Control of Harmful Hydrocarbon Species in the Exhaust of Modern Advanced GDI Engines

A.O. Hasan, A. Abu-jrai, D.Turner, A. Tsolakis, H.M. Xu, S.E. Golunski, J.M. Herreros

PII: S1352-2310(16)30047-4
DOI: 10.1016/j.atmosenv.2016.01.033
Reference: AEA 14413

To appear in: Atmospheric Environment

Received Date: 31 July 2015
Revised Date: 30 November 2015
Accepted Date: 19 January 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A CCEPTED MANUSCRIPT

H2 Engine V6

Active > 400 °C
Active 250-400 °C
Active < 300 °C

TWC

bsfc (g/kWh)

CE (%)

CE NOx

CE HC

HCCI + Lean

HCCI + Lean + H2

HCCI

SI

HCCI Lean
Control of Harmful Hydrocarbon Species in the Exhaust of Modern Advanced GDI Engines

A.O. Hasana, A. Abu-jraib, D. Turnera, A. Tsolakisa,*, H.M. Xua, S.E. Golunskic, J.M. Herrerosa

aSchool of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT
bDepartment of Environmental Engineering, Al-Hussein Bin Talal University, Maan P.O.Box20, Jordan
cCardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK

Abstract

A qualitative and quantitative analysis of toxic but currently non-regulated hydrocarbon compounds ranging from C\textsubscript{5} - C\textsubscript{11}, before and after a zoned three-way catalytic converter (TWC) in a modern gasoline direct injection (GDI) engine has been studied using gas chromatography-mass spectrometry (GC-MS). The GDI engine has been operated under conventional and advanced combustion modes, which result in better fuel economy and reduced levels of NO\textsubscript{x} with respect to standard SI operation. However, these fuel-efficient conditions are more challenging for the operation of a conventional TWC, and could lead to higher level of emissions released to the environment. Lean combustion leads to the reduction in pumping losses, fuel consumption and in-cylinder emission formation rates. However, lean HCCI will lead to high levels of unburnt HCs while the presence of oxygen will lower the TWC efficiency for NO\textsubscript{x} control.

The effect on the catalytic conversion of the hydrocarbon species of the addition of hydrogen upstream the catalyst has been also investigated. The highest hydrocarbon engine-out emissions were produced for HCCI engine operation at low engine load operation. The catalyst was able to remove most of the hydrocarbon species to low levels (below the permissible exposure limits) for standard and most of the advanced combustion modes, except for naphthalene (classified as possibly carcinogenic to humans by the International Agency for Research on Cancer) and methyl-naphthalene (which has the potential to cause lung damage). However, when hydrogen was added upstream of the catalyst, the catalyst conversion efficiency in reducing methyl-naphthalene and naphthalene was increased by approximately 21\%. This results in simultaneous fuel economy and environmental benefits from the effective combination of advanced combustion and novel aftertreatment systems.

Keywords: Hydrogen, HCCI, Hydrocarbon Speciation, GDI; Three Way Catalytic Converter

* Corresponding Author: Tel.: +44 (0) 121 414 4170
Email Address: a.tsolakis@bham.ac.uk

1
1. Introduction

The motor vehicle is a significant cause of air pollution and human health hazards, especially in urban areas. Automotive exhaust emission regulations are, therefore, becoming progressively stricter due to increasing awareness of the hazardous effects of the chemicals released by road traffic. These include environmental issues such as photochemical smog and undesirable health effects, which are caused by hydrocarbon species emitted into the atmosphere. Furthermore, it is well known that skin, lung and bladder cancer is associated with polycyclic aromatic hydrocarbons (PAHs) in the environment [1]. Therefore, in addition to the regulated engine exhaust emissions (i.e. carbon monoxide, hydrocarbons, nitrogen oxides), it is critical that unregulated species such as methane [2], carbonyl compounds [3] including aldehydes [4] and ketones [2], toluene, benzene [5] and polyaromatic compounds [6] such as naphthalene are monitored and that their impact (i.e. toxicity and photochemical reactivity) on the environment is assessed.

