
 
 

University of Birmingham

Local energy of a bubble system and its loss due to
acoustic radiation
Wang, Qian

DOI:
10.1017/jfm.2016.281

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Wang, Q 2016, 'Local energy of a bubble system and its loss due to acoustic radiation', Journal of Fluid
Mechanics, vol. 797, pp. 201-230. https://doi.org/10.1017/jfm.2016.281

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1017/jfm.2016.281
https://doi.org/10.1017/jfm.2016.281
https://birmingham.elsevierpure.com/en/publications/163da040-fa35-48f0-ab15-2047aa6b94ff


1 

 

Local energy of a bubble system and its loss due to acoustic radiation 

Q. X. Wang* (Qianxi Wang)  

School of Mathematics, the University of Birmingham,  

Ring Rd N, Birmingham B15 2TS, United Kingdom 

Energy concentration and loss due to a violent collapsing bubble are essential phenomena to many 

applications such as cavitation erosion, biomedical ultrasonics, sonochemistry, cavitation cleaning 

and underwater explosions. It has been generally known that the energy of a bubble system is 

radiated away as an acoustic wave and dissipated by viscosity. However, there is no study in the 

scientific literature on the time history of the energy of a bubble system in a compressible flow. Here 

we have introduced the local energy of a nonspherical bubble system, consisting of the energy of the 

interior gas, the interface and the exterior liquid in the inner asymptotic region. The local energy 

determines the local bubble and flow dynamics, including the concentration of energy, stress and 

momentum. We obtain a simple formula for the radiated energy associated with acoustic radiation in 

terms of the bubble volume history. We perform calculations of the energy history for a transient 

bubble in a compressible liquid, in an infinite fluid, subject to buoyancy and near a rigid boundary, 

respectively. Our calculations show that the local energy of a transient bubble follows a step function 

in time, being nearly conserved for most of each cycle of oscillation but decreasing rapidly and 

significantly at bubble inception and at the end of collapse, due to the emission of steep pressure 

waves or shock waves. The loss of the local energy of the bubble system due to emission of steep 

pressure waves and the associated damping of the bubble oscillation are diminished by buoyancy 

effects and decrease with the buoyancy parameter. Similarly, the loss of the local energy of a bubble 

system is diminished by the presence of a rigid boundary and decreases with the proximity of the 

bubble to the boundary. We also analyse the energy concentration of single bubble 

sonoluminescence in a standing acoustic wave. 

Keywords: Local energy of a bubble system; Acoustic radiation; Shock waves; Bubble dynamics; 

Sonoluminescence; Weakly compressible theory; Matched asymptotic expansions; Boundary integral 

method. 
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1. Introduction 

 Cavitation was discovered in 1893 from the propeller failure of a British warship (Young 

1989). While a cavitation bubble collapses, its volume often reduces by a factor of several thousand, 

leading to a high concentration of energy, and associated emission of shock waves and high-speed 

liquid jetting. These phenomena are associated with cavitation damage to pumps, turbines and 

propellers (Brennen 1995; Lauterborn & Vogel 2013), and the damage mechanism of an underwater 

explosion (Cole 1948, Chahine et al. 1980, Klaseboer et al. 2005).  

 Ultrasound-driven microbubbles have been used in extracorporeal shockwave lithotripsy 

(Calvisi et al. 2008), tissue ablation (Roberts et al. 2006), oncology and cardiology (Leslie et al. 

2006), and sonoporation – a new, promising cell-wall permeation technique (Coussios & Roy 2007, 

Wang et al. 2015). In these applications, microbubbles absorb and concentrate significant amounts of 

acoustic energy into a small volume, leading to violent collapse, emission of shock waves and the 

formation of liquid jets (Wang & Manmi 2014). These mechanisms are also common to 

sonochemistry (Suslick 1990) and ultrasonic cavitation cleaning (Ohl 2006).  

 The energy of a bubble system is thus a basic and important concept for bubble dynamics and 

its applications. A bubble system consists of the exterior liquid extending to infinity, the gases inside 

the bubble and the interface between them. Its initial energy is created by various means, depending 

on how the bubble is produced. For example, the initial energy is deposited by a laser beam for laser-

generated bubbles, by explosion for underwater explosion bubbles, and by the work done by highly 

compressed gases for seismic airgun-generated bubbles, etc. 

 Cole (1948) suggested the following regarding energy loss for a bubble system, ‘… the 

mechanism by which energy can be dissipated: the compressibility of the water, by which energy is 

radiated as a wave and ultimately dissipated as heat as the wave passes to infinite distance, …’. This 

energy loss mechanism has been confirmed by numerous experiments on bubble dynamics 

displaying the emission of steep pressure waves at bubble inception and at the end of collapse, and 

damped bubble oscillation due to loss of energy (Lauterborn & Vogel 2013). The acoustic waves 

emitted at the inception of a bubble and at the end of collapse exhibit steepening feature in the 

pressure profile due to nonlinearity, which are termed as shock waves in literature (c.f. Plesset & 

Prosperetti 1977; Philipp & Lauterborn 1998; Geers et al. 2012; Tinguely et al. 2012; Lauterborn & 

Vogel 2013). 

 The mechanical energy of a bubble system consists of the potential energy and kinetic energy. 

When the liquid flow is incompressible and potential, its kinetic energy can be expressed in terms of 

an integral over the bubble surface (Cole 1948; Pearson et al. 2004). To account for the emission of 

acoustic waves, the liquid flow has to be modelled as compressible. The calculation of the kinetic 

energy in this case thus involves volume integration of the density and velocity of the liquid flow 
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throughout the entire flow field. 

 Geers et al. (2012) and Tinguely et al. (2012) studied the energy of a spherical bubble, with the 

bubble radius history calculated using the Keller–Miksis equation (Keller & Kolodner 1956, Keller 

& Miksis 1980, Feng & Leal 1997). They introduced the inviscid flow assumption, so that the 

radiated energy during the end of collapse is equal to the energy difference of the bubble system 

between the first and second maximum volumes, based on conservation of energy. With that, they 

calculated the radiated energy during the end of collapse. This approach avoids the calculation of the 

kinetic energy in a compressible flow. However, it cannot be used to calculate the energy loss 

associated with the emission of steep waves at bubble inception and cannot be used when viscosity is 

not negligible.  

 There is no study in the scientific literature on the time history of the energy of a bubble system 

in a compressible flow, showing how and when the energy is lost. The bubble energy for 

nonspherical bubbles is calculated only during the period when the compressible effects are 

negligible and the energy loss is obtained from experiments and empirical formulae (Lee et al. 2007). 

In this work, we calculate the time history of a bubble system in a compressible flow, considering 

compressibility of the exterior liquid for both spherical and nonspherical bubbles, and viscosity of 

the flow for spherical bubbles. The mechanical energy lost due to thermal conductivity is not 

considered in this paper.  

 We introduce the local energy of a bubble system consisting of the potential energy and kinetic 

energy of the liquid flow in the inner region. The local kinetic energy can be calculated 

approximately using an incompressible model, since the flow in the inner region is approximately 

incompressible to second order (Prosperetti & Lezzi 1986, Lezzi & Prosperetti 1987, Wang & Blake 

2010, 2011).  

 For spherical bubbles, this paper builds on the developments of Geers et al. (2012) and 

Tinguely et al. (2012) by considering the following: (i) calculation of the time history of the local 

bubble energy, which indicates when and how fast the local energy is lost, (ii) analysis of the local 

energy loss associated with the emission of a steep pressure wave at bubble inception, which is 

significant for transient bubbles, (iii) the energy loss due to viscous effects, which is essential for 

microbubbles, (iv) surface tension effects, which are also essential for microbubbles, and (v) the 

influence of acoustic waves. 

