P5) with A replaced by B, A; replaced by B;, and so on. Moreover,
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forall 1 <i,j < K,
ec(4;, Bj) = (eq(As, B) £ egmax{n, eq(4;,B)})/K

= (1 +e2)eq(A, B) £e2(1 4+ e2)eq(A, B))/K?
= (eg(A, B) £3e2ec(A, B))/K?,
i.e. (P6) holds. Since clearly (P1) holds as well, Ag, A1, ..., Ax and By, By, ..., Bk
together form a (K, m,e,e1,e9)-partition for G. Further, Lemma [[.47|(vi) implies
that

drp(v,B;) = (dp(v,B) £ ein)/K
forall1 <7< K and v € V(G). O

The next lemma gives a decomposition of G[A’] and G[B’] into suitable smaller
edge-disjoint subgraphs Hi‘? and Hﬁ . We say that the graphs Hi‘? and Hﬁ guar-
anteed by Lemma are localized slices of G. Note that the order of the indices
1 and j matters here, i.e. H{;‘- # Hﬁ Also, we allow 7 = j.

LEMMA 432, Let 0 < 1/n < e € &/ € g1 € g2 < 1/K < 1. Suppose that
(G, A, Ao, B, By) is an (¢,&', K, D)-bi-framework with |G| =n and D > n/200. Let
Ao, A1,..., Ak and By, B1,...,Bk be a (K,m,¢e,e1,e2)-partition for G. Then for
all1 <i,j < K there are graphs H{? and Hﬁ with the following properties:
(i) Hj} is a spanning subgraph of G[Ao, A; U A;] U G[A;, A;] U G[Ao];
(i) Thelsets E(H{?) over all 1 < i,j < K form a partition of the edges of
G[A];
(iii) e(H{?) = (e(A") £ 9eamax{n,e(A")})/K? for all 1 <i,j < K;
(iv) ega(Ao, 4; U Aj) = (e(Ao, A) + 2eo max{n,e(4o, 4)})/K? for all 1 <
ij
i,j < K;
(v) epa(Ai, Aj) = (e(A) £ 2somax{n,e(A)})/K? for all 1 <i,j < K;
(vi) For all1<i,j <K and all v € Ay we have dp (v) = dp (v, A; UA;) +
dya(v,Ag) = (d(v, A) + 4e1n)/K2.
The analogous assertions hold if we replace A by B, A; by B;, and so on.
Proof. In order to construct the graphs H;? we perform the following procedure:

e Initially each H{? is an empty graph with vertex set Ag U A; U A;.
e For all 1 < ¢ < K choose a random partition E(Ag, 4;) into K sets U;
of equal size and let E(H;;‘) = Uj;. (If E(Ag,A4,;) is not divisible by K,
first distribute up to K — 1 edges arbitrarily among the U; to achieve
divisibility.)
e For all i < K, we add all the edges in E(A;) to Hj}.
e Forall,j < K with i # j, half of the edges in E(A;, A;) are added to H{?
and the other half is added to H J’;‘- (the choice of the edges is arbitrary).
e The edges in G[Ap] are distributed equally amongst the H;;‘ (Soe HA (Ao)
=e(Ag)/K?£1.)
Clearly, the above procedure ensures that properties (i) and (ii) hold. (P5) implies
(iv) and (P3) and (P4) imply (v).
Consider any v € Ag. To prove (vi), note that we may assume that d(v, A) >
ein/K?2 Let X := dpa(v, AjUA;). Note that (P2) implies that E(X) = (d(v, A) +
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2e1n)/K? and note that E(X) < n. So the Chernoff-Hoeffding bound for the
hypergeometric distribution in Proposition [[.4.4] implies that

P(|X —E(X)| > e1n/K?) < P(IX —E(X)| > e1E(X)/K?) < 2e1BX)/BEY <4 /2

Since dpya(v,Ag) < |Ag] < e1n/K?, a union bound implies the desired result.
ij
Finally, observe that for any a,by,...,bs > 0, we have

4
Zmax{a, b;} < 4max{a,by,...,bs} <4dmax{a,by + -+ bs}.
i=1

So (iii) follows from (iv), (v) and the fact that enp (Ag) = e(Ag)/K? £ 1. O

Note that the construction implies that if ¢ # j, then H{;‘- will contain edges be-
tween Ag and A; but not between Ag and A;. However, this additional information
is not needed in the subsequent argument.

4.3.2. Decomposing the Localized Slices. Suppose that (G, A, Ao, B, Bop)
is an (g,¢’, K, D)-bi-framework. Recall that a = |Ag|, b = |Boy| and a > b. Since
G is D-balanced by (BFR2), we have e(A4’) — e(B’) = (a — b)D/2. So there are an
integer ¢ > —b and a constant 0 < ¢ < 1 such that

(4.3.2) e(AY=(a+q+c)D/2 and e(B')=(b+q+c)D/2.

The aim of this subsection is to prove Lemma 3.5 which guarantees a decom-
position of each localized slice H{? into path systems (which will be extended into
ApByp-path systems in Section 34]) and a sparse (but not too sparse) leftover
graph Gf;.

The following two results will be used in the proof of Lemma

LEMMA 4.3.3. Let 0 < 1/n < «a, B, so that v < 1/2. Suppose that G is a
graph on n wvertices such that A(G) < an and e(G) > pn. Then G contains a
spanning subgraph H such that e(H) = [(1 — v)e(G)] and A(G — H) < 6yan/5.
Proof. Let H' be a spanning subgraph of G such that

e A(H') < 6van/5;

o ¢(H') > ~e(G).
To see that such a graph H' exists, consider a random subgraph of G obtained by
including each edge of G with probability 11v/10. Then E(A(H')) < 11yan/10
and E(e(H’)) = 11ve(G)/10. Thus applying Proposition [[Z.4] we have that, with
high probability, H' is as desired.

Define H to be a spanning subgraph of G such that H O G — H' and e(H) =
[(1—7)e(G)]. Then A(G — H) < A(H') < 6van/5, as required. O

LEMMA 4.3.4. Suppose that G is a graph such that A(G) < D —2 where D € N
is even. Suppose Ao, A is a partition of V(G) such that dg(x) < D/2 —1 for all
x € A and A(G[Ap]) < D/2—1. Then G has a decomposition into D /2 edge-disjoint
path systems Py, ..., Pp/s such that the following conditions hold:

(i) For each i < D/2, any internal vertex on a path in P; lies in Ag;
(ii) |e(P;) —e(P;)| <1 for alli,j < D/2.
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Proof. Let G; be a maximal spanning subgraph of G under the constraints that
G[Ao] g Gl and A(Gl) S D/2—1 Note that G[Ao]UG[A] g Gl. Set G2 = G—Gl.
So G2 only contains AgA-edges. Further, since A(G) < D — 2, the maximality of
G implies that A(G2) < D/2 — 1.

Define an auxiliary graph G’, obtained from G; as follows: let Ay = {aq,...,
am}. Add a new vertex set Aj = {af,...,a,,} to G1. For each ¢ < m and z € A,
we add an edge between a; and x if and only if a;x is an edge in Gs.

Thus G'[Ag U 4] is isomorphic to G; and G'[Af, A] is isomorphic to G2. By
construction and since dg(z) < D/2—1for all z € A, we have that A(G') < D/2-1.
Hence, Corollary[[-Z.6implies that E(G’) can be decomposed into D /2 edge-disjoint
matchings M, ..., Mp /o such that |[M;| — [M;[| <1 for all4,j < D/2.

By identifying each vertex a € A{ with the corresponding vertex a; € Ay,
M, ..., Mp/, correspond to edge-disjoint subgraphs Py, ..., Pp/s of G such that

e P,...,Pp together cover all the edges in G

o |e(P;) —e(P;)| < 1foralli,j<D/2.
Note that das; (z) < 1 for each x € V(G'). Thus dp,(x) < 1 for each z € A and
dp,(z) < 2 for each z € Ap. This implies that any cycle in P; must lie in G[Ay).
However, M; is a matching and G'[A{] U G'[A, A}] contains no edges. Therefore,
P; contains no cycle, and so P; is a path system such that any internal vertex on a
path in P; lies in Ag. Hence Pi, ..., Pp/, satisfy (i) and (ii). O

LEMMA 435. Let 0 < I/n K e K & €1 K ea K 3 K ey < 1/K < 1.
Suppose that (G, A, Ao, B, By) is an (e,¢’, K, D)-bi-framework with |G| = n and
D > n/200. Let Ao, A1,...,Ax and By, Bi,...,Bk be a (K, m,e,¢e1,e2)-partition
for G. Let H{? be a localized slice of G as guaranteed by Lemma [{.3-2 Define c
and q as in [{.3.8). Suppose that t :== (1 —20e4)D/2K?* € N. If e(B’) > e3n, set
t* to be the largest integer which is at most ct and is divisible by K2. Otherwise,
set t* := 0. Define

0 if e(A’) < esn;
by =14 a—1b if e(A’) > e3n but e(B') < e3n;
a+q+c otherwise
and
0 — 0 if e(B') < e3n;
"7\ b+qg+c otherwise.
Then H{;‘ has a decomposition into t edge-disjoint path systems Pi,...,P; and a

spanning subgraph Gf} with the following properties:
(i) For each s <t, any internal vertex on a path in Py lies in Ap;
(i) e(P) = = e(Pr) = [ta] and e(Pros1) = -+ = e(Py) = |0al;
(iil) e(Ps) < \/en for every s < t;
(iv) A(Gf) <13e4D/K>.
The analogous assertion (with £, replaced by £, and Ao replaced by By) holds for
each localized slice HJY of G. Furthermore, [{,] — [0y] = [La] — [£s] = a —D.

Proof. Note that (£3.2]) and (BFR3) together imply that £,D/2 < (a+q+c)D/2 =
e(A’) < en? and so [£,] < /en. Thus (iii) will follow from (ii). So it remains to
prove (i), (ii) and (iv). We split the proof into three cases.

Case 1. e(A') < e3n
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(BFR2) and (BFRA4) imply that e(A’) —e(B’) = (a —b)D/2 > 0. So e(B’) <
e(A") < ezn. Thus £, = £, = 0. Set G{} = H{;‘» and Gg» = Hg Therefore, (iv) is
satisfied as A(Hj}) < e(A’) < ean < 13e4D/K?. Further, (i) and (ii) are vacuous
(i.e. we set each Ps to be the empty graph on V(G)).

Note that a = b since otherwise a > b and therefore (BFR2) implies that
e(A’) > (a—b)D/2 > D/2 > e3n, a contradiction. Hence, [(o]—[lp] = [la]—|ls] =
0=a—b.

Case 2. e¢(A’) > egn and e(B’) < e3n

Since ¢, = 0 in this case, we set Gf; = Hg and each P; to be the empty graph
on V(G). Then as in Case 1, (i), (ii) and (iv) are satisfied with respect to Hg
Further, clearly [4,] — [4p] = |4a] — [4p] = a — b.

Note that a > b since otherwise a = b and thus e(A’) = e(B’) by (BFR2), a

contradiction to the case assumptions. Since e(A’)—e(B’) = (a—b)D/2 by (BFR2),
Lemma [32(iii) implies that

e(H}) > (1 —9e2)e(A')/K? — 9ean/K? > (1 — 9e3)(a — b)D/(2K?) — 9eon/ K>
(4.3.3) > (1—e3)(a—b)D/(2K?) > (a — b)t.
Similarly, Lemma 32(iii) implies that
(4.3.4) e(H}) < (1+e4)(a—b)D/(2K?).
Therefore, ([£33) implies that there exists a constant v > 0 such that
(1- ’y)e(Hi‘?) = (a — b)t.

Since (1 —19e4)(1 —e3) > (1 —20e4), E33) implies that v > 19¢4 > 1/n. Further,
since (1 +e4)(1 — 21ey) < (1 — 20e4), (£34) implies that v < 21ey.
Note that (BFR5), (BFR7) and Lemma [L3.2(vi) imply that

(4.3.5) A(H) < (D/2+ 5ein) /K.

Thus Lemma implies that H{;‘ contains a spanning subgraph H such that
e(H)=(1- ’y)e(H{?—) = (a — b)t and

A(H} — H) < 6v(D/2+ bein)/(5K?) < 13e4D/K?,

where the last inequality follows since v < 214 and 7 < 1. Setting G;‘} =H {;‘ —-H
implies that (iv) is satisfied.

Our next task is to decompose H into ¢ edge-disjoint path systems so that (i)
and (ii) are satisfied. Note that (£3.5]) implies that

A(H) < A(H) < (D/2+5e1n)/K? < 2t — 2.

Further, (BFR4) implies that A(H[Ay]) < |4g| < en <t —1 and (BFR5) implies
that dg(x) <e'n <t—1forall z € A. Since e(H) = (a — b)t, Lemma 3.4 implies
that H has a decomposition into ¢ edge-disjoint path systems Py, ..., P; satisfying
(i) and so that e(Ps) = a — b = £, for all s < t. In particular, (ii) is satisfied.

Case 3. ¢(A),e(B’) > esn
By definition of ¢, and ¢, we have that [{,] — [¢p] = |la] — |&s] = a — b.
Notice that since e(A’) > e3n and e < €3, certainly eze(A4’)/(2K?) > 9ean/K>.
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Therefore, Lemma 32(iii) implies that
e(H{?) > (1 —9e)e(A)/K? — 9e9n/ K>
(4.3.6) > (1 —e3)e(A)/K?
> e3n/(2K?).
Note that 1/n < e3/(2K?). Further, (3.2) and (£3.6) imply that
e(HA) > (1 - eg)e(A') /K

(4.3.7) =(1—-e3)(a+q+c)D/(2K?) > (a+ q)t +t*.
Similarly, Lemma F32(iii) implies that
(4.3.8) e(H{?) <(1+e3)(a+q+c)D/(2K?).

By (£3.7) there exists a constant v > 0 such that

(1- ’y)e(H{?) = (a4 gt +t".
Note that (Z.371) implies that 1/n < 194 < v and ({3.8)) implies that v < 21e4.
Moreover, as in Case 2, (BFR5), (BFR7) and Lemma H.3:2(vi) together show that
(4.3.9) A(H[}) < (D/2+ 5e1n) /K.

Thus (as in Case 2 again), Lemma implies that H{;‘- contains a spanning
subgraph H such that e(H) = (1 —y)e(H}}) = (a + ¢)t 4+ t* and

A(H[} — H) <6v(D/2+ bein)/(5K?) < 13e4D /K.

Setting G;‘} = H{;‘- — H implies that (iv) is satisfied. Next we decompose H into
t edge-disjoint path systems so that (i) and (ii) are satisfied. Note that (£3.9)
implies that
A(H) < A(H[}) < (D/2+ 5e1n)/K? < 2t — 2.

Further, (BFR4) implies that A(H[Ay]) < |Ag| < en <t —1 and (BFR5) implies
that dg(z) < e'n <t—1 for all z € A. Since e(H) = (a + q)t + t*, Lemma L34
implies that H has a decomposition into ¢ edge-disjoint path systems Pi,..., P,
satisfying (i) and (ii). An identical argument implies that (i), (ii) and (iv) are

satisfied with respect to Hg also. ([
4.3.3. Decomposing the Global Graph. Let GgAlob be the union of the
graphs G?j guaranteed by Lemmal4.3.5over all 1 <i,j < K. Define Gﬁob similarly.

The next lemma gives a decomposition of both G;“lob and GgBlob into suitable path

systems. Properties (iii) and (iv) of the lemma guarantee that one can pair up each
such path system Q4 C G;‘lob with a different path system Qp C Gﬁob such that
Q4 UQp is 2-balanced (in particular e(Q4) — e(@p) = a — b). This property will
then enable us to apply Lemma 2.9 to extend Q4 U @Qp into a Hamilton cycle

using only edges between A’ and B’.

LEMMA 4.36. Let 0 < I/n K e K & € 61 K ea K 3 K ey < 1/K < 1.
Suppose that (G, A, Ao, B, By) is an (e,¢’, K, D)-bi-framework with |G| = n and
such that D > n/200 and D is even. Let Ao, A1, ..., Ax and By, B1,...,Bk be a
(K, m,e,e1,e2)-partition for G. Let G?lob be the union of the graphs G% guaranteed
by Lemma [{-3:3] over all 1 < 4,j < K. Define Gﬁob similarly. Suppose that
k :=10e4D € N. Then the following properties hold:



4.3. FINDING PATH SYSTEMS WHICH COVER ALL THE EDGES WITHIN CLASSES 113

(i) There is an integer ¢’ and a real number 0 < ¢/ < 1 so that e(G‘;lob) =
(a+q + )k and e(GL,,) = (b+ ¢ + k.

(11) A(G;?lob)7 A(G(flob) < 3k/2

(i) Let k* := k. Then G;‘lob has a decomposition into k* path systems, each
containing a+q' +1 edges, and k—k* path systems, each containing a+q'
edges. Moreover, each of these k path systems @ satisfies dg(x) < 1 for
all © € A.

(iv) Gﬁob has a decomposition into k* path systems, each containing b+q' +1
edges, and k — k* path systems, each containing b+ q' edges. Moreover,
each of these k path systems Q satisfies dg(z) <1 for all x € B.

(v) Each of the path systems guaranteed in (iii) and (iv) contains at most

Ven edges.

Note that in Lemma [4.3.6] and several later statements the parameter €3 is
implicitly defined by the application of Lemma [4.3.5] which constructs the graphs
G4 , and GB

glo glob*

Proof. Let t* and ¢ be as defined in Lemma[38 Our first task is to show that (i)
is satisfied. If e(A’),e(B’) < egn then G’g“lob = G[A'] and G}, = G[B']. Further,
a = b in this case since otherwise (BFR4) implies that a > b and so (BFR2) yields
that e(A’) > (a —b)D/2 > D/2 > e3n, a contradiction. Therefore, (BFR2) implies

that
e(Goop) — €(Ghop) = e(A") — e(B')=(a - b)D/2 =0 = (a — b)k.
If e(A’) > e3n and e(B’) < e3n then GB_, = G[B']. Further, G4 _, is obtained

glo glo
from G[A’] by removing tK? edge-disjoint path systems, each of which contains
precisely a — b edges. Thus (BFR2) implies that

e(Ghiop) — e(Ghop) = e(A') —e(B') —tK*(a —b) = (a — b)(D/2 — tK?) = (a — b)k.
A

Finally, consider the case when e(A’), e(B’) > e3n. Then G, is obtained from
G[A'] by removing t* K? edge-disjoint path systems, each of which contain exactly
a+q+1 edges, and by removing (t—t*) K? edge-disjoint path systems, each of which
contain exactly a + ¢ edges. Similarly, GgE;Ob is obtained from G[B’] by removing
t* K2 edge-disjoint path systems, each of which contain exactly b+ g+ 1 edges, and
by removing (¢ — t*)K? edge-disjoint path systems, each of which contain exactly
b+ q edges. So (BFR2) implies that

e(G;‘lob) - e(G_glob) = e(AI) - €(B/) - (a - b)tK2 = (a - b)kﬁ

Therefore, in every case,
(4.3.10) e(Ghoy) — e(GE ) = (a — b)k.

Define the integer ¢ and 0 < ¢ < 1 by e(GgAlob) = (a+ ¢ + ¢)k. Then (E3I0)
implies that e(GZob) = (b+ ¢ + )k. This proves (i). To prove (ii), note that
Le;nma E35(iv) implies that A(GgAlob) < 13e4D < 3k/2 and similarly A(GF,,) <
3k/2.

Note that (BFR5) implies that dga () < e'n < k —1 for all z € A and

A(G_:?lob[AO]) < |Ap] < en < k — 1. Thus Lemma 34 together with (i) implies

that (iii) is satisfied. (iv) follows from Lemma [£.3.4] analogously.
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(BFR3) implies that e(G{,,) < ec(A’) < en® and e(GL,,) < eq(B') < en?.
Therefore, each path system from (iii) and (iv) contains at most [en?/k] < v/en

edges. So (v) is satisfied. O

We say that a path system P C G[A'] is (4, j, A)-localized if
(i) E(P) € E(G[Ao, A; U Aj]) U E(G[A;, Aj]) U E(G[Ao]);
(ii) Any internal vertex on a path in P lies in Ay.
We introduce an analogous notion of (i, j, B)-localized for path systems P C G[B’].
The following result is a straightforward consequence of Lemmas [£.3.2]
and It gives a decomposition of G[A’'] U G[B’] into pairs of paths systems
so that most of these are localized and so that each pair can be extended into a
Hamilton cycle by adding A’ B’-edges.

COROLLARY 4.3.7. Let 0 < I/n <K e K1 KK e3 ey < 1/K < 1.
Suppose that (G, A, Ao, B, By) is an (¢,¢’, K, D)-bi-framework with |G| = n and
such that D > n/200 and D is even. Let Ao, A1,...,Ax and By, B1,...,Bk be a
(K,m,e,e1,e2)-partition for G. Let tx := (1 —20e4)D/2K* and k := 10e4D. Sup-
pose that trr € N. Then there are K* sets Misisigis, one for each 1 < iy,i9,13,%4 <
K, such that each M, iqizi, consists of tx pairs of path systems and satisfies the
following properties:

(a) Let (P, P") be a pair of path systems which forms an element of M, iyigi, -
Then
(i) P is an (i1,12, A)-localized path system and P’ is an (i3,i4,B)-localized
path system;
(ii) e(P) —e(P")=a —b;
(iii) e(P),e(P’) < +/en.

(b) The 2tk path systems in the pairs belonging to M, iyisi, are all pairwise
edge-disjoint.

(¢) Let G(M;,iyisi,) denote the spanning subgraph of G whose edge set is the
union of all the path systems in the pairs belonging to M, iyizi, . Then the
K* graphs G(M,iyisi,) are edge-disjoint. Further, each x € Ay satisfies
Ada(Mi,iyigiy) (@) = (dg(x, A) = 1564D)/K* while each y € By satisfies
dG(M,, 100 (W) > (da(y, B) — 15e4D) /K*.

(d) Let Ggiop be the subgraph of G[A']| UG[B’'] obtained by removing all edges
contained in G(Mi,iyizi,) for all 1 < iy,i0,i3,94 < K. Then A(Ggop) <
3k/2. Moreover, Ggop has a decomposition into k pairs of path systems
(Q1,4,Q1.8)s--,(Qr,4,Qr.B) so that
(i) Qia € GaoplA'] and Qi B C Ggop|B'] for all i < k;

(ii") dg, o () <1 for allz € A and dg, ;(x) <1 for all x € B;
(ili") e(Qia) —e(QiB)=a—>b foralli <k;
(iv') e(Qi,4),e(QiB) < +en forall i <k.

