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ABSTRACT 

This paper reviews the effect of incorporating recycled aggregates, sourced from construction 

and demolition waste, on the carbonation behaviour of concrete. It identifies various influenc-

ing aspects related to the use of recycled aggregates, such as replacement level, size and ori-

gin, as well as the influence of curing conditions, use of chemical admixtures and additions, 

on carbonation over a long period of time. A statistical analysis on the effect of introducing 

increasing amounts of recycled aggregates on the carbonation depth and coefficient of accel-

erated carbonation is presented. This paper also presents the use of existing methodologies to 

estimate the required accelerated carbonation resistance of a reinforced recycled aggregate 

concrete exposed to natural carbonation conditions with the use of accelerated carbonation 

tests. Results show clear increasing carbonation depths with increasing replacement levels 

when recycled aggregate concrete mixes are made with a similar mix design to that of the 

control natural aggregate concrete. The relationship between the compressive strength and 

coefficients of accelerated carbonation is similar between the control concrete and the recy-

cled aggregate concrete mixes. 

Keywords: Recycled aggregates, construction and demolition waste, carbonation, concrete, 

durability, service life design. 
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1 INTRODUCTION 

The rapid development of the construction industry and consumption of natural resources and 

deterioration of the environment in several emerging economies have caused an unsustainable 

development of the construction industry. For this reason, recycling construction and demoli-

tion wastes (CDW) is a vital step in environmental sustainability. However, for this to hap-

pen, changes in the management of construction and demolition activities would have to be 

made in order to implement selective demolition as a replacement for conventional demoli-

tion. Selective demolition, also known as deconstruction in some sources, is the systematic 

disassembly of buildings in order to maximize recovered materials reuse and recycling. While 

the process of conventional demolition often leads to the mixing of potentially valuable mate-

rials and contamination of non-hazardous components, selective demolition allows the use of 

these separated and uncontaminated materials in future applications. 

The concept of selective demolition is still often seen by the construction and demolition indus-

tries as being of debateable economic benefit and little practical value. However, a detailed eco-

nomic analysis of conventional versus selective demolition [1] showed that in spite of the eco-

nomic viability of selective demolition depending largely on labour costs, tipping fees, and 

market prices for recovered materials, it may ultimately be more profitable than the conven-

tional demolition approach. Furthermore, there are clear benefits from an environmental point 

of view from using selective demolition, namely in a direct reduction in the material sent to 

landfill [2, 3] as well as other environmental impacts specifically caused by climatic change, 

acidification, summer smog, nitrification and amount of heavy metals [4]. These result from the 

emission of a wide array of substances, all of which are known to be important pollutants. 

The use of recycled aggregates (RA), as replacement for natural aggregates (NA), in construc-

tion applications has been considered as one of the most effective approaches for recycling 

given materials from CDW, thus contributing to a greater sustainability in construction. In-
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deed, extensive scientific research and development work on this subject has been carried out 

over the last 40 years, which has been becoming increasingly complex, introducing several 

new variables, in which the durability-related performance has also been considered. 

The scope of this investigation was to bring together, analyse and evaluate the published in-

formation on the effect of several factors related to the use of RA on the carbonation behav-

iour of concrete. The data, collated from several studies, was subjected to a statistical analysis 

in order to assess the relationship between carbonation resistance and compressive strength of 

RAC and also utilized as input information on reinforced concrete degradation models to 

evaluate RAC suitability as material for reinforced concrete. 

 

2 RECYCLED AGGREGATES SOURCED FROM CONSTRUCTION 

AND DEMOLITION WASTES 

According to existing specifications [5-20], there are three main types of RA arising from 

CDW, which, after being subjected to proper beneficiation processes in certified recycling 

plants, are suitable for the production of structural concrete; these materials are crushed con-

crete, crushed masonry, and mixed demolition debris. 

Some of these specifications [9, 14, 15, 17] have reached a consensus that, in order to be con-

sidered as recycled concrete aggregate (RCA), they must comprise a minimum of 90%, by 

mass, of Portland cement-based fragments and NA. 

RA sourced from crushed masonry, or recycled masonry aggregates (RMA), may include: 

aerated and lightweight concrete blocks; ceramic bricks; blast-furnace slag bricks and blocks; 

ceramic roofing tiles and shingles; and sand-lime bricks [21]. RMA are composed of a mini-

mum of 90%, by mass, of the summation of the aforementioned materials. 

Aggregates acquired from mixed demolition debris, or mixed recycled aggregates (MRA), are a 

mixture of the two main components obtained from the beneficiation process of CDW: crushed 
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and graded concrete and masonry rubble. Some specifications [7, 15] state that they are com-

posed of less than 90%, by mass, of Portland cement-based fragments and NA. In other words, 

they may contain several other common CDW materials such as masonry-based materials. 

 

3 FACTORS AFFECTING THE CARBONATION OF RECYCLED 

AGGREGATE CONCRETE 

The durability of concrete is an essential subject as it allows understanding the performance 

of concrete throughout the service life of a structure. The reduced durability of concrete may 

be prompted by external agents arising from the environment or by internal agents within 

concrete [22]. One of the degradation phenomena that deserves most attention is reinforce-

ment corrosion, which is one of the most important and difficult to intervene pathological 

manifestations that affect reinforced concrete structures [23, 24]. 