 For nonspherical bubbles, we present the calculation of the time history of the energy of a 

bubble system in a compressible flow for two cases: (i) A gas bubble subject to buoyancy, and (ii) a 

cavitation bubble near a rigid boundary. The weakly compressible potential flow is modelled here 

using a recently developed implementation of the boundary integral method (BIM) for a bubble in a 

compressible liquid (Wang & Blake 2010, 2011, Wang 2013, 2014). By the way, nonspherical 



4 

 

bubble dynamics in a compressible liquid have been simulated using domain approaches coupled 

with various interface-capturing schemes (Johnsen & Colonius 2006, 2008, 2009, Turangan et al. 

2008, Terashima et al. 2009, Fuster et al. 2011, Hiao et al. 2014, Chahine et al. 2015, 2016). 

 This paper is organized as follows. In §2, the flow problem is formulated based on the weakly 

compressible potential flow theory. In §3, we derived the formulae for the local energy of a 

nonspherical bubble system, consisting of the energy of the interior gas, the interface and the exterior 

liquid in the inner region. We obtain a simple formula for the radiated energy, in terms of the bubble 

volume history. The time history of energy of a spherical transient bubble is analysed in §4, based on 

the Keller–Miksis equation. The energy history of nonspherical transient bubbles subject to 

buoyancy and near a rigid boundary are analysed in §5 and §6 respectively, using the compressible 

BIM model. It is noted that the energy of a bubble system follows a step function in time, reducing 

significantly at bubble inception and at the end of collapse, while remaining nearly constant during 

the remainder of the oscillation. We analyse the energy loss in terms of the buoyancy parameter and 

the standoff distance of a bubble from a rigid boundary. In §7, the energy concentration of single 

bubble sonoluminescence is studied, using the Keller–Miksis equation. Finally, in §8, this study is 

summarized and the key outcomes are identified. 

   

2. Weakly compressible theory  

 Consider gas bubble dynamics in an irrotational and compressible liquid flow. A Cartesian-

coordinate system is chosen, with the origin at the centre of the bubble at inception, and the z-axis in 

the direction opposite of gravity.  

 The reference length is chose as the maximum bubble radius Rmax that a bubble would expand 

to in an inviscid liquid and without surface tension effects. The density ρ∞ in the undisturbed liquid is 

chosen as the reference density. The reference pressure is ∆p = p∞ - pv, where p∞ is the pressure in the 

undisturbed liquid and pv is the partial pressure of vapour inside the bubble. The vapour pressure pv 

is approximately a function of the temperature of the bubble wall only, if the time scale of 

condensation and evaporation is small compared to the period of bubble oscillation. It is usually 

small (pv ∼ 2 kPa at 20◦C) compared to the hydrostatic pressure and is often negligible (Brennen 

1995). The reference velocity is thus obtained as . We introduce dimensionless 

quantities, denoted by subscripts “*”, as follows: 

* * *

max max max

,     ,     ,
U

t t
R R R U

ϕ
ϕ= = =

r
r                                                   (2.1a, b, c) 

p

pp
p

c

c
c *

∆

−
== ∞

∞

       ,* ,                                                                (2.1d, e) 

∞ρ∆= /pU
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where r = (x, y, z), t is the time, ϕ is the velocity potential of the liquid flow and p is the pressure. 

The speed of sound c is normalized by its value in the undisturbed liquid c∞.  

 The highest speed of the liquid flow induced by bubble dynamics is usually associated with the 

velocity of the bubble jet, which is often lower than 200 m s
-1

 at normal ambient pressure, as 

observed in experiments (Benjamin & Ellis 1966, Lauterborn & Bolle 1975, Shima et al. 1981, 

Tomita & Shima 1986, Vogel et al. 1989, 1990, Lauterborn & Ohl 1997, Philipp & Lauterborn 1998, 

Lindau, & Lauterborn 2003, Brujan & Matsumoto 2012, Yang et al. 2013; Zhang et al. 2015). As the 

speed of sound in water is about 1500 m s
-1

, the flow induced by the bubble dynamics is assumed to 

be associated with a low Mach number, ε, defined as follows: 

∞

=ε
c

U
.                                                                             (2.2) 

Lauterborn & Vogel (2013) observed that the newly formed laser bubble’s surface expands with an 

initial velocity of about 2450 ms
-1

, which decays rapidly to about 250 ms
-1

 within 140 ns. The 

present model is only valid after that. Note that the term “bubble inception” used in the paper refers 

to the moment during the early stage of expansion, when the bubble wall Mach number starts being 

small.  

 We divide the fluid domain into two regions: the inner region near the bubble where (x, y, z) = 

O(Rmax) and the outer region far away from the bubble where (x, y, z) = O(λ), where λ = c∞ Rmax/U is 

the wavelength of acoustic waves.  

 Using the method of matched asymptotic expansions, the outer solution was shown to satisfy 

the wave equation to second order and was found analytically as follows (Wang 2013, 2014): 

( ) ( )20 *

0outer

m t r
C O

r
ϕ ε ε

−
= +

ɶ

ɶ
,                                                                   (2.3) 

where /r r λ=ɶ  *εr= , r = |r|, and C0 is a given constant with a value of 1/(4π) and 1/(2π) for a bubble 

in an unbounded liquid and near a rigid boundary, respectively. The quantity m0(t*) is obtained from 

matching the inner and outer expansions using Van Dyke’s matching principle (Van Dyke 1975, 

Wang 2013, 2014) as follows: 

( )
( )

( ) ( )*

0 * * *

,

S

t
m t dS V t

n

ϕ∂
= = −

∂∫
q

q ɺ ,                                                                     (2.4) 

where n is the unit normal vector on the bubble surface and the overdot denotes the derivative with 

respect to time. 

 The inner solution to second order satisfies Laplace’s equation and the kinematic and dynamic 

boundary conditions on the bubble surface, S, as follows (Wang & Blake 2010): 

( )2 2

* * Oϕ ε∇ = ,                                                                                                      (2.5a) 
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( )2*
* *

*

D
O

Dt
ϕ ε= ∇ +

r
  on S,                                                                                  (2.5b) 

( )2 2 2*
* * * *

*

1
1

2
L

D
p z O

Dt

ϕ
ϕ δ ε= + ∇ − − +  on S,                                                   (2.5c) 

where /mgR pδ ρ ∆=  is the buoyancy parameter, where g is the gravitational acceleration. The 

liquid pressure, pL, on the bubble surface is given by, 

* * *L Bp p σ= − ∇ ⋅ n   on S,                                                                          (2.6a) 

0*
* * 0*

*

B v g

V
p p p

V

κ
 

= +  
 

,                                                                           (2.6b) 

where pB* is the pressure of the bubble contents, pg0* = pg0/∆p is the initial partial pressure of the non-

condensable gases inside the bubble, V0* is the initial bubble volume, κ  is the polytropic index of the 

bubble gas the bubble gas, ∇ ⋅ n  provides the surface curvature and σ* = σ/(Rm∆p) is the surface 

tension parameter. Here variables with the subscript of “*” are dimensionless. We assumed in (2.6) 

that the expansion and contraction of the bubble gases occur adiabatically. We will not consider the 

thermal effects associated with this phenomenon, which can lead to chemical reactions (Suslick 1990) 

and sonoluminescence (Hiller et al. 1998, Hilgenfeldt et al. 1998, 1999). Fuster & Montel (2015) 

showed that that for very fast oscillations the effective polytropic coefficient of the mixture recovers 

the adiabatic limit given that neither heat nor mass transfer has time significantly modify the pressure 

inside the bubble. The thermal processes typically absorb a relatively small portion of the overall 

energy (Akhatov et al. 2001). Heat and mass transfer across the bubble surface can be included in the 

model (Szeri et al. 2003).  

