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Abstract 

The glaciers of the Torngat Mountains of northern Labrador are the southernmost of the 

Canadian Arctic and the easternmost of continental North America. Currently, over 100 small 

mountain glaciers cover an area in excess of ~21 km
2
 confined mostly to small cirques and 

upland depressions. This study reconstructs and dates the areal extent of Torngat glaciers during 

the Little Ice Age (LIA); enabling the first assessment of regional glacier changes over the past 

several centuries. 165 mapped LIA glacier paleomargins are compared to current (2005) glaciers 

and ice masses showing a 52.5% reduction in glacier area from the LIA to 2005 with 12 formerly 

active glaciers having since disappeared. 

 

Glacier change is spatially synchronous and independent of topographic factors; however both 

altitude and glacier size mitigate glacier change. Previously established lichen growth stations 

were re-visited, and growth rates recalculated based on ~30-year-long records; enabling the 

construction of low altitude and high altitude lichen growth curves for the area. By comparing in 

situ lichen measurements on LIA moraines to local growth rates we estimate that regional LIA 
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advance was most likely between ~1491 and ~1664 AD. These results suggest that the 

magnitude and timing of LIA glacier advance in the Torngats is significantly different from other 

glaciers in the eastern Canadian Arctic and North Atlantic basin. 

 

Introduction 

Small mountain glaciers are valuable indicators of climate change; reacting quickly to changes in 

both regional and local climatic conditions (Meier, 1984). Changes in glacier surface area and 

volume, and phases of advance and retreat are strongly indicative of response to both internal 

glacier dynamics and changes in climatic conditions (Benn and Evans, 2010). Glacier mass 

balance relies on the magnitude of winter precipitation (snowfall) for ice accumulation and 

summer temperature for ice ablation (melting). 

 

In both the Northern and Southern hemispheres there have been widespread observations of 

mountain glacier and ice cap retreat, though regional variations are commonplace (IPCC, 2007). 

This near global ice reduction is likely a  response to recent atmospheric warming attributed to 

anthropogenic global warming (Santer et al, 2011) and has resulted in large contributions to sea-

level rise (Meier et al, 2007, Church and White, 2011). The recent (2003-2010) contribution of 

glaciers and ice caps to sea-level rise was 0.41 ± 0.08 mm year-1 (Jacob et al, 2012); however, 

projections suggest that glacier wastage alone will contribute 0.12 ± 0.04 m to global sea-level 

rise by 2100 (Radic and Hock, 2011). 

 

Excluding the Antarctic and Greenland Ice Sheets, glaciers and ice caps in the Arctic cover the 

largest area (402,000 km
2
) of any region and contain the equivalent of 0.41 m of sea-level rise 
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(Sharp et al, 2011). Glaciers in the Canadian Arctic represent the majority of Arctic glaciers and 

have contributed nearly one-third of the sea-level rise from glaciers and ice caps over the past 

five years (Gardner et al, 2011). In the eastern Canadian Arctic, studies have documented glacial 

retreat during the past century for Northern and Southern Baffin Island (Paul and Kääb, 2005, 

Paul and Svoboda, 2009, Svoboda and Paul, 2009), Bylot Island (Dowdeswell et al, 2007), 

Devon Ice Cap (Burgess and Sharp, 2004) and on Ellesmere Island (Mair et al, 2009). The only 

glacier range in the Canadian Arctic still without change assessment holds the glaciers of the 

Torngat Mountains of northern Labrador, the southernmost glaciers in the eastern Canadian 

Arctic. 

 

Aside from a small mass balance monitoring program from 1981-1984, little to no baseline 

information is available on the present or prior state of Torngat Mountain Glaciers, hereafter 

Torngat glaciers (Rogerson, 1986, Rogerson et al, 1986). Launched in 2007, the Torngat 

Mountain Glacier Project aims to collect baseline information on all Torngat glaciers for an 

overall assessment of the current, former and future states of these ice masses. This project 

follows three approaches: topo-climatic analysis of glacier setting; melt-modeling of selected 

glaciers; and short- (historical photographs) and long-term (recent geological) analysis of past 

glacier activity. This paper contributes to an assessment of historical glacier activity in the 

region, focusing on the period from the Little Ice Age (LIA) to present (2005). 

 

In the northern hemisphere, the LIA began with climatic deterioration   in the late 13th century 

(Anderson et al, 2008, Miller et al, 2012) and ended with climatic amelioration at the beginning 

of the 20th century (Moberg et al, 2005, D’Arrigo et al, 2006, Ljungqvist, 2010). This 
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pronounced cold period is likely caused by a mixture of enhanced volcanism, low solar activity 

and weakened thermohaline circulation (Mann et al, 2009). The LIA was the coolest period in 

the Arctic since the Holocene Thermal Maximum ~10,000 to 6000 BP, though the magnitude 

and timing of the LIA varied regionally (Koerner and Fisher, 1990, Vinther et al, 2009). 

 

During the LIA, there was widespread, though geographically asynchronous, glacier advances 

through most of the Northern Hemisphere (Davis et al, 2009). In the North Atlantic sector, the 

period of greatest LIA glacier advance occurred between ~1880 and ~1920 AD (Dowdeswell et 

al, 2007, Paul and Kääb, 2005, Paul and Svoboda, 2009, Citterio et al, 2009). This study 

reconstructs former LIA glacier maxima for the Torngat glaciers and provides proxy dates for 

maximum advance using lichenometric data; the first comprehensive calculation of glacier 

change for Torngat glaciers. 