The alkalinity resulting from the cement’s hydration process protects the reinforcement from 

corrosion until chemical or physical changes occur, which enable external aggressive agents 

to act. The two main phenomena that initiate reinforcement corrosion, by destroying the pas-

sive coating on reinforcing bars, are carbonation and chloride ingress [25]. Carbonation of 

concrete can be described as a physical-chemical process in which a series of chemical reac-

tions occur in the presence of carbon dioxide (CO2), which fosters the reduction of pH in con-

crete. CO2, which penetrates concrete predominantly through a diffusion mechanism, slowly 

proceeds from the surface of the concrete inwards. The actual rate of carbonation depends on 

the permeability of concrete, its moisture content and the environment’s CO2 content and rela-

tive humidity. In the presence of moisture, CO2 forms carbonic acid, which reacts with cal-

cium hydroxide (Ca(OH)2) to produce calcium carbonate (CaCO3). This process results in a 

slightly increased strength and a reduced permeability, as a result of the deposition of CaCO3 

in the voids within the cement matrix [22]. 
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The literature review has shown that recycled aggregate concrete (RAC) tends to exhibit 

greater carbonation than a corresponding natural aggregate concrete (NAC), and that the 

magnitude of the difference depends on several factors related to the use of RA that are dis-

cussed in the following sections. 

3.1 Recycled aggregate replacement ratio 

Generally, according to the literature [21, 26-42], as the replacement level increases, the car-

bonation depth of RAC also increases. All other factors remaining constant, since RA have 

greater water absorption than that of NA, the porosity of RAC is much greater than that of 

NAC for the same w/c ratio, therefore reducing the carbonation resistance of RAC. 

A statistical analysis was performed on the relative carbonation depth of concrete mixes with 

increasing RA content against that of corresponding NAC mixes. Figure 1a and b, which in-

clude a 95% confidence interval, were based on the results of 600 and 360 measurements 

from mixes made with coarse and fine RA, respectively, sourced from 10 publications [26, 

27, 30, 43-48]. A substantial difference can be seen between the two figures; whilst mixes 

made with 100% coarse RA content have a 95% probability of exhibiting carbonation depths 

up to almost 2.5 times greater than that of a corresponding NAC, for the same incorporation 

ratio of fine RA, this value increased to 8.7 times. This is mainly due to the fact that fine RA 

normally exhibit greater water absorption than coarse RA and thus increase the permeability 

of the resulting concrete [36, 49, 50]. However, by limiting the sample to RCA alone, it was 

found that when 100% coarse or fine RCA are introduced, the upper limits of the 95% confi-

dence interval suggest that RAC mixes may show carbonation depths up to 2.15 and 6.03 

times greater, respectively, than those of the NAC. The value obtained for coarse RCA is 

practically in agreement with the range proposed by BCSJ [5], which states that RAC pro-

duced with coarse RCA may exhibit carbonation depths between 1.2 to 2 times higher than 

those of controlled mixes. 
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However, it was perceived that some RAC mixes showed similar or higher resistance to car-

bonation than NAC, as suggested by the lower limit of the 95% confidence interval in Figure 

1a. This is an unusual occurrence, which may either be due to some coarse RA absorbing part 

of the mixing water, thus reducing the w/c ratio, or the use of the equivalent mortar volume 

(EMV) method [46, 51]. Xiao et al. [42] also suggested that, since RCA contain old adhered 

mortar, the total cement content of RAC is greater than that of NAC, which means there are 

larger quantities of materials available for carbonation, thus improving the carbonation resis-

tance of RAC. This, however, was not noticed for mixes containing fine RA. The lower limit 

of the 95% confidence range in Figure 1b shows that the inclusion of increasing amounts of 

fine RA will most likely cause an increase in carbonation depth. 

In some cases [36, 52-60], by adjusting the w/c ratio of concrete mixes with increasing coarse 

RCA in order to obtain the same target strength as that of NAC, it was found that it was pos-

sible to obtain specimens with equivalent carbonation depths. Following this line of thought, 

other researchers [61, 62] have also produced RAC with increasing the cement content and 

replacement levels of RCA and RMA of different sizes. The results showed that the carbona-

tion depths of the resulting RAC with increasing replacement levels of RA of different types 

and sizes were similar to or lower than those of the NAC. 

In another study [63], where RAC mixes exhibited better resistance to carbonation than that of 

NAC, air dried RCA were used, which may have absorbed part of the mixing water, thereby 

reducing the w/c ratio. This may have resulted in mixes with less porosity and hence equiva-

lent carbonation depth to that of corresponding NAC mixes. 

3.2 Recycled aggregates subjected to different crushing procedures 

Pedro et al. [64] studied in depth the influence of the crushing procedure of RA on the proper-

ties of RAC. Two types of RCA were studied, one subjected only to a primary crushing stage 

(RCA-1), whilst the other was subjected to primary plus secondary crushing stages (RCA-2). 
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The second procedure allowed producing rounder RCA with less old mortar adhered to its 

surface. Concrete mixes made with these aggregates showed strength improvements between 

7% and 15% in comparison to mixes made with RCA-1. This trend was also noticeable in the 

carbonation of concrete. Figure 2 shows the influence of adding RCA subjected to different 

crushing procedures on the carbonation of concrete. Results showed that all specimens pro-

duced with aggregates subjected to both primary and crushing procedures exhibited slightly 

lower carbonation depths than when using aggregates subjected to a primary crushing proce-

dure only. This can be explained by two factors. The secondary crushing procedure normally 

produces aggregates with a more spherical shape, thus allowing better packing of concrete. 