 We also assume in (2.6) that the pressure field in the bubble interior is uniform, since the 

density of gases is usually three orders of magnitude smaller than that of liquids. Geers et al. (1994, 

2002, 2012) employed the doubly asymptotic approximations for spherical bubble dynamics for both 

the external liquid and the internal gases. They noticed that while acoustic-wave effects in the 

external liquid are important, such effects in the internal gases are not. 

 The far field boundary condition of the inner solution is obtained by matching with the outer 

solution as follows: 

( )
( )

( )* * 2

* 0 * *

*

V t
C V t O

r
ϕ ε ε

 
→ − +  

 

ɺ
ɺɺ   as  r*→∞ .                                           (2.5d) 

 The initial condition on the boundary is given as 

*0**00* on     
*

RrRttn =−=
=

ϕ ,                                                              (2.5e) 

where R0* and *0tR are the initial radius of the bubble and the initial rate of change of the bubble 

radius, respectively. 
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 Examining the initial and boundary value problem of (2.5), one can see that the compressible 

effects to second order appear only in the far field condition (2.5d). As the basic equation is 

Laplace’s equation, this problem can be modeled using the boundary integral method (BIM). The 

details on the numerical model using the BIM for this problem can be found in (Wang et al. 1996a, 

Curtiss et al. 2013).  

 A nonspherical bubble collapse often leads to the formation of a high speed liquid jet. The jet 

subsequently impacts the opposite bubble surface and penetrates the bubble, and the liquid domain is 

then transformed from a singly connected to a doubly connected domain. The solution to a potential 

problem in a doubly connected domain is non-unique. The doubly connected domain can be made 

singly connected by, for example, using a branch cut by Best (1993) or a vortex sheet by
 
Zhang, 

Duncan & Chahine (1993)
 
and Zhang & Duncan (1994).  

 Pedley (1968) and Lundgren & Mansour
 
(1991) modeled the dynamics of a bubble torus with a 

vortex ring inside, started with a circular cross-section. Wang, et al.
 
(1996b, 2005)

 
developed a 

vortex ring model from these earlier ideas to model the topological transition of a singly connected 

bubble to a subsequent toroidal bubble. In the vortex ring model, a vortex ring is put inside the 

toroidal bubble after jet impact. The circulation of the vortex ring is equal to the jump of the potential 

ϕ* across the contact point at the time of jet impact 

* * * * *N S

C

dΓ ϕ ϕ ϕ= ∇ ⋅ = −∫ r� ,                                                             (2.7) 

where ϕN* and ϕS* are potentials at the impact point. Here we assume jet impact occurs at a single 

point. The potential ϕ* is then decomposed as follows:  

* vr
ϕ ϕ φ= + ,                                                                                   (2.8) 

where ϕvr is the potential of the vortex ring, which can be obtained from the Biot-Savart law. With 

the potential jump being accounted for by the vortex ring using (2.8), the remnant potential φ is 

continuous in the flow field and can be simulated using the BIM model (Wang 2005).  

 Zhang et al. (1993) considered the loss of the mechanical energy due to jet impact and obtained 

a formula for the energy loss, which exists when the impact occurs over a finite area. Rogers et al. 

(1990) and Szymczak et al. (1993) also noted an energy loss during impact and presented a similar 

formula. Jet impact often happens on a small area, since the curvature radius of the jet front is 

usually smaller than the curvature radius of the opposite bubble wall at the location of impact. 

Important energy conversions following jet impact and jet penetration through the bubble, which 

may result in bubble mass loss, formation of numerous satellites microbubbles and bubble fission, 

and formation of bubble clouds. Although jet impact may be more complex in reality, we assume in 

this paper that jet impact occurs at a point, an idealized model, and do not calculate the loss and 

conversion of energy due to jet impact. 
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3. Local energy of a bubble system in a compressible liquid 

 This paper is concerned only with the mechanical energy of a bubble system, not considering 

for heat transfer, evaporation or condensation, etc. The total mechanical energy ET of a bubble 

system consists of the local energy EL within the inner region and the acoustic radiation energy EA 

radiated outside of the inner region, i.e. 

ET = EL + EA .                                                                             (3.1) 

It is natural to separate the mechanical energy of a bubble system into the local energy and acoustic 

radiation energy, since different length/time scales of decay are associated with the incompressible 

fluid motion and the acoustic radiation associated with the bubble dynamics. 

 For a bubble system in a compressible liquid, the inner region ΩL is bounded by the bubble 

surface S and a large sphere SL, with its centre at the centre of the initial bubble surface and a radius 

RL, as shown in figure 1a. RL is much larger than the maximum bubble radius Rmax but much smaller 

than the wavelength λ: Rmax <<  RL << λ. The local mechanical energy EL of a bubble system consists 

of the local potential energy ELP and the local kinetic energy ELK within SL. 

 For a bubble near a flat rigid boundary, it is equivalent to the interaction of the bubble and its 

image to the boundary, as illustrated in figure 1b. The inner region is then bounded by the bubble 

surface S, its image, and a large sphere SL, with its centre at the centre of the two bubble surfaces at 

inception and the radius RL. 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Illustration of the inner region ΩL of the flow field for a bubble in an infinite domain 

bounded by the bubble surface S and a large sphere SL, with its centre at the centre of the initial 

bubble surface and with a radius RL satisfying Rmax <<  RL << λ, where Rmax and λ are the maximum 

equivalent bubble radius and the wavelength of acoustic waves, respectively. The total mechanical 

energy ET of a bubble system consists of the local energy EL within the inner region and the acoustic 

radiation energy EA radiated outside of the inner region. (b) Illustration of the inner region ΩL of the 

flow field for a bubble near a rigid flat boundary. 
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3.1 Local potential energy of a bubble system 

 Potential energy is energy a system has by virtue of its state or configuration. The potential 

energy at a particular state is the work required to move the system from a state of zero potential 

energy to the state required. The potential energy does not depend on the process to achieve the state. 

We set the potential energy as zero initially, since it can be added with an arbitrary constant. The 

potential energy can thus be calculated using an idealised and infinitely slow process, so that no 

energy is converted to kinetic energy, radiated far away due to acoustic waves or lost due to viscous 

effects or heat transfer, etc. In this way, all the work done is turned into potential energy. Potential 

energy is thus the same whether a bubble is in an incompressible liquid or a compressible liquid, 

since it does not depend on the compressible effects of the liquid. 

 As a bubble expands or collapses infinitely slowly and adiabatically from its initial shape to its 

present shape, the local potential energy is equal to the sum of (i) the work done on the liquid by the 

gas pressure at the bubble wall and (ii) the power transmitted across SL, i.e. 

( )
0

0

V

LP B c
V

E p dV p V V gVzρ∞= − + − −∫ ,                                                         (3.2) 

where the first two terms on the right hand side correspond to (i) and (ii) described above, 

respectively. The power transmitted across SL is calculated based on two facts: the pressure at SL is 

equal to p∞ to first order and the volume flux of the flow through SL is the same as the change of the 

bubble volume because the flow is incompressible to second order in the inner region. The third term 

is the work done to move the bubble infinitely slowly from its centre position at z = 0 to z = zc against 

gravity, where the z-axis is in the direction opposite gravity. 