Proof. Apply Lemma 432 to obtain localized slices Hi‘? and Hﬁ (for alli,j < K).
Let t := K2t and let t* be as defined in Lemma 3.5l Since t/K?2,t*/K? € N we
have (t —t*)/K? € N. For all iy,iy < K, let M#, be the set of ¢ path systems
in H{;‘iz guaranteed by Lemma We call the t* path systems in Mﬁlé of size
[4] large and the others small. We define MZ, as well as large and small path

13i4
systems in M2, analogously (for all iz, iy < K).
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We now construct the sets M;,;,i,i, as follows: For all 41,42 < K, consider
a random partition of the set of all large path systems in Mﬁlé into K? sets of
equal size t*/K? and assign (all the path systems in) each of these sets to one of
the M, iyiqi, With 43,44 < K. Similarly, randomly partition the set of small path
systems in Mﬁiz into K? sets, each containing (t — t*)/K? path systems. Assign
each of these K? sets to one of the M, ;,i,:, With i3,i4 < K. Proceed similarly for
each Mgu in order to assign each of its path systems randomly to some M, ,iq,-
Then to each M, ;,i,:, We have assigned exactly t*/K? large path systems from
both Mf}iz and Mg i, Pair these off arbitrarily. Similarly, pair off the small path
systems assigned to My, i,i4, arbitrarily. Clearly, the sets M, i,i5:, Obtained in
this way satisfy (a) and (b).

We now verify (c). By construction, the K* graphs G(M,,,isi,) are edge-
disjoint. So consider any vertex x € Ay and write d := dg(z, A). Note that
dHiAli2 () > (d — 4e1n)/K? by Lemma E32(vi). Let G(M#, ) be the spanning

llig
subgraph of G whose edge set is the union of all the path systems in Mf}lé. Then
Lemma £35(iv) implies that
d—4ein  13e4D _ d—14e4D
A 1 4 4

dG(Mﬁiz)(I) = dHif;iz (I) - A(G’Lllz) 2 K2 - K2 2 K2 :
So a Chernoff-Hoeffding estimate for the hypergeometric distribution (Proposi-
tion [[44) implies that

1 d— 14€4D d— 15€4D
dG(Mi1i2i3i4)(x) = F K2 —&n > KA .
(Note that we only need to apply the Chernoff-Hoeffding bound if d > en say, as
(¢) is vacuous otherwise.)

It remains to check condition (d). First note that k& € N since tx,D/2 € N.

Thus we can apply Lemma [£.3.6] to obtain a decomposition of both G;‘lob and Gﬁob
into path systems. Since Ggiop = G?lob U Gﬁob, (d) is an immediate consequence of

Lemma [A36(ii)—(v). O

4.3.4. Constructing Localized Balanced Exceptional Systems. The lo-
calized path systems obtained from Corollary 3.7 do not yet cover all of the ex-
ceptional vertices. This is achieved via the following lemma: we extend the path
systems to achieve this additional property, while maintaining the property of being
balanced. More precisely, let

,P:: {AQ,Al,...,AK,Bo,Bl,...,BK}

be a (K,m,¢e)-partition of a set V of n vertices. Given 1 < iy,i9,i3,14 < K
and g9 > 0, an (i1,1%2,13,14)-balanced exceptional system with respect to P and
parameter €¢ is a path system J with V(J) C Ao U By U A;;, UA;, UB;, UB;, such
that the following conditions hold:

(BES1) Every vertex in AgU By is an internal vertex of a path in J. Every vertex
v e A, UA;, UB;, U B, satisfies dj(v) < 1.

(BES2) Every edge of J[A U B] is either an A;, A;,-edge or a B;, B;,-edge.

(BES3) The edges in J cover precisely the same number of vertices in A as in B.

(BES4) e(J) < ggn.
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To shorten the notation, we will often refer to J as an (i,1i2,143,44)-BES. If V is
the vertex set of a graph G and J C G, we also say that J is an (i1, 42,143, %4)-
BES in G. Note that (BES2) implies that an (41, iz, i3,%4)-BES does not contain
edges between A and B. Furthermore, an (i1, i2,3,%4)-BES is also, for example,
an (42,11, 14, 43)-BES. We will sometimes omit the indices 41, i2, i3, 74 and just refer
to a balanced exceptional system (or a BES for short). We will sometimes also
omit the partition P, if it is clear from the context. As mentioned before, balanced
exceptional systems will play a similar role as the exceptional systems that we used
in the two cliques case (i.e. in Chapter [2I).

(BES1) implies that each balanced exceptional system is an Ay Bp-path system
as defined before Proposition (However, the converse is not true since, for
example, a 2-balanced AgBy-path system need not satisfy (BES4).) So (BES3) and
Proposition imply that each balanced exceptional system is also 2-balanced.

We now extend each set M, ;,4,:, obtained from Corollary 3.7 into a set
._71'11'21'31'4 of (il, ig, i3, Z4)-BES

LEMMA 438. Let 0< 1/n K e K g K K1 K K3 K ey < 1/K < 1.
Suppose that (G, A, Ay, B, By) is an (g,&', K, D)-bi-framework with |G| = n and
such that D > n/200 and D is even. Let P := {Ao, A1,..., Ak, Bo,B1,...,Bk} be
a (K, m,e,e1,e2)-partition for G. Suppose that tr = (1 — 20e4)D/2K* € N. Let
Miizigiy be the sets returned by Corollary [{2371 Then for all 1 < iy,ia,13,14 < K
there is a set Jiyizizi, Which satisfies the following properties:

(1) Tiyinisisa consists of tx edge-disjoint (i1,12,13,14)-BES in G with respect
to P and with parameter gg.

(ii) For each of the tx pairs of path systems (P, P') € My iyizia, there is a
unique J € Ty iziziy Which contains all the edges in P U P’. Moreover, all
edges in E(J)\ E(P U P’) lie in G[Ao, Bi,] U G[Bo, Ai, ]

(iii) Whenever (iy,i2,13,14) # (i1,15,15,1%), J € Tiyinizia and J' € Tiriyinir,
then J and J' are edge-disjoint.

We let J denote the union of the sets Ji,iyizi, over all 1 <iq,49,i3,74 < K.

Proof. We will construct the sets J,i,isi, greedily by extending each pair of path
systems (P, P’) € M;, iz, in turn into an (i1,742,%3,44)-BES containing P U P’.
For this, consider some arbitrary ordering of the K* 4-tuples (i1, 42, i3,14). Suppose
that we have already constructed the sets Jir ¢ for all (i, i5,15,4)) preceding
(i1,42,13,14) so that (i)—(iii) are satisfied. So our aim now is to construct J;,iyizi, -
Consider an enumeration (P, P)),..., (P, P/, ) of the pairs of path systems in
MG, izisis- Suppose that for some ¢ < tx we have already constructed edge-disjoint
(i1,19,13,14)-BES Ji,..., J;—1, so that for each i’ < i the following conditions hold:

e J; contains the edges in Py U P;

e all edges in E(Jy)\ E(Py U P}) lie in G[Ao, B;,] U G[Bo, Aj,;

e J; is edge-disjoint from all the balanced exceptional systems in
U(i’l,i’z,ig,iﬁl) Ji, iy, where the union is over all (i7,45,143,4)) preceding
(i1,42,13,14).

We will now construct J := J;. For this, we need to add suitable edges to P;U P/ to
ensure that all vertices of Ag U By have degree two. We start with Ag. Recall that
a = |Ap| and write Ag = {z1,...,24}. Let G’ denote the subgraph of G[A’, B]
obtained by removing all the edges lying in Ji,...,J;_1 as well as all those edges
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lying in the balanced exceptional systems belonging to | g ) Tinigig i, (where

1°2°%3
as before the union is over all (i}, 145, %, i) preceding (i1, i2,%3,44)). We will choose
the new edges incident to Ay in J inside G'[Ag, Bi,]-

Suppose we have already found suitable edges for x1,...,z;_1 and let J(j) be
the set of all these edges. We will first show that the degree of z; inside G'[Ag, B, ] is
still large. Let d; := dg(z;, A’). Consider any (i},145,145,4)) preceding (i1, i2, i3, %4).
Let G(J3, 1-/21-/31-21) denote the union of the ¢tk balanced exceptional systems belonging
to Jiiie,- Thus dG(ji,liéiéii) (xj) = 2tx. However, Corollary E37(c) implies
that dG(Miiiéiéiﬁl)(xj) > (d; — 15e4D)/K*. So altogether, when constructing (the
balanced exceptional systems in) iniyini,, we have added at most 2k — (d; —
15e4D)/K* new edges at z;, and all these edges join z; to vertices in By, . Similarly,
when constructing Ji, ..., J;—1, we have added at most 2tx — (d; — 1564D)/K* new
edges at x;. Since the number of 4-tuples (i}, i%, i, 44) with i = iz is K3, it follows
that

VY A
1:%253,%

d; — 1564D
1
= E ((1 — 2064)D — dj + 15E4D)
1
= 2 (D —d; = 5eD).

Also, (P2) with A replaced by B implies that

dg(zj,B) —ein _ dg(z;) —dg(x;, A')—ein D —dj —en
da(zj, Biy) 2 ! i > d KJ - ;{ :

where here we use (BFR2) and (BFR6). So altogether, we have

da/(xj, Biy) > (5eaD —e1n)/K > e4n/50K.

Let Bj, be the set of vertices in B;; not covered by the edges of J(j)UP;. Note that
|Bi,| > |Bi;| — 2|Ao| — 2e(P]) > | Bi,| — 3y/en since a = |Ag| < en by (BFR4) and
e(P}) < y/en by Corollary B.3.7(a)(iii). So dg(x;, Bj,) > e4n/51K. We can add
up to two of these edges to J in order to ensure that x; has degree two in J. This
completes the construction of the edges of J incident to Ag. The edges incident to
By are found similarly.

Let J be the graph on Ay U By U A4;, U A;, U B;; U B;, whose edge set is
constructed in this way. By construction, J satisfies (BES1) and (BES2) since
Pj and Pj are (i1,iz, A)-localized and (i3, 44, B)-localized respectively. We now
verify (BES3). As mentioned before the statement of the lemma, (BES1) implies
that J is an AgBg-path system (as defined before Proposition 221]). Moreover,
Corollary B3T|(a)(ii) implies that P; U P/ is a path system which satisfies (B1)
in the definition of 2-balanced. Since J was obtained by adding only A’ B’-edges,
(B1) is preserved in J. Since by construction J satisfies (B2), it follows that J is
2-balanced. So Proposition A.2.5] implies (BES3).

Finally, we verify (BES4). For this, note that Corollary E37(a)(iii) implies
that e(P;),e(P!) < y/en. Moreover, the number of edges added to P; U P/ when
constructing J is at most 2(|Ap| + |Bo|), which is at most 2en by (BFR4). Thus
e(J) < 2v/en + 2en < gon. O
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4.3.5. Covering Gy, by Edge-disjoint Hamilton Cycles. We now find
a set of edge-disjoint Hamilton cycles covering the edges of the ‘leftover’ graph
obtained from G — G[A, B] by deleting all those edges lying in balanced exceptional
systems belonging to J.

LEMMA 43.9. Let0< 1/n<Ke< < a1 K<< <<1/K<]1,
Suppose that (G, A, Ao, B, By) is an (e,¢', K, D)-bi-framework with |G| = n and
such that D > n/200 and D is even. Let P := {Ag, A1,...,Axk,Bo,B1,...,Bk}
be a (K,m,¢e,e1,¢e2)-partition for G. Suppose that txx = (1 — 20e4)D/2K* € N.
Let J be as defined after Lemma [{.3.8 and let G(J) C G be the union of all the
balanced exceptional systems lying in J. Let G* := G — G(J), let k := 10e4D and
let (Q1,4,Q1,B),---,(Qk,4,Qk5) be as in Corollary [{-3.7(d).

(a) The graph G* — G*[A, B] can be decomposed into k AgBy-path systems
Q1,...,Qk which are 2-balanced and satisfy the following properties:

(i) Q; contains all edges of Q; 4 U Qi.B;
(il) Q1,...,Qk are pairwise edge-disjoint;
(i) ¢(@) < 3y2n.

(b) Let Q1,...,Qk be as in (a). Suppose that F is a graph on V(G) such that
G C F, §(F) > 2n/5 and such that F satisfies (WF5) with respect to €.
Then there are edge-disjoint Hamilton cycles C1,...,Cy in F'—G(J) such
that Q; C C; and C; NG s 2-balanced for each i < k.

Proof. We first prove (a). The argument is similar to that of Lemma
Roughly speaking, we will extend each ); 4 into a path system Q; 4 by adding
suitable AyB-edges which ensure that every vertex in Ag has degree exactly two in
Q; 4. Similarly, we will extend each Q; p into Q} p by adding suitable ABo-edges.
We will ensure that no vertex is an endvertex of both an edge in Q; 4 and an edge

in Q; g and take @); to be the union of these two path systems. We first construct
all the Q] 4.
Claim 1. G*[A'] U G*[Ao, B] has a decomposition into edge-disjoint path systems
1As- - Q) 4 such that
® Qia CQ; 4 and BE(Q] 4)\E(Qi a) consists of AgB-edges in G* (for each
i<k);
o dg; (x) =2 for every x € Ay and dey (z) <1 for every x ¢ Ayp;
e no vertex is an endvertex of both an edge in Q;A and an edge in Q; g (for
each i < k).

To prove Claim 1, let Ggop be as defined in Corollary 437(d). Thus Ggep[A'] =
Q1,4 U+ UQga. On the other hand, Lemma FL3ii) implies that G*[A'] =
Ggiob[A']. Hence,

(4.3.11) G*[A'] = Ggiop[A'] = Q14U -+ U Q.

Similarly, G*[B'] = Ggop|[B'] = Q1,8 U - U Qg . Moreover, Gy = G*[A| U
G*[B’]. Consider any vertex © € Ao. Let dgop(x) denote the degree of = in
QiaU--UQka. So dglob(x) =dg+(x, A") by (E3TI). Let

(4312) leC(CC) = dg(x, A/) - dglob(-r)
(4313) = dg(CC, AI) — de* (:17, A/) = dg(3) (CC, AI)
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Then

(4314) dloc(fp) + dg(ft, B/) + dglob(x) @ dg(I) =D,

where the final equality follows from (BFR2). Recall that J consists of K%ty
edge-disjoint balanced exceptional systems. Since x has two neighbours in each of
these balanced exceptional systems, the degree of z in G(J) is 2K, = D — 2k.
Altogether this implies that

dg* (CL‘,B/) = dg(x,B/) — dg(g)(.’ﬂ,B/)
= dg(@,B') = (@) (2) — dag) (2, A))
(4.3.15) 2Ll dg(x,B") — (D — 2k — dypc(x)) HLLD ), dgtob ().

Note that this is precisely the total number of edges at = which we need to add to
Q1,4,- .-, Qk,4 in order to obtain Q] 4,...,Q} 4 as in Claim 1.

We can now construct the path systems Q; 4- For each x € Ay, let n;(z) =
2 —dg, (). So 0 <n;(xr) <2 forall i <k. Recall that a := [Ag| and consider an
ordering 1, ..., 7, of the vertices in Ag. Let G := G*[{z1,...,7;}, B]. Assume
that for some 0 < j < a, we have already found a decomposition of G into
edge-disjoint path systems Q1 ;, ..., Qx,; satisfying the following properties (for all
1 < k):

(") no vertex is an endvertex of both an edge in Q; ; and an edge in Q; p;

(ii") x; has degree n;(xzj) in @Q;; for all 5 < j and all other vertices have

degree at most one in Q; ;.
We call this assertion A;. We will show that A;;q holds (i.e. the above assertion
also holds with j replaced by j 4+ 1). This in turn implies Claim 1 if we let Q/i, A=
Qi,a U Qi,A for all 4 S k.

To prove A;i1, consider the following bipartite auxiliary graph Hj;;. The
vertex classes of H;i1 are Nji1 := Ng=(z;41) N B and Z;1, where Z;44 is a mul-
tiset whose elements are chosen from Q1,p, ..., @k, 5. Each Q; p is included exactly
ni(:zerrl) times in Zj+1. Note that NjJrl = NG* ({EjJrl) n B’ since E(G[Ao, Bo]) =0
by (BFR6). Altogether this implies that

k k
(43.16)Za] = > milzjpr) =2k — Y _do, A (zj41) = 2k — dgion(z11)

=1 i=1
=" dg-(zj41,B) = [Njy1| > k/2.

The final inequality follows from ([{3.IH) since

@311
dgon(@i1) < AlCaalA)) < 3k/2

by Corollary £.3.7(d). We include an edge in H;41 between v € N1 and Q; p €
Zj1 if v is not an endvertex of an edge in Q; p U Q;,;.

Claim 2. Hj1 has a perfect matching M} ;.

Given the perfect matching guaranteed by the claim, we construct Q; ;41 from Q; ;
as follows: the edges of @; j41 incident to x;;1 are precisely the edges x; ;v where
vQ;,p is an edge of M, (note that there are up to two of these). Thus Claim 2 im-
plies that A;;1 holds. (Indeed, (i')-(ii’) are immediate from the definition of H;1.)
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To prove Claim 2, consider any vertex v € N;11. Since v € B, the number of path
systems @; p containing an edge at v is at most dg (v, B’). The number of indices
i for which @Q; ; contains an edge at v is at most dg (v, Ag) < |Ag|. Since each path
system (); p occurs at most twice in the multiset Z; 1, it follows that the degree of
vin Hjyq is at least | Z; 41| — 2dg (v, B') — 2| Ag|. Moreover, dg(v, B') < &'n < k/16
(say) by (BFR5). Also, |Ao| < en < k/16 by (BFR4). So v has degree at least
| Zja| = k/4 > |Zj11]/2 in Hjpy.

Now consider any path system Q; g € Z;41. Recall that e(Q; g) < /en < k/16
(say), where the first inequality follows from Corollary E37(d)(iv"). Moreover,
e(Qi;) < 2|Ap| < 2en < k/8, where the second inequality follows from (BFR4).
Thus the degree of Q; g in Hj4; is at least

INjy1] = 26(Qi,B) — €(Qij) = [Nja| = k/4 = [Nj4al/2.
Altogether this implies that H;;; has a perfect matching M ]' 41 as required.

This completes the construction of @ 4, ..., Q) 4. Next we construct @} p, ...,
Q;C p using the same approach.

Claim 3. G*[B'] U G*[By, A] has a decomposition into edge-disjoint path systems
1.8+ > Q. p such that
e Qi CQ.pand E(Q; 5)\E(Q: ) consists of ByA-edges in G* (for each
i<k) 7
o dQ;’B(x) =2 for every x € By and dQ;’B(x) <1 for every x ¢ By;
e no vertez is an endvertezx of both an edge in Q; 4 and an edge in Q; g (for
each i < k).

The proof of Claim 3 is similar to that of Claim 1. The only difference is that when
constructing @ g, we need to avoid the endvertices of all the edges in @} , (not
just the edges in @; ). However, e(Q] 4 — Qi,a) < 2|Ao|, so this does not affect
the calculations significantly.

We now take Q; := Q; ,UQ;] p for all i < k. Then the Q; are pairwise edge-disjoint
and

e(Qi) < e(Qi,a) +e(Qi,p) +2[Ag U Bo| < 2v/en + 2en < 3v/en
by Corollary EE3.7(d)(iv') and (BFR4). Moreover, Corollary [£3.7(d)(iii’) implies
that

eq.(A') —eq,(B') = e(Qi,a) — e(Qip) =a—b.
Thus each Q; is a 2-balanced AgBy-path system. Further, Q1,..., Q) form a de-
composition of

G*[A'] U G*[Ag, B| U G*[B'| U G*[Bo, A] = G* — G*[A, B].

(The last equality follows since e(G[Ag, Bo]) = 0 by (BFR6).) This completes the
proof of (a).

To prove (b), note that (F, G, A, Ag, B, By) is an (g, &', D)-pre-framework, i.e. it
satisfies (WF1)—(WF5). Indeed, recall that (BFR1)-(BFR4) imply (WF1)-(WF4)
and that (WF5) holds by assumption. So we can apply Lemma [.2.9] (with Q; play-
ing the role of Q) to extend @) into a Hamilton cycle C;. Moreover, Lemma [.2.0)iii)
implies that C; N G is 2-balanced, as required. (Lemma £2.9(ii) guarantees that
(4 is edge-disjoint from Qo, ..., Qk and G(J).)
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Let G1 := G—C4 and Fy := F—C. Proposition[ 2.3 (with C; playing the role
of H) implies that (F1,G1, A, Ay, B, By) is an (g,&’, D — 2)-pre-framework. So we
can now apply Lemma29to (Fy,G1, A, Ao, B, By) to extend @2 into a Hamilton
cycle Csy, where Cy N G is also 2-balanced.

We can continue this way to find Cs,...,Ck. Indeed, suppose that we have
found C1,...,C; for ¢ < k. Then we can still apply Lemma 29| since §(F) — 2 >
§(F)—2k > n/3. Moreover, C;NG is 2-balanced for all j <4, so (C1U---UC;)NG is
2i-balanced. This in turn means that Proposition 423 (applied with C; U---U C;
playing the role of H) implies that after removing Ci,...,C;, we still have an
(e,¢', D — 2i)-pre-framework and can find Cj1. O

We can now put everything together to find a set of localized balanced excep-
tional systems and a set of Hamilton cycles which altogether cover all edges of G
outside G[A, B]. The localized balanced exceptional systems will be extended to
Hamilton cycles later on.

COROLLARY 4.3.10. Let 0 < 1/n K e K g K &' K g1 K 63 K 3 K &4 K
1/K < 1. Suppose that (G, A, Ao, B, By) is an (g,¢’, K, D)-bi-framework with |G| =
n and so that D > n/200 and D is even. Let P := {Ap, A1,...,Ax,Bo, B1,...,
Bk} be a (K, m,e,e1,e2)-partition for G. Suppose that ty := (1 —20e4)D/2K* €
N and let k := 10e4D. Suppose that F is a graph on V(G) such that G C F,
d(F) > 2n/5 and such that F satisfies (WF5) with respect to €. Then there are k
edge-disjoint Hamilton cycles C1,...,Cy in F and for all 1 < iy,19,13,14 < K there
is a set Ji inigia SUch that the following properties are satisfied:
(1) Tiyinigia consists of tx (i1,12,13,14)-BES in G with respect to P and with
parameter o which are edge-disjoint from each other and from CLU---U
Cy.
(ii) Whenever (i1,i2,13,14) # (i1,15,13,14), J € Tiyizigia and J' € Tiviniri, s
then J and J' are edge-disjoint.
(i) Given any i <k and v € AgU By, the two edges incident to v in C; lie in
G.

(iv) Let G° be the subgraph of G obtained by deleting the edges of all the C; and
all the balanced exceptional systems in Jijizisiy (for all 1 <iy,io,i3,i4 <
K). Then G° is bipartite with vertex classes A', B’ and Vo = Ay U By is
an isolated set in G°.

Proof. This follows immediately from Lemmas and L39(b). Indeed, clearly
(i)—(iii) are satisfied. To check (iv), note that G° is obtained from the graph G*
defined in Lemma by deleting all the edges of the Hamilton cycles C;. But
Lemma[L39limplies that the C; together cover all the edges in G*—G*[A, B]. Thus
this implies that G° is bipartite with vertex classes A’, B’ and Vj is an isolated set
in G°. O

4.4. Special Factors and Balanced Exceptional Factors

As discussed in the proof sketch, the proof of Theorem [[.3.5] proceeds as follows.
First we find an approximate decomposition of the given graph G and finally we
find a decomposition of the (sparse) leftover from the approximate decomposition
(with the aid of a ‘robustly decomposable’ graph we removed earlier). Both the
approximate decomposition as well as the actual decomposition steps assume that
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we work with a bipartite graph on AU B (with |A| = |B|). So in both steps, we
would need Ag U By to be empty, which we clearly cannot assume. On the other
hand, in both steps, one can specify ‘balanced exceptional path systems’ (BEPS)
in G with the following crucial property: one can replace each BEPS with a path
system BEPS* so that

(or1) BEPS* is bipartite with vertex classes A and B;

(a2) a Hamilton cycle C* in G* := G[A, B] + BEPS" which contains BEPS*
corresponds to a Hamilton cycle C in G which contains BEPS (see Sec-
tion ELALT]).