Since all mixes had to exhibit similar workability levels, the water content had to be reduced, 

which resulted in reduced porosity. By performing the secondary crushing procedure, there is 

further reduction of the adhered mortar content, which translates into a less porous aggregate, 

therefore able to produce concrete with less permeability. 

3.3 Quality of the recycled aggregate 

Gomes and de Brito [31] performed a very specific and detailed study on the influence of add-

ing different RA types, such as RCA, RMA and MRA, on the durability-related properties of 

RAC. The MRA used was composed of 30% RMA and 70% RCA. When comparing the car-

bonation depth of RAC produced with 50% coarse RCA, 25% coarse RMA and 37.5% coarse 

MRA with that of the corresponding NAC mixes, it was found that they all exhibited around 

30% higher carbonation depths. These results are interesting considering that the weighed 

water absorption and oven-dried density of the aforementioned RA were very similar, which 

is in agreement with the findings of Silva et al. [65]. In this study, a performance-based classi-

fication using the relationship between the water absorption and oven-dried density of RA 

was proposed. The use of this simple methodology allows categorizing RA based on their 

most easily accessible physical properties, instead of classifying them solely based on their 
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composition, as done by some specifications [6, 9, 14-16, 18]. In other studies [66, 67], the 

use of this classification system showed strong and very strong correlations in terms of com-

pressive strength and modulus of elasticity prediction. In other words, as the quality of RA 

worsens, so does the performance of concrete. 

Ryu [39] produced concrete mixes with a w/c ratio of 0.55 and with coarse RCA from materi-

als with different strength and varying adhered cement paste content. All RAC mixes with 

100% coarse RCA exhibited 20% greater carbonation depths. With this in mind, the author 

concluded that the strength of the source concrete and the quantity of adhered mortar had little 

or no effect on the carbonation depth of RAC when compared to that of the corresponding 

NAC, provided that the RCA used had similar water absorption. This was also observed in 

other publications [32, 41, 68, 69]. 

Katz [44] produced RAC with RCA from concrete materials crushed 1, 3 and 28 days after 

casting. The reason behind this was to study the effect of subjecting young age concrete mate-

rials to a crushing process and understand if it would have any influence on the removal of 

adhered mortar. Irrespective of crushing age, the results showed that all RCA exhibited simi-

lar adhered mortar content and water absorption values, which may have also allowed produc-

ing RAC mixes with similar carbonation depths. These findings strengthen the theory behind 

the aforementioned studies [31, 32, 39, 41, 68, 69] in that the use of RCA with similar quality 

allows producing RAC with equivalent behaviour to carbonation, even if the aggregates are 

subjected to a crushing process at different ages. 

Xiao et al. [42] evaluated the influence of adding RA sourced from concrete with different 

strength on the carbonation of RAC. As expected, the incorporation of 100% coarse RCA 

resulted in greater carbonation depths. RAC mixes produced with RCA sourced from concrete 

specimens with compressive strength values of 20 MPa, 30 MPa and 50 MPa exhibited car-

bonation depths 80%, 26% and 10% greater, respectively, than that of the control NAC. 
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Cui et al. [70] and Zhang and Yan [71], cited by Xiao et al. [72], have also observed that us-

ing RCA from high-strength concrete can reduce the carbonation depth of RAC. 

3.4 Exposure to different curing conditions 

Since the permeability of concrete is governed by the w/c ratio and the effectiveness of cur-

ing, concrete with a high w/c ratio and inadequately cured will be more prone to carbonation. 

For concrete made with normal weight aggregates, permeability is mainly governed by the 

porosity of the cement paste, which is influenced by the w/c ratio and age of concrete [22]. 

The permeability of concrete is generally of the same order when it is made with normal 

weight aggregates with similar water absorption. However, the use of more porous aggregates 

will increase the permeability of concrete and thus the carbonation rate [22]. 

The interruption of moist curing by a period of drying is also known to cause an increase in 

permeability due of the creation of water passages by minute shrinkage cracks around aggre-

gate particles, especially large ones [22]. 

Amorim et al. [26] studied the influence of the environmental conditions on the durability-

related performance of concrete with increasing coarse RCA content. As the laboratory envi-

ronment was the driest, with an average relative humidity of 60% and temperature of 20 ºC, 

the specimens cured in it had a greater carbonation depth than those in the other environments 

considered in the test program (Figure 3). These specimens showed a clear increase in car-

bonation depth as the replacement level increased (30% increase when 100% coarse RCA 

were used, at 91 days). 

Other researchers [27] have also performed tests to assess whether exposing RAC to different 

environmental conditions has any effect on the carbonation depth relative to that of the corre-

sponding NAC mixes. When specimens were cured in a drier environment, the carbonation 

depths increased proportionally for all mixes. 