   

Study Area 

The Torngat Mountains National Park (established 2005) and comprises an area of over 9700 

km
2
 extending from 58.5°N to 60.4°N (Figure 1). The Torngat Mountains are the highest peaks 

on the Canadian mainland east of the Rocky Mountains and support the southernmost Arctic 

Cordilleran landscape in the world (Clark, 1991, Lands Directorate, 1986). They rise from sea 

level to 1652 m above sea level (asl) in the Selamiut Range just south of Nachvak Fiord. Located 

above the Arctic treeline the Torngat Mountains support both continuous and discontinuous 

permafrost (Hachem et al, 2009), as well as glaciers and small plateau ice masses. 
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The regional geology includes the Churchill and Nain structural provinces of the Canadian 

Shield with bedrock, for the most part, being granite, gneiss, quartz, marble or anorthosite 

(Clark, 1991). The interior of the Torngats contains extensive plateau landscape with high 

overall altitudes but significantly less prominence than the fjords of the coastal Torngats. Coastal 

regions show a much larger fraction of cirque landscapes contrary to the interior where there are 

relatively few pronounced cirques due to differences in geology (less erosive rock) (Wardle et al, 

1997). 

 

The Wisconsin glacial phase, as well as predated phases, extensively shaped the geomorphology 

of the region, creating rugged coastlines dotted with fiords and U-shaped valleys (Evans and 

Rogerson, 1986). The glacial geomorphology of the region suggests the landscape was once 

heavily glaciated with numerous arêtes, cirques, erratics, eskers, horns, moraines and outwash 

plains. Many valleys contain moraine sequences leading from empty or currently occupied 

cirques, signifying a history of glacial recession in the region.  The Torngats thus include four 

physiographic regions: mountain summits and plateaus, extensive low mountain shoulders, 

upland cirques and outlet valleys, and lowermost valleys (Evans and Rogerson, 1986). 

 

Climate 

We estimate temperature and precipitation in the Torngats from ERA-Interim (Dee et al, 2011) 

due to the lack of credible weather stations in the region. We use temperature estimates at both 

the 2m (surface) and 850 millibar heights to approximate conditions for both low and high-

altitude glaciers. Mean annual air temperature (1979-2009) in the region ranged from -6.2°C 

(2m) to -8.5°C (850 Mb), with summer temperatures (JJA) between 2.7°C and 4.9°C. The nearby 
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Labrador Current carries cold polar water southwards along the Labrador coastline causing 

unusually frigid temperatures for its latitude (Banfield and Jacobs, 1998). The large temperature 

range (~ 24°C) suggests significant seasonal variation similar to the conditions observed in 

western Svalbard and the Russian Arctic Islands (Sharp et al, 2011). 

 

Total precipitation in the region averaged 0.73 m per year (1979-2009) with most precipitation 

occurring in the fall (~230 mm) and summer (~208 mm). The Canadian Polar trough is the main 

control on precipitation in the region and defines the distribution of winter snowfall by 

positioning the high-latitude storm track across northeastern Canada. Within the Torngats there 

appear to be strong precipitation and temperature gradients caused by local meteorological 

conditions; for example, fog is prevalent in the coastal mountains throughout much of the 

summer, frequently occurring close to ice masses. Labrador-wide warming of 1.73 ± 

0.53°C/century suggests regional warming is ongoing (Way and Viau,In Prep). 

 

Torngat Mountain Glaciers  

In total, there are 103 actively flowing Torngat glaciers and 191 ice masses in the region (Way et 

al, submitted). These glaciers cover an area of ~22 km
2
 (2005) with individual glaciers almost all 

smaller than 1 km
2
 (Way et al, submitted). The current median glacier elevation in the Torngats 

(~776 m above sea level, asl) is lower than in Arctic glaciers on Baffin Island much further north 

(Paul and Kääb, 2005, Paul and Svoboda, 2009). Torngat glaciers face all aspects but are 

primarily North to Northeast-east facing, the preferred orientation of Northern Hemisphere 

glaciers under the control of insolation (Clark, 1991). Most Torngat ice masses have moraine 

sequences in their foregrounds showing that local glaciers once advanced downvalley as much as 
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5 km from their current positions (Evans and Rogerson, 1986).  

 

The vast majority are cirque glaciers, which occupy deep basins characterized by high backwalls 

and local topographic shadowing; however, small plateau ice masses and traditional alpine 

glaciers exist in some locations (Figure 3a, b, c). Most Torngat glaciers are debris covered, a 

factor previously observed to reduce surface melting for several glaciers south of Nachvak Fiord 

(Rogerson et al, 1986). Torngat glaciers mostly occur in small groups directly on, or proximal to 

the fretted landscape of the coastal mountains. Glaciers further from the coast form only where 

topography allows, but also as plateau ice caps where altitude is sufficient to sustain their 

survival (Way et al, Submitted). Previous work on a small number (n=4) of glaciers below 

Cirque Mountain identified winter precipitation as the controlling climatic variable in mass 

balance rather than temperature (Rogerson, 1986). 

 

Previous investigations of ice advance in the Torngats by McCoy (1983) and Rogerson et al 

(1986) occurred south of Nachvak Fiord in glacier foregrounds of the McCornick River Valley. 

McCoy (1983) conducted lichenometric surveys on moraines in the vicinity of several small 

cirque glaciers on the northwest face of Cirque Mountain. To estimate the age of former glacier 

advances, McCoy (1983) used Rhizocarpon Geographicum lichens measured on moraine 

surfaces and combined them with growth rates recorded on the Cumberland Peninsula of Baffin 

Island (Miller, 1973). In 1983, Rogerson et al (1986) visited 4 lichen growth stations in the 

McCornick River Valley which were previously set up by McCoy (1983) in 1978. From these 

data, Rogerson et al (1986) calculated dates of previous glacier advances for 3 glaciers in the 
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Selamiut range. These dates were not in agreement with those provided by McCoy (1983), 

particularly in the glacier foregrounds below Cirque Mountain. 

 

Methods 

In this study, we map the extent of Torngat glaciers at the LIA using remotely sensed data from 

2005 aerial surveys of the region. Former ice margins dating uses lichenometry with 

Rhizocarpon Geographicum lichens as the target sub-species. Based on observed moraine 

characteristics and lichen sizes, we correlate lichens measurements on moraines in glacier 

foregrounds (Cirque Mountain) to former LIA ice advance. Comparison between lichen sizes on 

LIA moraines to a new, locally established lichen growth curve allows for dating of LIA 

moraines. 