Gasoline direct injection engines are seen as the future of commercial internal combustion engine powertrains due to their benefits on fuel economy and gaseous emissions. However, it is reported that the levels of PM produced by these engines are higher than port fuel injection engines and diesel engines equipped with a diesel particulate filter, thus there is an increased need to investigate the emission of PM [7] and PAHs [8] by GDI engines. Due to their low emissions of NOx and particulate matter (PM) as well as their fuel economy benefits, HCCI and lean burn engines have been also seen as enablers for cleaner vehicles. During lean combustion operation more air than needed for the combustion is induced to the cylinder in order to favour the complete oxidation, this leads to improvements in fuel economy and in-cylinder emissions formation. However, the presence of oxygen in the exhaust dramatically reduces the NOx performance of a conventional TWC. On the other hand, in HCCI the target is to achieve low combustion temperatures and locally lean conditions in order to reduce NOx and PM, although HCCI results in high levels of CO and unburnt total hydrocarbons emissions (THC) due to the low in-cylinder combustion temperature. Furthermore, lean HCCI leads to high levels of CO and unburnt HCs as well as the presence of oxygen in the exhaust. Due to this, there has been a growing interest over the last few years in the study of the carbonyl [9], PAHs [10] and oxygenated emissions, and their origin [11], in this type of engine running on advanced combustion operation. Most of the THCs are derived from unburned fuel being released from the crevice volumes during the expansion stroke, with increasing molecular weight of the fuel increasing the total emissions [12]. The complex reactions that take place during fuel combustion are not yet fully understood [13], but it is reported that the air/fuel (A/F) ratio plays a major role in HC emissions formation during combustion [14]. Furthermore, SI (including GDI and HCCI) engines can operate under stoichiometric, lean and rich conditions, making the function of catalysts in controlling the combustion pollutants challenging, requiring that catalytic technologies are adapted to take care of pollutants under specific conditions such as cold start and stop-start operation.
Catalysts have been used in engine exhaust aftertreatment systems for almost four decades, with
continuous research and development leading to some highly effective technologies. However, there
remain notable challenges associated with low temperature combustion modes such as low engine-out
temperature, high unburned hydrocarbon emissions and the presence of oxygen in the exhaust in
conventional TWC [15][16]. Hydrogen has been researched as an additive to improve the combustion
process in GDI engines [17] and advanced HCCI combustion operation [18], as well as a low-
temperature performance enhancer of different aftertreatment components such as diesel oxidation
catalysts [19] and HC-SCR systems [20]. The beneficial effects of hydrogen are attributed to its
exothermic oxidation increasing the temperature of the active sites as well as its chemical role as a
promoter of catalytic reactions [21]. The main drawback associated with the use of hydrogen on-board
a vehicle is its low density. However, it has been previously demonstrated that only small quantities
of hydrogen are needed, which can be produced on-board the vehicle via catalytic fuel reforming
[18][22].

In the area of hydrocarbon emissions, speciation studies are required because total elemental
concentration may be uninformative and even misleading. There are no regulations or protocols
established for the sampling and speciation of HC molecules. However, there are methodologies
which have been adopted by international bodies for the measurement of different HC species. The
Environmental Protection Agency (EPA) use the method found in [23] for the measurement of
carbonyl emissions and the standard published in [24] has been used by Karavalakis et al. [25] and
Fontaras et al. [26]. The Auto-Oil Air Quality Improvement Research Program (AQIRP), using
capillary GC, [27], achieved separation of more than 140 compounds in the C$_1$ - C$_{12}$ range. This type
of single-column chromatographic approach has also been used in Europe, where extensive studies
have been reported [12][14]. It is become increasingly clear that speciation of the individual
hydrocarbons in gasoline-engine exhaust can provide valuable information about the fuel combustion
process in the engine, the performance of the emissions control systems [28] and the human and
environmental hazards of the pollutants when they are released to the atmosphere.