3.5 Influence of the water reducing admixtures 
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Due to the relatively high water absorption and rougher surfaces of RA, a greater amount of water 

is needed to maintain the same workability of an equivalent NAC composition. By controlling the 

amount of superplasticizers, it is possible to obtain a concrete mix with the same total w/c ratio as 

that of the control NAC and offset part of the loss in performance from using RA [73]. 

An experimental investigation performed by Cartuxo [48] evaluated the carbonation behav-

iour of concrete produced with increasing fine RCA content and superplasticizers with differ-

ent water-reducing capacities (Figure 4). Apart from the control NAC and RAC mixes with-

out any admixtures, two other sets of mixes were made with 1% by weight of cement of water 

reducing admixtures; one with a regular admixture (SP1) and the other using a high-range 

water reducing admixture (SP2). Every concrete mix had a fixed cement content of 350 

kg/m
3
. As expected, the incorporation of fine RCA resulted in an increase of carbonation 

depth in all mixes. The results also showed that the use of SP1 allowed producing mixes made 

with 100% fine RCA with up to 2% less carbonation depth, whilst the use of SP2 decreased 

carbonation by 52%. These results are a direct consequence of the SP1’s lower water reduc-

tion efficacy with increasing fine RCA content, since mixes containing this admixture re-

quired a greater amount of water for higher replacement levels, which led to greater relative 

coefficients of accelerated carbonation. 

This trend was also observed by Matias et al. [74], who studied the effect of different super-

plasticizers on the performance of concrete with coarse RCA. It has been suggested that a 

high internal humidity content alongside the specimens’ lower porosity, as a result of a lower 

w/c ratio, would allow slower water evaporation, similar to an extended cure and thus par-

tially contribute to decrease carbonation depth [27]. The use of superplasticizers delays the 

cement’s hydration time, which is equivalent to a prolonged cure, thus improving the carbona-

tion depth results for mixes using superplasticizers. 
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3.6 Carbonation over time 

Kou and Poon [75, 76] studied the long-term mechanical and durability properties of RAC pre-

pared with increasing coarse RCA and varying fly ash content. The carbonation depths of con-

crete mixes with coarse RCA and exposed to outdoor environment are plotted in Figure 5. 

These measurements were taken 28 days, 1, 3, 5 and 10 years after casting (28, 365, 1095, 1825 

and 3650 days, respectively). All concrete mixes were produced with a w/c ratio of 0.55 and 

cement content of 410 kg/m
3
. Over time, the carbonation development of RAC mixes is parallel 

to that of the corresponding NAC mixes. Furthermore, after 1 year, carbonation seems to be 

progressing at a linear rate of 0.80 to 0.85 mm/year, irrespective of the replacement level. 

3.7 Effect of mineral additions 

Resuming the study conducted by Kou and Poon [75, 76], Figure 5b, c and d plot the carbona-

tion depth of concrete mixes with varying coarse RCA and fly ash content, measured over the 

course of 10 years. The results show that incorporating increasing fly ash content led to higher 

carbonation depths. This is mainly attributed to the lower Ca(OH)2 content in the concrete con-

taining fly ash, which decreased the amount of constituents capable of becoming carbonated. 

After 10 years of outdoor exposure, comparison with the concrete mixes without fly ash showed 

that the NAC and RAC mixes with 100% coarse RCA and with fly ash content of 55% had ap-

proximately 70% and 90% greater carbonation depths, respectively. 

Sim and Park [77] analysed the carbonation behaviour of concrete mixes made with 100% 

coarse RCA and incremental ratios of fine RCA as well as varying fly ash content. As ex-

pected, as the fly ash content increased so did the carbonation depth of concrete. Again, this 

can be explained by the concrete’s decreasing alkalinity in the cementitious material and the 

fact that the calcium silicate hydrate (CSH) formed from the pozzolanic reaction absorbs more 

alkali ions, hence lowering the pH level in concrete [78, 79]. 
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In another study [80], however, mixes prepared with RA and fly ash exhibited lower carbona-

tion depths than those of the control NAC. The extrapolated values of the carbonation depth 

after 1 year were 8.6 mm, 6.5 mm and 5.9 mm, respectively, for control concrete mixes, RAC 

27% fly ash by weight of total binder content and RAC without any additions. The reason for 

this can be easily explained by the mix design; whilst the control mix was produced with a 

w/c ratio and cement content of 0.56 and 410 kg/m
3
, respectively, for the RAC mix containing 

fly ash these values were 0.40 and 500 kg/m
3
. This indicates that, besides exhibiting lesser 

permeability due to being produced with a lower w/c ratio, the latter mix’s Ca(OH)2 content is 

greater thus leading to slower carbonation rates. 

Xiao et al. [42] evaluated the effect of replacing 10% by weight of the cement with fly ash, 

silica fume and slag on the carbonation behaviour of RAC. The use of these mineral additions 

resulted in an improvement of the internal pore structure, consequently decreasing the poros-

ity of the RAC, and also improved the ITZ between the coarse RCA and the new cement 

paste. However, using such materials has also decreased the total alkaline content that can be 

carbonated, thus resulting in greater carbonation depths (Figure 6). 