Each BEPS will contain one of the balanced exceptional sequences BES constructed
in Section £33l BEPS* will then be obtained by replacing the edges in BES by
suitable ‘fictive’ edges (i.e. which are not necessarily contained in G).

So, roughly speaking, this allows us to work with G* rather than G in the
two steps. Similarly as in the two clique case, a convenient way of specifying and
handling these balanced exceptional path systems is to combine them into ‘bal-
anced exceptional factors’ BF (see Section for the definition). (The balanced
exceptional path systems and balanced exceptional factors are analogues of the
exceptional path systems and exceptional factors considered in Chapter [21)

As before, one complication is that the ‘robust decomposition lemma’ (Lem-
ma [L53) we use from [21] deals with digraphs rather than undirected graphs. So
to be able to apply it, we again need a suitable orientation of the edges of G and so
we will actually consider directed path systems BEPS};, instead of BEPS* above
(whereas the path systems BEPS are undirected).

Rather than guaranteeing (awo) directly, the (bipartite) robust decomposition
lemma assumes the existence of certain directed ‘special paths systems’ SPS which
are combined into ‘special factors’ SF. (Recall that these notions were used in the
proof of Theorem [[.3.3t see Section 2.8l In this chapter, we use slight variants of
these definitions which are introduced in Sectiond.4.2]) Each of the Hamilton cycles
produced by the lemma then contains exactly one of these special path systems. So
to apply the lemma, it suffices to check separately that each BEPS};, satisfies the
conditions required of a special path system and that it also satisfies (az).

4.4.1. Constructing the Graphs J* from the Balanced Exceptional
Systems J. Suppose that J is a balanced exceptional system in a graph G with
respect to a (K, m,eq)-partition P = {Ap, A1,..., Ak, Bo,B1,...,Bk} of V(G).
We will now use J to define an auxiliary matching J*. Every edge of J* will
have one endvertex in A and its other endvertex in B. We will regard J* as
being edge-disjoint from the original graph G. So even if both J* and G have
an edge between the same pair of endvertices, we will regard these as different
edges. The edges of such a J* will be called fictive edges. Proposition LAT(ii)
below shows that a Hamilton cycle in G[AU B] + J* containing all edges of J* in a
suitable order will correspond to a Hamilton cycle in G which contains J. So when
finding our Hamilton cycles, this property will enable us to ignore all the vertices in
Vo = Ao U By and to consider a bipartite (multi-)graph between A and B instead.

We construct J* in two steps. First we will construct a matching J% 5 on AUB
and then J*. Since each maximal path in J has endpoints in A U B and inter-
nal vertices in Vy by (BES1), a balanced exceptional system J naturally induces
a matching J} 5 on AU B. More precisely, if P, ..., Py are the non-trivial paths
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(a) J (B) Jigp (c) J*

FIGURE 4.4.1. The thick lines illustrate the edges of J, J} 5 and
J* respectively.

in J and z;,y; are the endpoints of P;, then we define Jip = {z;y; : ¢ < {'}.
Thus J% 5 is a matching by (BESI) and e(J4gz) < e(J). Moreover, J4z and
E(J) cover exactly the same vertices in A. Similarly, they cover exactly the
same vertices in B. So (BES3) implies that e(Jig[A]) = e(Jig[B]). We can
write E(JiglA]) = {zi22,...,v2s—122s}, E(Jip[B]) = {v1y2, ..., y2s—1y2s} and
E(JiglA, B]) = {z2s+1Y2s4+1,---,Ts'Ys' }, where z; € A and y; € B. Define
J* = {xy; 0 1 < i < s'}. Note that e(J*) = e(J4ig) < e(J). All edges of J*
are called fictive edges.

As mentioned before, we regard J* as being edge-disjoint from the original
graph G. Suppose that P is an orientation of a subpath of (the multigraph) G[A U
B] 4 J*. We say that P is consistent with J* if P contains all the edges of J* and
P traverses the vertices x1,y1,%2,...,Ys'—1, s, Ys in this order. (This ordering
will be crucial for the vertices x1,¥1, ..., Tas, Y2s, but it is also convenient to have
an ordering involving all vertices of J*.) Similarly, we say that a cycle D in G[AU
B] + J* is consistent with J* if D contains all the edges of J* and there exists
some orientation of D which traverses the vertices x1,y1,%2,...,¥s—1,Ts,Ys in
this order.

The next result shows that if J is a balanced exceptional system and C' is a
Hamilton cycle on A U B which is consistent with J*, then the graph obtained
from C by replacing J* with J is a Hamilton cycle on V(G) which contains J,
see Figure L. 4.1l When choosing our Hamilton cycles, this property will enable us
ignore all the vertices in Vj and edges in A and B and to consider the (almost
complete) bipartite graph with vertex classes A and B instead.

PROPOSITION 4.4.1. Let P = {Aq, A1,...,Ax,Bo,B1,...,Bk} be a (K, m,¢)-
partition of a vertex set V. Let G be a graph on'V and let J be a balanced exceptional
system with respect to P.

(i) Assume that P is an orientation of a subpath of GJAUB]+ J* such that P
is consistent with J*. Then the graph obtained from P—J*+J by ignoring
the orientations of the edges is a path on V(P)UV, whose endvertices are
the same as those of P.

(ii) If J € G and D is a Hamilton cycle of G[AU B] 4+ J* which is consistent
with J*, then D — J* + J is a Hamilton cycle of G.
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Proof. We first prove (i). Let s := e(J}g[A]) = e(Jiz[B]) and J® = {z1y1,...,
Zosyas} (where the x; and y; are as in the definition of J*). So J* := J° U
{T2541Y25+1, - - - » Ts'Ys' }, Where s' := e(J*). Let P¢ denote the path obtained from
P = z1...29 by reversing its direction. (So P¢ = z9...z traverses the vertices
Ys's Ts/y Y25'—1, - - - , T2, Y1, 1 10 this order.) First note

P’ = 21 Pr129 PCy1ya Pr3za Peysys . . . a5 122 P Y2s1Y2: P22
is a path on V(P). Moreover, the underlying undirected graph of P’ is precisely
P—J°+ (hglAlUJAB)) =P —J" + J)p.

In particular, P’ contains J} 5. Now recall that if wyws is an edge in J% 5, then
the vertices wq and wy are the endpoints of some path P* in J (where the internal
vertices on P* lie in Vp). Clearly, P’ — wywy + P* is also a path. Repeating
this step for every edge wiws of J3p5 gives a path P on V(P) U V. Moreover,
P"” =P — J* 4+ J. This completes the proof of (i).

(i) now follows immediately from (i). O

4.4.2. Special Path Systems and Special Factors. As mentioned earlier,
in order to apply Lemma [4.5.3] we first need to prove the existence of certain
‘special path systems’. These are defined below. Note that the definitions given in
this section are slight variants of the corresponding definitions used in Chapter

Suppose that

P={Ap,A,...,Ax,Bo,B1,...,Bx}

is a (K, m, eo)-partition of a vertex set V and L,m/L € N. Recall that we say that
(P,P") is a (K, L,m,eq)-partition of V if P’ is obtained from P by partitioning
A; into L sets A;1,...,A4; 1 of size m/L for all 1 <4 < K and partitioning B;
into L sets Bj1,...,B;r of size m/L for all 1 < i < K. (So P’ consists of the
exceptional sets Ag, By, the KL clusters A, ; and the KL clusters B; ;.) Unless
stated otherwise, whenever considering a (K, L, m, g)-partition (P, P’) of a vertex
set V we use the above notation to denote the elements of P and P’.

Let (P,P’) be a (K, L, m,ep)-partition of V. Consider a spanning cycle C' =
A1B; ... A Bk on the clusters of P. Given an integer f dividing K, the canonical
interval partition Z of C' into f intervals consists of the intervals

Ak s Bi-nk/f+1Ai-1) K/ f+2 - - Bir s Aik ) f41
for all i < f. (Here Ag41 := A;.)
Suppose that G is a digraph on V\Vp and h < L. Let [ = AjB;Aj+1...Aj be
an interval in Z. A special path system SPS of style h in G spanning the interval I
consists of precisely m /L (non-trivial) vertex-disjoint directed paths Pi,..., Py /r
such that the following conditions hold:
(SPS1) Every Ps has its initial vertex in A;; and its final vertex in A/ p.
(SPS2) SPS contains a matching Fict(SPS) such that all the edges in Fict(SPS)
avoid the endclusters A; and Aj of I and such that E(P;) \ Fict(SPS) C
E(G).
(SPS?)) The vertex set of SPS is Aj_’h @] Bjyh U Aj+17h y---u Bj’fl,h @] Aj/_’h.
The edges in Fict(SPS) are called fictive edges of SPS.
Let Z = {I,...,Is} be the canonical interval partition of C into f intervals. A
special factor SF with parameters (L, f) in G (with respect to C, P’) is a 1-regular
digraph on V' \ V, which is the union of Lf digraphs SPS,; (one for all j < f
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and h < L) such that each SPS;; is a special path system of style h in G which
spans I;. We write Fict(SF) for the union of the sets Fict(SPS; ) over all j < f
and h < L and call the edges in Fict(SF) fictive edges of SF.

We will always view fictive edges as being distinct from each other and from the
edges in other digraphs. So if we say that special factors SFy,...,SF, are pairwise
edge-disjoint from each other and from some digraph @ on V' \ Vj, then this means
that @ and all the SF; —Fict(SF;) are pairwise edge-disjoint, but for example there
could be an edge from z to y in @ as well as in Fict(SF;) for several indices i < r.
But these are the only instances of multiedges that we allow, i.e. if there is more
than one edge from x to y, then all but at most one of these edges are fictive edges.

4.4.3. Balanced Exceptional Path Systems and Balanced Exceptional
Factors. We now define balanced exceptional path systems BEPS. It will turn
out that they (or rather their bipartite directed versions BEPS}; involving fictive
edges) will satisfy the conditions of the special path systems defined above. More-
over, Hamilton cycles that respect the partition A, B and which contain BEPSY,,
correspond to Hamilton cycles in the ‘original’ graph G (see Proposition E4.2]).

Let (P, P’) be a (K, L, m, gg)-partition of a vertex set V. Suppose that K/f € N
and h < L. Consider a spanning cycle C = A1 By ... Ax Bi on the clusters of P.
Let Z be the canonical interval partition of C into f intervals of equal size. Suppose
that G is an oriented bipartite graph with vertex classes A and B. Suppose that
I = A;B;... Ay is an interval in Z. A balanced exceptional path system BEPS
of style h for G spanning I consists of precisely m/L (non-trivial) vertex-disjoint
undirected paths Py,. .., Py, such that the following conditions hold:

(BEPS1) Every Ps has one endvertex in A; j, and its other endvertex in A 5.

(BEPS2) J := BEPS— BEPS|[A, B] is a balanced exceptional system with respect
to P such that P; contains all edges of J and so that the edge set of
J is disjoint from A;j, and Ay . Let P qir be the path obtained by
orienting P; towards its endvertex in A j and let Jgir be the orientation
of J obtained in this way. Moreover, let Jj,, be obtained from J* by
orienting every edge in J* towards its endvertex in B. Then Py, =
P1 gir — Jair + J3;, 1s a directed path from A; j to A, which is consistent
with J*.

(BEPS?)) The vertex set of BEPS is Vj UAjJL UB;nU Aj-i—l,h U---UBj_1pU Aj/)h.

(BEPS4) For each 2 < s < m/L, define Ps g;, similarly as P; giy. Then E(Psgir) \
E(Jair) C E(G) for every 1 < s <m/L.

Let BEPS};, be the path system consisting of Pl givs Podivs -+ Py aie- Then
BEPS},, is a special path system of style h in G which spans the interval I and
such that Fict(BEPS},, ) = Jj,.

Let Z = {I,...,I;} be the canonical interval partition of C into f intervals. A
balanced exceptional factor BF with parameters (L, f) for G (with respect to C, P’)
is the union of Lf undirected graphs BEPS;j, (one for all j < f and h < L) such
that each BEPS;, is a balanced exceptional path system of style h for G which
spans [;. We write BF; for the union of BEPSY, 4, over all j < f and h < L.
Note that BF};, is a special factor with parameters (L, f) in G (with respect to C,
P’) such that Fict(BFy;,) is the union of J7, 4, over all j < f and h < L, where
Jjn = BEPS;, — BEPS; ;|A, B] is the balanced exceptional system contained in
BEPS,}, (see condition (BEPS2)). In particular, BF};, is a 1-regular digraph on
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V' \ Vo while BF' is an undirected graph on V with
(44.1) dpp(v)=2 forallve V\Vy and dpp(v)=2Lf forallve V.

Given a balanced exceptional path system BEPS, let J be as in (BEPS2) and
let BEPS* := BEPS — J 4+ J*. So BEPS* consists of P := P, —J + J* as
well as P, ..., Py, . The following is an immediate consequence of (BEPS2) and
Proposition [£.4.1]

PROPOSITION 4.4.2. Let (P, P’) be a (K, L, m,eq)-partition of a vertex set V.
Suppose that G is a graph on V\ Vp, that Gai, is an orientation of G[A, B] and that
BEPS is a balanced exceptional path system for Gaiy. Let J be as in (BEPS2). Let
C be a Hamilton cycle of G+J* which contains BEPS*. Then C—BEPS*+BEPS
is a Hamilton cycle of GU J.

Proof. Note that C— BEPS*+ BEPS = C — J*+J. Moreover, (BEPS2) implies
that C contains all edges of J* and is consistent with J*. So the proposition follows
from Proposition E4T[(ii) applied with G U J playing the role of G. O

4.4.4. Finding Balanced Exceptional Factors in a Bi-scheme. The fol-
lowing definition of a ‘bi-scheme’ captures the ‘non-exceptional’ part of the graphs
we are working with. For example, this will be the structure within which we
find the edges needed to extend a balanced exceptional system into a balanced
exceptional path system.

Given an oriented graph G and partitions P and P’ of a vertex set V', we call
(G,P,P') a|K,L,m,eq,¢e|-bi-scheme if the following properties hold:

(BSchl’) (P,P’)is a (K, L, m,ep)-partition of V. Moreover, V(G) = AU B.

(BSch2’) Every edge of G has one endvertex in A and its other endvertex in B.

(BSch3’) G[A;;, By ] and G[By j, A; ] are [e,1/2]-superregular for all 4,7 < K
and all j, j* < L. Further, G[A;, B;] and G[B;, A;] are [, 1/2]-superregular
for all ,7 < K.

(BSchd’) |NZ (z) N Ng (y) N By j| > (1 —e)m/5L for all distinct z,y € 4, all i < K
and all j < L. Similarly, |[NZ (z) N Ng (y) N A;;| > (1 —e)m/5L for all
distinct z,y € B, allt < K and all j < L.

If L =1 (and so P = P’), then (BSchl’) just says that P is a (K, m,¢eg)-partition

of V(G).

The next lemma allows us to extend a suitable balanced exceptional system into
a balanced exceptional path system. Given h < L, we say that an (iy, 2, i3,i4)-BES
J has style h (with respect to the (K, L, m,eo)-partition (P,P’)) if all the edges of
J have their endvertices in Vo U A;, p, U Ajy 5 U Biy n U B, .

LEMMA 4.4.3. Suppose that K,L,n,m/L € N, that 0 < 1/n < €,e9 < 1
and eg < 1/K,1/L. Let (G,P,P’) be a |K,L,m,eq,e|-bi-scheme with |V (G) U
Vo| = n. Consider a spanning cycle C = A1 By ... Ax Bk on the clusters of P and
let I = A;BjAj41... A be an interval on C' of length at least 10. Let J be an
(i1,19,13,14)-BES of style h < L with parameter g (with respect to (P,P’)), for
some i1,12,43,14 € {j+1,...,7'—1}. Then there exists a balanced exceptional path
system of style h for G which spans the interval I and contains all edges in J.

Proof. For each k < 4, let mj, denote the number of vertices in A;, p U B;, »
which are incident to edges of J. We only consider the case when 71, iz, 73 and iy
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are distinct and my > 0 for each k < 4, as the other cases can be proved by similar
arguments. Clearly mq + - -+ 4+ my < 2¢gn by (BES4). For every vertex € A, we
define B(x) to be the cluster B; ;, € P’ such that A; contains z. Similarly, for every
y € B, we define A(y) to be the cluster A4;j € P’ such that B; contains y.

Let x1y1,...,T+ys be the edges of J*, with z; € A and y; € B for all 1 < 5.
(Recall that the ordering of these edges is fixed in the definition of J*.) Thus
s' = (m1+ -+ myq)/2 < gon. Moreover, our assumption that 9 < 1/K,1/L
implies that egn < m/100L (say). Together with (BSch4’) this in turn ensures
that for every r < s’, we can pick vertices w, € B(x,) and z. € A(y,) such
that w,2,, Y2, and z,w,11 are (directed) edges in G and such that all the 4s’
vertices Xy, Yr, Wy, zr (for r < ') are distinct from each other. Let P| be the path
W1 T1Y1 21 WaLaY222Ws3 . . . Ys' Zer. Thus Py is a directed path from B to A in G+ Jj,,
which is consistent with J*. (Here Jj;, is obtained from J* by orienting every edge
towards B.) Note that |[V(P{) N A; n| = mi = |V(P]) N By, n| for all k < 4.
(This follows from our assumption that 1, i2, i3 and 4 are distinct.) Moreover,
V(P))N (A; UB;) =0 for all i & {iy,ia,i3,14}

Pick a vertex 2z’ in A, j, so that z’w; is an edge of G. Find a path P’ from zy
to Ajs p in G such that the vertex set of P{’ consists of z, and precisely one vertex
ineach A; p, for alli € {j+1,...,5}\{i1,i2,3,i4} and one vertex in each B; j, for
all i € {j,...,5" — 1} \ {41,42,93,94} and no other vertices. (BSch4’) ensures that
this can be done greedily. Define P} 4, to be the concatenation of z'wy, P; and Py".
Note that Py ;, is a directed path from A;j, to Ajrp in G+ Jg;, which is consistent
with J*. Moreover, V(Py ;) € U< Ain U Bin,

1 fOI‘iE{j,,,.7‘]./}\{1'1,7;2,7;3,1'4},
V(P gi,) N Ain| = mi for i =iy and k < 4,

0 otherwise,

while

1 fOI’iE{j,...,jl—1}\{i1,i2,i3,i4},
|V (P qiy) N Bin| = my for i =i, and k <4,

0 otherwise.

(BSch4') ensures that for each k < 4, there exist my — 1 (directed) paths PF, ...,

Pk _, in G such that
e P is a path from A, to Ajs j for each r < my, — 1 and k < 4;
e cach PF contains precisely one vertex in A; j, for eachi € {j,..., 5" }\ {ir},
one vertex in B; j, for each i € {j,...,7  — 1} \ {ix} and no other vertices;

* 1 1
o PiynPl,....P

m

Let @ be the union of Pj 4, and all the Prk over all kK < 4 and r < my — 1. Thus
Q is a path system consisting of mq + - -- + m4 — 3 vertex-disjoint directed paths
from Ajp to Aj p. Moreover, V(Q) consists of precisely mq + - - +mq — 3 < 2egn
vertices in A; j, for every j < ¢ < j’ and precisely mq + - - - +my4 — 3 vertices in B, ,
for every j <i < j'. Set A}, := A;, \V(Q) and B}, := B; , \V(Q) for all i < K.
Note that, for all j <17 < j/,

=15 P?,... ,P,‘,Lm_l are vertex-disjoint.

(4.4.2) |A],| = %—(m1+---+m4—3) > %—25071 > %_55077@1( > (1—/20)

=3
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since e9 < 1/K,1/L. Similarly, |B;,| > (1 — /go)m/L for all j < i < j'. Pick
a new constant ¢’ such that €,69 < ¢ <« 1. Then (BSch3’) and (£.4.2)) together
with Proposition [L4limply that G[A] ,, B; ;| is still [¢, 1/2]-superregular and so
we can find a perfect matching in G[A] ,, B ] for all j <i < j'. Similarly, we can
find a perfect matching in G[B;,,, A}, ,] for all j < i < j. The union Q" of all
these matchings forms m/L — (m1 + - - - + m4) + 3 vertex-disjoint directed paths.
Let P; be the undirected graph obtained from Py iy — Jii +J by ignoring
the directions of all the edges. Proposition E41|i) implies that P; is a path on
V(Pf g;;) U Vo with the same endvertices as Py ;. Consider the path system ob-
tained from (Q U Q") \ {P; 4.} by ignoring the directions of the edges on all the
paths. Let BEPS be the union of this path system and P;. Then BEPS is a
balanced exceptional path system for G, as required. (|

The next lemma shows that we can obtain many edge-disjoint balanced excep-
tional factors by extending balanced exceptional systems with suitable properties.

LEMMA 4.4.4. Suppose that L, f,q,n,m/L,K/f € N, that K/f > 10, that
0<1/n<ee <1, that g9 < 1/K,1/L and Lg/m < 1. Let (G,P,P’) be a
[K, L, m, e, e]-bi-scheme with |V(G) U Vy| = n. Consider a spanning cycle C' =
A1B; ... Axk Bk on the clusters of P. Suppose that there exists a set J of Lfq
edge-disjoint balanced exceptional systems with parameter eg such that

e foralli < f and all h < L, J contains precisely q (i1,12,43,14)-BES of
style h (with respect to (P,P")) for which i1,i2,13,14 € {({ — )K/f +
2,...,iK/f}.
Then there exist q edge-disjoint balanced exceptional factors with parameters (L, f)
for G (with respect to C, P') covering all edges in |JJ.

Recall that the canonical interval partition Z of C' into f intervals consists of

the intervals
Ak Bk fr1Ai—nK e - Aiks

for all 4 < f. So the condition on J ensures that for each interval I € Z and each
h < L, the set J contains precisely g balanced exceptional systems of style h whose
edges are only incident to vertices in Vj and vertices belonging to clusters in the
interior of I. We will use Lemma to extend each such balanced exceptional
system into a balanced exceptional path system of style h spanning I.