 

Little Ice Age Glacier Change 

Mapping LIA Ice Margins 

Former LIA glacier area mapping uses 1:40,000 color digital aerial photography (0.7 m 

resolution) provided by Parks Canada. Acquisition followed repeat aerial surveys of the Torngat 

Mountain National Park in August/September of 2005. Aerial photographs were orthorectified in 

PCI Geomatica (v10.3) using exterior orientation information provided by the surveyor (X, Y, Z, 

Omega, Phi, Kappa). This study uses a digital elevation model (DEM) (18 m resolution) 

provided by Parks Canada to correct for topographic distortions due to alpine relief (Kääb, 

2005). Supplemental to the orthophotos, we use pan-sharpened (5 m) SPOT-5 imagery acquired 

during the summer of 2008 (July 16 to August 11) where orthophotos were difficult to interpret 

(excessive snow conditions, minimal contrast). 
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Following mapping and classification of 191 current ice masses observed in the Torngats (Way 

et al, submitted), moraines and ice-cored debris fields observed immediately downvalley were 

recorded and mapped. These features were subsequently assessed based on physical 

characteristics of LIA moraines observed in situ during previous field seasons; this information 

then informs air photo interpretation of these features. Torngat LIA moraines are large with steep 

distal slopes and gentle proximal slopes; (Figure 4a) they are often un-differentiable from debris 

fields in glacier foregrounds. 

 

The most prominent LIA moraines are ice-cored making them prone to instability because of 

melting interior ice (Figure 4b). These features have remarkably little vegetation growth aside 

from colonization by Rhizocarpon Geographicum lichens with little to no small shrubbery. In 

some cases, distinct LIA moraines are not recognizable, but elevated ice-cored debris fields 

make it possible to identify former ice margins (Figure 4c). For glaciers terminating in lakes 

without downvalley paleo-margins, we use 1950s ice margins (Barrand et al, in Prep). 

 

Glacier polygons, from both 1950s and 2005 aerial photographs, were manually extended at the 

glacier snout to encompass hypothesized LIA areas. Given the greater uncertainty in estimating 

former ice coverage in accumulation zones, we make minimal changes to current glacier margins 

in these areas. As a result, total area changes are a minimum estimate given the possibility of 

undetected ice losses at glacier heads. 

 

Factors Influencing Change 
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We collect potential factors influencing glacier change, and assess relationships visually and 

using linear regression. Factors chosen for the analysis followed the methodological approaches 

similar to those used in Debeer and Sharp (2009) and by Paul and Kääb (2005). The parameters 

calculated for each ice mass, and a brief methodology is listed below in table 1. 

 

Table 1: Topographic variables collected in this study to evaluate geographic, topographic and 

meteorologic influences on ice masses in the Torngats. Table contains method of collection and 

reference for method.  

Topographic/Geographic 

Parameter 
             Method of Collection Reference 

Aspect 
Dominant direction (N, NE, NW, S, SE, SW, W, E) of 

ice mass basins. Measured parallel to glacier flow.    
This Study 

Length 
Length (km) measured along the glacier centerline 

following flow direction 
Paul et al (2004) 

Distance to Coast 
Distance to Labrador Sea coastline (km) measured 

from glacier centroid to nearest coastline using 

euclidean distance algorithm in ArcGIS 10  

This Study 

Altitude 
Area-weighted minimum, maximum and mean 

elevation (m asl) calculated from DEM  
Paul et al (2004) 

Backwall Elevation 
Mean height difference between ridgeline above 

glacier and upper ice margin parallel to ridgeline. 

Modified from 

Debeer and Sharp 

(2009) 

Upslope Area 
Total area (km

2
) between ridgeline above glacier and 

the upper ice margin  

DeBeer and Sharp 

(2009)  

Relative Upslope Area 
Ratio between the total Upslope Area and total glacier 

area 

DeBeer and Sharp 

(2009)  

Upslope Area Slope 
Upslope Area Slope measured using area-weighted 

slope (°) of the total Upslope Area 

DeBeer and Sharp 

(2009)  

Compactness 
Ratio between glacier area and perimeter using the 

formula: (4πArea)/(Perimeter2) 
DeBeer and Sharp 

(2009)  

Solar Radiation 
Mean clear-sky incoming (direct + diffuse) solar 

radiation (WH/m2) calculated for melt season midpoint 

(August 1st) in ArcGIS 10 (Fu and Rich, 2002). 
This Study 
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Dating LIA Ice Margins 

Local Lichen Measurements 

Field work was conducted in the McCornick River Valley (Abraham and Hidden glaciers) and 

on Mount Caubvick (Minaret glacier) during August of 2007 and 2011 (Figure 5). We measure 

lichen thalli (body) on boulders occupying moraine surfaces immediately downvalley of nearby 

glaciers (Rogerson et al, 1986). Operators use a modified tape measure (± 1 mm accuracy) to 

measure the long-axis diameter of circular, non-coalescing Rhizocarpon Geographicum lichens   

to the nearest millimetre (mm). Lichen searches used all sides of moraines where surfaces were 

definitively of glacial origin, avoiding active slopes and glacial-fluvial activity to avoid sample 

contamination (McCarroll, 1994). 