The overall objectives of this study are to analyse different medium-to-heavy hydrocarbon species
formed under HCCI and SI stoichiometric and lean engine operation, and to understand the influence
of hydrogen addition on a catalyst in reducing these compounds. Hydrocarbon speciation (C$_5$ to C$_{11}$)
of the exhaust gases from HCCI/SI engine operation before and after the catalyst was therefore carried
out. The parameters studied here are a) engine load effect under HCCI stoichiometric condition, b) air
to fuel ratio (stoichiometric and lean), c) HCCI and SI combustion modes under the same load and d)
hydrogen addition upstream of the catalyst.

2. Material and Methods

Engine - The experimental engine was a 3L gasoline direct-injection (wall guided) V6 engine; the
specifications are listed in Table 1. The engine was coupled to a Froude EC 38 eddy current
dynamometer. The valve-train was modified to permit operation in HCCI mode by the provision of a cam profile switching mechanism. This cam profile switching (CPS) system was used to switch between SI and HCCI modes. This system allowed on-line switching of valve lift from 9mm (SI operation) to 3mm (HCCI) operation. The HCCI operation was achieved by internal EGR, using negative valve overlap which trapped exhaust gases in order to retain enough energy for auto-ignition. The variable valve timing system of the engine made it possible to change the valve timing for the inlet and exhaust valves within a 60 crank angle (CA) degree range. More details regarding the engine can be found elsewhere in [29] and [30]. In HCCI mode the engine was operated with a wide open throttle significantly reducing pumping losses. A DSPACE- based system coupled to a computer using MATLAB/SIMULINK software was used to control the engine parameters during operation and data acquisition. The fuel flow rate to the engine was measured with the use of an AVL gravimetric meter. The fuel injection pulse width was adjusted by the engine management system to maintain the required engine operation condition and A/F ratio.

Catalyst - The 3-zone monolith catalyst (supplied by Johnson Matthey as part of the project) was connected to the actual engine exhaust manifold [31]. The first zone was designed to reduce HC and NOx under lean and stoichiometric engine conditions at high temperatures >400°C, the second zone was designed to reduce NOx by reaction with hydrocarbon under lean engine operation in the temperature range of 250°C – 400°C. The third catalyst zone was designed to control part of the exhaust hydrocarbons and CO at temperatures below 300°C.

Gaseous emissions analysis - A Horiba MEXA 7100 DEGR equipped with a heated line (191°C) was used to measure total hydrocarbons, carbon monoxide, carbon dioxide, NOx and oxygen.

Fuel - Unleaded gasoline of 95 RON, composed of 48.3% saturated hydrocarbon, 16.2% olefins, 3.7% napthenes and 30.2% aromatics, was used in this study.

Hydrogen addition - H2 was added to the engine exhaust upstream of the catalyst and was measured using a gas chromatograph (Hewlett-Packard Model GC-5890) fitted with a thermal conductivity detector (GC-TCD).

Hydrocarbon speciation – There is no standard procedure for measuring specific HC species, as they are not individually regulated, thus both the sampling and measurement method were optimised for the experimental conditions and HC species studied. The hydrocarbon speciation of C5 - C11 was carried out using an on-line GC-MS. A Fisons 8000 series GC equipped with direct injector was connected to a Fisons MD 800 mass spectrometer, used as a detector. The gas samples were introduced via a heated line into a six-port Valco valve fitted with a 0.1ml sample loop. The gas sampling apparatus was kept at a constant temperature of 200°C. A 30m long x 0.53mm i.d. DB-1 capillary column with a 3µm film thickness was used for the separation of both the polar and non-polar compounds. The column head pressure was kept at 10psi. The helium carrier gas flow rate was
controlled at a flow rate of 6ml/min. The temperature programme settings (Table 2) were set to flush the heavier hydrocarbons from the column. As there is no established reference procedure and in order to ensure the accuracy of the results, standard mixtures of paraffins, olefins and aromatics with known concentrations were used to calibrate the chromatograph. The components of the standards sample were generally stable under the operation conditions used in this analysis. The retention time of each species was calibrated daily before each set of experiments, by the analysis of a 15 component reference gas (sourced from BOC). The total run time was 20 minutes for the retention times of the species given in Table 3. The integrated area of each specific peak in the chromatogram was used to calculate the concentration of the associated component. The VG Mass-Lab software was used to acquire and integrate the basic GC-MS data.