Proof of Lemma [4.4.4. Choose a new constant ¢’ with ¢, Lqg/m < ¢’ < 1. Let
Ji,...,Jq be a partition of J such that for all j < ¢, h < L and i < f, the set J;
contains precisely one (i1, 2, 13,14)-BES of style h with 41,42,43,i4 € {(i — 1)K/ f +
2,...,i1K/f}. Thus each J; consists of Lf balanced exceptional systems. For each
j < ¢ in turn, we will choose a balanced exceptional factor EF; with parameters
(L, f) for G such that BF; and BF}; are edge-disjoint for all j/ < j and BF;
contains all edges of the balanced exceptional systems in J;. Assume that we have
already constructed BFt,...,BF;_;. In order to construct BF}, we will choose
the L f balanced exceptional path systems forming BF}; one by one, such that each
of these balanced exceptional path systems is edge-disjoint from BF1,..., BF;_
and contains precisely one of the balanced exceptional systems in J;. Suppose
that we have already chosen some of these balanced exceptional path systems and
that next we wish to choose a balanced exceptional path system of style h which
spans the interval I € Z of C' and contains J € J;. Let G’ be the oriented graph
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obtained from G by deleting all the edges in the balanced path systems already
chosen for BF} as well as deleting all the edges in BFi,...,BF;_1. Recall from
(BSchl’) that V(G) = AUB. Thus A(G—G') < 2j < 3¢ by @4I). Together with
Proposition [[47] this implies that (G',P,P’) is still a [K, L, m, &g, &']-bi-scheme.
(Here we use that A(G — G') <3¢ =3Lg/m-m/L and ¢, Lg/m < &’ < 1.) So we
can apply Lemma [Z.4.3] with &’ playing the role of £ to obtain a balanced exceptional
path system of style h for G’ (and thus for G) which spans I and contains all edges
of J. This completes the proof of the lemma. O

4.5. The Robust Decomposition Lemma

The purpose of this section is to derive the version of the robust decomposition
lemma (Corollary [£5.4]) that we will use in this chapter to prove Theorem
(Recall from Section E.T] that we will not use it in the proof of Theorem [[.3.8)
Similarly as in the two cliques case, Corollary 5.4 allows us to transform an ap-
proximate Hamilton decomposition into an exact one. In the next subsection, we
introduce the necessary concepts. In particular, Corollary 5.4 relies on the exis-
tence of a so-called bi-universal walk (which is a ‘bipartite version’ of the universal
walk introduced in Section [Z0.]). The (proof of the) robust decomposition lemma
then uses edges guaranteed by this bi-universal walk to ‘balance out’ edges of the
graph H when constructing the Hamilton decomposition of G + H.

4.5.1. Chord Sequences and Bi-universal Walks. Let R be a digraph

whose vertices are Vi,...,V; and suppose that C' = V; ...V} is a Hamilton cycle
of R. (Later on the vertices of R will be clusters. So we denote them by capital
letters.)

Recall from Section [Z9.1] that a chord sequence CS(V;,V;) from V; to V; in R
is an ordered sequence of edges of the form

CS(‘/'M ‘/J) = (%171%27%271%37 R ‘/’L'tfl‘/’iprl)v

where V;;, = V;, V;,,, = V; and the edge V;, _1V;,,, belongs to R for each s <t.
As before, if ¢ = j then we consider the empty set to be a chord sequence from
Vi to V; and we may assume that C'S(V;,V;) does not contain any edges of C.
A closed walk U in R is a bi-universal walk for C with parameter ¢’ if the
following conditions hold:

(BU1) The edge set of U has a partition into Usqq and Ueyen. For every 1 < i < k
there is a chord sequence EOSbi(%, Vigz2) from V; to Vi o such that Usyen
contains all edges of all these chord sequences for even i (counted with
multiplicities) and Usqq contains all edges of these chord sequences for
odd 4. All remaining edges of U lie on C.

(BU2) Each ECSY(V;, Viyo) consists of at most v/#//2 edges.

(BU3) Ueven enters every cluster V; exactly ¢'/2 times and it leaves every cluster
V; exactly ¢'/2 times. The same assertion holds for Uyqq.

Note that condition (BU1) means that if an edge V;V; € E(R)\ E(C) occurs in total
5 times (say) in ECSP (Vy,V3),..., ECSP(V}, V,) then it occurs precisely 5 times
in U. We will identify each occurrence of V;V; in ECSY(Vy,V3),..., ECSP (V;, Va)
with a (different) occurrence of V;V; in U. Note that the edges of ECSPH(V;, Vi)
are allowed to appear in a different order within U.
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LEMMA 4.5.1. Let R be a digraph with vertices V1, ...,V where k > 4 is even.
Suppose that C = Vy ... Vi is a Hamilton cycle of R and that V;—1V;42 € E(R)
for every 1 < i < k. Let {' > 4 be an even integer. Let Upier denote the multiset
obtained from €' —1 copies of E(C) by adding V;—1Vi12 € E(R) for every 1 <i < k.
Then the edges in Ui can be ordered so that the resulting sequence forms a bi-
universal walk for C with parameter ¢'.

In the remainder of the chapter, we will also write Up; ¢ for the bi-universal
walk guaranteed by Lemma [£5.7]

Proof. Let us first show that the edges in Uy can be ordered so that the
resulting sequence forms a closed walk in R. To see this, consider the multidigraph
U obtained from Uy by deleting one copy of E(C). Then U is (¢ — 1)-regular
and thus has a decomposition into 1-factors. We order the edges of Uy, ¢ as follows:
We first traverse all cycles of the 1-factor decomposition of U which contain the
cluster V7. Next, we traverse the edge V1 V5 of C. Next we traverse all those cycles
of the 1-factor decomposition which contain V5 and which have not been traversed
so far. Next we traverse the edge VoV3 of C' and so on until we reach V; again.
Recall that, for each 1 < ¢ < k, the edge V;_1V;42 is a chord sequence from
Vi to Viyo. Thus we can take EC S (V;, Viyo) := Vi_1Viyo. Then Uhi,e satisfies
(BU1)—(BU3). Indeed, (BU2) is clearly satisfied. Partition one of the copies of
E(C) in Upie into Eeven and Eoqq where Eeven = {ViVit1| @ even} and Eoqq =
{ViVis1| i odd}. Note that the union of Eeyen together with all ECSY(V;, Vii2)
for even i is a 1-factor in R. Add ¢'/2 — 1 of the remaining copies of E(C) to this
1-factor to obtain Ueyen. Define Usdq to be E(Upi ) \ Ueven. By construction of
Ueven and Usqq, (BU1) and (BU3) are satisfied. O

4.5.2. Bi-setups and the Robust Decomposition Lemma. The aim of
this subsection is to state the ‘bipartite version’ of the robust decomposition lemma
(Lemmal[L53] proved in [21]) and derive Corollary[£5.4] which we shall use later on
in our proof of Theorem [[L3.5l Lemma [£5.3 guarantees the existence of a ‘robustly
decomposable’ digraph Gé?f within a ‘bi-setup’. Roughly speaking, a bi-setup is a
digraph G together with its ‘reduced digraph’ R, which contains a Hamilton cycle
C' and a bi-universal walk U. (So a bi-setup is a ‘bipartite analogue’ of a setup that
was introduced in Section [Z9:21) In our application, G[A, B] will play the role of
G and R will be the complete bipartite digraph.

To define a bi-setup formally, we first need to recall the following definitions.
Given a digraph G and a partition P of V(G) into k clusters Vi,..., Vi of equal
size, recall that a partition P’ of V(G) is an ¢'-refinement of P if P’ is obtained by
splitting each V; into ¢’ subclusters of equal size. (So P’ consists of 'k clusters.)
Recall also that P’ is an e-uniform {'-refinement of P if it is an ¢'-refinement of P
which satisfies the following condition: Whenever z is a vertex of G, V' is a cluster
in P and [N/ (z) N V| > e|V| then [N (z) N V’| = (1 £&)|N&(x) N V|/¢ for each
cluster V' € P’ with V/ C V. The inneighbourhoods of the vertices of G satisfy an
analogous condition.

We will need the following definition from [21], which describes the structure
within which the robust decomposition lemma finds the robustly decomposable
graph. (G,P,P’',R,C,U,U’) is called an (¢, k,m,e,d)-bi-setup if the following
properties are satisfied:
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(BST1) G and R are digraphs. P is a partition of V(G) into k clusters of size m
where k is even. The vertex set of R consists of these clusters.

(BST2) For every edge VW of R, the corresponding pair G[V,W] is (g,> d)-
regular.

(BST3) C' =V;...V; is a Hamilton cycle of R and for every edge V;V;;1 of C the
corresponding pair G[V;, V;11] is [e, > d]-superregular.

(BST4) U is a bi-universal walk for C' in R with parameter ¢ and P’ is an e-
uniform ¢'-refinement of P.

(BST5) Let V}',..., Vj@/ denote the clusters in P’ which are contained in V; (for
each 1 < j < k). Then U’ is a closed walk on the clusters in P’ which is
obtained from U as follows: When U visits V; for the ath time, we let U’
visit the subcluster V7 (for all 1 <a < ).

(BST6) For every edge VZJVﬂ/ of U’ the corresponding pair G[V/, Vf,/] is [e, > d]-
superregular.

In [21], in a bi-setup, the digraph G could also contain an exceptional set, but since
we are only using the definition in the case when there is no such exceptional set,
we have only stated it in this special case.

Suppose that (G, P,P’) is a [K, L,m, &g, |-bi-scheme and that C = A1 By ...
Ak By is a spanning cycle on the clusters of P. Let Py; := {41,..., Ak, Bi,...,
Bk }. Suppose that ¢/, m/¢ € N with ¢/ > 4. Let Py, be an e-uniform ¢'-refinement
of Pp; (which exists by Lemma[2.9.2]). Let Cy; be the directed cycle obtained from C
in which the edge A; B; is oriented towards By and so on. Let Ry; be the complete
bipartite digraph whose vertex classes are {A;,..., Ak} and {Bi,...,Bk}. Let
Ubi ¢ be a bi-universal walk for C' with parameter ¢’ as defined in Lemma 5]
Let U{)i,l’ be the closed walk obtained from Uy; ¢+ as described in (BST5). We will
call

" /
(G7 Pbiu Pbiu Rbiu Cbi7 Ubi,é’a Ubiyg/)

the bi-setup associated to (G, P,P’"). The following lemma shows that it is indeed
a bi-setup.

LEMMA 4.5.2. Suppose that K, L,m/L, ', m/¢' € N with ¢’ > 4, K > 2 and
0<1l/m<«1/K,e <€ 1/ Suppose that (G, P,P') is a [K, L, m,e, €]-bi-scheme
and that C = A1B; ... Ag Bk is a spanning cycle on the clusters of P. Then

(G, Pui, P, Rui, Cui, Unier, Uiy )
is an (02K, m, e’ 1/2)-bi-setup.

Proof. Clearly, (G,’Pbi,Pgi,Rbi,Cbi,Ubu/,U{ai)g,) satisfies (BST1). (BSch3’) im-
plies that (BST2) and (BST3) hold. Lemma 5T implies (BST4). (BST5) follows
from the definition of Uy, ,,. Finally, (BST6) follows from (BSch3’) and Lemma2.9.2]
since Py; is an e-uniform ¢'-refinement of Py;. O

We now state the ‘bipartite version’ of the robust decomposition lemma which
was proved in [2I]. It is an analogue of the robust decomposition lemma (Lem-
ma[29.4) used in Chapter Pland works for bi-setups rather than setups. As before,
the lemma guarantees the existence of a ‘robustly decomposable’ digraph Gfﬁf,
whose crucial property is that H + GE?E has a Hamilton decomposition for any

. . . . . e . b
sparse bipartite regular digraph H which is edge-disjoint from G .
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Again, G2 consists of digraphs C Aq;, (r) (the ‘chord absorber’) and PC Ag;,(r)
(the ‘parity extended cycle switcher’) together with some special factors. GeP is
constructed in two steps: given a suitable set SF of special factors, the lemma first
‘constructs’ C'Aq; () and then, given another suitable set SF " of special factors,
the lemma ‘constructs’ PC Ag;, ().

LEMMA 4.5.3. Suppose that 0 < 1/m < 1/k € e € 1/qg < 1/f < m/m <
d<1/0',1/g < 1 where £ is even and that rk?> < m. Let

re = 960'g°kr, r3:=rfk/q, v i=ri+ro+r—(q—1)r3, § :=rfk+7°

and suppose that k/14,k/f,k/g,q/f,m/4l', fm/q,2fk/3g(9 — 1) € N. Suppose
that (G,P,P',R,C,U,U") is an (¢, k,m,e,d)-bi-setup and C = V; ...V}. Suppose
that P* is a (q/ f)-refinement of P and that SFy,...,SF,, are edge-disjoint special
factors with parameters (q/ f, ) with respect to C, P* in G. Let SF := SFi+---+
SF,,. Then there exists a digraph CAqi(r) for which the following holds:

(i) CAqir(r) is an (r1 + ro)-regular spanning subdigraph of G which is edge-
disjoint from SF.

(ii) Suppose that SF|,...,SF/. are special factors with parameters (1,7) with
respect to C, P in G which are edge-disjoint from each other and from
CAugir(r)+SF. Let SF' := SF|+---+ SF!.. Then there exists a digraph
PCAqir(r) for which the following holds:

(a) PCAqir(r) is a 5r-regular spanning subdigraph of G which is edge-
disjoint from CAqir(1) + SF + SF'.

(b) Let SPS be the set consisting of all the s’ special path systems con-
tained in SF+SF'. Let Veyen denote the union of all V; over all even
1 <1<k and define Voqq similarly. Suppose that H is an r-reqular
bipartite digraph on V(G) with vertex classes Voyen and Voqa which is
edge-disjoint from G55 := C'Aaqir(r) + PCAaic(r) + SF +SF'. Then
H + Gfﬁﬁ’ has a decomposition into s’ edge-disjoint Hamilton cycles
Ci,...,Cs. Moreover, C; contains one of the special path systems

from SPS, for each i <s'.

Recall from Section [.4.2] that we always view fictive edges in special factors as
being distinct from each other and from the edges in other graphs. So for example,
saying that CAqgi(r) and SF are edge-disjoint in Lemma still allows for a
fictive edge zy in SF to occur in CAgir(r) as well (but CAg;(r) will avoid all
non-fictive edges in SF).

We will use the following ‘undirected’ consequence of Lemma

COROLLARY 4.5.4. Suppose that 0 < 1/m < 0,1/ K € e < 1/L < 1/f <«
ri/m < 1/0,1/g < 1 where {' is even and that 4rK?* < m. Let

ro = 1920 Kr, r3:=2rK/L, 7°:=ri+rotr—(Lf—1)rs, s :=2rfK+7r°

and suppose that L, K/7,K/f, K/g,m/4¢',m/L,4fK/3g(g— 1) € N. Suppose that
(Gair, P, P') is a [K, L,m,eo,e|-bi-scheme and let G' denote the underlying undi-
rected graph of Gqiy. Let C = A1 By ... Ax Bk be a spanning cycle on the clusters in
P. Suppose that BFy,...,BF,, are edge-disjoint balanced exceptional factors with
parameters (L, ) for Gaiy (with respect to C, P'). Let BF := BFy) + --- + BF,,.
Then there exists a graph C'A(r) for which the following holds:
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(i) CA(r) is a 2(r1+7r2)-regular spanning subgraph of G’ which is edge-disjoint
from BF.

(ii) Suppose that BFY,..., BF!. are balanced exceptional factors with param-
eters (1,7) for Gair (with respect to C, P) which are edge-disjoint from
each other and from CA(r) + BF. Let BF := BF| +---+ BF's. Then
there exists a graph PCA(r) for which the following holds:

(a) PCA(r) is a 10r°-regular spanning subgraph of G' which is edge-
disjoint from CA(r) + BF + BF'.

(b) Let BEPS be the set consisting of all the s' balanced exceptional path
systems contained in BF+BJF' . Suppose that H is a 2r-reqular bipar-
tite graph on V(Gair) with vertex classes U1K:1 A; and Ufil B; which
is edge-disjoint from G := CA(r) + PCA(r) + BF + BF'. Then
H + G™P has a decomposition into s’ edge-disjoint Hamilton cycles
Ci,...,Csy. Moreover, C; contains one of the balanced exceptional
path systems from BEPS, for each i < s'.

We remark that we write Aq,..., Ak, B1, ..., Bg for the clusters in P. Note
that the vertex set of each of EF, EF', G*P includes V{ while that of Ggi,, CA(r),
PCA(r), H does not. Here Vy = Ag U By, where Ag and By are the exceptional
sets of P.

Proof. Choose new constants ¢ and d such that ¢ < ¢ <« 1/L and r1/m
< d < 1/';1/g. Consider the bi-setup (Gdir,Pbi,Pé’i,Rbi,Cbi,Ubi,g/,Uk')M/) as-
sociated to (Gair,P,P’). By Lemma [£572] (Gdir,Pbi,P{)’i,Rbi,Cbi,Ubi,g/,U{)w)
is an (¢,2K,m,e’,1/2)-bi-setup and thus also an (¢/,2K,m,¢e’,d)-bi-setup. Let
BF*,. be as defined in Section £4.3] Recall from there that, for each i < r3,

i,dir
BF};, is a special factor with parameters (L, f) with respect to C, P’ in Gair
such that Fict(BF};,) consists of all the edges in the J* for all the Lf bal-

anced exceptional systems J contained in BF;. Thus we can apply Lemma [£.5.3
to (Gdir,’Pbi,’P{a'i,Rbi,Cbi,Ubu/,U{ai)g,) with 2K, Lf, ¢ playing the roles of k,
g, € in order to obtain a spanning subdigraph CAgi(r) of Ggiy which satisfies
Lemma [53)(i). Hence the underlying undirected graph C'A(r) of CAqi (r) satis-
fies Corollary 5.4(i). Indeed, to check that CA(r) and BF are edge-disjoint, by
Lemma .5.3(1) it suffices to check that C A(r) avoids all edges in all the balanced
exceptional systems J contained in BF; (for all ¢ < r3). But this follows since
E(Gair) 2 E(CA(r)) consists only of AB-edges by (BSch2’) and since no balanced
exceptional system contains an AB-edge by (BES2).

Now let BFY,..., BF/, be balanced exceptional factors as described in Corol-
lary 4.5.4(ii). Similarly as before, for each i < r°, (BF})};, is a special factor with
parameters (1,7) with respect to C, P in Gair such that Fict((BF})};,) consists of
all the edges in the J* over all the 7 balanced exceptional systems J contained in
BF]. Thus we can apply Lemma 53] to obtain a spanning subdigraph PC Ag;, (1)
of Ggir which satisfies Lemma .53(ii)(a) and (ii)(b). Hence the underlying undi-
rected graph PCA(r) of PC Ag;,(r) satisfies Corollary .5.4(ii)(a).

It remains to check that Corollary A5.4(ii)(b) holds too. Thus let H be as
described in Corollary [£5.41(ii)(b). Let Hqgir be an r-regular orientation of H. (To
see that such an orientation exists, apply Petersen’s theorem to obtain a decom-
position of H into 2-factors and then orient each 2-factor to obtain a (directed)
I-factor.) Let BFy;, be the union of the BF} y;, over all i < r3 and let (BF')j;,
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be the union of the (BF})%;. over all ¢ < r°. Then Lemma [L53(ii)(b) implies
that Hair + CAair(r) + PCAair(r) + BFy, + (BF')%;, has a decomposition into
s’ edge-disjoint (directed) Hamilton cycles C1,...,C%, such that each C] contains
BEPS; ;;, for some balanced exceptional path system BEPS; from BEPS. Let
C; be the undirected graph obtained from C{ — BEPS; 4, + BEPS; by ignoring
the directions of all the edges. Then Proposition (applied with G’ play-
ing the role of G) implies that Ci,...,Cy is a decomposition of H + G =
H + CA(r) + PCA(r) + BF + BF' into edge-disjoint Hamilton cycles. O

4.6. Proof of Theorem [1.3.8

The proof of Theorem is similar to that of Theorem except that we
do not need to apply the robust decomposition lemma in the proof of Theorem [[.3.8
For both results, we will need an approximate decomposition result (Lemma [£6.T]),
which is stated below and proved in Chapter Bl Lemmad.6.T]is a bipartite analogue
of Lemma 254l It extends a suitable set of balanced exceptional systems into a
set of edge-disjoint Hamilton cycles covering most edges of an almost complete and
almost balanced bipartite graph.

LEMMA 4.6.1. Suppose that 0 < 1/n < g9 < 1/ K < p< 1 and 0 < p <1,
where n, K € N and K is even. Suppose that G is a graph on n vertices and P is
a (K, m,eq)-partition of V(G). Furthermore, suppose that the following conditions
hold:

(a) d(w,B;) = (1 —4p £ 4/K)m and d(v,A;) = (1 — 4p £ 4/K)m for all
weA veBandl <i<K.

(b) There is a set J which consists of at most (1/4 — p — p)n edge-disjoint
balanced exceptional systems with parameter g in G.

(c) J has a partition into K* sets Ji, iy.i5.i, (o€ for all 1 < iy, is, iz, iq4 < K)
such that each Ji iy.is.4, consists of precisely |J|/K* (i1,ia,i3,i4)-BES
with respect to P.

(d) Each v € AU B is incident with an edge in J for at most 2eqn J € J.

Then G contains | J| edge-disjoint Hamilton cycles such that each of these Hamilton
cycles contains some J € J.

To prove Theorem [[.3.8], we find a bi-framework via Corollary 22121 Then we
choose suitable balanced exceptional systems using Corollary A.3.10 Finally, we
extend these into Hamilton cycles using Lemma E.G.1]

Proof of Theorem [I.3.81  Step 1: Choosing the constants and a bi-
framework. By making a smaller if necessary, we may assume that a < 1.
Define new constants such that

0<l/np<Kex<KenKep<Ke KK <La<<a<l/K<a<ge <],

where K € N and K is even.

Let G, F and D be as in Theorem [[L3.8 Apply Corollary E.2.12] with ., £
playing the role of ¢, €* to find a set C; of at most aé)/(?’n edge-disjoint Hamilton
cycles in F' so that the graph G obtained from G by deleting all the edges in these
Hamilton cycles forms part of an (g9,¢’, K, Dq)-bi-framework (G1, A, Ao, B, By)

with Dy > D — 2&1:;/(3”. Moreover, F satisfies (WF5) with respect to ¢’ and
(4.6.1) IC1| = (D — Dy)/2.
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In particular, this implies that 6(G1) > D; and that Dy is even (since D is even).
Let Fy be the graph obtained from F’ by deleting all those edges lying on Hamilton
cycles in C;. Then

(4.6.2) S(Fy) > 6(F) —2|C1| > (1/2 — 3¢X*)n.
Let
_ 1Al _ 18] (1 =20e4) Dy
m = X - K and ti = 57 .

By changing €4 slightly, we may assume that tx € N.
Step 2: Choosing a (K, m,ep)-partition P. Apply Lemma €37l to the bi-
framework (Gi, A, Ao, B, By) with Fy, €9 playing the roles of F, ¢ in order to
obtain partitions A;,...,Ax and By,..., Bk of A and B into sets of size m such
that together with Ay and By the sets A; and B; form a (K, m, &g, 1, €2)-partition
P for Gl.

Note that by Lemma [43.1[(ii) and since F satisfies (WF5), for all x € A and
1 <75 <K, we have
dp,(z,B) —e1n (W>F5) dp, (x) —e'n — |By| — e1n

K - K
(46.3) (@:gm) (1/2 - 35&,{3)11 —2e1n
K

Similarly, dg, (y, A;) > (1 —5e1)m for ally € Band 1 <14 < K.
Step 3: Choosing balanced exceptional systems for the almost decompo-
sition. Apply Corollary 310 to the (g, ', K, D1)-bi-framework (G1,A4,A¢,B,By)
with Fy, G, €0, €(, D1 playing the roles of F, G, ¢, €9, D. Let J' be the union
of the sets Ji,i,isi, guaranteed by Corollary 310 So J' consists of K%ty edge-
disjoint balanced exceptional systems with parameter ¢f, in Gy (with respect to P).
Let Co denote the set of 10e4D; Hamilton cycles guaranteed by Corollary
Let F» be the subgraph obtained from I} by deleting all the Hamilton cycles in C,.
Note that

(4.6.4) Dy := Dy — 2|Co| = (1 — 20e4) Dy = 2K = 2|.7'].