 Substituting (2.6) into (3.2) yields 

( )

( ) ( )

( ) ( ) ( )

0

0

0
0 0

1

0 0 0
0

1

0 0 0
0 0

 

      1
1

      1  ,
1

b b

V

LP v g c

V

g

v c

S S

g

v c

V
E p p dV p V V gVz

V

p V V
p p V V dS dS gVz

V

p V V
p p V V A A gVz

V

κ

κ

κ

σ ρ

σ ρ
κ

σ ρ
κ

∞

−

∞

−

∞

  
= − + − ∇ ⋅ + − −     

   
= − − + − + ⋅ − ⋅ −      −     

  
= − − + − + − −   −   

∫

∫ ∫� �

n

n n n n             (3.3a) 

where A0 and A are the areas of the initial and current bubble surfaces. In (3.3a), the Gauss 

divergence theorem was used for the term associated with surface tension. The definition of the local 

potential energy (3.3a) is the same as the potential energy for the incompressible theory (Blake 1988; 

Zhang et al. 2001; Lee et al. 2007; Pearson et al. 2004). The potential can be modified with the 

addition of an arbitrary constant and thus can be written as follows: 
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( )( )
1

0 0 0
0

=
1

g

LP v c

p V V
E p p V V A gVz

V

κ

σ ρ
κ

−

∞

 
− − + + − 

−  
.                                  (3.3b) 

 To study the energy concentration, we introduce the potential energy EPG of the bubble gas, 

which is equal to the work done to the gas while the bubble expands or collapses infinitely slowly 

and adiabatically from its initial volume V0 to the current volume V, 

0

1

0 00 0
0 1

1

V
g

PG g

V

p VV V
E p dV

V V

κ κ

κ

−    
= − = −     −    
∫ .                                              (3.4) 

EPG increases as the bubble volume decreases and achieves a maximum value when the bubble is at 

its minimum volume. 

 

3.2 Local kinetic energy of a bubble system  

 The kinetic energy is mainly contributed from the liquid flow induced by bubble motion, since 

the density of gases is usually three orders of magnitude smaller than that of liquids. The local 

kinetic energy ELK of the liquid flow in the inner region is given as follows by using Green's 

divergence theorem:  

( ) ( )
2 2*

* * * * * * *

1 1 1
   

2 2 2
L L

Lk n

S S S

E dV dS O dS O
n

Ω

ϕ
ρ ϕ ϕ ε ϕ ϕ ε

+

∂
= ∇ = + = +

∂∫ ∫ ∫� � ,                         (3.5) 

since it is easy to verify that ( )
( ) ( )

( )* * * *2 2

* * 0 * * * 2

* *

 4

L

n L

L LS

V t V t
dS C R V t O

R R
ϕ ϕ π ε ε

 
= − =  

 
∫

ɺ ɺ
ɺɺ

� , using the outer 

limit of the inner solution (2.5d) and 
( )

( )
*

2* **
* 0 2

* *
L

L

n
n S

Lr R

V t
C O

r R

ϕ
ϕ ε

=

∂
= = +

∂

ɺ

.  

 The local energy of a bubble system in a compressible liquid consists of the local potential 

energy ELP and the local kinetic energy ELK as follows:  

( )
1

0 0 0 1
  

1 2

g

L LP LK c v n

S

p V V
E E E A gVz p p V dS

V

κ

σ ρ ρ ϕϕ
κ

−

∞ ∞

 
= + = + − + − + 

−  
∫� ,                 (3.6) 

which is the same as the energy of a bubble system in an incompressible liquid. In dimensionless 

form this yields,  

( ) ( )
1

0* 0* 20*
* * * * * * *

*

1
1

1 2

g

L c n

S

p V V
E A z V dS O

V

κ

σ δ ϕ ϕ ε
κ

−
 

= + + − + + 
−  

∫� ,                                   (3.7) 

where ( )pREE mLL ∆= 3

* / .  

 The local energy of a bubble system in a compressible liquid depends on the bubble shape and 

the potential and normal velocity distributions on the bubble surface. When the flow is not induced 

by a bubble alone and the environmental flow has a large length scale compared to the bubble radius, 
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the local energy can be calculated using (3.6). In this case, the potential ϕ and normal velocity ϕn on 

the bubble surface can be obtained by considering its flow environment. As an example, we will 

consider a bubble oscillating in a standing wave in §7.  

 For the case of spherical bubbles, the formula for the local energy is simplified as  

( )
1

0 0 3 20  2
1

g

L c v

p V V
E A gVz p p V R R

V

κ

σ ρ πρ
κ

−

∞ ∞

 
= + − + − + 

−  
ɺ  .                                       (3.8) 

 

3.3 Acoustic radiation energy  

 The energy flux Nflux* across S∞ to the far field is given as 

 ( ) ( ) ( ) ( ) ( )2 2 2*1
* * * * * * 0 * * * *2

*
L L

flux n n

S S

N p dS dS O C V t V t O
t

ϕ
ϕ ϕ ϕ ε ε ε

∂
= + ∇ = − + = − +

∂∫ ∫ ɺ ɺɺɺ
� � ,        (3.9) 

where we used the outer limit of the inner solution (2.5d). There is a first-order energy flux to the far 

field, corresponding to acoustic radiation. Notice here EL* = O(1) and Nflux* = O(ε), are both obtained 

to the leading order approximation in (3.7) and (3.9), respectively. 

The energy radiated EA across S∞ from the start to the current time is given as  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ). 00

 

2

0

**

2

*******0

2

0

*****0

0

****

*

**

ε+












+−ε=

ε+ε−==

∫

∫∫

OdttVtVtVVVC

OdttVtVCdttNE

t

tt

fluxA

ɺɺɺɺɺɺɺɺ

ɺɺɺɺ

                                     (3.10) 

The formulae in dimensional form are  

 ( ) ( ) ( )2

0
 

flux
N C V t V t O

c

ρ
ε∞

∞

= − +ɺ ɺɺɺ  ,                                                          (3.11a) 

 ( ) ( ) ( ) ( ) ( ){ } ( )2 2

0
0

0  0   
t

A
E C V V V t V t V t dt O

c

ρ
ε∞

∞

= − + +∫ɺ ɺɺ ɺ ɺɺ ɺɺ .                              (3.11b) 

The radiation energy due to acoustic waves depends only on the bubble volume history to a first 

order approximation.  

 In particular, the energy loss due to acoustic radiation from the time at one of the bubble’s 

maximum volumes to the time at the next maximum volume is given as 

 ( ) ( )
1

2 2

0   
N

N

t

A

t

E C V t dt O
c

ρ
∆ ε

+

∞

∞

= +∫ ɺɺ ,                                                                    (3.12) 

where tN and tN+1 are the times of the two successive maximum bubble volumes. As expected, ∆EA is 

always positive, since the local energy of a bubble system is always lost through acoustic radiation. 

The energy loss depends largely on the acceleration of the bubble volume, which achieves maximum 

values at minimum bubble volumes. 
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 Longuet-Higgins (1989a, b) studied the radiated energy due to a spherical bubble under 

harmonic oscillation with small amplitude, i.e.  

 ( ) ( )( )1 sin ,     <<1R t a tα ω α= + ,                                                              (3.13) 

where a and R(t) are the equilibrium and transient radii of the bubble, respectively, and ω is the 

angular frequency of the oscillation. He obtained the average flux over a period of oscillation as 

follows (eq. (5.2), Longuet-Higgins 1989b), after converting to the current notations: 

 2 4 62
flux

N a
c

ρ
π α ω= .                                                                      (3.14) 

Note that ρ is missing from eq. (5.2) in Longuet-Higgins (1989 b), which should be included. 

 Using (3.13), the rate of the bubble volume can be given as 

  ( ) ( )3 3 34 cos ,         4 cosV a t V a tπαω ω παω ω= − =ɺ ɺɺɺ .                                             (3.15) 

Substituting (3.15) into (3.11a) yields 

  ( )2 4 6 2
4 cosfluxN a t

c

ρ
π α ω ω= .                                                           (3.16) 

Its average value over a period of oscillation is the same as (3.14). Note that the range of 

applicability of the expression used in the paper is restricted to strong nonlinear regimes. 