Hydrocarbon species – The individual compounds that are quantified in this study were chosen because of the impact they have on air quality and ultimately to human health. The Occupational Safety and Health Administration (OSHA) have introduced permissible exposure limits for these species. The limits (are time-weighted average values, calculated for an exposure time of 8 hours. The individual limits are shown in Table 4 [32]. General information regarding the studied species is given below.

Iso-octane is studied as it is a major component in gasoline fuels. **Iso-pentane** is chosen as one of the typical hydrocarbon species derived from iso-octane. **Benzene** has been chosen as it has been classified as human carcinogen by the Environmental Protection Agency (EPA). **Toluene**, which is a derivative of benzene, is another major component of gasoline fuels and one of the major volatile compounds in the atmosphere [33]. It has been reported that the higher the content of toluene, iso-octane and aromatic hydrocarbons in the parent fuel the higher the benzene concentration formed during combustion [15][34].

Ethyl-benzene has been classified as possible human carcinogenic by the International Agency for Research on Cancer (IARC) [35][36]. It is a major combustion by-product of aromatic species such as xylene isomers during the combustion process [37]. It also participates in the formation of benzene, toluene [38] and PAHs. **P-xylene**, which is also included in this study, is often formed by the replacement of two hydrogen atoms of benzene by methyl groups, during the combustion process.

Naphthalene has been studied as it has been reported to be the most abundant PAHs in polluted urban atmospheres [39]. It has been defined as a hazardous air pollutant by the US environmental protection agency (EPA) [40] and classified as possibly carcinogenic to humans by the international agency for research on cancer (IARC) [35]. Finally, **methyl-naphthalene** is monitored, which could be formed from two benzene rings joining together while simultaneously a hydrogen from the naphthalene group can be replaced by a methyl group [41].

Engine operation condition – Two different engine operating conditions defined by engine speed and load have been chosen. Those engine conditions selected are representative of a wide range of
urban driving conditions of the vehicle equipped with this engine, where the exhaust conditions (i.e. low temperature and high HC emissions) are challenging for efficient catalyst operation (Table 5). The influence of the combustion mode (SI or HCCI), engine load (3bar or 4bar NMEP) and A/F ratio (stoichiometric or lean) in the engine output concentration of NOx and the magnitude and speciation profile of THC emissions has been studied.

3. Results and Discussion

3.1 Engine-out hydrocarbon species emissions

Engine output NOx and hydrocarbon speciation comparing HCCI and SI stoichiometric combustion modes were carried out at 4 bar NMEP engine operation condition. Engine output NOx emissions were reduced around 4x times while the total concentration of C5-C11 hydrocarbon species was approximated 12% higher under HCCI stoichiometric in comparison to stoichiometric SI engine operation (Table 5 and Figure 2). In general terms, the engine output emission concentration for all the studied species were higher for HCCI combustion with the exception of benzene, ethyl-benzene and iso-octane (Table 6 and Figure 3). The higher unburned hydrocarbon emissions under HCCI combustion are due to the lower in-cylinder temperature and available energy to drive the complete oxidation reactions of the hydrocarbons part of the fuel and to also reduce hydrocarbon oxidation post combustion. On the other hand, the lower concentration of the rest of species under HCCI conditions can be attributed to i) the conversion of iso-octane to methane [42] (this finding supports the results of a previous study from this group where high concentration of methane was found under HCCI stoichiometric engine operation [31]), ii) a higher formation rate of toluene, p-xylene, naphthalene, methyl-naphthalene or any other compounds derived from benzene due to the higher presence of hydrocarbon to react with, and iii) the breakdown of the already formed toluene and p-xylene during SI combustion process producing benzene and ethyl-benzene.