Step 4: Finding the remaining Hamilton cycles. Our next aim is to apply
Lemma [£.6.T] with Fy, J’, €’ playing the roles of G, J, &o.

Clearly, condition (c) of Lemma[L.6.lis satisfied. In order to see that condition
(a) is satisfied, let p :=1/K and note that for all w € A we have

dr, (z, Bj) >

Z (1 — 551)m_

EL3)
dF2 (w,Bz-) 2 dF1 (w,Bz-) - 2|62| 2 (1 - 551)m - 20€4D1 2 (1 - 1/K)m

Similarly dg, (v, 4;) > (1 = 1/K)m for all v € B.
To check condition (b), note that

7152 F <2 <(/2- 05 < (U4-p-a/In.

Thus condition (b) of Lemma 6.1 holds with «/3 playing the role of p. Since
the edges in J' lie in G; and (G1, A, Ao, B, By) is an (gq,&’, K, D1)-bi-framework,
(BFR5) implies that each v € AU B is incident with an edge in J for at most
e'n+ V| <2'n J e J. (Recall that in a balanced exceptional system there are
no edges between A and B.) So condition (d) of Lemma 6.1 holds with ¢’ playing
the role of &g.
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So we can indeed apply Lemma F6.1] to obtain a collection C3 of | 7’| edge-
disjoint Hamilton cycles in Fy which cover all edges of | JJ’. Then C; UCy UCs is
a set of edge-disjoint Hamilton cycles in F' of size

EEDEGHD-Dy Di-D> Dy D

2 2 2 2
as required. (I

|C1]| + |Ca| + |C3]

4.7. Proof of Theorem

As mentioned earlier, the proof of Theorem is similar to that of Theo-
rem [[L3.8 except that we will also need to apply the robust decomposition lemma
(Corollary £5.4)). This means Steps 24 and Step 8 in the proof of Theorem
did not appear in the proof of Theorem [[.3.8 Steps 24 prepare the ground for the
application of the robust decomposition lemma and in Step 8 we apply it to cover
the leftover from the approximate decomposition step with Hamilton cycles. Steps
5-7 contain the approximate decomposition step, using Lemma .G 1]

In our proof of Theorem it will be convenient to work with an undirected
version of the bi-schemes introduced in Section 4.4l Given a graph G and parti-
tions P and P’ of a vertex set V, we call (G, P,P’) a (K, L, m,eg,c)-bi-scheme if
the following properties hold:

(BSchl) (P,P’) is a (K, L, m,eq)-partition of V. Moreover, V(G) = AU B.

(BSch2) Every edge of G joins some vertex in A to some vertex in B.

(BSch3) dg(v,Ai ;) > (1 —e)m/L and dg(w, B; ;) > (1 —e)m/L for all v € B,
weA i <Kandj<L.

We will also use the following proposition.

PROPOSITION 4.7.1. Suppose that K,L,n,m/L €N and 0 < 1/n < €,&9 < 1.
Let (G,P,P’) be a (K,L,m,eg,¢)-bi-scheme with |G| = n. Then there exists an
orientation Gair of G such that (Gair, P,P’) is a [K, L, m, &g, 2\/¢]-bi-scheme.

Proof. Randomly orient every edge in G to obtain an oriented graph Gai,. (So
given any edge zy in G with probability 1/2, xy € E(Gqi;) and with probability
1/2, yx € E(Gair).) (BSchl’) and (BSch2’) follow immediately from (BSchl) and
(BSch2).

Note that Fact [L43]and (BSch3) imply that G[A; ;, By j] is [1, \/¢]-superregu-
lar with density at least 1 — ¢, for all ¢,i’ < K and j,j < L. Using this, (BSch3’)
follows easily from the large deviation bound in Proposition 44l (BSch4’) follows
from Proposition [[L4.4 in a similar way. O

Proof of Theorem [1.3.5
Step 1: Choosing the constants and a bi-framework. Define new constants
such that

(4.71) 0<l/np<Kex KKK epKe K1 KegKezKey <1/Koy
VKK <" <l/LLl/fgsn<g<l/gkek],

where K1, K5, L, f,g € N and both K5, g are even. Note that we can choose the

constants such that
K K> 4f Ky

28fgL’ 49LK, " 3g(g — 1)

eN
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Let G and D be as in Theorem [[.3.5] By applying Dirac’s theorem to remove a
suitable number of edge-disjoint Hamilton cycles if necessary, we may assume that
D < n/2. Apply Corollary L2212 with G, €ex, €4, €0, K2 playing the roles of F,

g, e, &, K to find a set C; of at most aé)/(gn edge-disjoint Hamilton cycles in G

so that the graph G obtained from G by deleting all the edges in these Hamilton
cycles forms part of an (ey, g9, Ko, D1)-bi-framework (G1, A, Ag, B, By), where
(4.7.2)

|A|+eon >n/2 > Dy = D=2|C1| > D—2¢}/*n > D—egn > n/2—2eon > |A|—2¢9n.

Note that G is Dy-regular and that D; is even since D was even. Moreover, since
Ky/LK; € N, (G1, A, Ao, B, By) is also an (e, €g, K1 L, D1)-bi-framework and thus
an (e«,&’', K1L, Dq)-bi-framework.

Let
A B
= % = %7 = yma, T = yma, ry i=192g° Ky,
2rK
r3 1= Ll’ r’i=ri+ro+r—(Lf—1)rs,
1-— 2084)D1
Dy:=D;—2(L re t = (1= 2024) Dy
4 1 (Lfrs+7r°), KiL 2(KiL)
Note that (BFR4) implies m4/L € N. Moreover,
(4.7.3) o, 3 < Y 2my < AY3r, r1/2 <r¢ <21

Further, by changing v, 1,4 slightly, we may assume that r/K3,r1,tx, € N.
Since K3 /L € N this implies that r3 € N. Finally, note that

ET3) @12
(4.74) 1+3)|A|>D>Dsy > Di—mn > |A=2yn>(1-5m)|A|

Step 2: Choosing a (K1, L, mi,eo)-partition (P1,P;). We now prepare the
ground for the construction of the robustly decomposable graph G™P, which we
will obtain via the robust decomposition lemma (Corollary [£.5.4)) in Step 4.

Recall that (G1, A, Ao, B, By) is an (e, €', K1 L, D1)-bi-framework. Apply Lem-
ma A3 T with Gy, D1, K1 L, €, playing the roles of G, D, K, € to obtain partitions
Ay, .. A pof Aand By, ..., By | of B into sets of size m; /L such that together
with Ag and By all these sets A, and B] form a (K1L,m1/L,¢e.,€1,e2)-partition
Py for Gy. Note that (1 —eg)n < n — |Ag U By| = 2K1m; < n by (BFR4). For
all i < Ky and all h < L, let A;p := Al(ifl)Lth' (So this is just a relabeling of the
sets A}.) Define B;, similarly and let A; := J, ., Ai,n and B; := J;, ., Bin- Let
Py := {Ag,Bo,Ay,...,Axk,,B1,...,Bg,} denote the corresponding (K1, m1,¢eq)-
partition of V(G). Thus (P1,Py) is a (K, L, mq,eo)-partition of V(G), as defined
in Section

Let Gy := G1[A, B]. We claim that (Go,P1,P’1) is a (K3, L, mq,e9,e’)-bi-
scheme. Indeed, clearly (BSchl) and (BSch2) hold. To verify (BSch3), recall that
that (G, A, Ao, B, By) is an (&4, g, K1 L, D1)-bi-framework and so by (BFR5) for
all x € B we have

, (%)
deg,(z, A) > dg, (x) —dg, (x, B") — |Ao| > D1 —egn — |Ag| > |A| —4deon

and similarly dg,(y, B) > |B| — 4eon for all y € A. Since g9 < €'/K1L, this
implies (BSch3).
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Step 3: Balanced exceptional systems for the robustly decomposable
graph. In order to apply Corollary [£5.4] we first need to construct suitable
balanced exceptional systems. Apply Corollary to the (e.,e’, KiL, D1)-bi-
framework (G1, A, Ag, B, By) with G1, K1 L, Pj, e, playing the roles of F, K, P,
¢ in order to obtain a set J of (K; L)%k, 1 edge-disjoint balanced exceptional sys-
tems in G1 with parameter ¢ such that for all 1 < #},15,d%,4)y < KL the set J
contains precisely tx, 1 (i},15, 5,4, )-BES with respect to the partition Pj. (Note
that F in Corollary L3I0 satisfies (WF5) since Gy satisfies (BFR5).) So J is the
union of all the sets Ji; i, returned by Corollary L3100 (Note that we will not
use all the balanced exceptional systems in J and we do not need to consider the
Hamilton cycles guaranteed by this result. So we do not need the full strength of
Corollary at this point.)

Our next aim is to choose two disjoint subsets Jca and Jpca of J with the
following properties:

(a) In total Joa contains L frs balanced exceptional systems. For each i < f
and each h < L, Jca contains precisely r3 (i1,12,13,74)-BES of style h
(with respect to the (K, L, mq,eq)-partition (P1,P;)) such that iy,is,143,
14 € {(Z — 1)K1/f+ 2,... ,iKl/f}.
(b) In total Jpca contains 7r° balanced exceptional systems. For each i <7,
Jpca contains precisely r° (i1, ig, i3,44)-BES (with respect to the partition
Pl) with i1, 149,43,14 € {(Z — 1)K1/7 +2,... ,iK1/7}.
(Recall that we defined in Section EZ4 when an (i1, i2, i3, 14 )-BES has style h with
respect to a (K, L, my,ep)-partition (P1,P1).) To see that it is possible to choose
Jca and Jpca, split J into two sets J; and J> such that both J; and J> contain
at least tx, /3 (i},1h, 15, 14)-BES with respect to Py, for all 1 <}, d5,45,4) < K;L.
Note that there are (K;/f — 1)* choices of 4-tuples (i1, iz, i3,44) With i1,42,43,i4 €
{¢t—-—1)K1/f+2,...,iK1/f}. Moreover, for each such 4-tuple (iy,142,13,74) and
each h < L there is one 4-tuple (4},15,45,4,) with 1 <4/,45,45,7), < K1L and such
that any (i,145,1%,44)-BES with respect to Pj is an (i1,42,13,i4)-BES of style h
with respect to (P1,P;). Together with the fact that

(Ei/f =V'trr o Dy gy ELS
> >y 'n > rs,
3 T(Lf)*

this implies that we can choose a set Joa C J1 satisfying (a).
Similarly, there are (K7/7—1)* choices of 4-tuples (i1, iz, i3,44) With iy,i2,i3,i4 €
{(i = 1)K1/7+2,...,iK1/7}. Moreover, for each such 4-tuple (i1,1i2,13,%4) there
are L* distinct 4-tuples (i}, 44,15, 1}) with 1 < 4},45,45,4} < K;L and such that any
(¢),145,4%,14)-BES with respect to Pj is an (i1,42,13,%4)-BES with respect to P;.
Together with the fact that
(K1/7T—1)*L*,, _ Dy n @L3 |
>—=>— > r
3 -7 T 3.7~ ’
this implies that we can choose a set Jpca C J2 satisfying (b).
Step 4: Finding the robustly decomposable graph. Recall that (G2, P1,P])
is a (K3, L,mq,ep,¢)-bi-scheme. Apply Proposition 711 with Ga, P1, Py, K1,
mz, € playing the roles of G, P, P’, K, m, € to obtain an orientation Gy qir of G2
such that (G2 qir, P1,P]) is a [K1, L, mq, €0, 2v/¢']-bi-scheme. Let C' = A1 B1 A, ...
Ak, Br, be a spanning cycle on the clusters in P;.
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Our next aim is to use Lemma[Z.4lin order to extend the balanced exceptional
systems in Jca into r3 edge-disjoint balanced exceptional factors with parameters
(L, f) for G2 qir (with respect to C, P1). For this, note that the condition on Jc 4 in
Lemma .44 with r3 playing the role of ¢ is satisfied by (a). Moreover, Lrs/m; =
2rKi/mq = 27Ky < 1. Thus we can indeed apply Lemma 44 to (G2 gir, P1, P1)
with Jcoa, 2Ve', K1, rs playing the roles of 7, ¢, K, ¢ in order to obtain 73
edge-disjoint balanced exceptional factors BFy,..., BF,, with parameters (L, f)
for Go,qir (with respect to C, Pj) such that together these balanced exceptional
factors cover all edges in | Jca. Let BFca := BFy + -+ BF,,.

Note that m4/4g, m1/L € N since m; = |A|/K; and |4| is divisible by K5 and
thus m; is divisible by 4¢g L (since K3/4gL K € N by our assumption). Furthermore,
4rK? = 4ym1K? < 4?m; < my. Thus we can apply Corollary EE54] to the
[K1, L, my,e0,€"]-bi-scheme (G2 qir, P1,P;) with K1, ”, g playing the roles of K,
g, ¢ to obtain a spanning subgraph C A(r) of G as described there. (Note that G
equals the graph G’ defined in Corollary [£5.4l) In particular, CA(r) is 2(r1 + r2)-
regular and edge-disjoint from BFca.

Let G3 be the graph obtained from Gy by deleting all the edges of CA(r) +
BFca. Thus Gs is obtained from Gy by deleting at most 2(r; + 7o +1r3) < 6r1 =
6y1m1 edges at every vertex in AUB = V(G3). Let G3 qir be the orientation of G
in which every edge is oriented in the same way as in G gir. Then Proposition[[.4.1]
implies that (G3.qir, P1,P1) is still a [K4,1,mq, g, €]-bi-scheme. Moreover,

RSN o

my my
Together with (b) this ensures that we can apply Lemma 44 to (G5 qir, P1) with
P1, Ipca, K1, 1, 7, r° playing the roles of P, J, K, L, f, q in order to obtain
r° edge-disjoint balanced exceptional factors BFY, ..., BF!, with parameters (1,7)
for Gs,qir (with respect to C, P1) such that together these balanced exceptional
factors cover all edges in |J Jpca. Let BFpca := BF] +---+ BF/..

Apply Corollary .54 to obtain a spanning subgraph PC' A(r) of G5 as described
there. In particular, PC A(r) is 10r°-regular and edge-disjoint from C A(r)+BF ca+
BFpca.

Let G™" := CA(r) + PCA(r) + BFca + BFpca. Note that by (@A) all the
vertices in Vj := Ag U By have the same degree 7“6°b := 2(Lfrsz + 7r°) in G™P. So

@3 )
(4.7.5) e < rBOb < 30r.

Moreover, [@41]) also implies that all the vertices in A U B have the same degree
7P in GTP where 77" = 2(ry + ro + 13 + 6r°). So

TBOb —prob — 2(Lfrs4+r°—(r1+ra+7r3))=2(Lfrs+r—(Lf —1)rs —r3) = 2r.

Step 5: Choosing a (K2, mg,¢cq)-partition P,. We now prepare the ground
for the approximate decomposition step (i.e. to apply Lemma [6.1]). For this, we
need to work with a finer partition of AU B than the previous one (this will ensure
that the leftover from the approximate decomposition step is sufficiently sparse
compared to G*°P).

Let Gy := G; — G™P (where G was defined in Step 1) and note that

(4.7.6) Dy =Dy — i = Dy — 1" _ o,
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So
(4.7.7)  dg,(x) = Dy +2r for all z € AU B and dg,(z) = D4 for all z € V.

(Note that Dy is even since Dy and r{°® are even.) So G4 is Dy-balanced with re-

spect to (A, Ag, B, Bg) by Proposition 21l Together with the fact that (G1,4,Ao,
B,By) is an (g4, €9, Ko, D1 )-bi-framework, this implies that (G4,G4,4,A0,B,By) sat-
isfies conditions (WF1)—(WF5) in the definition of an (e, eq, K2, D4)-weak frame-
work. However, some vertices in Ag U By might violate condition (WF6). (But
every vertex in A U B will still satisfy (WF6) with room to spare.) So we need to
modify the partition of Vj = Ag U By to obtain a new weak framework.

Consider a partition Af, B§ of Ag U By which maximizes the number of edges
in G4 between AU A and B§ U B. Then dg, (v, AJUA) <dg,(v)/2 for all v € A}
since otherwise A§ \ {v}, B U {v} would be a better partition of AgU By. Similarly
dg, (v, B§ UB) < dg,(v)/2 for all v € B§. Thus (WF6) holds in G4 (with respect
to the partition AU A} and B U Bf). Moreover, Proposition .22 implies that G4
is still Dy-balanced with respect to (4, A§, B, By). Furthermore, with (BFR3) and
(BFR4) applied to Gy, we obtain eg,(AUAY) < eq, (AU Ag) +|A§||AU Af| < gon?
and similarly e, (BUB{) < ggn?. Finally, every vertex in AU B has internal degree
at most egn + |Ag U By| < 2egn in G4 (with respect to the partition A U Af and
BUBY). Altogether this implies that (G4, G4, A, Af, B, By) is an (eq, 2e¢, K2, D4)-
weak framework and thus also an (e, &', Ko, Dy)-weak framework.

Without loss of generality we may assume that |A§| > |B§|. Apply Lem-
ma [L2TT to the (g9,¢&’, K2, Dy)-weak framework (G4, G4, A, Af, B, BS) to find a
set Ca of |Ca] < egn edge-disjoint Hamilton cycles in G4 so that the graph Gj
obtained from G4 by deleting all the edges of these Hamilton cycles forms part of
an (g9,¢’, K2, D5)-bi-framework (G5, A, AS, B, Bf), where

(478) D5 = D4 - 2|Cg| 2 D4 - 280”.
Since Dy is even, Ds is even. Further,
(4.7.9)

dg,(r) = Ds+2rforallz € AUB and dg,(z) = Ds forall z € AJUBS.
Choose an additional constant € such that 3 < &) < 1/K5 and so that

(1 —20¢e})Ds
2K3
Now apply Lemma @3 Tlto (Gs, A, A}, B, Bg) with Ds, Ka, £ playing the roles

of D, K, € in order to obtain partitions Ai,..., Ak, and By,...,Bg, of A and B

into sets of size

such that together with Aj and Bf the sets A; and B; form a (Ks,ma,€,€1,€2)-
partition Ps for G5. (Note that the previous partition of A and B plays no role in
the subsequent argument, so denoting the clusters in Py by A; and B, again will
cause no notational conflicts.)

K, == € N.

Step 6: Balanced exceptional systems for the approximate decomposi-
tion. In order to apply Lemma 6.1l we first need to construct suitable balanced
exceptional systems. Apply Corollary to the (e, €', K2, Ds)-bi-framework
(G5, A, Af, B, B) with G5, eo, €}, €4, K2, D5, P2 playing the roles of F, ¢, €, 4,
K, D, P. (Note that since we are letting G5 play the role of F, condition (WF5)
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in the corollary immediately follows from (BFR5).) Let J’ be the union of the

sets Ji,iisi, guaranteed by Corollary L3100 So J’ consists of Kjtk, edge-disjoint

balanced exceptional systems with parameter (), in G5 (with respect to P2). Let Cs

denote the set of Hamilton cycles guaranteed by Corollary 310 So |C3| = 10, Ds.
Let Gg be the subgraph obtained from G5 by deleting all those edges lying in

the Hamilton cycles from Cs. Set Dg := D5 — 2|C3]. So

(4.7.11)

dgs(x) =" Dg+2r for all x € AUB and dgs(x) =" Dg for all z € V.

(Note that Vo = Ag U By = A§ U B§.) Let G§ denote the subgraph of Gg obtained
by deleting all those edges lying in the balanced exceptional systems from 7’. Thus
& = G°, where G° is as defined in Corollary E3I0(iv). In particular, Vp is an
isolated set in G and Gy is bipartite with vertex classes AU A§ and B U B (and
thus also bipartite with vertex classes A’ = AU Ay and B’ = B U By).
Consider any vertex v € V. Then v has degree D5 in G5, degree two in each
Hamilton cycle from Cs, degree two in each balanced exceptional system from J’
and degree zero in Gf. Thus

D6+2|Cg| =Ds = dGs('U) =2|Cg|+2|jl|+dgé(’l)) =2|Cg|+2|._7/|
and so
(4.7.12) D¢ = 2|J"|.

Step 7: Approximate Hamilton cycle decomposition. Our next aim is to
apply Lemma 6.1 with Gg, Pa, Ka, mo, J', € playing the roles of G, P, K, m, 7,
0. Clearly, condition (c) of Lemma [£6.1]is satisfied. In order to see that condition
(a) is satisfied, let p := (r5°® — 2r)/4Kamgy and note that

Y1ma r1 — 2r @ @ 3071 307

0< 1.
T 4Komo T 4Komo = b= 4Koms — K;j <
Recall that every vertex v € B satisfies
da, (v) @) Ds+2r m:m Dy —7°P +2r42e9n @ |A| =P +-2r+4egn.
Moreover,

dG5 (va) = dG5 (v) - dG5 (’U, BU BS) - |A8| > dG5 (’U) - 25/”)

where the last inequality holds since (G5, A, A, B, BS) is an (g, €', K2, D5)-bi-
framework (c.f. conditions (BFR4) and (BFR5)). Together with the fact that Pz is
a (Ka,ma, €0, 1,£2)-partition for G5 (c.f. condition (P2)), this implies that
dgs(v,A) £ein A =i +2r £ 2e1n

B K, B K,

das (v, Ai)

rob_2
= (1 - % 1551) ma = (1 — 4 % 5e1)mo

= (1 — 4/J, + 1/K2)m2.

Recall that G is obtained from G5 by deleting all those edges lying in the Hamilton
cycles in C3 and that

L , o @ry - @I
|Cg| = 1054D5 S 1054D4 < 11€4|A| S mQ/KQ.
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Altogether this implies that dg, (v, 4;) = (1 — 4p £ 4/K3)mgy. Similarly one can
show that dg,(w,Bj) = (1 — 4p £ 4/Ks)mo for all w € A. So condition (a) of
Lemma [£6.1] holds.

To check condition (b), note that

, &TI2 Dy _ Dy BLO D, — > n 1 v
T’ 7= -5 <3 = —F5 < Z—M'2sz2—7°§ (Z_M_?)—Kl) n.
Thus condition (b) of Lemma [£6.1] holds with v/3K; playing the role of p.

Since the edges in J' lie in G5 and (G5, A, AS, B, By) is an (g9,¢’, K2, D5)-bi-
framework, (BFR5) implies that each v € AU B is incident with an edge in J for at
most e'n+|Vp| < 2¢’n of the J € J'. (Recall that in a balanced exceptional system
there are no edges between A and B.) So condition (d) of Lemma 6.1 holds with
¢’ playing the role of &g.

So we can indeed apply Lemma F6.1] to obtain a collection C4 of |J'| edge-
disjoint Hamilton cycles in Gg which cover all edges of | J'.