 

Variable lichen search areas depended on a series of factors, including moraine preservation, 

accessibility, size and the presence of discernible lichen growth. Search areas ranged from 110 

m2 to 1100 m2 with a mean search area of 508 m2 (SD - 305 m2). By recording the 50 largest 

lichens in each area, we enabled comparison with previous lichenometric dating done in the 

region (McCoy, 1983, Rogerson et al, 1986, Bradwell, 2007) while providing sufficient 

measurements for outlier detection. In this study, we use both the largest lichen (LL, Evans et al, 

1999) and the 10 largest lichens (10LL, discussed in Bradwell, 2009) approaches to give an age 

range for maximum advance of glaciers. Using both approaches reduces the impact of 

erroneously large lichens, a phenomenon that may be due to preferable local conditions rather 

than lichen age. Recent criticism (Bradwell, 2009) of more complicated statistical methodologies 

(Jomelli et al, 2007) precludes the usefulness of these methods in this study.  
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Lichen Growth Data 

During the summers of 2007 and 2011, we visited and photographed (with scales) 7 of the 8 

lichen growth stations (Figure 6, Lichen photos three panels) that McCoy (1983) and Rogerson 

et al (1986) established in 1978 and 1983 respectively at low (McCornick River Valley, 460 m 

asl) and high-altitude sites (Mount Caubvick, 854 m asl). Processing of photographs from the 

three intervals (1978, 1983, 2007/2011) for all available stations used the photo-editing software 

GIMP (v2.6). For each photograph without visible distortion, we fit the scales to a grid to 

calculate the number of pixels occupied by the 1 cm2 and 4 cm2 pieces in the photo frames. 

  

We measured non-coalescing lichens across their long axis diameter in pixels and subsequently 

converted into millimeters. Calculation of diameter growth rate (DGR) between sequential 

photographs was possible for 17 lichens resulting in 24 unique DGRs – two DGRs for nine 

lichens (1978 to 1983, 1983 to 2007) and one DGR for eight lichens (1983 to 2007/2011). 

Lichen sizes ranged from 1.2 mm to 67 mm with a mean lichen diameter of 26 mm and a median 

lichen diameter of 21 mm. 

 

To approximate lichen growth at various sizes, we fit 2nd order polynomials to both the high-

altitude DGRs (Mount Caubvick, 854 m, R2 = 0.93) and the low-altitude  DGRs (McCornick, 

460 m, R2 = 0.51). Because the majority of LIA moraine search areas were between 650 and 750 

m, we use the mean of the two growth rates (~657 m) as the best estimate for lichen growth rates 

on these moraines. The low-altitude curve is an upper constraint for the maximum lichen growth 

while the high-altitude curve is a lower constraint for minimum lichen growth. From these data, 

we produce age estimates and upper and lower constraints for lichens sized 0 to 70 mm. 
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Results 

LIA Glacier Mapping and Area Change 

In total, we find 165 Torngats glaciers at the LIA covering an area of 46.7 km
2
 with a mean 

glacier size of 0.28 km
2
 and a median glacier size of 0.20 km

2
. The majority of these glaciers 

(132) were smaller than 0.4 km
2 

with 13 being greater than 0.8 km
2
 and only 6 being larger than 

1.0 km
2
. Recorded glacier lengths ranged from 0.15 km to 2.1 km (median, 0.56 km). 29 glaciers 

were longer than 1 km with one glacier being longer than 2 kms. Mapped glaciers were on 

average 18.3 km from the coastline; however, the median distance to the coast (13.9 km) is less 

skewed by outliers making it a better approximation. The mean and median latitude of glaciers 

were ~59.2° N with the majority of glaciers between 58.9 and 59.5°N. The most southern LIA 

glacier (58.6°N) is ~140 kms further south than the northernmost glacier (59.8°N) in the 

Torngats.  

 

Mountain groups near Nachvak Fiord (59.0°N) and Ryan’s Bay (59.4°N) hold over 70% of LIA 

glaciers. In these specific mountain environments, LIA glaciers were observable in all aspects 

unlike many other portions of the Torngats where the dominant aspect is north to northeast. The 

orientation of most Torngat glaciers (67%) is northwards with 51 glaciers facing the northeast, 

37 facing north and 23 facing northwest. In total, 27 glaciers faced east with just 10 facing west. 

Southerly oriented LIA glaciers were about 10% of the inventory with only four glaciers facing 

south while six faced southeast and seven facing southwest. 

 

Area Change 
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The total area of Torngat glaciers during the LIA was 46.7 km
2
 and in 2005 was 22.2 km

2
.  This 

represents a cumulative reduction in glacier area of 24.5 km
2
 or 52.5%. The mean and median 

changes in glacier area were 56.8% and 55.4%, respectively, with a standard deviation of 21.7% 

(1σ). The magnitude of change ranged from 15.7 to 100%, and the 25th and 75th percentiles 

were 37.9% and 71.2%. We summarize change results in Table 2. 

 

Table 2: Characteristics of Torngat glacier change from the LIA to 2005. Table includes total 

count (Count), cumulative area (∑Area, km
2
), median area (Q2Area, km

2
), minimum area 

(MinArea, km
2
), maximum area (MaxArea, km

2
), median length (Q2Length, km), mean 

minimum elevation (µMinElev, m asl), and mean compactness (µCompact, undefined).  

Dataset Count ∑Area Q2Area MinArea MaxArea Q2Length  µMinElev µCompact 

2005 154 22.25 0.08 0.00 1.26 0.34 687.00 0.41 

LIA 165 46.65 0.20 0.03 1.70 0.57 637.00 0.50 

|Change| 11 24.40 0.12 0.03 0.44 0.23 50.00 0.11 

 

In this analysis, we also find that 11 former glaciers altogether disappeared in the Torngats. 

Median glacier length decreased by 0.23 km or 41%. A noticeable decrease in the compactness 

of glaciers (0.11) implies a change in glacier morphometry from more to less regular shape and 

demonstrates that glaciers have become further confined to areas receive mass input from nearby 

slopes (Debeer and Sharp, 2009). Mean minimum glacier altitude also changed significantly with 

an increase in glacier elevation from 637 m asl at the LIA to 687 m asl in 2005 (+ 50 m). 