The engine operation at lean HCCI combustion enables simultaneous reduction of both NOx and the total hydrocarbon concentration of the species from C5 to C11, compared to HCCI stoichiometric operation (Figure 2). HCCI lean operation especially reduces very harmful aromatic compounds such as p-xylene, naphthalene and methyl-naphthalene, while mainly increasing iso-pentane (alkane) and iso-octane. Total C5-C11 unburned hydrocarbon emissions were reduced when increasing the engine load under both lean (\(\lambda=1.4\)) and stoichiometric HCCI operation (Table 5). Under HCCI stoichiometric operation, increasing the engine load reduces the total hydrocarbon species in the range of C5 to C8, while increasing the naphthalene and methyl-naphthalene engine output emissions (Table 6). This phenomenon could be attributed to the higher in-cylinder temperature at high load which could increase the reaction rate of naphthalene formation through the fusion of two benzene rings. Further reaction pathways will form methyl-naphthalene, by replacing the hydrogen atoms by methyl groups [41]. A second mechanism for this could be the cyclisation of long-chain hydrocarbons found in the partial combustion products. At lean HCCI operation the engine output concentration of all the
species are reduced when engine load is increased (Table 6). It is suggested that the temperature in the 219 post-combustion phase of the engine cycle, where naphthalene is formed [43], is not high enough to 220 significantly enhance naphthalene formation at any of the studied loads under lean combustion 221 operation.

3.2. Catalyst conversion efficiency

The NOx conversion of the catalyst was significantly decreased under HCCI stoichiometric 224 operation in comparison to stoichiometric SI (Figure 4). However, the total hydrocarbon conversion 225 (C$_5$-C$_{11}$) at 4bar NMEP for HCCI stoichiometric operation was even higher compared to 226 stoichiometric SI operation, despite the large reduction in the exhaust gas temperature. Figure 4 also 227 shows that HCCI lean operation at 4bar NMEP enables an increase in both NO and HC conversion by 228 the catalyst, when compared to HCCI stoichiometric operation.

The average conversion of HC species over the catalyst under both SI and HCCI combustion 230 modes was higher than 90% for all engine conditions, except for HCCI stoichiometric operation at 231 3bar NMEP (Figure 5). Figure 5 (bottom) shows that the catalytic conversion was reduced to 60% for 232 most of the hydrocarbon species at HCCI stoichiometric operation. It is as though, at these low 233 exhaust gas temperatures, only the 3rd catalyst is active in oxidation of C-containing species (Table 5, 234 Figure 1), thus under these conditions i) the effective space velocity (SV) is significantly increased as 235 only 1/3 of the catalyst array is active, and the presence of available oxygen is required to catalytically 236 oxidise the HC species in the catalyst active sites. Therefore, the low exhaust temperature and absence 237 of oxygen in stoichiometric HCCI operation at low load resulted in the reduced HC oxidation rates.

As expected, hydrocarbon conversion over the catalyst was significantly improved for HCCI lean 241 operation (second zone of the catalyst is also active thanks to the higher oxygen availability) and at 242 high engine load conditions (higher exhaust gas temperatures activating all the three catalyst layers). 243 For instance, the conversion of iso-pentane was approximately 63% during HCCI stoichiometric 244 operation and improved to 93% during HCCI lean operation (Figure 2), this is despite the compound 245 being a saturated alkane (ie with single C-C bonds). Iso-octane conversion was approximately 65% 246 during HCCI stoichiometric operation at low load, and as the temperature was increased (i.e for high 247 load SI mode, Figure 3 condition 5) the net conversion rose to 100%.

The conversion efficiency for light aromatic HC components, i.e. benzene and toluene was high 247 for most engine conditions. For the aromatic hydrocarbon p-xylene (a benzene ring with two methyl 249 substituents), an average of 85% catalyst efficiency was achieved. However, for heavier and more 250 dangerous aromatic compounds that are known to be difficult to combust catalytically [44], such as 251 naphthalene and methyl-naphthalene, the catalyst conversion was in the range of 15-80%. The low 252 conversion could be because the aromatic rings are more susceptible to further dehydrogenation than 253 to combustion. As a result, the contact time required for catalytic combustion of heavy aromatic 254 species is longer than that for saturated HCs, which reduces the probability of naphthalene and
methyl-naphthalene decomposition to smaller hydrocarbon species [44][46]. Conversion was
improved at higher temperatures as the kinetic limitations to combustion were overcome [42]. Storage
of some of the HC species, including both naphthalene and methyl-naphthalene, is expected to occur
in the middle zone, which contributes to the reduction in the concentration of these species.