In another study, Shayan and Xu [81] added silica fume and lime in a sodium silicate solution. 

This sodium solution was used to consolidate the RCA’s surface in an attempt to improve the 

interfacial transition zone (ITZ) between the RCA and the new cement paste. However, the 

use of these materials was not effective since the resulting concrete specimens exhibited 

greater carbonation depths than mixes with untreated RCA. 
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4 RELATIONSHIP BETWEEN COMPRESSIVE STRENGTH AND 

ACCELERATED CARBONATION COEFFICIENT OF RECYCLED 

AGGREGATE CONCRETE 

The process of CO2 diffusion can be modelled after Fick’s first law. The initial model to pre-

dict carbonation depth [82] is based on the diffusion law and considers that the carbonation 

rate is proportional to the square root of the time of exposure to CO2: 

      (1) 

Where x is the carbonation depth (mm); K the carbonation coefficient (mm.year
-0.5

); and t the 

exposure time to CO2 (year). 

The carbonation coefficient summarises several parameters, assumed to be constant: CO2 

concentration, the amount of CO2 required to carbonate a unit volume of concrete, and diffu-

sion coefficient for CO2 through carbonated concrete. 

However, in real exposure conditions, CO2 concentration is not constant over time, the diffu-

sion coefficient is sensitive to relative humidity and dry-wet cycles and the amount of CO2 

required to carbonate a unit volume of concrete depends on the amount of CO2 available in-

side it [83], because for regular CO2 concentrations only the hydrated cement compounds re-

act with CO2, while for high CO2 concentrations these and the anhydrous cement compounds 

both react with it [84]. 

The use of concrete’s compressive strength to estimate the resistance to carbonation is fre-

quent. There have been proposals for linear [85], exponential [86] and power equation rela-

tionships [87] between these two properties. 

Figure 7 presents the relationship between the coefficient of accelerated carbonation (kac) and 

the 28-day compressive strength of mixes with varying coarse and fine RA content. Figure 7a 

and b are based on the results of 630 and 479 measurements, respectively, sourced from sev-

eral publications [26, 27, 30, 43-48]. Concrete mixes used in this figure were exposed to a 
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controlled environment containing 4% to 5% CO2 content and contain several RA types (i.e. 

RCA, RMA, MRA). By analysing the power regressions belonging to NAC and RAC mixes 

with 100% coarse RA, presented in Figure 7a, it is seen that their development is very similar. 

This trend can also be seen in Figure 7b, where the regressions obtained for mixes with vary-

ing fine RA content show negligible differences. These results suggest that the coefficient of 

accelerated carbonation mainly depends on the compressive strength of concrete regardless of 

the content, type and size of RA. In other words, for the same compressive strength, RAC 

mixes will present similar carbonation coefficient to those of NAC mixes. This is in agree-

ment with several researches [36, 52-60], in which the authors adjusted the w/c ratio of RAC 

mixes in order to obtain similar compressive strength to that of the control NAC. 

However, the statistical analysis performed in section 3.1 showed that RAC mixes with in-

creasing RA content tend to exhibit greater carbonation depths, and thus coefficients of accel-

erated carbonation, than those of the NAC produced with a similar mix design (i.e. cement 

content, effective w/c ratio). Generally, for the same mix design, RAC mixes exhibit decreas-

ing compressive strength with increasing RA content. This was established in a statistical 

analysis, performed by the authors in their previous study [66], based on the results of 787 

concrete mixes, made with coarse and fine RA of different type and origin, sourced from 65 

publications. For this reason, it is reasonable to assume that the increase of the coefficient of 

accelerated carbonation is inversely proportional to the compressive strength with increasing 

RA content, which explains the similar correlation between these two properties in RAC and 

NAC mixes. Using the upper limits of the 95% confidence interval expressed in Figure 1, it 

was possible to obtain a set of correction factors for the coefficient of accelerated carbonation 

of concrete mixes with increasing coarse or fine RCA content (see Table 1). These may only 

be applied in RAC mixes with a similar mix design to that of reference NAC. 

Considering the previous results, and given the positive experience in other studies [88-90] of 
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power type regression functions to estimate the coefficient of accelerated carbonation, based 

on the compressive strength, the authors decided to use a power regression for all concrete 

mixes regardless of RA type, size and content (see Figure 8). A coefficient of determination 

(R
2
) of 0.74 was obtained, which means that 74% of the total variation of the coefficient of 

accelerated carbonation can be explained by its relationship with the 28-day compressive 

strength. The remainder may be explained due to a number of factors, which depend on each 

experimental investigation. These include compaction and curing conditions of concrete, type 

of cement, cement amount, w/c ratio, conditions of exposure to CO2 and even the porosity of 

the RA themselves. According to Piaw [91], the corresponding coefficient of correlation (R = 

0.86) shows that there is a strong correlation between the two variables. The number and vari-

ability of data used, makes this result more relevant. Actually, when applying the correlation 

test [92] to assess whether the correlation coefficient is statistically significant, a p-value of 

2.8510
-277

 was obtained. 