 

3.4 Considerations for introducing the local energy of a bubble system  

 The local energy is introduced based on the following considerations. The total mechanical 

energy of a bubble system does not change due to acoustic radiation. When viscous effects are 

negligible, the total mechanical energy of a bubble system remains constant.  

 In contrast, the local energy of a bubble system is lost as the acoustic wave energy is radiated 

irreversibly to the far field. The bubble system with the remaining local energy undergoes damped 

oscillation with both the amplitude and period reducing significantly. It is the local energy at the 

time considered, not the total energy, that determines (i) bubble behaviour, and (ii) the forces, 

stresses, momentum and heat generated by the bubble.  

 In addition, our computations in §4, §5 and §6 show that the local energy of a transient bubble 

follows a step function in time, being conserved approximately for most of each oscillation cycle, but 

decreasing rapidly and significantly at bubble inception and at the end of collapse, due to acoustic 

radiation. The compressible results are significant only during very short periods at the minimum 

bubble volumes associated with emission of steep pressure waves. This justifies the hybrid modelling 

widely used for bubble dynamics: emission of steep pressure waves at inception of a bubble is 

modelled using a compressible model and subsequent bubble dynamics are modelled using an 

incompressible model. The hybrid method was developed to study bubble dynamics with emission of 

a shock wave at the end of collapse by Hsiao et al. (2014). 
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4. A spherical bubble system  

 Dynamics of a spherical bubble dynamics in a compressible liquid can be described 

approximately by the Keller–Miksis equation,  

( )
( )

( )*

* *2 2

* * * * *

3
1 1

2 3

L

L

d R p
R R R R R p O

dt

ε
ε ε ε

 
− + − = + + 

 
ɺ ɺɺ ɺ ɺ ,                                                   (4.1) 

where  

( )
3

0
0

2 4
1 , * * *

L* g * a* *

* * *

R R
p p p t

R R Re R

κ

σ 
= − − − − 

 

ɺ

                                                        (4.2) 

where ( )** tpa
 is the acoustic pressure at the location of the centre of the initial bubble, and Re = 

ρ∞URmax/µ  is the Reynolds number, with µ being viscosity. Geers et al. (1994, 2002, 2012) 

compared the Keller–Miksis equation with the numerical solution of the Euler equation for spherical 

bubbles for large parameter ranges. They noticed that weakly compressible theory provides very 

accurate results. 

 The Keller–Miksis equation is integrated using the fourth order Runge-Kutta method, to obtain 

R(t), ( ) ( ) and R t R tɺ ɺɺ and V(t), ( ) ( ) and V t V tɺ ɺɺ . With that, the energy flux Nflux and the radiated energy 

EA to the far field can be calculated using (3.11). The calculations were performed for relative and 

absolute tolerances being 10
-4

, since the results are remained almost the same for smaller relative and 

absolute tolerances. 

 The first case considered is for an underwater explosion bubble with a maximum equivalent 

radius Rmax = 171.2 mm initiated at 1.5 m below the water surface, generated by a detonation 

equivalent to 1.32 g of TNT (Hung & Hwangfu 2010). The computational parameters are chosen as 

κ = 1.667, ε = 0.0072, R0* = 0.1, Rt0* = 28.1, and p0* = 122 (Wang 2013). Figure 2a shows the history 

of the local energy of the bubble system versus the history of the bubble radius. The bubble 

undergoes several cycles of oscillation, each time with reduced amplitude, owing to the loss of the 

local energy. The local energy remains nearly constant during most of the oscillation, except for very 

short periods in the vicinity of each minimum volume, when it decreases rapidly. It decreases about 

28% during a very short period at the start of the first expansion phase, but remains nearly constant 

during most of the first cycle of oscillation. The local energy subsequently reduces 47%, 8.5%, 3.9%, 

2.3% and 1.4% at the ends of the first to fifth collapse phases, respectively, when a pressure impulse 

is generated and propagates rapidly through the liquid. It remains as constant at 72%, 25%, 16.5%, 

12.6%, 10.3%, and 8.9% of the initial energy during most of the first to sixth cycles of the 

oscillation. The energy loss due to the acoustic radiation at the minimum volumes of the bubble 

reduces with oscillation cycles. 
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Figure 2. Time histories for the spherical bubble generated by a detonation equivalent to 1.32 g of 

TNT at 1.5 m below the water surface: (a) the radius R* and local energy EL of the bubble system, 

nondimensionalized by the initial local energy EL0, (b) the local kinetic energy ELK, (c) the local 

potential energy ELP, and (d) the energy balance. The other parameters used for calculation are κ = 

1.667, ε = 0.0072, pv* = 0, σ* = 0, R0* = 0.1, Rt0* = 28.1 and p0* = 122. 
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 The time histories of the local kinetic energy and potential energy of the bubble system are 

shown in figures 2b and 2c, respectively. The local potential energy oscillates in phase with the 

bubble volume, whereas the local kinetic energy oscillates out of phase with the bubble volume. 

Their amplitudes decrease significantly from the first to the second cycle and from the second to the 

third cycle. The spikes at the minimum bubble volumes in figure 2c are due to the contribution from 

the potential energy of the bubble gases, which achieves maximum values at these moments. 

 Figure 2d shows the histories of the acoustic radiation energy EA, the local energy EL and the 

total energy ET. The radiation energy EA increases for a very short period during each minimum 

volume of the bubble. The total energy ET remains approximately constant during all the time 

considered, which suggests that the main energy loss is due to acoustic radiation and viscous effects 

are negligible for this case.  

 Note Rmax is the maximum bubble radius that a bubble would expand to in an inviscid liquid 

and without surface tension effects. The difference between unity and the maximum value of R/Rmax 

thus reflects the effects of viscosity and surface tension. Figure 3a shows the time history of the 

bubble radius R/Rmax for transient bubbles at various initial radii R0 over a large range from 0.1 µm to 

100 mm. The remaining parameters are ρ∞ = 1000 kg m
-3

, µ = 0.001 Pa s, c∞ = 1500 m s
-1

, p∞ = 100 

kPa, pv = 0, σ = 0.07 N m
-1

, R0* = 0.1, Rt0* = 26.7, pg0* = 100, and κ = 1.4.  

 As the initial radius R0 decreases, the damping of the bubble oscillation increases. In the range 

of R0 from 0.1 mm to 100 mm, the time history of R/Rmax does not change with R0, where both the 

viscous effects and surface tension effects are negligible. At R0 = 10 µm, the bubble oscillates only 

slightly differently from the above results, where viscous and surface tension effects are small. As R0 

is decreased to 1 µm or smaller, the bubble undergoes obviously more severely damped oscillations. 

 As shown in figure 3b, the local energy EL follows a step function, falling significantly at the 

minimum bubble volumes and remaining approximately constant during the remaining time. The 

energy loss at the minimum bubble volumes decreases with oscillation cycles. In the range of R0 = 10 

µm to 100 mm, the history of EL does not change significantly with R0. The local energy reduces 

faster for a smaller bubble. At R0 = 0.5 µm, the local energy first falls rapidly due to acoustic 

radiation and then reduces due to viscous effects. This is repeated during the second cycle. More than 

two thirds of the local energy is lost for the first cycle of oscillation due to the combined effects of 

acoustic radiation and viscosity.  

 Figure 3c shows the time history of the total energy ET. In the range of R0 = 0.1 mm to 100 mm, 

the total energy remains almost constant, with viscous effects being negligible. It only reduces about 

0.4% at the end of the first collapse phase, which should be due to the approximation of the Keller–
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Miksis equation. Note that the Keller–Miksis equation is based on a weakly compressible theory to 

second order. 