Consistent with these calculations, we find that the minimum altitude of the lowest glacier in the 

Torngats has increased by 90 m from ~147 m asl (LIA) to ~ 237 m asl (2005). 
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Factors influencing Change 

We show results of the regression analysis comparing LIA glacier change and factors influencing 

glacier change in table 3. No single factor explains more than 15% of the variance in glacier 

change. However, we find statistically significant relationships (95%) that explain more than 5% 

of the variance  between glacier change and upslope area slope, glacier elevation (max, mean, 

min) and  glacier area. Results show that mean upslope area slope is the variable that explains the 

most variance (15%) in glacier change with larger slopes being positively correlated with larger 

ice changes. Maximum glacier elevation is the 2
nd

 most important variable (10% of total 

variance) where higher altitude glaciers have correspondingly lower glacier changes. 

 

Table 3: Pearson Correlation Matrix cross-comparison of glacier change and geographic, 

topographic and meteorologic variables for Torngat LIA glaciers. Table includes individual ice 

mass area, incoming solar radiation, ice mass latitude, mean/max/min elevation, distance to 

coastline, upslope area slope, ice mass length, mean backwall height, relative upslope area, and 

compactness. Table summarizes the correlation (R), the coefficient of determination and the 

number of degrees of freedom (DF) between variables and glacier change. Only statistically 

significant (95% confidence level (CL)), correlations are bolded and italicized in the table.  

Variable R R
2
 DF 

Upslope Area Slope 0.38 0.15 153 

Maximum Elevation -0.32 0.10 164 

Mean Elevation -0.29 0.09 164 

Minimum Elevation -0.22 0.05 164 

Area -0.22 0.05 164 

Backwall Height 0.20 0.04 153 

Length -0.20 0.04 164 

Relative Upslope Area -0.20 0.04 153 

Latitude 0.14 0.02 164 
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Incoming Solar Radiation -0.11 0.01 164 

Distance to Coast -0.08 0.01 164 

Compactness -0.02 0.00 164 

 

In table 4, we show highly similar change rates across the 8 main aspects. Observations show 

marginally greater change rates for glaciers flowing to the southeast and east, though this result 

is tentative given the lower sample size relative to other directions. 

 

Table 4: Summary of mean (µChange (%)) and median LIA glacier change (Q2Change (%)) 

relative to the 8 dominant aspects.  

Aspect µChange (%) Q2Change (%) Count 

North 56.8 55.3 37 

Northeast 58.8 61.9 51 

Northwest 49.7 40.7 23 

East 60.1 59.8 27 

West 49.8 46.8 10 

South 48.2 48 4 

Southeast 77.4 77.2 6 

Southwest 49.9 44.8 7 

 

LIA Dating 

Local Lichen Measurements 

Field work conducted in the McCornick River Valley and at the base of Minaret Glacier (Mt. 

Caubvick) during August of 2011 resulted in 23 sampling transects  on selected moraine 

segments across the region. Largest lichens recorded on individual transects encompass a range 

of 3 to 290 mm in diameter with no lichens found between 62 and 110 mm in size. In total, we 

interpret 10 sampling transects covering six unique glacier positions as being of LIA origin with 

these surfaces being altitudinal located between 657 and 955 m. The largest lichens recorded on 
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LIA surfaces ranged in diameter from 31 to 62 mm, the smallest on the highest LIA moraine and 

the largest on the lowest moraine. 

 

Lichen Growth Rates  

Regional lichen growth rates calculated for both the McCornick River and Mount Caubvick 

stations are presented in Figure 7, also shown is the mean of the two growth rates which 

estimates  the growth rate for 657 m asl. The approximate shapes of regional growth curves show 

three phases of lichen growth, including: (1) Slow lichen growth at small lichen sizes gradually 

accelerating; (2) period of “great growth” with faster lichen growth accelerating until it plateaus 

at mid-sized lichens (~40-50 mm) and; (3) slow deceleration of lichen growth at larger lichen 

sizes after the period of “great growth” concludes (Bradwell and Armstrong, 2007).  

The potential for additional phases of lichen growth exists for larger lichens (> 70 mm), but the 

lack of DGR data at these sizes cannot confirm or reject this notion. We show growth rate 

statistics comparing this study and previous studies  in Table 5. 

 

Table 5: Diameter growth rates measured on lichens in this study at the McCornick and Minaret 

growth stations compared to DGRs observed by Rogerson et al, 1986. Comparisons using the 

same range of lichen sizes are provided. All measurements are in mm/year.   

Investigator Count Range  SD Min Mean Max 

This Study(McCornick) 18 1.2 - 67 0.08 0.09 0.17 0.34 

This Study (McC 17-52 mm) 8 17 - 43 0.09 0.13 0.21 0.34 

This Study (Minaret) 8 1.7 - 63 0.04 0.001 0.07 0.11 

This Study (Minaret 17-52 mm) 4 32 - 52 0.02 0.07 0.09 0.11 

Rogerson et al, 1986 7 17 - 52 0.19 0.1 0.34 0.58 
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Figure 8 shows estimated lichen age-size relationship with upper and lower constraints used for 

the analysis. As Bradwell and Armstrong (2007) showed in Iceland, the relationship between 

lichen size and surface age is considerably un-linear. The resultant age-size relationship (Figure 

8) shows age increasing sharply for smaller lichens (<15 mm), as well as marginally for larger 

(>60 mm) lichens indicative of slower growth at both sizes ranges. Lichens of medium size (15-

60 mm) have an age-size relationship which is mostly linear where age of lichens increases at a 

constant rate with increases in size. 

 

Lichenometric LIA dates  

Using the in situ lichen measurements taken on LIA moraines in combination with the regional 

lichen growth curve gives a mean LIA advance date between 1556 and 1595 depending on the 

method used. The earliest LIA advance (all techniques) occurs in 1491 AD with the youngest 

advance being in 1664 AD. Age constraints on the LIA using the lowermost and uppermost 

growth rates show that the maximum LIA advance of any glacier was unlikely to occur prior to 

818 AD or after 1787 AD. We show mean LIA dates for individual sampling transects in Figure 

9 with the upper and lower constraints on regional lichen growth. We find significant overlap for 

all moraine segments between the LL and 10LL approaches used to summarize the lichen data – 

this demonstrates the agreement between the different methodologies. 