Step 8: Decomposing the leftover and the robustly decomposable graph.
Finally, we can apply the ‘robust decomposition property’ of G*P guaranteed by
Corollary 4.5 4lto obtain a Hamilton decomposition of the leftover from the previous
step together with G*P.

To achieve this, let H' denote the subgraph of Gg obtained by deleting all
those edges lying in the Hamilton cycles from C4. Thus (£7.11)) and (@712 imply
that every vertex in Vj is isolated in H’ while every vertex v € AU B has degree
de, (V) =2|TJ'| = De+2r—2|J'| = 2r in H' (the last equality follows from (Z7.12)).
Moreover, H'[A] and H’[B] contain no edges. (This holds since H' is a spanning
subgraph of Gg — |JJ’ = G§ and since we have already seen that Gj is bipartite
with vertex classes A’ and B’.) Now let H := H'[A, B]. Then Corollary .5:4(ii)(b)
implies that H + G*™" has a Hamilton decomposition. Let Cs denote the set of
Hamilton cycles thus obtained. Note that H + G™P is a spanning subgraph of G
which contains all edges of G which were not covered by C; UCy UC3 UCy. So
C1UCyUC3UCy UCs is a Hamilton decomposition of G. O



CHAPTER 5

Approximate decompositions

In this chapter we prove the approximate decomposition results, Lemmas [2.5.4]
and [£.6.1] Recall that Lemma 2.5.4] gives an approximate Hamilton decomposi-
tion of our graph (with some additional properties) in the two cliques case whilst
Lemma [.6.1] gives an approximate Hamilton decomposition of our graph (with
some additional properties) in the bipartite case. After introducing some tools in
Section 5.1l we prove Lemma [2.5.4lin Sections We then prove Lemma [£.G.1]
using a similar approach in the final section. We remind the reader that many of
the relevant definitions for Lemmas2.5.4land .61l are stated in Sections 2.3 and [4.3]
respectively.

In this chapter it is convenient to view matchings as graphs (in which every
vertex has degree precisely one).

5.1. Useful Results

5.1.1. Regular Spanning Subgraphs. The following lemma implies that
any almost complete balanced bipartite graph has an approximate decomposi-
tion into perfect matchings. The proof is a straightforward application of the
MaxFlowMinCut theorem.

LEMMA 5.1.1. Suppose that 0 < 1/m < e < p < 1, that 0 < p < 1/4 and that
m, um, pm € N. Suppose that T is a bipartite graph with vertex classes U and V'
of size m and with (1 —p—e)m < §(IT') < A(T) < (1 — p+¢e)m. Then T' contains
a spanning (1 — pu — p)m-regular subgraph T'. In particular, T contains at least
(1 — p— p)m edge-disjoint perfect matchings.

Proof. We first obtain a directed network N from I' by adding a source s and a
sink t. We add a directed edge su of capacity (1 — u — p)m for each u € U and a
directed edge vt of capacity (1 — u — p)m for each v € V.. We give all the edges in
T" capacity 1 and direct them from U to V.

Our aim is to show that the capacity of any (s,t)-cut is at least (1 — u — p)m?.
By the MaxFlowMinCut theorem this would imply that N admits an integer-valued
flow of value (1 — p— p)m? which by construction of N implies the existence of our
desired subgraph I".

Consider any (s, t)-cut (S, S) where S = {s}US;USy with S C U and S C V.
Let S; := U\S; and Sy := V\S2. The capacity of this cut is

(1= p—p)ym(m — |S1]) +e(S1, S2) + (1 — = p)m|S2|
and therefore our aim is to show that
(5.1.1) e(S1,82) > (1 — p— p)m(|S1| —|S2l).

143
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If |S1] < (1 — p — p)m, then
e(51,82) = (1 — p — e)m — [Sa]) |51
= (L= p—=p)m(|S:] = |S2]) + (p — e)m|Si[ + [Sa| (1 — p = p)m — |S1])
> (1= p = p)m(|Si] = |S2])-

Thus, we may assume that |S;| > (1 — p — p)m. Note that |S1| — [Sa| = |Sa| — |S1].
Therefore, by a similar argument, we may also assume that |Sa| > (1 — pu — p)m
and so |Sa| < (u + p)m. This implies that

e(S1,52) = Y dr(z) = Y dr(y) = (1—p—e)m|Si| — (1 — p+)m|Ss|

€S, YyES?2
=1 = p—p)m(|Si] = [S2]) + pm([S1| = [S2]) — em([S1| + |S2])
> (1= p = p)m(|Si] = [Sa) + (1 = 2 — 2p)pm?® — (1 + p + p)em?
> (1= - pym(81] — |]).

(Note that the last inequality follows as ¢ < p < 1 and p < 1/4.) So indeed (E.1.T))
is satisfied, as desired.

5.1.2. Hamilton Cyles in Robust Outexpanders. Recall that, given 0 <
v < 7 < 1, we say that a digraph G on n vertices is a robust (v, T)-outexpander,
if for all S C V(G) with 7n < |S| < (1 — 7)n the number of vertices that have at
least vn inneighbours in S is at least |S| + vn. The following result was derived
in [20] as a straightforward consequence of the result from [25] that every robust
outexpander of linear minimum degree has a Hamilton cycle.

THEOREM 5.1.2. Suppose that 0 < 1/n « v < v <17 <K n<1. Let G be a
digraph on n vertices with 6+ (G),0~(G) > nn which is a robust (v, T)-outexpander.
Let yi,...,yp be distinct vertices in V(G) with p < yn. Then G contains a directed
Hamilton cycle visiting y1, .. .,yp in this order.

5.1.3. A Regularity Concept for Sparse Graphs. We now formulate a
concept of e-superregularity which is suitable for ‘sparse’ graphs. Let G be a bi-
partite graph with vertex classes U and V, both of size m. Given A C U and
B CV, we write d(A, B) := e(A, B)/|A||B| for the density of G between A and B.
Given 0 < ¢,d,d*,c < 1, we say that G is (g, d, d*, c)-superregular if the following
conditions are satisfied:

(Regl) Whenever A C U and B C V are sets of size at least em, then d(A, B) =

(I1+e)d.

(Reg2) For all u,u’ € V(G) we have |[N(u) N N(u')| < *m.

(Reg3) A(G) < em.

(Regd) 6(G) > d*m
Note that the above definitions also make sense if G is ‘sparse’ in the sense that
d < & (which will be the case in our proofs). A bipartite digraph G = G[U, V] is
(e,d, d*, ¢)-superregular if this holds for the underlying undirected graph of G.

The following observation follows immediately from the definition.

PROPOSITION 5.1.3. Suppose that 0 < 1/m < d*,d,e,&e’;c < 1 and 2’ < d*.
Let G be an (e, d, d*, ¢)-superregular bipartite graph with vertex classes U and V' of
sizem. Let U CU and V' CV with |U'| =|V'| > (1 —&")Ym. Then G[U',V'] is
(2e,d,d* /2, 2c)-superregular.
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The following two simple observations were made in [21].

PROPOSITION 5.1.4. Suppose that 0 < 1/m < d*,d,e,c < 1. Let G be an
(e,d, d*, ¢)-superreqular bipartite graph with vertex classes U and V' of size m. Sup-
pose that G’ is obtained from G by removing at most e2dm edges incident to each
vertex from G. Then G' is (2¢,d,d* — £2d, c)-superregular.

LEMMA 5.1.5. Let 0 < 1/m < v < 7 < d < e < p1,( < 1/2 and let G be an
(e,d,(d, d/u)-superregular bipartite graph with vertex classes U and V of size m.
Let A C U be such that Tm < |A| < (1 —7)m. Let B CV be the set of all those
vertices in V. which have at least vm neighbours in A. Then |B| > |A| + vm.

5.2. Systems and Balanced Extensions

5.2.1. Sketch Proof of Lemma [2.5.4l Roughly speaking, the Hamilton cy-
cles we find will have the following structure: let Ay,...,Ax € Aand By,...,Bg C
B be the clusters of the (K, m,¢eo)-partition P of V(G) given in Lemma 2574 So
K is odd. Let R4 be the complete graph on Aj,..., Ax and Rp be the complete
graph on By, ..., Bg. Since K is odd, Walecki’s theorem [26] implies that R 4 has
a Hamilton decomposition Cy4 1,...,C4 (x—1)/2, and similarly Rp has a Hamilton
decomposition Cp 1, ...,Cp (k—1)/2- Every Hamilton cycle C' we construct in G
will have the property that there is a j so that almost all edges of C'[A] wind around
C4 ; and almost all edges of C[B] wind around Cp ;. Below, we describe the main
ideas involved in the construction of the Hamilton cycles in more detail.

As indicated above, the first idea is that we can reduce the problem of finding
the required edge-disjoint Hamilton cycles (and possibly perfect matchings) in G
to that of finding appropriate Hamilton cycles on each of A and B separately.

More precisely, let J be a set of edge-disjoint exceptional systems as given
in Lemma 254 By deleting some edges if necessary, we may further assume
that J is an edge-decomposition of G — G[A] — G[B]. Thus, in order to prove
Lemma[2.5.4 we have to find | J| suitable edge-disjoint subgraphs Ha 1,..., Ha 7
of G[A] and |J| suitable edge-disjoint subgraphs Hp 1, ..., Hp |7 of G[B] such that
Hy:=Hy s+ Hp,s + J, are the desired spanning subgraphs of G. To prove this,
for each J € J, we consider the two corresponding auxiliary subgraphs J} and Jj
defined at the beginning of Section Thus J} and J5 have the following crucial
properties:

(o) J4 and Jj are matchings whose vertices are contained in A and B, re-

spectively;

(arg) the union of any Hamilton cycle C% in G[A] + J} containing J% (in some

suitable order) and any Hamilton cycle C5 in G[B] + J3 containing J5
(in some suitable order) corresponds to either a Hamilton cycle of G con-
taining J or to the union of two edge-disjoint perfect matchings of G
containing J.

Furthermore, J determines which of the cases in (a3) holds: If J is a Hamilton
exceptional system, then (az) will give a Hamilton cycle of G, while in the case
when J is a matching exceptional system, (az) will give the union of two edge-
disjoint perfect matchings of G. So roughly speaking, this allows us to work with
multigraphs G% = G[A] + ) ;c; Ji and G = G[B] + )_ ;. ; Jj rather than G
in the two steps. Furthermore, the processes of finding Hamilton cycles in G% and
in G’ are independent (see Section [5.31] for more details).



146 5. APPROXIMATE DECOMPOSITIONS

By symmetry, it suffices to consider G% in what follows. The second idea of
the proof is that as an intermediate step, we decompose G% into blown-up Hamil-
ton cycles G7 ;- Roughly speaking, we will then find an approximate Hamilton
decomposition of each G7 ; separately.

More precisely, recall that R 4 denotes the complete graph whose vertex set is
{A1,..., Ak}. As mentioned above, R4 has a Hamilton decomposition C4 1,...,
Ca,(k-1)/2- We decompose G[A] into edge-disjoint subgraphs Ga,1,...,G A (k—1)/2
such that each G 4 ; corresponds to the ‘blow-up’ of C4 ;, i.e. G4 ;[U, W] = G[U, W]
for every edge UW € E(Cy ;). (The edges of G lying inside one of the clusters
Aq, ..., Ag are deleted.) We also partition the set {J} : J € J} into (K —1)/2
sets JX1,--+» T} (x—1y/2 of roughly equal size. Set G ; := Ga; + J3 ;- Thus in
order to prove Lemma 2.5.4 we need to find |J} ;| edge-disjoint Hamilton cycles
in G7 ; (for each j < (K —1)/2). Since G ; is still close to being a blow-up of the
cycle Cy ;, finding such Hamilton cycles seems feasible.

One complication is that in order to satisfy (as2), we need to ensure that each
Hamilton cycle in G% ; contains some Jj; € J} ; (and it must traverse the edges of
J7 in some given order). To achieve this, we will both orient and order the edges
of Jj. So we will actually consider an ordered directed matching J} 4, instead of
J4. (J} itself will still be undirected and unordered). We orient the edges of G4 ;
such that the resulting oriented graph G4 jdir is a blow-up of the directed cycle
Ca,;.

However, J} 4;, may not be ‘locally balanced with respect to C'4 ;. This means
that it is impossible to extend J} 4, into a directed Hamilton cycle using only edges
of G jair- For example, suppose that G 4 jqir is a blow-up of the directed cycle
A1As ... Ak, i.e. each edge of G 4 j qir joins A; to A;41 for some 1 <4 < K. If J:l,dir
is non-empty and V/(J} 4;,) € Ai, then J 4, cannot be extended into a directed
Hamilton cycle using edges of G4 jair only. Therefore, each J} 4, will first be
extended into a ‘locally balanced path sequence’ PS. PS will have the property
that it can be extended to a Hamilton cycle using only edges of G 4 j air- We will
call the set BE; consisting of all such PS for all J} € J} ; a balanced extension of
T4 ;- BE; will be constructed in Section [1.3.3] using edges from a sparse graph H'
on A (which is actually removed from G[A] before defining Ga,1,...,G A (k-1)/2)-

Finally, we find the required directed Hamilton cycles in G4 jqir + BE; in
Section 541 We construct these by first extending the path sequences in BE; into
(directed) 1-factors, using edges which wind around the blow-up of Cy4 ;. These are
then transformed into Hamilton cycles using a small set of edges set aside earlier
(again the set of these edges winds around the blow-up of Cy ;).

5.2.2. Systems and Balanced Extensions. As mentioned above, the proof
of Lemma [2.54] requires an edge-decomposition and orientation of G[A] and G[B]
into blow-ups of directed cycles as well as ‘balanced extensions’. These are defined
in the current subsection.

Let k,m € N. Recall that a (k,m)-equipartition Q of a set V of vertices is
a partition of V into sets Vi,...,V} such that |V;| = m for all i < k. The V;
are called clusters of Q. (G, Q,C) is a (k,m, pu,¢e)-cyclic system if the following
properties hold:

(Sysl) G is a digraph and Q is a (k, m)-equipartition of V(G).
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(Sys2) C is a directed Hamilton cycle on @ and G winds around C. Moreover,
for every edge UW of C, we have dj(u, W) = (1 —puze)m for every u € U
and dg(w,U) = (1 — p£e)m for every w € W.
So roughly speaking, such a cyclic system is a blown-up Hamilton cycle.

Let Q be a (k,m)-equipartition of V and let C be a directed Hamilton cycle
on Q. We say that a digraph H with V(H) C V is locally balanced with respect to
C if for every edge UW of C', the number of edges of H with initial vertex in U
equals the number of edges of H with final vertex in W.

Recall that a path sequence is a digraph which is the union of vertex-disjoint
directed paths (some of them might be trivial). Let M be a directed matching. We
say a path sequence PS is a Vj-extension of M with respect to Q if each edge of
M is contained in a distinct directed path in P.S having its final vertex in V;. Let
M= {Mj,..., M} be aset of directed matchings. A set BE of path sequences is a
balanced extension of M with respect to (Q,C) and parameters (e, ) if BE satisfies
the following properties:

(BE1) BE consists of ¢ path sequences PSi, ..., PS, such that V(PS;) CV for
each i < ¢, each PS; is locally balanced with respect to C' and PS; —
M, ..., PS, — M, are edge-disjoint from each other.

(BE2) Each PS, is a V; -extension of M, with respect to Q for some iy < k.
Moreover, for each i < k there are at most ¢m/k indices s < ¢ such that
is = 1.

(BE3) |V(PSs)NV;| < emforalli < k and s < q. Moreover, for each i < k, there
are at most ¢m/k path sequences PS, € BE such that V(PSs) NV; # 0.

Note that the ‘moreover part’ of (BE3) implies the ‘moreover part’ of (BE2).

Given an ordered directed matching M = {fi,..., f¢}, we say that a directed
cycle C' is consistent with M if C' contains M and visits the edges f1, ..., f¢ in this
order. The following observation will be useful: suppose that PS is a V;-extension
of M and let z; be the final vertex of the path in PS containing f;. (So z1,...,x¢
are distinct vertices of V;.) Suppose also that C” is a directed cycle which contains
PS and visits z1, ...,z in this order. Then C’ is consistent with M.

5.3. Finding Systems and Balanced Extensions for the Two Cliques
Case

Let G be a graph, let P be a (K, m,eg)-partition of V(G) and let J be a set
of exceptional systems as given by Lemma 254 The aim of this section is to
decompose G[A] + G[B] into (k, m, u,e)-cyclic systems and to construct balanced
extensions as described in Section[L.ZTl First we need to define J7 4, and Jj 4, for
each exceptional system J € 7. Recall from Section [5.2.Tlthat these are introduced
in order to be able to consider G[A] and G[B] separately (and thus to be able to
ignore the exceptional vertices in Vp = Ag U By).

5.3.1. Defining the Graphs J} 4, and Jj 4;,. We recall the following def-
inition of J* from Section 23l Let A, Ag, B, By be a partition of a vertex set V'
on n vertices and let J be an exceptional system with parameter y. Since each
maximal path in J has endpoints in A U B and internal vertices in Vj, an excep-
tional system J naturally induces a matching J} 5z on A U B. More precisely, if
Py, ..., Py are the non-trivial paths in J and z;,y; are the endpoints of P;, then we
define J} p := {xiy; : i <{'}. Thus ey (A, B) is equal to the number of AB-paths
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in J. In particular, e _ (A, B) is positive and even if J is a Hamilton exceptional
system, while e - (A, B) =0 if J is a matching exceptional system. Without loss
of generality we may assume that z1y1,...,Z20y2¢ is an enumeration of the edges
of J45[A, B], where z; € A and y; € B. Define

JZ = JZB[A] U {.Igi,l.fgi 01 S ) S 6} and JE = ']ZB[B] U {y2iy2i+1 01 S ) S é}

(with indices considered modulo 2¢). Let J* := J} + J5. So J* is a matching and
e(J*) = e(J4p). Moreover, by (EC2), (EC3) and (ES3) we have

(5.3.1) o(J) = e(Jip) < Vol + VEon.

Recall that the edges in J* are called fictive edges, and that if J; and Jo are two
edge-disjoint exceptional systems, then J; and J5 may not be edge-disjoint.

Recall that we say that an (undirected) cycle C is consistent with J% if C
contains J4 and (there is an orientation of C' which) visits the vertices 1, ..., 2
in this order. In a similar way we define when a cycle is consistent with Jj.

As mentioned in Section (2] we will orient and order the edges of J} and
Jp in a suitable way to obtain J} 4, and Jp g,. Accordingly, we will need an
oriented version of Proposition 23311 For this, we first orient the edges of J}
by orienting the edge x2;—1x2; from x9;—1 to zo; for all ¢ < ¢ and the edges of
JiplA] arbitrarily. Next we order these directed edges as fi,..., fr, such that
fi = mai—1xe; for all i < ¢, where £4 := e(J}). Define JA air to be the ordered
directed matching {f1,..., fe,}. Similarly, to define Jj 4, we first orient the
edges of J5 by orienting the edge y2;y2i+1 from ya; to yai41 for all ¢ < ¢ and the
edges of J g[B] arbitrarily. Next we order these directed edges as f1,..., f;, such
that f] = y2;y2i41 for all ¢ < ¢, where g := e(J};). Define JB air to be the ordered
directed matching {f7,..., f;, }. Note that if J is an (i,i")-ES, then V(J} 4;,) € 4;
and V(Jp g;,) € Bir. Recall from Section that a directed cycle Cy qir is
consistent with Jj"dir if Cy qir contains Jz)dir and visits the edges fi,..., fr, in
this order. The following proposition, which is similar to Proposition 2.8.1] follows
easily from Proposition 2311

ProOPOSITION 5.3.1. Suppose that A, Ag, B, By forms a partition of a vertex set
V. Let J be an exceptional system. Let Ca qir and Cp gir be two directed cycles
such that

o Cagir 15 a directed Hamilton cycle on A that is consistent with Jz)dir;
o Cp.air 15 a directed Hamilton cycle on B that is consistent with Jg g4, -

Then the following assertions hold, where Ca and Cp are the undirected cycles
obtained from Ca qir and Cp qir by ignoring the directions of all the edges.

(i) If J is a Hamilton exceptional system, then Ca+Cp—J*+J is a Hamilton
cycle on V.

(ii) If J is a matching exceptional system, then Ca+Cp— J* +J is the union
of a Hamilton cycle on A’ and a Hamilton cycle on B'. In particular, if
both |A'| and |B’| are even, then Ca + Cp — J* + J is the union of two
edge-disjoint perfect matchings on V.

5.3.2. Finding Systems. In this subsection, we will decompose (and orient)
G[A] into cyclic systems (G a_jdir, Qa,Ca,j), one for each j < (K —1)/2. Roughly
speaking, this corresponds to a decomposition into (oriented) blown-up Hamilton
cycles. We will achieve this by considering a Hamilton decomposition of R 4, where
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R4 is the complete graph on {A1,..., Ax}. So each Cy4 ; corresponds to one of
the Hamilton cycles in this Hamilton decomposition. We will split the set { S air -
J € J} into subsets Jj ; and assign Jj ; to the jth cyclic system. Moreover, for
each j < (K —1)/2, we will also set aside a sparse spanning subgraph H 4 ; of G[A],
which is removed from G[A] before the decomposition into cyclic systems. Ha ;
will be used later on in order to find a balanced extension of 7} ;. We proceed
similarly for G[B].

LEMMA 5.3.2. Suppose that 0 < 1/n K g9 K 1/ K < p<< 1 and 0 < p < 1,
where n, K € N and K 1is odd. Suppose that G is a graph on n wvertices and P is
a (K, m,e)-partition of V(G). Furthermore, suppose that the following conditions
hold:

(a) d(v,4;) = (1—4p+4/K)m and d(w, B;) = (1—4pu+4/K)m for allv € A,
weBandl <i< K.

(b) There is a set J which consists of at most (1/4 — p — p)n edge-disjoint
exceptional systems with parameter ¢ in G.

(c) J has a partition into K? sets Ji i (one for all 1 < i,i’ < K ) such that
each J; i consists of precisely | J|/K? (i,i')-ES with respect to P.

(d) If J contains matching exceptional systems then |A’| = |B’| is even.

Then for each 1 < j < (K —1)/2, there is a pair of tuples (G a,;,Q4,Caj,Ha j,JX ;)
and (G,j,9p,Cp,j, Hp,j, Jp ;) such that the following assertions hold:

(a1) Each of Ca,...,Ca (k-1)/2 is a directed Hamilton cycle on Qa := {4y,
..., Ak} such that the undirected versions of these Hamilton cycles form
a Hamilton decomposition of the complete graph on Q4.

(82) TX1s--- T4 (k—1y/2 i @ partition of {J} g, : J € T}

az) Fach J} ; has a partition into K sets J} .. (one for each 1 <i < K ) such

Aj A,j,i

that | T} ;| < (1 —4p—3p)m/K and each J} 4. € T ;; is an ordered
directed matching with e(J} 4;,) < 5K\/Eom and V(J} 4,) C Ai.

(aa) Ga,-- s Gayk—1y/2, Ha, -, Ha(k—1)/2 are edge-disjoint subgraphs of
G[A].

(as) Ha,j[Ai, Ai] is a 10K /egm-regular graph for all j < (K —1)/2 and all
ii' < K with i #4'.