 For R0 = 10, 5 µm, the total energy ET remains about 97% and 93.5% (figure 3c), respectively, 

in the fifth oscillation, and therefore the corresponding energy loss due to viscous effects are 3% and 

6.5%, respectively. At the same time, the local energy remains 19% and 18% of the initial value 

(figure 3b), respectively, and the energy loss due to compressible effects are thus 78% and 75.5%, 

respectively. This suggests that the loss of the local energy is mainly due to acoustic radiation and 

viscous effects are negligible when R0 is equal to 5 µm or larger.  

 Both compressible effects and viscous effects are essential for microbubble dynamics. For R0 = 

1 µm, the energy loss due to viscous effects is 18% and 28% after the first and fourth cycles of 

oscillation, respectively, when the corresponding energy loss due to acoustic radiation is 54% and 

60%, respectively. The local energy is lost faster for a smaller bubble. For R0 = 0.5 µm, the loss of 

the local energy after the first oscillation is about 76%, of which 44% is due to compressible effects 

and 32% due to viscous effects. The energy loss after the first four cycles of oscillation is about 90%, 

of which 48% is due to compressible effects and 42% due to viscous effects. For R0 = 0.1 µm, the 

energy of the bubble system lost mostly during the first oscillation. The loss of the local energy 

during the early expansion is about 58%, of which 36% is due to compressible effects and 22% due 

to viscous effects. The energy loss after the first cycle of oscillation is about 85%, of which 24% is 

due to compressible effects and 61% due to viscous effects.  
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Figure 3. Time histrories of (a) the dimensionless bubble radius R/Rmax, (b) local engergy of the 

bubble system EL/EL0, and (c) total energy ET/EL0, for transient bubbles with intial radius R0 ranging 

from 0.1 µm to 100 mm. The other parameters are ρ∞ = 1000 kg m
-3

, µ = 0.001 Pa s, c∞ = 1500 m s
-1

, 

p∞ = 100 kPa, pv = 0, σ = 0.07 N m
-1

, R0* = 0.1, Rt0* = 26.7, pg0* = 100, and κ = 1.4. 
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 Figure 4 shows the time histories of the dimensionless bubble radius R*, and local engergy 

EL/EL0, for transient bubbles for σ* = 0.07 and Re = 10, 100, 300 and 1000, respectively. Other 

parameters used are ε = 0.00667, pv* = 0, R0* = 0.1, Rt0* = 26.7, pg0* = 100, and κ = 1.4.  With the 

decrease of the Re number, both the oscillation period and maximum bubble radius decrease, 

whereas the minimum radius increases. For Re = 1000, the total energy loss is 84% after the first four 

cycles of oscillation, of which 80% is due to compressible effects and 4% due to viscous effects. For 

Re = 300, the total energy loss is 72% after the first oscillation, of which 66% is due to compressible 

effects and 6% due to viscous effects. The total energy loss is 85% after the first four cycles of 

oscillation, of which 74% is due to compressible effects and 11% due to viscous effects. 

Compressible effects are thus dominant for Re = 300 or larger. 

 Both compressible effects and viscous effects are essential for Re =100 or smaller. For Re = 

100, the total energy loss is 89% after the first four cycles of oscillation, of which 61% is due to 

compressible effects and 28% due to viscous effects. For Re = 10, the total energy loss is 92% after 

the first four cycles of oscillation, of which 34% is due to compressible effects and 68% due to 

viscous effects. 

 Note here that the Reynolds number Re is defined in terms of the maximum bubble radius Rmax. 

The Reynolds number is also often defined in terms of the initial bubble radius, Re0 = ρUR0/µ . As R0 

= 0.1Rmax  in the cases, Re0 = 0.1Re.  

 Figure 5 shows the effects of surface tension. The oscillation peroid and maximum bubble 

radius decrease with the dimensionless surface tension σ*, but the loss of the local energy does not 

change significantly with σ*. 

 Figure 6 shows the comparison between the Keller–Miksis equation (KM) and the 

compressible BIM model, for the time histories of the dimensionless bubble radius R* and the local 

energy EL/EL0, for a transient bubble for R0 = 100 µm. The BIM results are calculated for the number 

of nodes n = 41, 51, respectively, showing convergence of the numerical model in terms of the mesh 

size. The BIM results agree very well with that of the Keller–Miksis equation. This is as expected, 

since both the Keller–Miksis equation and the compressible BIM model are based on the weakly 

compressible theory to second order in terms of the Mach number ε. Lezzi & Prosperetti (1987) 

compared the third order solution with the second order solution. They noticed that the second order 

theory describes the main compressible effects when the Mach number is small, and the third order 

solution is a minor correction.  
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Figure 4. Time histrories of (a) the dimensionless bubble radius R/Rmax, (b) local engergy EL/EL0, and 

(c) the total energy ET/max(ET), for transient bubbles for σ* = 0.07 and Re = 10, 100, 300, 1000, 

respectively. Other parameters are ε = 0.00667, pv* = 0, R0* = 0.1, Rt0* = 26.7, pg0* = 100, and κ = 1.4.  
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Figure 5. Time histrories of (a) the dimensionless bubble radius R/Rmax, and (b) local engergy EL/EL0, 

for transient bubbles for Re = 100 and σ* = 0.007, 0.07 respectively. Other parameters are the same 

as figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison between the Keller–Miksis equation (KM) and BIM modelling for the number 

of nodes n = 41, 51, respectively, for the time histrories of (a) the dimensionless bubble radius R/Rmax, 

and (b) local engergy EL/EL0, for a transient bubble for R0 = 100 µm. Other parameters are the same 

as figure 3.  
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5. A gas bubble under buoyancy 

  We now consider a nonspherical bubble generated by an underwater explosion at Rm = 171 mm 

and depth h = 1.5 m from the water surface. The bubble shapes calculated for this case using the 

recently developed compressible BIM model (Wang 2013) agree well with experiments (Hung & 

Hwangfu 2010) for both the first and second cycles of oscillation (see figure 7). The bubble expands 

spherically, reaching the first maximum volume (sequence 1), and then collapses spherically. 

However the lower part of the bubble surface is flattened due to buoyancy at the end of collapse 

(sequence 2), whereupon an upward jet forms, impacts the opposite bubble surface and subsequently 

penetrates the bubble. The bubble re-expands to a spherical shape at its second maximum volume 

(sequence 3) and then re-collapses with a jet forming at the end of re-collapse (sequence 4). It further 

rebounds with a sharp jet (sequence 5).  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparison of the compressible BIM model computation (dotted line) with the 

experimental images
 
(Hung & Hwangfu 2010) for an underwater explosion bubble at Rm = 171 cm 

and the depth h = 1.5 m below the water surface, at times t = 15, 27, 36, 48, 51 ms. The image width is 

500 mm. Other parameters are κ = 1.667, R0/Rm = 0.1, Rt0 = 303 m s
-1

, p∞ = 116 kPa and p0 = 14.2 

MPa.  
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 Figure 8a shows the time history of the local energy EL of the bubble system versus the 

equivalent bubble radius ( ) 3/1

*4

3
*

VR
eq π

= . A substantial part, 26.5%, of the local energy is lost during a 

very short period at the inception of the bubble, when a steep pressure wave is emitted with high 

pressure amplitude. It remains almost constant at 73.5% of the initial energy for most of the time 

during the first cycle but decreases rapidly and significantly at the end of collapse, with the emission 

of another steep pressure wave. About 35% of the initial energy is lost this time with only about 

38.5% of the initial energy left during the second cycle. As a result, the dimensionless maximum 

radius reduces from 1.0 during the first cycle to 0.79 during the second cycle. About 27% of the 

initial energy is lost around the end of recollapse with only 11.5% of the initial energy left during the 

third cycle of oscillation. The dimensionless maximum radius reduces further to 0.53 during the third 

cycle. The local energy of the bubble system is conserved during most of the time, except for very 

short periods around the minimum volumes of the bubble.  