 

Discussion  

Area Change Results 

Quantified changes from the LIA to present (2005) for Torngat Mountain glaciers indicate an 
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overall ice loss of ~52.5%. Compared to changes observed elsewhere in the Northern 

Hemisphere (Figure 10) these rates are dissimilar from most glaciers in the North Atlantic sector, 

but are similar in magnitude to those observed in the Austrian, Italian and Swiss Alps (Baumann 

et al, 2009, Knoll et al, 2009, Paul et al, 2004). 

 

Glaciers in the eastern Canadian Arctic and the North Atlantic sector are the closest analogues to 

Torngat glaciers both geographically and climatically.  However, we find glacier changes in the 

Torngats vastly exceed those observed on the Queen Elizabeth Islands (LIA to 1960) (Wolken, 

2006, Wolken et al, 2008), in Norway (Baumann et al, 2009), on the Cumberland Peninsula of 

Baffin Island (Paul and Kääb, 2005), in Southern Baffin Island (Paul and Svoboda, 2009), in 

West Greenland (Citterio et al, 2009) and on Bylot Island (Dowdeswell et al, 2007). 

 

These results suggest that glacier activity in the Torngats does not reflect widespread North 

Atlantic glacier patterns in magnitude. Ice losses in the Torngat Mountains are more so 

correlated with changes observed in mid-latitude alpine regions such as the European Alps and 

Southern Norway. Future projection of glacier changes in the region must be de-coupled from 

those of other Arctic Canadian glaciers and be considered separately. 

 

Factors influencing change  

(a) Spatial 

We summarize the spatial distribution of changes observed in the Torngat glaciers   in figure 11. 

Change rates exhibit spatial homogeneity across all significant glacier bearing regions and show 

noteworthy variance within regions. Glaciers with both small (15-25%) and great ice loss (75-
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100%) exist all across the entire range with non-statistically significant predominance of greater 

losses in the North. Climatic warming would suggest a northern migration of the glacier viability 

zone; however, these results show no relationship between glacier latitude and change (Table 3). 

Many southerly glaciers, in fact, show remarkably small overall change suggesting relative 

stability or the importance of non-climatic factors in the region (Way et al, submitted). 

 

Previous work identified distance to coastline (Way et al, submitted) as a significant controlling 

mechanism on mean glacier altitude; however, we find no relationship between distance to coast 

and change (Table 3). These data allude to synchronous factors impacting both inland and 

coastal glaciers equally as we find no appreciable differences in change rates between inland 

plateau glaciers and coastal fretted mountain glaciers. 

 

(b) Topographic 

We examined several topographic factors, which may affect Torngat glacier change; however, 

only upslope area slope explains more than 5% of the variance in the dataset (15%). This 

dynamic contrasts the results of previous studies by Hoffman et al (2007), Debeer and Sharp 

(2009), Li et al (2011) and Basagic and Fountain (2011) who all note significant topographic 

influences on glacier change. In particular, several of these authors note the importance of 

backwall height in regulating glacier changes because of the topographic shadowing provided by 

the large backwalls. However, we do not note any strong correlations with backwall height 

(Table 3). The importance of upslope area slope on glacier changes reflected in the results is 

intriguing because this variable is a proxy for avalanching and funneling of snowfall onto glacier 

surfaces. This relationship with change (though weakly correlated) indicates that glaciers with 
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greater upslope slopes and dependency on avalanching experienced larger changes since the 

LIA. An interpretation of this relation is that these glaciers are more dependent on mass inputs; 

thereby, a reduction in precipitation (snowfall) would experience these glaciers more 

proportionally.  

 

(c) Altitude, Size and Length 

We find that mean maximum glacier altitude has a weak (R
2
 = 0.10) but statistically significant 

influence on glacier change (Table 3). This implies that glaciers with lower accumulation areas 

tend to incur greater ice losses relative to higher glaciers. This dynamic is interpreted as being 

indicative of upwards migration in the regional glaciation level. This finding is supported by 

observations that glaciers above 1000 m (n=20) experienced 19% less change on average (52%) 

compared to glaciers below 500 m asl (n=21, 71%). Additionally, we find no glacier above 780 

m asl fully downwasted and that the mean elevation for glaciers that have melted away was 534 

m asl, much lower than the mean glacier altitude (729 m asl) at the LIA. To support this 

observation, we also find a significant (~90 m) upwards migration of glacier viability (minimum 

altitude) in the Torngats (see results).  

 

Previous works (Paul et al, 2004, Paul and Kääb, 2005) have observed areal extent changes 

greater amongst glaciers smaller than 5 km
2
 in both the Canadian Arctic and the Swiss Alps. All 

glaciers in the Torngats are considerably smaller than the < 5 km
2
 size threshold used in other 

studies; however, we observe larger change and greater variability in change among smaller 

glaciers in the study area consistent with results observed elsewhere (Table 3) (Paul et al, 2004, 

Paul and Kääb, 2005). A natural break in the data exists whereby glaciers larger than 0.8 km
2
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(n=13) show significantly less change (40 %) than those smaller than 0.8 km
2
 (n= 152) (58 %). 

Similarly, we find that for glaciers longer than 1 km (n=29) there is considerably less ice loss 

(11% less) than shorter glaciers (<0.5 km, n=72). 