3.3 Catalyst performance with H$_2$ addition, HCCI lean operation

The effect of hydrogen has been investigated by injecting approximately 2400 ppm H$_2$ upstream of
the catalyst, in order to improve the catalyst performance in the reduction of harmful HC species such
as naphthalene (classified as possible carcinogenic by IARC) and methyl-naphthalene... Comparison
is drawn between the same engine operating condition (lean HCCI combustion at 4bar NMEP) with
and without hydrogen addition, (Figure 6 and 7).

From the results it can be observed that hydrogen greatly enhances the catalyst performance by
66% and 100% respectively (Figure 6) in reducing naphthalene and methyl-naphthalene (Figure 7).
There are several likely causes: (i) Hydrogen oxidation in the first zone increases the catalyst
temperature by 5 to 20°C, enhancing the oxidation rate of the aromatic hydrocarbons (ie the exotherm
effect of hydrogen); (ii) We have earlier reported that hydrogen oxidation in for example a Pt/Al$_2$O$_3$
catalysts, increases the availability of NO$_2$ that is consequently consumed in the oxidation of the C-
containing species [19]; (iii) Hydrogenation is another possibility, in which H$_2$ reacts with the
aromatic compounds to form less unsaturated cyclic and aliphatic hydrocarbons that are easier to
combust. However, although the hydrogenation reactions are overall exothermic, there is a high
activation barrier to overcome.

4. Conclusions

Engine operation under low temperature combustion and lean engine operation strategies enable
the simultaneous increase in fuel efficiency and a decrease in both NOx and particulate matter
emissions. However the CO and unburnt HC emission levels increase, while the low exhaust
temperature and presence of oxygen result in more challenging conditions for conventional
aftertreatment devices to reduce CO and unburnt hydrocarbon emissions.

In this research a catalytic system was evaluated with the aim of oxidising the HC species
produced under those fuel-efficient, but challenging exhaust conditions. Exhaust hydrocarbons have
been speciated, and the efficiency with which they are oxidised by the catalyst has been assessed
under different engine operation conditions. Species such as iso-octane, benzene, and ethyl-benzene
are mainly found in the engine exhaust during SI engine operation, while heavier species such as
naphthalene and methyl-naphthalene are present in higher concentrations under stoichiometric HCCI
engine operation.

The three-zone catalyst reduced most of the hydrocarbon compounds in both (HCCI and SI)
combustion modes, except for methyl-naphthalene and naphthalene, which are known to be hazardous
both to the environment and to human health, and are commonly found in the atmosphere in urban areas. The catalyst was, therefore, less capable of activating a fused pair of benzene rings than aliphatic or mono-aromatic molecules. However, the addition of hydrogen upstream of the catalyst during HCCI lean engine operation substantially enhances the conversion of both methyl-naphthalene and naphthalene species. This is attributed to an increase in the local temperature as a result of hydrogen oxidation, and due to its reactivity with the aromatic compounds to form molecules that are more readily oxidised by the catalyst. Therefore, this research work has demonstrated that, through the integration of advanced combustion technologies with novel aftertreatment systems, it should be possible to achieve notable benefits in fuel economy and in air quality.

Acknowledgements

The DTI (now Innovate UK) and EPSRC (GR/S81964/01) are acknowledged for funding the project “Controlled Homogeneous Autoignition Supercharged Engine (CHASE), 2004 – 2007”. The School of Mechanical Engineering at the University of Birmingham (UK) is gratefully acknowledged for the PhD scholarship to Mr. A.O. Hasan. Johnson Matthey Plc is also thanked for supporting this work and by supplying the catalysts. Jaguar Land Rover is acknowledged for supporting the work with the research engine used in this study. Dr. D. Turner thanks Engineering and Physical Science Research Council-EPRSC project (EP/G038139/1) for supporting the research work.