The p-value represents the level of confidence to accept the null hypothesis. In this test, the 

null hypothesis is that the two variables are not correlated, while the alternative hypothesis is 

that they are. In this test, the p-value is the probability returned by a Student distribution, with 

N-2 degrees of freedom, for the test statistic calculated as: 

    
   

    
   (2) 

Where T is the statistic of correlation test, R is the correlation coefficient (R = 0.86) and N is the 

number of measurement pairs (N = 933). As the null hypothesis cannot be accepted for reasonable 

levels of confidence, the variables are assumed to have a statistically significant correlation. 

The upper and lower limits of the 95% confidence interval can also be seen in Figure 8. As 

observed in another study [90], the dispersion of the coefficient of accelerated carbonation 

tends to be higher in concrete mixes with lower compressive strength. The upper and lower 

limits of the confidence interval are, respectively: 



  

16 

 

           
    

      
 (3) 

           
    

      
 (4) 

Figure 9 presents a comparison of the curves shown in Figure 8 with those obtained in other 

publications [87, 90]. For the same compressive strength, the relationship proposed by Neves 

[90] returns a greater coefficient of accelerated carbonation than that of the regression ob-

tained in this paper. The relationships proposed by Gonçalves et al. [87] for mixes produced 

with other types of cement) result in a higher coefficient of accelerated carbonation for com-

pressive strength values over 25 to 35 MPa. Nevertheless, all curves were similar to or below 

the upper limit of the 95% confidence interval, except for the LNEC-E465b curve. This may 

be due to the fact that this curve corresponds to concrete mixes made with cement types other 

than type CEM I cement, which is normally used by researchers to produce RAC. In fact, 

most of the values that were above the upper limit belong to Kou and Poon [75], who pro-

duced RAC mixes using a binder with increasing fly ash content as partial replacement for 

cement. For this reason, they obtained higher coefficients of accelerated carbonation, for the 

same compressive strength, in comparison to those of other concrete mixes produced with 

cement type CEM I [94]. 

 

5 CARBONATION INDUCED CORROSION OF REINFORCED RE-

CYCLED AGGREGATE CONCRETE 

Reinforcing steel corrosion is the most common deterioration mechanism in reinforced con-

crete structures [95-97] and is usually induced by concrete carbonation or chloride penetra-

tion. Although chloride-induced corrosion is considered to be worse than carbonation-induced 

corrosion, Parrott [98] apud Jones et al. [99] states that 2/3 of all structural concrete is ex-

posed to environmental conditions that favour carbonation-induced corrosion. In Taipei, sig-

nificant carbonation-induced corrosion of existing concrete bridges has been observed before 
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10-15 years after construction [100]. Therefore, concrete resistance to carbonation is para-

mount information. To evaluate carbonation resistance, usually expressed as a carbonation 

coefficient (see Eq. (1)), with timely delivery of results, accelerated tests have to be used in 

which concrete is exposed to mediums with relatively high CO2. 

There have been attempts to establish a linear relationship between the coefficients of acceler-

ated carbonation and those of natural carbonation of concrete [84, 101, 102]. This would al-

low predicting the carbonation depth of concrete subjected to natural conditions by means of 

simple and relatively fast laboratory tests. Indeed, some specifications already consider linear 

relationships in carbonation models [93, 103]. 

Neves et al. [102] investigated the linear relationship between the carbonation resistance in 

accelerated and natural conditions, using cores drilled from 96 locations in real structures, 

using different structural elements, exposed to environmental class XC3 or XC4 [104], whose 

age ranged from 4 to 32 years. This investigation allowed the authors predicting the carbona-

tion depth evolution over time in natural conditions by using the following model: 

  
   

  
   (5) 

Where x is the carbonation depth (mm); kac the coefficient of accelerated carbonation 

(mm.year
-0.5

); ke the environmental parameter, being 9.9 for environmental class XC3 and 

15.0 for environmental class XC4; and t is the exposure time to CO2 (year). 

A description of the environment of XC3 and XC4 classes can be found in EN 206-1 [104]. 

Based on Eq. (5) and on reliability concepts, Neves et al. [23] proposed a methodology to 

establish requirements regarding resistance to carbonation induced corrosion of reinforced 

concrete, by using the following formula: 

    
     

       
 (6) 

Where kac is the coefficient of accelerated carbonation (mm.year
-0.5

); cd the reinforcement 
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cover design value (mm); ke the environmental parameter; γs is the safety factor, being 1.0 for 

environmental class XC3 and 1.25 for environmental class XC4; and tsl is the specified ser-

vice life (year). This methodology is a variation of the approach proposed in the Model Code 

for Service Life Design (MCSLD) [103]. 

Assuming the validity of the aforementioned methodologies for RAC, with the use of acceler-

ated carbonation tests, it is possible to estimate the required accelerated carbonation resistance 

of a reinforced RAC exposed to natural carbonation conditions. 

Considering both methodologies and the most severe environmental classes (XC3 and XC4), as 

well as the reinforcement covers specified in table 4.4N of EN 1992 [105] for a structural class 

S4 and a intended service life of 50 years, the threshold values of accelerated carbonation coef-

ficients, which represent the inverse of accelerated carbonation resistance, are presented in Ta-

ble 2. Although it may seem odd to have less demanding accelerated carbonation resistance 

requirements for the most aggressive of the environmental classes considered, one should bear 

in mind that design reinforcement cover is different in the two classes, being thicker (more pro-

tective) for XC4, thus allowing less demanding accelerated carbonation resistance. 