 

LIA timing in the Torngats 

The estimated timing of the LIA throughout the northern hemisphere is extremely variable but 

corresponds to the period from ~1400 to ~1900 AD (Moberg et al, 2005). In the Torngats,  we 

dated the maximum LIA glacier advance to be between ~1491 and 1664 AD; however, we find 

the mean period of maximum LIA advance to be between 1556 and 1595 AD. Including the 

uncertainties in the regional growth rate, we constrain the period of largest LIA advance to be 

between 818 and 1787 AD with the most likely outcome between closer to the latest date rather 

than the earliest. By comparison, Rogerson et al (1986) dated the same moraines as used in this 

study and received LIA dates between ~1857 and ~1904 by linearly extrapolating mean lichen 

growth rates from seven growth stations. 

 

Using maximum lichen growth rates from their stations, they find LIA dates between ~1907 and 

1935 AD while use of their minimum lichen growth rates gives LIA ages between ~1568 and 

~1728 AD. The LIA dates presented in this study supercedes those of Rogerson et al (1986) 

because of a significantly larger database of DGRs and a more accurately modeled lichen growth 

relationship.   

 

Comparison with Northern Hemisphere LIA advance timings 

Dates provided from this study for the LIA in the Torngats  (~1491 to ~1664 AD) are 
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significantly earlier from LIA dates across the remainder of the northern hemisphere (Figure 10). 

The timing of the maximum LIA advance in the Torngats is unique relative to other alpine 

glaciers, but is, in particular, much earlier compared to its most geographically and climatically 

similar neighbours in the North Atlantic and the Arctic which reached their LIA maximums 

between ~1870 and ~1920 AD – far later than in the Torngats. 

 

Although authors find younger LIA dates compared to the North Atlantic sector  throughout the 

Alps, eastern Russia (~1700 to ~1880, Solomina, 2000, Solomina et al, 2004) and Western 

Europe, neither is comparable to those of the Torngats (Figure 10). These comparisons suggest 

that the magnitude of LIA advance in northern Labrador was a unique event specific to this 

region and that this event occurred independent of advances elsewhere in the North Atlantic. 

Supporting the LIA dates provided in this study is a 400 year tree-ring chronology which shows 

reduced tree-ring growth at the treeline in northern Labrador over the same period as we propose 

for maximum ice advance (Figure 13, D'Arrigo et al, 2003, Kinnard et al, 2011). Viau and 

Gajewski (2009) find similar using the North American Pollen Database and the modern analog 

technique for the Labrador region.  

 

In both reconstructions, there is a pronounced late 19th century cooling, which coincides with 

glacier advances in the North Atlantic, however, reconstructed precipitation anomalies for 

Labrador (Viau and Gawjeski, 2009) suggest significantly lower precipitation than preceding 

centuries. This may provide some insight as to the nature of the de-coupling between Torngat 

glacier advance and those in the remainder of the North Atlantic. An additional consideration is 

that peak glacier advance in the Torngats coincides with a period of pronounced cooling in the 
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Northern Hemisphere associated with decreased solar activity known as the Maunder Minimum 

from ~1645 to ~1715 AD (Eddy, 1976, Shindell et al, 2001). Solar radiation as a control on 

former ice advance in the Torngats is a plausible scenario; particularly given that Torngat 

glaciers are preferentially situated in areas with reduced incoming solar radiation (Way et al, 

Submitted). 

 

Local Lichen Growth Rates 

Previous work in the region by McCoy (1983) and Rogerson et al (1986) tentatively dated 

moraine sequences in the region using lichenometry with both coming to decidedly different 

conclusions about the local glacial history. McCoy (1983) applied growth rates established on 

the Cumberland Peninsula of Baffin Island of 0.03 mm/year (Miller, 1973) to collected lichen 

sizes on moraines and debris fields. McCoy (1983) rationalized this method assuming 

climatological and geographical similarities between northern Labrador and the Cumberland 

Peninsula. In the time since that study, Rogerson et al (1986b) contested the application of the 

growth rate from Baffin Island to Labrador and Bradwell and Armstrong (2007) challenged the 

use of a single linear growth rate across all sizes in lichenometry. 

 

A later study, Rogerson et al (1986), incorporates locally measured lichen growth rates measured 

from growth stations between 1978 and 1983 using the photogrammetric method (Locke et al, 

1978). Rogerson et al (1986) estimates moraine ages linearly providing a range of ages from the 

minimum, maximum and mean growth rates from measured lichens. The rates recorded by 

Rogerson et al (1986) are much higher than those recorded in this study (Table 5). Rogerson et al 

(1986) provide no growth rates for lichens smaller than 18 mm in size and include only one 
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growth rate for lichens above 36 mm in size. In addition, careful examination of outlines of 

lichen growth across their seven lichens reveal that half of their measured lichens do not meet the 

suitable criteria for DGR estimation owing to their irregular shape and/or coalesced nature 

(Bradwell, 2009). The points mentioned above cast doubt on moraine dating in Nachvak Fiord 

by Rogerson et al (1986) and reflect on advances in lichenometry since that time (Table 5). 

 

In this study, we provide both low altitude and high-altitude lichenometric curves and use the 

mean growth rate between the two as a reasonable estimate for lichen growth at LIA moraines. 

These curves rely on more DGR measurements than previous work in the region (n=24 versus 

n=7) and encompass a greater range in lichen sizes. Using this growth curve on lichen data from 

Rogerson et al (1986) reveals LIA dates between ~1645 and ~1747 AD, very similar to this 

study's proposed LIA advance dates. Further discrepancies between these studies could reflect 

differences lichenometric field techniques where McCoy (1983) and Rogerson et al (1986) 

measured and recorded only the largest lichens found during 20-minute searches of moraine 

debris. In this study, we recorded a much larger sample (>15) of largest lichens within greater 

search areas and just on individual moraine surfaces rather than debris fields. Longer search 

periods (~3 hours per moraine vs ~20 minutes per moraine) in this study revealed large lichens 

on moraine surfaces that missed during previous surveys by other authors.  