  Figure 8b shows that the local potential energy ELP of the bubble system oscillates in phase 

with the bubble volume while the local kinetic energy ELK oscillates out of phase with the bubble 

volume. Both of their magnitudes reduce significantly from the first to the second cycles of 

oscillation and from the second to the third cycles. 

 Figure 9 shows that the local energy appears as a step function of time for underwater explosion 

bubbles for various buoyancy parameters δ = 0.12, 0.2 and 0.3, corresponding to Rm
 
=

 
171,

 
476, and

 

1000
 
mm, respectively. With the initial energy deposited from the explosion, the bubble expands 

rapidly at inception with the emission of a steep pressure wave; the local energies then fall by about 

27% for all three bubbles, when they are small and the buoyancy effects are negligible. The local 

energy is conserved while the bubbles oscillate but falls rapidly at the end of collapse, when another 

steep pressure wave is emitted. A larger bubble is associated with stronger buoyancy effects and a 

stronger liquid jet formed at the end of collapse (Wang 2013), and thus its collapse is weaker with 

less energy loss. Consequently, the energy of the bubble system remains at about 39%, 45% and 54% 

of the initial energy during the second cycle of oscillation for Rm
 
=

 
171,

 
476, and

 
1000

 
mm, 

respectively.  

 This model does not simulate the propagation of pressure waves, but it models the rapid and 

significant losses of the local energy at the inception of a bubble and the end of collapse. This rapid 

and significant energy loss should be associated with a steep pressure wave in a narrow region 

travelling through water. After it propagates radially for a while its amplitude will drop, because the 

surface wave front is approximately spherical with its area increasing with time.   
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Figure 8. Time histories of the bubble system for the case shown in figure 7: (a) the equivalent 

bubble radius Req* and the local energy EL of the bubble system and (b) the local kinetic energy ELK 

and potential energy ELP. The energy is nondimensionalized by the initial local energy EL0.  

 

 

 

 

 

 

 

 

 

 

Figure 9. Time histories of the local energy EL of the bubble system for various buoyancy parameters 

δ = 0.12, 0.2 and 0.3, with the remaining parameters being the same figure 7.  
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 One of the damage mechanisms of underwater explosions is associated with the steep pressure 

wave emitted at inception of the underwater explosion bubble (Wardlaw et al. 2000, 2003a, b). 

Another damage mechanism is associated with the high-speed liquid jet formed at the end of collapse 

(Chahine et al. 1988, 1998a, b, Duncan et al. 1993, 1996, Blake et al. 1997, Wang 1998, 2004), 

which is often directed towards a nearby structure (Chahine et al. 1980, Klaseboer et al. 2005, 

Jayaprakash et al. 2010, 2011). 

 

6. A cavitation bubble near a rigid wall 

 This section is concerned with cavitation bubble dynamics near a rigid boundary. The cases 

considered are for a bubble with Rm = 1.45 mm at various standoff distance from the boundary, which 

correspond to the experimental cases by Philipp & Lauterborn (1998). The other computational 

parameters chosen are κ = 1.4, ε = 0.013, σ* = 0.00051, R0* = 0.1, Rt0* = 31 and pg0* = 127. The bubble 

shapes calculated for these cases, using the compressible BIM model (Wang 2014) agree well with 

the experiment for both the first and second cycles of oscillation. 

 The first case is for a bubble at the dimensionless standoff distance γ = s/Rm = 3.0 from the 

rigid boundary, where s is the distance of the bubble centre from the rigid boundary at inception. 

Figure 10a shows the time history of the local energy EL of the bubble system versus the time history 

of the bubble equivalent radius Req* for the first and second cycles of oscillation. The local energy 

remains constant except for very short periods around the minimum bubble volumes, where it 

reduces rapidly. The local energy falls about 44% during its inception and remains at 56% of the 

initial energy during most of the first cycle of oscillation. It further reduces by 32% during the end of 

collapse and remains at 24% of the initial energy during the second cycle.  

 Figure 10b shows that the local potential energy ELP of the bubble system oscillates in phase 

with the bubble volume while the local kinetic energy ELK is out of phase with the bubble volume. 

Both of their magnitudes reduce significantly from the first to the second cycles of oscillation. 

 Figure 10c shows the time histories of the local energy EL of the bubble system at various 

dimensionless standoff distances from the rigid boundary for γ = 3.0, 2.0 and 1.6, respectively. At 

inception it falls by about 44% at all three standoff distances, when the bubble is small and the 

effects of the boundary are negligible. The bubble becomes nonspherical during the later stage of 

collapse, when a high-speed liquid jet forms towards the boundary. When the bubble is nearer to the 

boundary a stronger jet forms and the collapse becomes relatively weaker
 
(Philipp & Lauterborn 

1998, Wang 2014). As a result, the energy loss decreases as the bubble is initiated nearer the 

boundary, remaining at about 24%, 36% and 45% of the initial energy in the second cycle of 

oscillation for γ = 3.0, 2.0 and 1.6, respectively. The local energy loss at the end of collapse 

decreases rapidly, as the standoff distance is decreased. This is true because when the bubble is 
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closer to the boundary, the bubble becomes nonspherical earlier in its oscillation cycle, a larger jet 

then forms and a larger amount of kinetic energy is associated with the jet (Zhang et al. 1993, 1994, 

Philipp & Lauterborn 1998, Wang 2014). Consequently, the bubble collapse becomes relatively 

weaker.  

 Cavitation damage is generally believed to be due to shock wave emission and bubble jetting 

formed at the end of collapse (Rayleigh 1917, Taylor 1942, Naud´e & Ellis 1961, Plesset & 

Chapman 1971, Plesset & Prosperetti 1977, Blake & Gibson 1987). It was suggested by experimental 

studies (Tomita & Shima 1986, Philipp & Lauterborn 1998, Wang, Liu, et al. 2015) that cavitation 

erosion is also associated with a bubble ring with high pressure and temperature in direct contact 

with a rigid boundary formed at the end of recollapse. Chen & Israelachvili (1991) noticed in 

experiments that the inception of cavities is intimately connected with simultaneous relaxations of 

high local strain energies on nearby surfaces. They suggest that in many practical situations, damage 

is more likely to occur during the formation, rather than the collapse, of cavities. The damage 

mechanism of Chen & Israelachvili (1991) is consistent with the result observed here that the local 

energy of a bubble system at inception is much higher than at the end of collapse.  
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Figure 10. Time histories of cavitation bubble dynamics near a rigid boundary characterized by κ = 

1.4, ε = 0.013, σ* = 0.00051, R0* = 0.1, Rt0* = 31.0, pv* = 0 and pg0* = 127: (a) the equivalent bubble 

radius Req* and the local energy EL of the bubble system for γ = 3.0, (b) the local kinetic energy ELK 

and potential energy ELP for γ = 3.0, and (c) the comparison of the local energy at various standoff 

distances from the rigid boundary for γ = 3.0, 2.0 and 1.6, respectively. 
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7. Single bubble sonoluminescence  

 Single bubble sonoluminescence is an intriguing phenomenon. A gas bubble of only a few 

micrometres in size is levitated in a liquid by an acoustic standing wave and kept in position at a 

pressure antinode. As the bubble is compressed periodically by the acoustic wave, it emits light 

pulses so intense as to be visible to the naked eye with clock-like regularity (Suslick & Crum 1997, 

Gaitan et al. 1992, Gompf et al. 1997, Hiller et al. 1992, Lohse 2005). This process gives rise to 

featureless continuum emission in water (from 200 to 800 nm, with increasing intensity into the 

ultraviolet) (Hiller et al. 1992, 1998). 