A cumulative distribution of accelerated carbonation coefficients of mixes containing RA, 

collected in literature, is presented in Figure 10, where the threshold values presented in Table 

2 are also identified. Approximately 88% of the collated RAC mixes are fit for XC4 environ-

mental class, considering a target service life of 50 year and a nominal reinforcement cover of 

35 mm, while for XC3 environmental class with a nominal reinforcement cover of 40 mm, the 

ratio drops to 74%, considering the methodology proposed by Neves et al. [23] or 59%, con-

sidering the methodology from MCSLD [103]. Therefore, one can infer that it is not difficult 

to design RAC mixes fit for reinforced concrete structures. 

Nevertheless, as some of the collated RAC mixes do not fulfil the required accelerated carbona-

tion resistance, a deeper analysis was made aiming at finding the parameters that can limit the 
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use of RAC in reinforced concrete. It turned out that neither the source nor the size and percent-

age of replacement of RA prevent per se the application of RAC in reinforced concrete subject 

to environmental classes XC3 and XC4. Therefore, the analysis continued comparing the limit-

ing values for composition and properties of conventional concrete mixes, recommended in EN 

206-1 [104], with those of collated RAC mixes fulfilling the required accelerated carbonation 

resistance (Table 2). It was found that, except in one study, all RAC mixes that meet the rec-

ommended limits for conventional concrete mixes are suitable for reinforced concrete, subject 

to XC3 and XC4 environmental classes. The exception is a case in which a considerable per-

centage of replacement of cement by fly ash (over 20%) was used [75], where the accelerated 

carbonation resistance did not fulfil the requirements for the more demanding environmental 

class (XC3), in terms of accelerated carbonation resistance. As the limiting values for composi-

tion and properties of conventional concrete mixes, recommended in EN 206-1 [104], are appli-

cable when binder is CEM I [94], the reported exception must be devalued. Therefore, this 

analysis makes it very clear that RAC is a suitable material for reinforced concrete structures 

subject to carbonation induced corrosion, since the RAC mixes meet the recommended limiting 

values in EN 206-1 [104] for composition and properties of conventional concrete mixes. 

 

6 CONCLUSIONS 

The following conclusions were drawn from studying the various factors related to the inclu-

sion of RA on the carbonation of concrete: 

• The incorporation of increasing amounts of RA causes greater carbonation depths, as-

suming all other factors are equal. The use of 100% coarse RCA in concrete may 

cause up to 2 times the carbonation depths of those of the corresponding NAC mixes; 

• As far as the RA type effect on carbonation is concerned, it was found that, for a 

given replacement level, RMA cause greater carbonation depths than RCA. In an 
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MRA blend, as the RMA content increases so does the carbonation depth of the re-

sulting concrete. Since carbonation is closely related to the porosity of concrete, it 

is obvious that the incorporation of increasingly porous RA will create a more 

permeable concrete, and hence greater carbonation depths; 

• The size of the RA also has a clear effect on the carbonation behaviour of con-

crete. There is a greater probability that concrete mixes made with fine RCA ex-

hibit greater carbonation depths than those of mixes with coarse RCA. This can be 

easily explained by the greater porosity of the fine RCA due to the greater amount 

of adhered mortar, which could not be separated during the recycling process; 

• The incorporation of extra crushing stages during the RCA’s recycling process 

may result in lower carbonation depths. This happens as a result of the aggregates’ 

rounder surface, which allows better packing, and also because of the lower con-

tent of porous adhered mortar; 

• The strength of the original material has little or no effect on the carbonation depth 

of concrete provided that RA obtained from them exhibit similar water absorption. 

Nevertheless, it is also possible that the RCA sourced from concrete materials with 

different target strength also exhibit different water absorption values. In these 

cases, there is a clear difference in the internal porosity of the RCA’s adhered mor-

tar, which will affect the permeability of the resulting concrete and hence its re-

sponse to carbonation; 

• The incorporation of coarse RCA from concrete materials crushed at different ages 

had no effect on the carbonation depth of concrete, i.e. regardless of the age at 

which a concrete material is processed, the resulting RCA will produce concrete 

with similar resistance to carbonation; 
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• When compared to a corresponding NAC, RAC specimens with a given replacement 

level appear to exhibit a similar difference in carbonation depth regardless of the cur-

ing conditions. This means that the environmental conditions in which the concrete 

specimens are cured have no effect on the carbonation depth of RAC mixes with in-

creasing RA content relative to NAC under the same curing conditions; 

• It is possible to produce RAC with similar target strength and carbonation depths to 

those of a conventional concrete. However, for this to happen, a greater amount of 

cement would have to be used in the RAC’s production to compensate the RA’s 

greater porosity in relation to that of the NA. Another approach would be decreasing 

the w/c ratio whilst maintaining the cement content. Naturally, this mix would have to 

be accompanied by superplasticizers in order to maintain similar workability levels; 

• Reducing the w/c ratio of RAC mixes with the help of water reducing admixtures 

is an effective method to increase mechanical performance as well as to reduce 

carbonation. However, it was also concluded that it is preferable to control the 

quality and content of RA in the mix, since these have a greater influence on this 

property than lowering the w/c ratio by using water reducing admixtures; 