 

Universal Lichen Growth Rates      

In total, 12 studies have reported growth data on Rhizocarpon subgenus lichens; however, only 

two studies (Armstrong, 1983, Bradwell and Armstrong, 2007) have produced comprehensive 

growth curves considering growth as a function of diameter. We present the first such curve for 
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the eastern Canadian Arctic, and the first set of curves produced within close proximity (<20 km) 

at different altitudes. From these data, we conclude that lichen growth rates observed in the 

Torngats are for the most part significantly smaller than those observed elsewhere in glacial 

environments except for and Antarctic Peninsula (Bradwell and Armstrong, 2007). The Torngat 

growth data compares favorably in both shape and absolute growth rate to a hypothesized growth 

curve for West Greenland at 68°N (Bradwell and Armstrong, 2007). This is not surprising as the 

local climate conditions in West Greenland are similar to those in the Torngats. 

 

Bradwell and Armstrong (2007) hypothesize, using their data from both north Wales and 

southern Iceland that lichens show three distinct phases of lichen growth. We find strong 

evidence of these hypothesized phases at the moderate-climate lichen growth station 

(McCornick) and a significantly attenuated version at the harsh-climate lichen growth station 

(Minaret) – a result hypothesized by Bradwell and Armstrong (2007). This work provides direct 

evidence that rates, shapes, and phases of lichen growth curves hypothesized by Bradwell, and 

Armstrong (2007) are accurate and reproducible. 

 

Conclusions 

Using a combination of remote sensing, in situ field data and lichenometry, this study 

reconstructs former Little Ice Age glacier advances in the Torngats, quantifies change from the 

LIA to present (2005), explores factors influencing these changes and provides a range of dates 

for the LIA in the Torngats. 

In summary: 
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[1] We reconstruct the glacier paleomargins at the LIA for 165 Torngat glaciers covering an area 

of 46.7 km
2
;  

[2] observations show an overall decrease in glacier area of ~52.5% from the LIA to 2005 

including the loss of at least 12 glaciers;  

[3] findings show statistically significant relationships between glacier change, and upslope area 

slope interpreted as a reflection of glaciers being impacted by less snowfall; additionally results 

imply that higher, larger  Torngat glaciers are less susceptible to change;  

[4] ten lichen measurement transects of 6 LIA paleomargins reveal that glaciers advanced 

synchronously at their LIA maximum;  

[5] we create both low altitude and high altitude lichen growth curves in neighbouring valleys 

each showing significant differences in shape and absolute growth rate;  

[6] using a combination of these growth curves reveals   LIA moraine abandonment ages 

between ~1491 and ~1664 AD and; 

[7] results suggest that Torngat glaciers are all retreating/shrinking making their future 

survivability in a warming climate yet unknown. 
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Figure Captions 

Figure 1: Geographic location of the study area: (left) Torngat Mountain glacier range in relation 

to the eastern Canada (right) Torngat Mountain glacier range with regions of interest illustrated 

in white. A and B show the locations of lichenometry field work during August of 2011, 

locations are shown in depth in Figure 5, panels A and B.  

   

Figure 2: (Histogram) Average monthly precipitation (mm) for the Torngat Mountains region 

derived from ERA-Interim reanalysis for the period 1980-2011 (Dee et al, 2011). (Lines) 

Average monthly temperature (°C) for the Torngat Mountains derived from ERA-Interim 

reanalysis for the period 1979-2009 at 2 m asl and ~1500 m asl (850 millibars) (Dee et al, 2011). 

Dotted black line depicts 0°C. 

 

Figure 3: Examples of some current ice masses in the Torngats Mountain glacier range: (a) 

Cirque Glaciers (b) Simple Basin Glaciers (c) Summit Ice Mass. Panels A & C are photograph 

while panel B shows digital air photos draped over an 18 m resolution DEM.  

 

Figure 4: Photographs of little ice age glacier margins used for mapping past glacier margins: (a) 

steep sided ice-cored terminal moraine (b) elevated ice-cored debris field. 

 

Figure 5: Location of lichen sampling transects (red) and lichen growth stations (green dots) 

visited during the field season of 2011: (A) McCornick River Valley (B) Mount Caubvick. 

Transects, stations and ice masses are plotted on digital air photos.    

 



39 
 

Figure 6: Photographed chronology of a Rhizocarpon Geographicum lichen growing at a lichen 

growth station covering the following time intervals: (a) 1978 (b) 1983 (c) 2007. 1 cm
2
 scale 

piece is also located in photo frame.  

 

Figure 7: Lichen growth curves derived from 2
nd

 order polynomial fits of diameter growth rate 

data for the McCornick River Station (460 m asl) (red) and Minaret (Mount Caubvick) Station 

(854 m asl) (green). The mean of the two rates (black) is used as an approximation of lichen 

growth at 657 m asl.   

 

Figure 8: Estimated lichen ages (year AD) for lichen sizes 0 to 70 mm for the McCornick River 

Station (red), Minaret (Mount Caubvick) Station (green) and for the mean growth rate of both 

stations (black).  

 

Figure 9: Estimated dates for maximum little ice age glacier advances in the Torngats for 10 

moraine segments sampled in August of 2011. Moraines are dated using the Largest lichen (red 

dots) and 10 Largest lichens (black squares) approaches. Estimates use the mean growth rate of 

the McCornick and Minaret stations, while the upper and lower constraints are from the two 

respective stations (red and black lines).   

 

Figure 10: Geographic distribution of little ice age glacier change and little ice age maximum 

advance timing across the North Atlantic. All sources are detailed in the text of the discussion.   

 

Figure 11: Spatial distribution of glacier changes in the Torngats from the little ice age to 2005, 
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the magnitude of change is depicted by graduated points and a graduated colour scheme.  

 

Figure 12: Tree ring width anomalies from northern Labrador RCS tree ring chronology 

constructed by D’Arrigo et al (2006) and made available by Kinnard et al (2011). Anomalies are 

with respect to the 1570-1995 average, cold deviations from the mean are shown in blue and 

warm deviations from the mean are shown in red.   
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