References

Abbreviations

AQIRP Auto-Oil Air Quality Improvement Research Program
A/F Air to fuel ratio
Al$_2$O$_3$ Alumina
BOC British Oxygen Company
CA Crank Angle
CO Carbon Monoxide
CPS Cam profile switching
EGR Exhaust Gas Recirculation
EPA Environmental protection agency
GC-MS Gas chromatography-mass spectrometry
GC-TCD Gas chromatography-thermal conductivity detector
GDI Gasoline direct injection
HC Hydrocarbons
HCCI Homogeneous charge compression ignition
IARC International agency for research on cancer
NOx Nitrogen oxide
NO Nitrogen Monoxide
NO$_2$ Nitrogen dioxide
NMEP Net Indicated Mean Effective Pressure
OSHA Occupational Safety and Health Administration
PAH Polycyclic aromatic hydrocarbon
PM Particulate Matter
Pt Platinum
RON Research Octane Number
SI Spark Ignition
SV Space Velocity
THC Total Hydrocarbon
TWA Time-weighted average
TWC Three-way catalytic converter

List of tables

Table 1. Engine specification summary.
Table 2. GC operating parameters.
Table 3. Retention times of detected compounds.
Table 4. Permissible exposure limits [27].
Table 5. Engine conditions and emissions under HCCI and SI modes at 2000 rpm speed.
Table 6. Concentration of hydrocarbon species (C$_5$ – C$_{11}$) before and after the catalyst for the different engine conditions at 2000rpm engine speed.
<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine type</td>
<td>V6, 24-V, GDI</td>
</tr>
<tr>
<td>Bore</td>
<td>89mm</td>
</tr>
<tr>
<td>Stroke</td>
<td>79.5mm</td>
</tr>
<tr>
<td>Fuel</td>
<td>Gasoline, RON 95</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>11.3</td>
</tr>
<tr>
<td>Intake valve timing</td>
<td>Variable</td>
</tr>
<tr>
<td>Exhaust valve timing</td>
<td>Variable</td>
</tr>
<tr>
<td>Intake temperature</td>
<td>Variable</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Instrument Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>DB-1; 30m; 0.53mm ID; 3μm film</td>
</tr>
<tr>
<td>Detector</td>
<td>MS; Source 200°C</td>
</tr>
<tr>
<td>Oven Temperature</td>
<td>40°C initial; 5 min hold,</td>
</tr>
<tr>
<td></td>
<td>10°C/min to 240°C; 5 min hold,</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>6ml/minute; He</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Peak NO</th>
<th>Compound</th>
<th>Retention Time (minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>iso-pentane</td>
<td>3.77</td>
</tr>
<tr>
<td>2</td>
<td>benzene</td>
<td>7.04</td>
</tr>
<tr>
<td>3</td>
<td>iso-octane</td>
<td>7.85</td>
</tr>
<tr>
<td>4</td>
<td>toluene</td>
<td>9.42</td>
</tr>
<tr>
<td>5</td>
<td>ethyl-benzene</td>
<td>11.54</td>
</tr>
<tr>
<td>6</td>
<td>p-xylene</td>
<td>11.72</td>
</tr>
<tr>
<td>7</td>
<td>naphthalene</td>
<td>18.19</td>
</tr>
<tr>
<td>8</td>
<td>methyl-naphthalene</td>
<td>20.66</td>
</tr>
<tr>
<td>Chemical Species</td>
<td>Exposure Limits (ppm) TWA</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>iso-pentane</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>iso-octane</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>ethyl-benzene</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>p-xylene</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>methyl-napthalene</td>
<td>N.A</td>
<td></td>
</tr>
</tbody>
</table>