 The initial pressure of a gas bubble at equilibrium is given as,
00 /2 Rppg σ+= ∞ , which is in 

balance with the ambient pressure and surface tension. The pressure at the antinode of a standing 

wave is 

( ) ( )ftptp Aa π−= 2sin ,                                                                  (7.1) 

where pA and f are the amplitude and frequency of the acoustic wave, respectively. 

 A typical sonoluminescence case is considered using the Keller–Miksis equation, with the 

parameters chosen as pA = 130 kpa, f = 20 kHz and R0 = 5 µm (Lauterborn & Kurz 2010). As shown 

in figure 11a, the local energy first increases rapidly from nearly zero to its maximum value, within a 

very short period (about 10 µs, 20% of the wave period), by absorbing energy from the acoustic 

wave. The local energy then decreases more rapidly to nearly zero in about 4 µs (8% of the wave 

period) and remains small during the remainder of the cycle, for about 35 µs (70% of the wave 

period). The majority of the energy loss (about 80%) happens within 0.1 µs, which is only 0.2% of 

the wave period. As a result, the gas bubble in water is driven into violent oscillation. It expands to 

more than eight times its ambient radius, and then collapses rapidly over a very short time period 

(about 4 µs). The bubble subsequently vibrates with small amplitude at approximately its natural 

frequency. 

 As shown in figures 11b and 11c, the potential energy of the bubble gas is small most of the 

time except for a very short period near the minimum bubble volumes. The gas potential energy is 

appreciable within a time span of 0.01 µs (0.02% of the wave period) at the end of the violent 

collapse, achieving its maximum of 0.18 max(EL), when the bubble is small at R = 0.675 µm and the 

energy density of the bubble gas is large at 3.5×10
25

 J M
-3

. In reality, the energy density cannot reach 

this value due to the evaporation of water, heat transfer and emission of light (Szeri et al. 2003, 

Lohse 2005, Zhang & Li 2014). This energy concentration yields very high pressures and 

temperatures, thus providing the physical internal environment for sonoluminescence and 

sonochemistry. The local energy describes the energy transfer from the acoustic wave to the bubble 

system and the subsequent energy concentration due to the bubble collapse.  
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Figure 11. Time histories of a bubble with an initial radius R0 = 5 µm and initial pressure pg0 = 1.3 

atm (0.3 atm due to surface tension) at the anti-node of a standing wave having pressure amplitude 

pA = 1.3 atm and frequency f = 20 kHz: (a) the local energy EL of the bubble system and the bubble 

radius R versus time, (b) the potential energy EPG of the bubble gas and the bubble radius R versus 

time, and (c) an enlarged view of the gas potential energy EPG and radius R near the end of the first 

collapse.  
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8. Summary and conclusions 

 The total mechanical energy ET of a bubble system consists of the local energy EL within the 

inner asymptotic region and the acoustic radiation energy EA radiated to the far field, i.e. 

ET = EL + EA .                                                                             (8.1) 

The local energy of a bubble system EL consists of the local potential energy ELP of the bubble 

system and the local kinetic energy EKL of the liquid flow in the inner region, 

( ) ( )
1

0 0 0 1
  

1 2

g

L PL LK c v n

S

p V V
E E E A gVz p p V dS O

V

κ

σ ρ ρ ϕϕ ε
κ

−

∞ ∞ ∞

 
= + = + − + − + + 

−  
∫� ,              (8.2) 

where pg0 is the initial pressure of the bubble gas, V0 and V are the initial and transient bubble 

volumes, respectively,  κ is the polytropic index of the bubble gas, pv is the partial pressure of vapour 

inside the bubble, σ is surface tension, A is the area of the bubble surface, g is the acceleration of 

gravity, zc is the z-coordinate (opposite to the direction of gravity) of the geometric centre of the 

bubble, ρ∞ and p∞ are the density and pressure of the undisturbed liquid, respectively, ϕ and ϕn are 

the potential and normal velocity on the bubble surface, respectively, and ( )c
p p / / cε ρ∞ ∞ ∞= − is 

the bubble wall Mach number, where c∞ is the speed of sound in the undisturbed liquid. The order of 

the errors in (8.2) should be for the corresponding dimensionless equation.  

 The energy radiated outside of the inner region due to acoustic radiation from the start to the 

present time t is given by  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

0

0

0  0   

t

A
E t C V V V t V t V t dt O

c

ρ
ε∞

∞

 
= − + + 

 
∫ɺ ɺɺ ɺ ɺɺ ɺɺ  ,                                   (8.3) 

where C0
 
is

 
1/(4π) or 1/(2π) for a bubble in an unbounded liquid or near a rigid flat boundary, 

respectively, and the overdots denote the derivative with respect to time t. The local energy loss due 

to radiation depends on the history of the bubble volume alone to first order. The transient energy 

flux Nflux to the far field is given as 

 ( ) ( ) ( )2

0
 

flux
N C V t V t O

c

ρ
ε∞

∞

= − +ɺ ɺɺɺ .                                                             (8.4) 

 As the energy is lost irreversibly through acoustic radiation, the bubble system with the 

remaining local energy undergoes damped oscillation, with both the amplitude and period decreasing 

significantly with time. Thus, it is the local energy at the time considered not the total energy that 

determines the bubble motion and the associated forces, stresses, momentum and mass and heat 

transfer.  

 We have analysed the time histories of the local energy for the oscillation of spherical bubbles, 

underwater explosion bubbles with buoyancy effects, laser-generated bubbles near a rigid boundary, 

as well as spherical bubbles oscillating stably in a standing acoustic wave. Various mechanisms and 
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properties of the energy associated with bubble dynamics have been identified in this study, which 

are summarized as follows. 

 If the Reynolds number in terms of the initial bubble radius is 30 or larger, the loss of the local 

energy for the cases considered is primarily associated with acoustic radiation. For cases with smaller 

Reynolds numbers, both compressible and viscous effects contribute to the local energy loss.  

 The local energy is lost rapidly and substantially at bubble inception due to emission of a shock 

wave. The local energy then remains almost constant for most of the first cycle of oscillation, when 

viscous effects are small. This process is repeated, except the energy loss at the minimum bubble 

volume decreases with subsequent oscillation cycles.  

 The local potential energy of a bubble system oscillates in phase with the bubble volume while 

the local kinetic energy oscillates out of phase with the bubble volume. Both of their magnitudes 

decrease significantly with oscillation cycles. The potential energy of the bubble gases increases 

inversely with the bubble volume. 

 The loss of the local energy of a bubble system and the associated damping of the bubble 

oscillation are diminished by buoyancy effects and reduce with the buoyancy parameter. This is true 

because a substantial portion of the kinetic energy is associated with the liquid jet generated by 

buoyancy. Consequently, the bubble collapse becomes weaker and less energy is radiated through the 

acoustic wave to the far field. Similarly, the loss of the local energy of a bubble system and the 

associated damping of the bubble oscillation are diminished by the presence of a rigid boundary and 

decrease with proximity of the bubble to the boundary. 

 A microbubble driven at the antinode of a standing wave has quite different properties from 

those discussed above. This bubble absorbs substantial energy from the acoustic wave and oscillates 

violently yet stably. The local energy of the bubble system increases rapidly from nearly zero to its 

maximum within a very short time period and then decreases more rapidly to nearly zero, having a 

small value during the rest of the oscillation. The majority of the energy loss happens rapidly during 

about 0.2% of the wave period for the case considered here. The potential energy of the bubble gas is 

at an extremely high density at the end of the violent collapse for about 0.02% of the wave period, 

yielding very high pressures and temperatures, and thus providing the physical internal environment 

for sonoluminescence and sonochemistry. The local energy describes the energy transfer from the 

acoustic wave to the bubble system and the subsequent energy concentration due to the bubble 

collapse.  
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