(ag) For each j < (K —1)/2, there exists an orientation G 4 jair of Ga,j such
that (G 4 j.dir, Qa,Ca ;) is a (K,m,4u,5/K)-cyclic system.

(a7) Analogous statements to (a1)—(ag) hold for Cp,;,Jp ;,Gp,j, Hp,j for all
j S (K— 1)/2, with QB = {Bl,...,BK}.

Proof. Since K is odd, by Walecki’s theorem the complete graph on {41, ..., Ax}
has a Hamilton decomposition. (a;) follows by orienting the edges of each of these
Hamilton cycles to obtain directed Hamilton cycles Ca 1,...,Ca (k—1)/2-

For each 4,7 < K, we partition J;; into (K — 1)/2 sets J; ; (one for each
Jj < (K —1)/2) whose sizes are as equal as possible. Note that if J € J; ;7 j, then
J is an (i,i')-ES and so V(J} 4;,) € Ai. Since P is a (K, m, gq)-partition of V(G),
[Vo| < egn and (1 — go)n < 2K'm. Hence,

GE3D
e(Jaan) <e(J7) < [Vol + vEon < 5y/EgKm.
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(az) is satisfied by setting J3 ;; == Up<x{Jhaw * J € Fiwy} and Jj; =
UigK jj;’j)i. Note that

, 2|J;.| © 2|T7] ®) (1/2—2u—2p)n
< —— 41| =2 — 4+ K < K
|jA’“|_i;(<K—1 * ) KK -1 > EKK-1

<(1—4p—3p)m/K

as 2Km > (1 —eg)n and 1/n < ¢g < 1/K < p. Hence (ag) holds.

For i,#" < K with ¢ # ', apply Lemma BT Tl with G[A;, A;/],4/K, p, 4p playing
the roles of T', &, p, pt to obtain a spanning (1 — 4y — p)m-regular subgraph H; ; of
GJA;, Ay]. Since H; ;s is a regular bipartite graph and ¢g < 1/K,p < 1 and 0 <
p < 1, there exist (K — 1)/2 edge-disjoint 10K /Egm-regular spanning subgraphs
Hi,i’,h .. -aHi,i/,(K—l)/Q of Hi,i/- Set HAJ' = El<i,i/<K Hi,i’,j for each j < (K —
1)/2. So (as) holds. -

Define G4 := G[A] — (HAJ + -+ HA,(K—l)/Q)- Note that, as ¢g < 1/K,
(a) implies that dg, (v, 4;) = (1 —4p £ 5/K)m for all v € A and all ¢+ < K. For
each j < (K —1)/2, let G4 ; be the graph on A whose edge set is the union of
GalA;, Ay] for each edge A; Ay € E(Ca ;). Define G 4 j air to be the oriented graph
obtained from G 4 ; by orienting every edge in G4[A4;, Ay] from A; to A; (for each
edge A;A; € E(Cy4,)). Note that (G4 jdir, Qa,Ca,;) is a (K, m,4u,5/K)-cyclic
system for each j < (K — 1)/2. Therefore, (a4) and (ag) hold. (a7) can be proved
by a similar argument. O

5.3.3. Constructing Balanced Extensions. Let (G4,;,94,Ca ;,Ha ;T ;)
be one of the 5-tuples obtained by Lemma The next lemma will be applied
to find a balanced extension of J} ; with respect to (Qa,C4,;), using edges of
Hy j (after a suitable orientation of these edges). Consider any J} 4, € Jj ;-
Lemma [5.32%(a3) guarantees that V(J} 4;,) € A4;, and so J7 4, is an A;-extension
of itself. Therefore, in order to find a balanced extension of «7;2, ;» 1t is enough to ex-
tend each J 4, € J4 ; into a locally balanced path sequence by adding a directed
matching which is vertex-disjoint from J} 4, in such a way that (BE3) is satisfied
as well.

LEMMA 5.3.3. Suppose that 0 < 1/m < & < 1 and that m,k € N with k > 3.
Let @ = {V1,...,V&} be a (k,m)-equipartition of a set V of vertices and let C =
Vi... Vi be a directed cycle. Suppose that there exist a set M and a graph H on V'
such that the following conditions hold:
(i) M can be partitioned into k sets Mq,..., My such that |[M;| < m/k
and each M € M, is an ordered directed matching with e(M) < em and
V(M) CV,; (for alli < k).
(ii) H[Vi-1,Vit1] is a 2em-regular graph for all i < k.
Then there exist an orientation Hgir of H and a balanced extension BE of M with
respect to (Q,C) and parameters (2e,3) such that each path sequence in BE is
obtained from some M € M by adding edges of Hgiy.

Proof. Fix i < k and write M; := {My,..., Mz, }. We orient each edge in
H[V;_1,Vit1] from V;_1 to Vi41. By (ii), H[V;—1, Vi41] can be decomposed into 2em
perfect matchings. Each perfect matching can be split into 1/2¢ matchings, each
containing at least em edges. Recall from (i) that |[M;| < m/k and e(M;) < em
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for all M; € M;. Hence, H[V;_1,V;y1] contains |M,| edge-disjoint matchings
Mi,.... M|y, with e(M}) = e(M;) for all j < [M;|. Define PS; := M; U Mj.
Note that PS; is locally balanced with respect to C. Also, PS; is a V;-extension
of M; (as M; € M, and so V(M;) CV; by (i)). Moreover,

[V(M;)| =2e(M;) <2em ifi =i,
(5.3.2) |[V(PS;)NVy|=1(e(M;)<em ifi'!=i4+1lorid =i-1,
j j

0 otherwise.

For each i < k, set PS; := {PS1,...,PS|r,}. Therefore, BE := |J,,, PS; is a
balanced extension of M with respect to (Q,C) and parameters (2¢,3). Indeed,
(BE3) follows from (532). As remarked after the definition of a balanced exten-
sion, this also implies the ‘moreover part’ of (BE2). Hence the lemma follows (by
orienting the remaining edges of H arbitrarily). O

5.4. Constructing Hamilton Cycles via Balanced Extensions

Recall that a cyclic system can be viewed as a blow-up of a Hamilton cycle.
Given a cyclic system (G, Q, C) and a balanced extension BE of a set M of ordered
directed matchings, our aim is to extend each path sequence in BE into a Hamilton
cycle using edges of G. Moreover, each Hamilton cycle has to be consistent with a
distinct M € M. This is achieved by the following lemma, which is the key step in
proving Lemma 2.5.4]

LEMMA 5.4.1. Suppose that 0 < 1/m < eg,e’,1/k < 1/4,p < 1, that 0 <
wyp < 1 and that m,k,,q € N with ¢ < (1 — p — p)m. Let (G,Q,C) be a
(k,m, p,e’)-cyclic system and let M = {Ma,..., My} be a set of ¢ ordered directed
matchings. Suppose that BE = {PS1,...,PSy} is a balanced extension of M with
respect to (Q, C) and parameters (g9, ¢) such that for each s < q, Ms C PS,. Then
there exist ¢ Hamilton cycles Ch,...,Cq in G + BE such that for all s < q, Cs
contains PS, and is consistent with M, and such that C1 — PSy,...,Cy— PS, are
edge-disjoint subgraphs of G.

LemmaB ATl will be used both in the two cliques case (i.e. to prove Lemma[Z5 7))
and in the bipartite case (i.e. to prove Lemma [6.1]).

We now give an outline of the proof of Lemma [5.4.0] where for simplicity we
assume that the path sequences in the balanced extension BE are edge-disjoint
from each other. Our first step is to remove a sparse subdigraph H from G (see
Lemma [542), and set G’ := G— H. Next we extend each path sequence in BE into
a (directed) 1-factor using edges of G’ such that all these 1-factors are edge-disjoint
from each other (see Lemma [-43). Finally, we use edges of H to transform the
1-factors into Hamilton cycles (see Lemma [5.4.6)).

The following lemma enables us to find a suitable sparse subdigraph H of G.
Recall that (e, d, d*, ¢)-superregularity was defined in Section .13

LEMMA 5.4.2. Suppose that 0 < I/m < ¢/ <K y <K e K 1land 0 < p < e.
Let G be a bipartite graph with vertex classes U and W of size m such that d(v) =
(1—p=xe"Ym for allv € V(G). Then there is a spanning subgraph H of G which
satisfies the following properties:

(i) H is (g,27,,3v)-superregular.



152 5. APPROXIMATE DECOMPOSITIONS

(ii) Let G' := G — H. Then dg'(v) = (1 — p £ 4v)m for all v € V(G).
Proof. Note that §(G) > (1 —pu—&)m > (1 —e*)m as ¢/,u < ¢ < 1. Thus,
whenever A C U and B C W are sets of size at least em, then
(5.4.1) ec(A,B) > (|B| — ’m)|A| > (1 —€%)|A||B|.

Let H be a random subgraph of G which is obtained by including each edge of G
with probability 2v. ([GE4I) implies that whenever A C U and B C W are sets of
size at least em then

(5.4.2) 2y(1 - ?)|A[|B| < E(en(A, B)) < 29|A]|B].
Further, for all u,u’ € V(H),

(5.4.3) E(|Nu(u) N N (u)]) < 49°m

and

(5.4.4) 3ym/2 < E(5(H)), B(A(H)) < 29m.

Thus, (42)—(E44) together with Proposition [LZ4] imply that, with high proba-
bility, H is an (g, 27, ~, 37)-superregular pair. Since A(H) < 3ym by (Reg3) and
e’ <« v, G’ satisfies (ii). O

5.4.1. Transforming a Balanced Extension into 1-factors. The next
lemma will be used to extend each locally balanced path sequence PS belong-
ing to a balanced extension BE into a (directed) 1-factor using edges from G’. We
will select the edges from G’ in such a way that (apart from the path sequences)
the 1-factors obtained are edge-disjoint.

LEMMA 5.4.3. Suppose that 0 < 1/m < 1/k < e < p,1/¢ < 1, that p < 1,
that 0 < p < 1/4 and that g,m,k,¢ € N with ¢ < (1 — u— p)m. Let (G,Q,C) be a
(k,m, pu, e)-cyclic system, where C = Vi ...Vi. Suppose that there exists a set PS
of q path sequences PSh, ..., PSy satisfying the following conditions:

(i) Each PSs € PS is locally balanced with respect to C.
(i) |V(PSs)NV;| < em for all i < k and s < q. Moreover, for each i < k,
there are at most fm/k PSs such that V(PSs) N'V; # 0.

Then there exist q directed 1-factors Fi, ..., Fy in G+ PS such that for all s < ¢
PS; CFs and Fy — PSy,...,Fy — PSy are edge-disjoint subgraphs of G.

Proof. By changing the values of p, ;1 and ¢ slightly, we may assume that pm, um €
N. For each s < ¢q and each i < k, let V>~ (or Vis’+) be the set of vertices in V;
with indegree (or outdegree) one in PS,. Since each PS is locally balanced with
respect to C, [V;>"| = V37| < emfor all s < g and all i < k (where the inequality
follows from (ii)). To prove the lemma, it suffices to show that for each i < k,
there exist edge-disjoint directed matchings M}, ..., M, so that each M} is a
perfect matching in G[V; \ V%, Vi1 \ V,37]. The lemma then follows by setting
Fy:=PSs+ % .., M¢ for each s < q.

Fix any i < k. Without loss of generality (by relabelling the PS, if necessary)
we may assume that there exists an integer so such that V;>* # () for all s < so
and Vf"Jr = for all sg < s < ¢q. By (ii), so < fm/k. Suppose that for some s
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with 1 < s < sg we have already found our desired matchings M}, ... ,Mf_l in
G[‘/l, ‘/iJrl]. Let

V= Vi\ VS, Vi = Vi \ Vi and Gl= GV V] = Y My
s'<s
Note that each v € V; satisfies
dé, (v) 2 dg(v, Vi) = (V21 |+ 50) 2 (1= p— 2 +£/k))m = (1 = p— V/E)m

by (Sys2) and the fact that 1/k < ¢ < 1/[. Similarly, each v € VJ | satisfies
dg.(v) > (1—p—+/e)m. Thus G contains a perfect matching M; (this follows, for
example, from Hall’s theorem). So we can find edge-disjoint matchings M}, ..., M;°
in G[‘/;7 ‘/;-i-l]'

Let G’ be the subdigraph of G[V;, Vit1] obtained by removing all the edges in
M}, ..., M. Since V> = ) for all 59 < s < ¢ (and thus also Vi =0 for all
such s), in order to prove the lemma it suffices to find ¢ — sg edge-disjoint perfect
matchings in G’. Each v € V; satisfies

d&(v) = d5 (v, Vigr) £ 50 = d& (v, Vigr) £bm/k = (1 — p£/e)m

by (Sys2) and the fact that 1/k < ¢ <« 1/¢. Similarly, each v € V41 satisfies
de(v) = (1 — p % \/e)m. Set p’ := p+ so/m. Note that p'm € N and p < p' <
p+Ll/k<2pasl/k <1/t p. Hence, ¢ < p’ < 1. Thus we can apply Lemma 511
with G', p’, /e playing the roles of T',p,e to obtain (1 — p — p')m edge-disjoint
perfect matchings in G’. Since (1 — p— p"Ym = (1 — p — p)m — s9 > q — s, there
exists ¢ — sg edge-disjoint perfect matchings Mf”“, ..., M@ in G'. This completes
the proof of the lemma. O

5.4.2. Merging Cycles to Obtain Hamilton Cycles. Recall that we have
removed a sparse subdigraph H from G and that G’ = G— H. Our final step in the
proof of Lemma [5.4.1] is to merge the cycles from each of the 1-factors Fy returned
by Lemma [F.43] to obtain edge-disjoint (directed) Hamilton cycles. We will apply
Lemma [5.4.4] to merge the cycles of each Fy, using the edges in H. However, the
Hamilton cycles obtained in this way might not be consistent with the matching
M, € M that lies in PS,. Lemma [5.4.5 is designed to deal with this issue.

Lemma [5.4.4] was proved in [2I] and was first used to construct approximate
Hamilton decompositions in [31]. Roughly speaking, it asserts the following: sup-
pose that we have a 1-factor F' where most of the edges wind around a cycle
C = Vj...Vi. Suppose also that we have a digraph H which winds around C.
(More precisely, H is the union of superregular pairs H[V;,V;y1].) Then we can
transform F' into a Hamilton cycle C” by using a few edges of H. The crucial point
is that when applying this lemma, the edges in C — F' can be taken from a small
number of the superregular pairs H[V;, Viy1] (i.e. the set J in Lemma (44 will
be very small compared to k). In this way, we can transform many 1-factors F’
into edge-disjoint Hamilton cycles without using any of the pairs H[V;, V;11] too
often. This in turn means that we will be able to transform all of our 1-factors into
edge-disjoint Hamilton cycles by using the edges of a single sparse graph H.

LEMMA 5.4.4. Suppose that 0 < 1/m < d' < ¢ < d < (,1/t < 1/2. Let
Vi,..., Vi be pairwise disjoint clusters, each of size m, and let C = Vi ... Vi be
a directed cycle on these clusters. Let H be a digraph on Vi U --- UV} and let
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J C E(C). For each edge V;Viy1 € J, let V2 C V; and Vﬁkl C Vi1 be such that
Vit = VA, > m/100 and such that H[V;', V2] is (e,d’,¢d td’ /d)-superregular.
Suppose that F is a 1-regular digraph with V4 U --- UV, C V(F) such that the
following properties hold:

(i) For each edge V;Viy1 € J the digraph F[V*, V2] is a perfect matching.

(ii) For each cycle D in F there is some edge V;Viy1 € J such that D contains
a vertexr in Vil.

(i) Whenever V;Viy1,V;Viya € J are such that J avoids all edges in the
segment Vi 1CV; of C from Vi1 to V;, then F contains a path Pi; joining
some vertex w1 € V2, to some vertex ul; € V;l such that P;; winds
around C.

Then we can obtain a directed cycle on V(F) from F by replacing F[V}, VA ,] with
a suitable perfect matching in H[V, V2] for each edge V;Vii1 € J.

LEMMA 5.4.5. Suppose that 0 < 1/m <« v < d € e € d < (,1/t < 1/2.
Let Vi, ..., Vi be pairwise disjoint clusters, each of size m, and let C = Vi ...V}
be a directed cycle on these clusters. Let 1 < i < k be fized and let Vil CV; and
V2, C Vi1 be such that |Vt = |V2 | > m/100. Suppose that H = H[V;', V2] is
an (g,d', (d', td' /d)-superreqular bipartite digraph. Let X = {z1,...,z,} C V! with
| X | < ym. Suppose that C' is a directed cycle with Vi U---UVy, C V(C") such that
C'[Vit, V2] is a perfect matching. Then we can obtain a directed cycle on V(C")
from C’ that visits the vertices x1, ..., x, in order by replacing C'[V;, V2] with a
suitable perfect matching in H[V}, V2 ].

Proof. Pick v and 7 such that v < v < 7 < d’. For every u € V;!, starting at
u we move along the cycle C’ (but in the opposite direction to the orientation of
the edges) and let f(u) be the first vertex on C" in V2,. (Note that f(u) exists
since C'[V;}, V2] is a perfect matching. Moreover, f(u) # f(v) if u # v.) Define
an auxiliary digraph A on V2 such that N (f(u)) := N7 (u). So A is obtained
by identifying each pair (u, f(u)) into one vertex with an edge from (u, f(u)) to
(v, f(v)) if H has an edge from u to f(v). So Lemma applied with d’, d/t
playing the roles of d, p implies that A is a robust (v, 7)-outexpander. Moreover,
67 (A),67(A) > (d'|V24| = ¢d'|A| by (Reg4). Thus Theorem 5.I.2 implies that A
has a Hamilton cycle visiting f(z1),..., f(zp) in order, which clearly corresponds
to a perfect matching M in H with the desired property. ]

The above proof idea is actually quite similar to that for Lemma [5.4.4] itself.
We now apply Lemmas [5.4.4] and [5.4.5] to each 1-factor Fy given by Lemma [5.4.3]
and obtain edge-disjoint Hamilton cycles that are consistent with the M.

LEMMA 5.4.6. Suppose that 0 < 1/m < eo,1/k < v < € < 1, that v <
1/¢ <1 and that q,m,k,£ € N. Let Q = {Vi,...,Vi} be a (k, m)-equipartition of
a vertex set V and let C = Vi ...V} be a directed cycle. Let M = {M,..., My}
be a set of ordered directed matchings. Suppose that BE = {PSi,...,PSy} is a
balanced extension of M with respect to (Q,C) and parameters (€o,f). Further-
more, suppose that there exist 1-reqular digraphs Fi, ..., Fy on'V such that for each
s < q, PSs; C Fy and such that Fs — PSs winds around C. Let H be a digraph
on V which is edge-disjoint from each of Fy — PSy,...,F, — PSy and such that
H(V;,Vig1] is (g,27,7, 37)-superreqular for all i < k. Then there exist ¢ Hamilton
cycles Cy,...,Cq in F1 +--- 4+ F,+ H such that Cs contains PSs and is consistent
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with M for all s < q and such that C1 —F1,...,Cy— Fy are edge-disjoint subgraphs
of H.

Proof. Recall from (BE2) that for each s < ¢ there is some is < k such that PS;
is a V;,-extension of M,. In particular, My C PS,. Let I, be the set consisting
of all ¢ < k such that V; N V(PS,) # 0. Since BE is a balanced extension with
parameters (g9, ¢), (BE3) implies that for every i < k we have

(5.4.5) Hs:ie€ I} <tm/k.

For each s < ¢ in turn, we are going to show that there exist Hamilton cycles
Cy,...,Csin F} + ---+ Fy + H such that

(as) PS¢ C Cy and Cy is consistent with M, for all s’ < s,

(bs) E(Cy — Fy) € U, E(H[Vi, Viga]) for all s < s,

(cs) C1—Fy,...,Cs — F, are pairwise edge-disjoint.

So suppose that for some s with 1 < s < ¢ we have already constructed C1,...,Cs_1.
We now construct C; as follows. Let Hy := H — 3, _ (Cy — Fy). Define a new
constant d such that ¢ € d < 1.

Our first task is to apply Lemma[B. 44 to Fs to merge all the cycles in Fy into a
Hamilton cycle using only edges of H,. For each i € I, let V™ be the set of vertices
in V; with indegree one in PS, and let Vl-Jr be the set of vertices in V; with outdegree
onein PS,. Set V! := V;\V;" and V%, := V;41\V,;,. Since PS; is locally balanced,
Vit =|V;.| < eom for all i € I, (where the inequality holds by (BE3)). By (bs—1)
and (B40), Hs[V;, Vis1] is obtained from H[V;, V;41] by removing at most |{s’ <
s:i € Iy} < Im/k < eym edges from each vertex (as 1/k < ¢,7,1/f). So by
Proposition BT H[V;, Vit1] is still (2e,2v,7/2, 3v)-superregular for each i € I.
Recall that [V; \ V'] = |Vi41 \ V2| < eom. Hence H [V;!, V2] is (4e,27,7/4,67)-
superregular by Proposition and thus also (4e, 27, v/4,4~/d)-superregular.

Let Es := {V;Viy1 : i € Is}. Our aim is to apply Lemma B44 with F,
E,, H, 4¢, 27, 2, 1/8 playing the roles of F', J, H, ¢, d’, t, (. Our assumption
that Fy — PS, winds around C implies that for each i € I, Fy [Vil,Viﬁ_l] is a
perfect matching. So Lemma [B474(i) holds. Note that every final vertex of a
nontrivial path in PSs must lie in (J;c;. V! implying Lemma E.44(ii). Finally,
recall that |V;![, V2| > (1 — eo)m for all i € I,. Together with our assumption
that Fy — PSs winds around C, this easily implies Lemma [E.4.4(iii). So we can
apply Lemma 544 to obtain a Hamilton cycle C% which is constructed from Fj
by replacing F;[V;', VA ,] with a suitable perfect matching in H,[V;', V3] for each
i € I,. In particular, PSs C C".

Let H. := Hy — (C} — Fs). Recall that M is an ordered directed matching, say
M, = {e1,...,e,}, and that PS; is a V; -extension of M,. For each j < r, let P;
be the path in PS containing e; and let z; denote the final vertex of P;. Hence
x1,...,x, are distinct and lie in V;!. Together with (BE3) this implies that r <
eom. Note that H[V;!, V>, ] is obtained from H,[V;', V] by removing a perfect
matching, namely C}[V;!, Vi, ,]. So by Proposition B.I.4, H/[V;', V2 ] is still
(8¢,27,7/8,4v/d)-superregular. Apply Lemma 545 with C7, i, H,[V;!, V2, 1], eo,
8¢, 27, 2, 1/16 playing the roles of C’, i, H, v, &, d’, t, ¢ to obtain a Hamilton cycle
Cs which visits z1, ..., 2, in this order and is constructed from C’ by replacing the
perfect matching C[V;!, V%, ] with a suitable perfect matching in H/[V;', V2 ].
In particular, PSs C Cs.
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Note that E(Cs — Fs) C U,c;. E(Hs[Vi, Vit1]), so (bs) and (cs) hold. Since
PS; C C and z; is the final vertex of P; and since e; € E(F;), it follows that C,
visits the edges eq, ..., e, in order. So Cj is consistent with My, implying (as).