• Concrete specimens with increasing replacement levels and exposed to an outdoor 

environment showed slightly higher coefficients of carbonation, yet with a parallel 

carbonation development over a period of 10 years. In other words, the absolute 

difference in carbonation depth between a RAC and a corresponding NAC appears 

to remain unchanged over time; 

• The use of mineral additions as cement replacement causes greater carbonation 

depths than those of mixes without them. This happens because the Ca(OH)2 con-

tent decreases thus lowering the pH of concrete. Nevertheless, irrespective of the 

presence of RCA, the difference in carbonation depth is similar over time to that of 
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the corresponding NAC, with or without any mineral additions; 

• RAC mixes exhibit a similar relationship between the coefficient of accelerated 

carbonation and compressive strength when compared with NAC. The relationship 

presented in this study, which was compatible with those obtained in other publi-

cations, is applicable to concrete mixes produced with cement type CEM I; 

• The use of the relationships and methodologies presented in this paper showed that 

RAC mixes meeting the recommended limiting values for conventional concrete 

mixes exhibit carbonation resistance performances adequate to accomplish the tar-

get service life and therefore that RAC is a suitable material for reinforced con-

crete structures subject to carbonation induced corrosion. This may facilitate the 

wider use of RA in the production of structural concrete, since it shows compati-

bility with conventional NAC and it is reasonably easy to design for a given envi-

ronmental class, target service life and reinforcement cover. 
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TABLES AND FIGURES 

Table captions 

Table 1 - Correction factors for coefficient of carbonation for mixes with increasing RCA 

Table 2 - Required accelerated carbonation resistances 
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Table 1 - Correction factors for coefficient of carbonation for mixes with increasing RCA 

Coefficient of carbonation correction factors 

20% RCA 50% RCA 100% RCA 

Coarse Fine Coarse Fine Coarse Fine 

1.25 2.00 1.60 3.50 2.15 6.00 
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Table 2 - Maximum allowable accelerated carbonation resistances 

Environmental class 

Accelerated carbonation coefficient 
(mm/year0.5) 

Neves et al. [23] MSCLD [103] 

XC3 35 24 

XC4 50 47 
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Figure captions 

Figure 1 - Relative carbonation depth versus replacement level 

Figure 2 - Carbonation depth of concrete with a target strength of: a) 20 MPa; b) 45 MPa; 65 

MPa (adapted from Pedro et al. [64]) 

Figure 3 - Carbonated depth of concrete cured in different environments (adapted from 

Amorim et al. [26]) 

Figure 4 - Influence of superplasticizers on the carbonation depth of concrete made with 

increasing fine RCA content (adapted from Cartuxo [48]) 

Figure 5 - Carbonation depth over time of concrete mixes with increasing coarse RCA content 

and varying fly ash content: a) No fly ash; b) 25% fly ash; c) 35% fly ash; 55% fly ash 

(adapted from Kou and Poon [75, 76]) 

Figure 6 - Effect of mineral additions on carbonation depth of RAC (FA- fly ash; SF - silica 

fume; S - slag) (adapted from Xiao et al. [42]) 

Figure 7 - Relationship between the coefficient of accelerated carbonation and the 28-day 

compressive strength for mixes with varying: a) coarse RA content; b) fine RA content  

Figure 8 - Relationship between the coefficient of accelerated carbonation and the 28-day 

compressive strength for all mixes 

Figure 9 - Comparison of relationships between the coefficient of accelerated carbonation and 

the 28-day compressive strength 

Figure 10 - Cumulative distribution of RAC accelerated carbonation coefficients 
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a) 

 

b) 

Figure 1 - Relative carbonation depth versus replacement level 
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a) 

 

b) 

 

c) 

Figure 2 - Carbonation depth of concrete with a target strength of: a) 20 MPa; b) 45 MPa; 65 MPa (adapted from 

Pedro et al. [64]) 
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Figure 3 - Carbonated depth of concrete cured in different environments (adapted from Amorim et al. [26]) 
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Figure 4 - Influence of superplasticizers on the carbonation depth of concrete made with increasing fine RCA 

content (adapted from Cartuxo [48]) 
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a) 

 

b) 

 

c) 

 

d) 

Figure 5 - Carbonation depth over time of concrete mixes with increasing coarse RCA content and varying fly 

ash content: a) No fly ash; b) 25% fly ash; c) 35% fly ash; 55% fly ash (adapted from Kou and Poon [75, 76]) 
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Figure 6 - Effect of mineral additions on carbonation depth of RAC (FA- fly ash; SF - silica fume; S - slag) 

(adapted from Xiao et al. [42]) 
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a) 

 

b) 

Figure 7 - Relationship between the coefficient of accelerated carbonation and the 28-day compressive strength 

for mixes with varying: a) coarse RA content; b) fine RA content 
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Figure 8 - Relationship between the coefficient of accelerated carbonation and the 28-day compressive strength 

for all mixes 
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Figure 9 - Comparison of relationships between the coefficient of accelerated carbonation and the 28-day com-

pressive strength 
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Figure 10 - Cumulative distribution of RAC accelerated carbonation coefficients 
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