TWA- time weighted average
<table>
<thead>
<tr>
<th>Engine Condition</th>
<th>Mode</th>
<th>HCCI</th>
<th>HCCI</th>
<th>HCCI</th>
<th>HCCI</th>
<th>SI</th>
<th>HCCI+H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.4</td>
<td>1.4</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>NMEP (bar)</td>
<td></td>
<td>3.0</td>
<td>4.0</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>O₂ (%)</td>
<td></td>
<td>1.2</td>
<td>1.2</td>
<td>6.29</td>
<td>6.55</td>
<td>6.55</td>
<td>1.06</td>
</tr>
<tr>
<td>CO₂ (%)</td>
<td></td>
<td>12.31</td>
<td>13.92</td>
<td>10.31</td>
<td>10.34</td>
<td>13.81</td>
<td>10.34</td>
</tr>
<tr>
<td>C₅-C₁₁ (ppm)</td>
<td></td>
<td>1718</td>
<td>1683</td>
<td>1731</td>
<td>1222</td>
<td>1500</td>
<td>1222</td>
</tr>
<tr>
<td>Tₑₓ (°C)</td>
<td></td>
<td>385</td>
<td>413</td>
<td>349</td>
<td>386</td>
<td>661</td>
<td>406</td>
</tr>
</tbody>
</table>
Table 6

<table>
<thead>
<tr>
<th>Compound</th>
<th>HCCI $\lambda = 1, 3.0\text{bar}$ (ppm)</th>
<th>HCCI $\lambda = 1, 4.0\text{bar}$ (ppm)</th>
<th>HCCI $\lambda = 1.4, 3.0\text{bar}$ (ppm)</th>
<th>HCCI $\lambda = 1.4, 4.0\text{bar}$ (ppm)</th>
<th>SI $\lambda = 1, 4.0\text{bar}$ (ppm)</th>
<th>HCCI$+\text{H}_2$ $\lambda = 1.4, 4.0\text{bar}$ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>iso-pentane</td>
<td>150</td>
<td>55</td>
<td>100</td>
<td>15</td>
<td>174</td>
<td>15</td>
</tr>
<tr>
<td>benzene</td>
<td>72</td>
<td>25</td>
<td>58</td>
<td>2</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>iso-octane</td>
<td>151</td>
<td>52</td>
<td>N.A</td>
<td>N.A</td>
<td>180</td>
<td>39</td>
</tr>
<tr>
<td>toluene</td>
<td>597</td>
<td>144</td>
<td>420</td>
<td>41</td>
<td>616</td>
<td>30</td>
</tr>
<tr>
<td>ethyl-benzene</td>
<td>130</td>
<td>29</td>
<td>105</td>
<td>19</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>p-xylene</td>
<td>454</td>
<td>115</td>
<td>442</td>
<td>46</td>
<td>476</td>
<td>20</td>
</tr>
<tr>
<td>naphthalene</td>
<td>114</td>
<td>55</td>
<td>344</td>
<td>69</td>
<td>170</td>
<td>144</td>
</tr>
<tr>
<td>methyl-naphthalene</td>
<td>50</td>
<td>33</td>
<td>214</td>
<td>66</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>Total C5-C${11}$</td>
<td>1718</td>
<td>508</td>
<td>1683</td>
<td>258</td>
<td>1731</td>
<td>290</td>
</tr>
</tbody>
</table>

B- before catalyst
A- after catalyst
List of Figures

Figure 1. Schematic of experimental setup.

Figure 2. Engine output C_3-C_{11} hydrocarbon species and NOx at 4bar NMEP and different combustion conditions.

Figure 3. Engine output HC species at 4bar NMEP at different combustion conditions.

Figure 4. Conversion efficiency of the catalyst at 4bar NMEP and different combustion modes.

Figure 5. HC conversion efficiency of the catalyst at different combustion conditions 4bar NMEP (top) and 3bar NMEP (bottom).

Figure 6. HC conversion efficiency of the catalyst at 4bar NMEP with and without hydrogen addition.

Figure 7. Hydrocarbon concentration downstream of the catalyst with and without hydrogen addition.
Figure 1
Figure 2
Figure 3
Figure 4

Brake specific fuel consumption (g/kWh)

Conversion Efficiency, CE (%)
Figure 5
Figure 6
Figure 7
Toxic non-regulated hydrocarbon compounds C₅ - C₁₁ from modern GDI engine were analysed. The analysis was carried out for stoichiometric and lean combustion engines. The catalyst ability to control heavy HC (C5 – C11) was also studied. Naphthalene and methylnaphthalene were the most resistant compounds. Hydrogen addition in the catalyst improved methylnaphthalene and naphthalene reduction.