O

Proof of Lemma 547l Let Q = {Vi,...,Vi}. By relabeling the V; if neces-
sary, we may assume that C = Vi ...Vj. Define new constants v and e such that
en, e, 1/k <y <ep,1/f and p < € < 1. For each i < k we apply Lemma [(.4.2]
to (the underlying undirected graph of) G[V;, V;4+1] in order to obtain a spanning
subdigraph H of G which satisfies the following properties:

(i") For each i <k, H[V;,Vit1] is (g,27,7, 37)-superregular.

(ii") Let G’ := G — H. Then (G', Q,C) is a (k,m, u, 4vy)-cyclic system.
Indeed, (ii’) follows easily from Lemmal5.2.2(ii) and the definition of a (k, m, , 47)-
cyclic system. Recall that BE = {PS1,..., PS,} with M, C PS, for all s < ¢g. Our
next aim is to apply Lemma (4.3 with G', BE, 4+ playing the roles of G, PS,
¢ to obtain 1-factors Fs extending the PSs;. Note that (BE1l) and (BE3) imply
that conditions (i) and (ii) of Lemma [F43 hold. So we can apply Lemma
to obtain ¢ (directed) 1-factors Fi,...,F, in G' + BE such that PS, C F; for all
s <gqand Fy — PSi,...,F, — PS, are edge-disjoint subgraphs of G’. Recall from
(ii") and (Sys2) that G’ (and thus also F; — PS,) winds around C. So we can
apply Lemma to obtain ¢ Hamilton cycles C4,...,Cq in Fy +---+ Fy + H
such that Cy contains PSs and is consistent with M for all s < ¢, and such that
Cy — F1,...,Cy — F, are edge-disjoint subgraphs of H. Since H and G’ are edge-
disjoint, C; — PS1,...,Cq — PS, are edge-disjoint subgraphs of G. O

We can now put everything together to prove the approximate decomposition
lemma in the two cliques case. First we apply Lemma [5.3.2 to obtain cyclic systems
and sparse subgraphs H,4 ; and Hp ;. Then we apply Lemma [5:3.3) to balance out
the exceptional systems into balanced extensions. Next, we apply Lemma [5.4.1] to
A and B separately to extend the balanced extensions into Hamilton cycles.

Proof of Lemma 254 Apply Lemma 32 to G,P and J to obtain (for each
1<j < (K-1)/2) pairs of tuples (Ga,;, Qa,Ca,;,Ha j, ijJ) and (Gg,;, 98,CBh,;,
Hp j, Jp ;) which satisfy (a;)—(a7). Fix j < (K —1)/2. Write 73 ; = {J4 gir.15- - -5
JA dir.q}> Where

(5.4.6) ¢:= 74,1 < (1 —4u—3p)m

by (az). We now apply Lemma .33 with 73 ;, Qa,Ca j, Ha,j, K,5K /€y playing
the roles of M, Q,C, H, k, € to obtain an orientation H 4 j 4ir of H4 ; and a balanced
extension BE; of Jj ; with respect to (Qa,C4,;) and parameters (10K/Z, 3).
(Note that (ag) and (as) imply conditions (i) and (ii) of Lemma [(33l) Write
BEj = {PSi,...,PS;} such that Jj 4, . C PSs for all s < ¢. So (BE1) implies
that PSy — Jjj"dir)l, N Jz)diw are edge-disjoint subgraphs of H4 ; qir. Since
(G4 jdir, Qa,Ca ;) is a (K, m,4p,5/K)-cyclic system by (ag), (5:4.0) implies that
we can apply Lemma [5.4.7] as follows:

|GA,j,dir|QA|CA,j|K|u7;§)j|q|4,u|3p|10K\/E_0|5/K|3
playsroleof | G [ Q| C [ k| M |q|pu]|p| e | & |7
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In this way we obtain ¢ directed Hamilton cycles C'y ; ,,...,C} ; . in Ga jair +BE;
such that C' ; ; contains PS, and is consistent with J} 4, for all s < ¢. Moreover,
Cl = Jhaierr -+ Cq — Jh ainq are edge-disjoint subgraphs of Ga jaiw + Ha,jdir-
Repeat this process for all j < (K —1)/2.

Write J = {J1,...,J|7/}. Recall from (ag) that the 73 ,..., jA*,(Kfl)/Q par-
tition {J} 4, : J € J}. Therefore, we have obtained |7| directed Hamilton cycles
01’411, e 01/41\‘7\ on vertex set A. Moreover, by relabelling the J; if necessary, we
may assume that C” _ is consistent with (Js)% 45, for all s < |J|. Furthermore, (a4)
implies that the undirected versions of C% ; — (J1)% gir» - - - Ox/‘hl.ﬂ = (J17) air are
edge-disjoint spanning subgraphs of G[A].

Similarly we obtain directed Hamilton cycles Cp 4, ..., C’J’B)‘ 7| on vertex set B
so that (Js)p g € Cp , for all s < |J|. Let Hs be the undirected graph obtained
from "y ,+Cp ,— J; +Js by ignoring all the orientations of the edges. Recall that
Ji,...,J) 7| are edge-disjoint exceptional systems and that they are edge-disjoint
from the C) ; + Cy — JJ by (EC3). So Hy, ..., H| 7| are edge-disjoint spanning
subgraphs of G. Finally, Proposition 5.3.1] implies that Hy, ..., H|7 are indeed as
desired in Lemma 2541 O

5.5. The Bipartite Case

Roughly speaking, the idea in this case is to reduce the problem of finding
the desired edge-disjoint Hamilton cycles in G to that of finding suitable Hamilton
cycles in an almost complete balanced bipartite graph. This is achieved by consid-
ering the graphs Jj;., whose definition we recall in the next subsection. The main
steps are similar to those in the proof of Lemma 254 (in fact, we re-use several of
the lemmas, in particular Lemma [5.4.T]).

We will construct the graphs Jj;., which are based on balanced exceptional
systems J, in Section (.51 In Section we describe a decomposition of G into
blown-up Hamilton cycles. We will construct balanced extensions in Section
(this is more difficult than in the two cliques case). Finally, we obtain the desired
Hamilton cycles using Lemma [5.4.1] (in the same way as in the two cliques case).

5.5.1. Defining the Graphs JJ;, for the Bipartite Case. In this section
we recall a number of definitions from Section 4Tl Let P be a (K, m, ¢)-partition
of a vertex set V and let J be a balanced exceptional system with respect to P.
Since each maximal path in J has endpoints in A U B and internal vertices in Vj
by (BES1), a balanced exceptional system J naturally induces a matching J% 5 on
A U B. More precisely, if Py,..., Py are the non-trivial paths in J and z;,y; are
the endpoints of P;, then we define J 5 := {z;y; : ¢ < ¢'}. Thus J} 5 is a matching
by (BESL) and e(J} 5) < e(J). Moreover, J} 5 and E(J) cover exactly the same ver-
tices in A. Similarly, they cover exactly the same vertices in B. So (BES3) implies
that e(JiglA]) = e(Jig[B]). We can write E(J%5[A]) = {z1x2, ..., T2s—122s},
E(JZB[B]) = {y1y2,---7y25—1y25} and E(JZB[A7B]) = {x2s+1y2s+17--'7xs’ys’}u
where z; € A and y; € B. Define J* := {z;y; : 1 <i < s'}. Note that

(5.5.1) e(J*) = e(Jap) <e(J).
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As before, all edges of J* are called fictive edges. Recall that an (undirected) cycle
D is consistent with J* if D contains J* and (there is an orientation of D which)
visits the vertices x1,y1,x2,...,Ys'—1, Ts, Ys in this order.

We will need a directed version of Proposition [41{ii). This directed version
immediately follows from Proposition E41[(ii) and is similar to Proposition
For this, define J};, to be the ordered directed matching { f1,..., f+} such that f;
is a directed edge from z; to y; for all ¢ < s’. So Jj,, consists only of AB-edges.
Similarly to the undirected case, we say that a directed cycle Dy;, is consistent with
J3i if Dqir contains J3;, and visits the edges fi,..., fo in this order.

PROPOSITION 5.5.1. Let P be a (K, m,e)-partition of a vertex set V. Let G be
a graph on'V and let J be a balanced exceptional system with respect to P such that
J C G. Suppose that Dgyiy is a directed Hamilton cycle on AU B such that Dgi, is
consistent with J3,.. Furthermore, suppose that D — J* C G, where D is the cycle
obtained from Dgiy after ignoring the directions of all edges. Then D — J* + J is a
Hamilton cycle of G.

5.5.2. Finding Systems. The following lemma gives a decomposition of an
almost complete bipartite graph G into blown-up Hamilton cycles (together with
an associated decomposition of exceptional systems). Its proof is almost the same
as that of Lemma [5:3:2] so we omit it here. The only difference is that instead of
Walecki’s theorem we use a result of Auerbach and Laskar [1] to decompose the
complete bipartite graph Kk x into Hamilton cycles, where K is even.

LEMMA 5.5.2. Suppose that 0 < 1/n < g9 K 1/ K < p< 1 and 0 < p < 1,
where n, K € N and K is even. Suppose that G is a graph on n vertices and P =
{Ao, A1,...,Ax,Bo,B1,...,Bk} is a (K,m,eq)-partition of V(G). Furthermore,
suppose that the following conditions hold:

(a) d(v,B;) = (1—4p+4/K)m and d(w, A;) = (1—4pu+4/K)m for allv € A,
weBandl <i<K.
(b) There is a set J which consists of at most (1/4 — p — p)n edge-disjoint
exceptional systems with parameter g in G.
(c) J has a partition into K* sets Ji, iy.i5.i, (0ne for all 1 < iy, is, iz, iq4 < K)
such that each Ji iy.is.4, consists of precisely |J|/K* (i1,ia,i3,i4)-BES
with respect to P.
Then for each 1 < j < K/2, there is a tuple (G;,Q,C;, H;, J;) such that the
following assertions hold, where Q := {A1,...,Ax,B1,...,Bk}:

(a1) Each of Cy,...,Ckg/s is a directed Hamilton cycle on Q such that the undi-
rected versions of these cycles form a Hamilton decomposition of the com-
plete bipartite graph whose vertex classes are {As,...,Ax} and {By,...,
Bk}

(a2) Ji,...,Tkj2 is a partition of J.

(ag) Each J; has a partition into K* sets Jji, is.is.is (0n€ for all 1 < iy, i, i3, 4
< K ) such that Jj i, iz is,ia cOnSists of (i1, 12,13, 14)-BES with respect to P
and |Tjiy iz isia] < (1 —4p = 3p)m/K*.

(aa) Gi1,...,Ggjo, Hy,...,Hg o are edge-disjoint subgraphs of G[A, B].

(as) H,;[Ai, By] is a (11K + 248/ K )egm-regular graph for all § < K/2 and all
il < K.

(ag) For each j < K/2, there exists an orientation Gjai of G; such that
(Gjair, Q,C5) is a (2K, m,4p, 5/ K)-cyclic system.



5.5. THE BIPARTITE CASE 159

5.5.3. Constructing Balanced Extensions. Let P = {Ap, A1, ..., Ak, Bo,
Bi,...,Bk} be a (K, m,e)-partition of a vertex set V, let Q := {A1,...,Ax,B1,. ..,
Bi} and let C = A1B1AsBs ... Axk Bk be a directed cycle. Given a set J of
balanced exceptional systems with respect to P, we write J3;, := {J, : J € J}.
So Jj,, is a set of ordered directed matchings and thus it makes sense to construct a
balanced extension of [J};, with respect to (Q,C). (Recall that balanced extensions
were defined in Section [£.2.2])

Now consider any of the tuples (G;, Q,C;, H;, J;) guaranteed by Lemma [5.5.21
We will apply the following lemma to find a balanced extension of (J;)3;, with
respect to (Q,C;), using edges of H; (after a suitable orientation of these edges).
So the lemma is a bipartite analogue of Lemma However, the proof is more
involved than in the two cliques case.

LEMMA 5.5.3. Suppose that 0 < 1/n < ¢ < 1/K < 1, where n, K € N. Let
P ={Ap,A1,...,Ax,Bo,B1,...,Bk} be a (K, m,¢e)-partition of a set V of n ver-
tices. Let Q :={A;,...,Ak,B1,...,Bg} and let C := A1B1AsBsy ... Ak Bk be a
directed cycle. Suppose that there exist a set J of edge-disjoint balanced exceptional
systems with respect to P and parameter € and a graph H such that the following
conditions hold:

(i) J can be partitioned into K* sets Ji, ip.iz.is (0me for all 1 <y, ig,iz,i4 <
K ) such that J;, iy.is,is consists of (i1, 12,13, 14)-BES with respect to P and
|\7i1-,i2-,i3-,i4| < m/K4'
(ii) For each v € AU B the number of all those J € J for which v is incident
to an edge in J is at most 2en.
(i) H[A;, Bir] is a (11K + 248/ K)em-regular graph for all i,i < K.
Then there exist an orientation Hair of H and a balanced extension BE of Jj;, with
respect to (Q,C) and parameters (12 K,12) such that each path sequence in BE is
obtained from some J3;. € Ji;, by adding edges of Hai,.

The proof proceeds roughly as follows. Consider any J € Ji, i, ,is,is- We extend
J3;, into a locally balanced path sequence in two steps. For this, recall that Jj;,
consists only of edges from A;, U A;, to B;, U B;,. In the first step, we construct a
path sequence PS that is an A;, -extension of JJ;, by adding suitable B;, A;,- and
B;, A, -edges from H to Jj,,. In the second step, we locally balance PS in such a
way that (BE1)-(BE3) are satisfied.

Proof. First we decompose H into H' and H” such that H'[A;, By] is a 11e Km-
regular graph for all i,i’ < K and H"” := H— H’. Hence H"[A;, By/] is a 248em/ K-
regular graph for all 7,7’ < K.

Write J = {J1,...,Jj7)}. For each s < [J|, we will extend J 4, := (Js)%;,
into a path sequence PS; satisfying the following conditions:

(as) Suppose that Js € Jiy s, Then PSg is an A, -extension of I3 i
consisting of precisely e(.J*) vertex-disjoint directed paths of length two.
(Bs) V(PSs) =V (JFy,) UAL, where A C A;, \V(J;,dir) and |AL| = e(J7).

s,dir

(vs) PSs — J: 4, is a matching of size e(J) from B to A}, where Bj :=

S

V(J* 4i0) N (Biy U By,).

s,dir
(0s) Let M, be the set of undirected edges obtained from PS, — J;ﬁydi]r after ig-
noring all the orientations. Then M, ..., M, are edge-disjoint matchings

in H'.
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(es) PSs consists only of edges from A;, UA;, to B;, UB;,, and from B;, UB;,

to Ail .
Note that (8s) and (vs) together imply (g5). Suppose that for some s with 1 < s <
|7| we have already constructed PSi,..., PSs—1. We will now construct PSs as

follows. Let i1, i2,43,14 be such that J; € J;, i5.is.i, and let H. := H' — (M +---+
M;_1). (BES4) implies that

(5.5.2)
E5I)
e :)dir) =e(Jr) < e(J;)<en<3ecKm and |V( . Yair) N Ay < 3eKm.

Consider any s’ < s. Recall from the definition of J3 4. that V(J7 j;,) is the set
of all those vertices in A U B which are covered by edges of Js. Together with
(Bs) and (vs) this implies that a vertex v € B is covered by M, if and only if v is
incident to an edge of Js . Together with (ii) this in turn implies that for all v € B
we have

dH/ (’U Azl) > dH/ ’U A“ Z dM , > 11Kem — 2en

s'<s
G52
> 11 Kem —5Kem > |V(J{q5,) N Ay | +e(J7).

Note that e(J;) = [V(J 4;,) N (Bi, U By,)| = |Bg|. So we can greedily find a
matching M; of size e(J;) in H([A; \ V(J] 4;,), Bs] (which therefore covers all
vertices in B.). Orient all edges of My from B, to A;; and call the resulting
directed matching M; gir. Set

PSS = J:dir + Ms,dir-

Note that PS consists of precisely e(J¥) directed paths of length two whose final
vertices lie in A;,, so (as)—(gs) hold by our construction. This shows that we can
obtain path sequences PSi,..., PS| 7 satisfying (as)—(es) for all s < |7].

The following claim provides us with a ‘reservoir’ of edges which we will use to
balance out the edges of each PSs and thus extend each PS; into a path sequence
PSS! which is locally balanced with respect to C.

Claim. H” contains |J| subgraphs HY, ..., H\/\/ﬂ satisfying the following properties
for all s <|J| and all i, < K:
(a1) If PSs contains an A; By -edge, then H! contains a matching between A;
and B; of size 30e Km.
(ag) If PSs contains a B; Ay -edge, then H! contains a matching between A;iq
and By —1 of size 30e Km.
(as) H{,...,H[; are edge-disjoint and for all s < |J| the matchings guaran-
teed by (a1) and (ag) are edge-disjoint.
So if PS, contains both an A; B;-edge and a By_1A;11-edge, then H! contains a
matching between A; and B; of size 60e K'm.
To prove the claim, first recall that H”[A;, B;/] is a 248zm/K-regular graph for
all i, < K. So H"[A;, By] can be decomposed into 248em/K perfect matchings.
Each perfect matching can be split into 1/(31eK) matchings, each of size at least
30e Km. Therefore H"[A;, Bir] contains 8m/K? edge-disjoint matchings, each of
size at least 30e K'm. (i) and (g;) together imply that for any i, < K, the number
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of PSs containing an A; B;-edge is at most

Z |\7i1,i27i37i4| < 4m/K2'

(31,82,13,94) : i€{i1,02}, i/ €{iz,ia}

Recall that H”[A;, B;] contains 8m/K? edge-disjoint matchings, each of size at
least 30em. Thus we can assign a distinct matching in H"”[A;/, B;] of size 30em to
each PS, that contains an A;B;-edge. Additionally, we can also assign a distinct
matching in H"”[A;41, Bir—1] of size 30em to each PS; that contains a B;A;-edge.
For all s < |7/, let H be the union of all those matchings assigned to PSs. Then
H{, ..., H"\’ﬂ are as desired in the claim.

For each s < |J|, we will now add suitable edges from H” to PS; in order to
obtain a path sequence PS! which is locally balanced with respect to C. So fix
s < |J| and let eq,...,e; denote the edges of PS,. Note that £ = 2e(J}) < 6Kem
by (vs) and (.5.2). For each r < ¢, we will find a directed edge f, satisfying the
following conditions:

(by) If e, is an A;B;y-edge, then f,. is an A; B;-edge.

(be) If e, is a B;Ay-edge, then f,. is a By_1A;1-edge.

(b3) The undirected version of {f1,..., fe} is a matching in H” and vertex-
disjoint from V(PSj).
Suppose that for some r < ¢ we have already constructed fi,..., fr—1. Suppose

that e, is an A; By-edge. (The argument for the other case is similar.) By (ai),
H![A;, B;] contains a matching of size 30Kem. Note by (a;) and (bs) that

[V(PSsU{f1,..., fr=1})] <3e(J7)+2(r —1) < 50 < 30Kem.

Hence there exists an edge in H[A;/, B;] that is vertex-disjoint from PS;U{f1, ...,
fr—1}. Orient one such edge from A; to B; and call it f.. In this way, we can
construct fi, ..., f; satisfying (by)—(bs).

Let PS’ be digraph obtained from PS, by adding all the edges f1, ..., fe. Note
that PS’ is a locally balanced path sequence with respect to C. (Indeed, PS’ is
locally balanced since {e,, f} is locally balanced for each r < £.) Let i1,12,143,14
be such that J € J, 4,,i5,i,- Then the following properties hold:

(c1) PSq is an A; -extension of J7 4 .
(co) |V(PSL) N A, |V(PSL)NB;| <12eKm for all i < K.
(C3) If V(PS;) NA; # @, then i € {il,ig,ig,i4,i3 + 1,44 + 1}
(cq) EV(PS))N B; # 0, then i € {iy — 1,i1,42,%3,74}-
Indeed, (c;) is implied by («s) and the definition of PS’. Since e(PS%) = 2e(PS;) =
4e(J¥), (c2) holds by (BEEZ). Finally, (c3) and (cq) are implied by (g5), (b1) and
(bQ) as Js € ‘71'1)1'2)1'3)1'4.

Note that PS] — J} 45 - - - PSI/JI — J\fﬂ,dir are pairwise edge-disjoint and let
BE .={PSy,... ’PS\/JI}' We claim that BE is a balanced extension of Jj;, with re-
spect to (Q, C) and parameters (12¢ K, 12). To see this, recall that @ = {4,,... Ak,
By,...,Bk} is a (2K, m)-equipartition of V' := V' \ (AU By). Clearly, (BE1) holds
with V' playing the role of V. (c3) and (i) imply that for every ¢ < K there are at
most 6m/K PS, € BE such that V(PS,)NA; # 0. A similar statement also holds
for each B;. So together with (cz), this implies (BE3), where 2K plays the role of
k in (BE3). As remarked after the definition of a balanced extension, this implies
the ‘moreover part’ of (BE2). So (BE2) holds too. Therefore BE is a balanced
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extension, so the lemma follows (by orienting the remaining edges of H arbitrar-
ily). O

Proof of Lemma[4.6.1l Apply Lemma[5.5.2 to obtain tuples (G;, Q,C;, H;, J;)
for all j < K/2 satisfying (a1)-(as). Fix j < K/2 and write J; := {Jj1...,Jj7,/}-
Next, apply Lemmalb.5.3with J;, C;, H;, o playing the roles of 7, C, H, € to obtain
an orientation H; qiy of H; and a balanced extension BE; of J; with respect to
(Q, C;) and parameters (129K, 12). (Note that (as) and (as) imply conditions (i)
and (iii) of Lemma Condition (ii) follows from Lemma [6.1}d).) So we can
write BE; := {PSj1...,PS;7,} such that (J; )5, € PS; s for all s <[J;|. Each
path sequence in BE; is obtained from some (J; )}, by adding edges of Hj gir.
Since (Gjair, @,C5) is a (2K, m,4p,5/K)-cyclic system by Lemma [(.5.2(ag), we
can apply Lemma [5.4.1] as follows:
| Gjaie | Q| C) | 2K | Taie | 1T5] | 4p | 3p | 12e0K | 5/K | 12

playsroleof | G [Q|C | k | M | ¢ |p|lp]| e | & |7
This gives us |J;| directed Hamilton cycles Cj ;... C% | 7| in Gjair+BE; such that
each C} | contains PS; s and is consistent with (.J;5)%;,- Moreover, (as) implies that
Cia—(Ji)dis - Cf 7, — (Jj,17,) )i are edge-disjoint subgraphs of G, air + Hj,air-
Repeat this process for all j < K/2.

Recall from Lemma 5.5 2(az) that Ji,..., k2 is a partition of J. Thus we
have obtained |7| directed Hamilton cycles C1, . . ., OI/JI on AUB such that each C!,
is consistent with (J)%;, for some J, € J (and Js # Js whenever s # s). Let Hy
be the undirected graph obtained from C — J* 4 J, by ignoring all the orientations

of the edges. Since J1,. .., J| 7 are edge-disjoint exceptional systems, Hy, ..., H 7|

are edge-disjoint spanning subgraphs of GG. Finally, Proposition 5.5.1] implies that

Hy,...,H 7| are indeed as desired in Lemma 6.1l O
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