Management of advanced nodal disease in patients treated with primary chemoradiotherapy

Mehanna, Hisham; Wong, Wai Lup; Dunn, Janet

DOI:
10.1097/CCO.000000000000283

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
https://doi.org/10.1097/CCO.000000000000283

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Article is not the final published version. Final Version of Record published as above.

Checked April 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 16. Sep. 2023
Management of advanced nodal disease in patients treated with primary chemoradiotherapy
Mehanna, Hesham; Wong, Wai Lup; Dunn, Janet

DOI: 10.1097/CCO.0000000000000283

Document Version
Early version, also known as pre-print

Citation for published version (Harvard):

General rights
When referring to this publication, please cite the published version. Copyright and associated moral rights for publications accessible in the public portal are retained by the authors and/or other copyright owners. It is a condition of accessing this publication that users abide by the legal requirements associated with these rights.

• You may freely distribute the URL that is used to identify this publication.
• Users may download and print one copy of the publication from the public portal for the purpose of private study or non-commercial research.
• If a Creative Commons licence is associated with this publication, please consult the terms and conditions cited therein.
• Unless otherwise stated, you may not further distribute the material nor use it for the purposes of commercial gain.

Take down policy
If you believe that this document infringes copyright please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Management of advanced nodal disease in patients treated with primary chemoradiotherapy

Hisham Mehanna, Ph.D.¹, Wai Lup Wong, F.R.C.R.², Janet Dunn, Ph.D³.

¹ Institute of Head & Neck Studies and Education, University of Birmingham, UK. ² Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, UK. ³ Warwick Clinical Trials Unit, University of Warwick, Coventry, UK.

Correspondence:
Prof Hisham Mehanna, Ph.D.
Chair of Head and Neck Cancer and Director,
Institute of Head & Neck Studies and Education,
College of Medical and Dental Sciences,
University of Birmingham,
Edgbaston, B15 2TT, UK.
Tel:+44 121 414 6547
Fax: +44 121 414 8046
Email: h.mehanna@bham.ac.uk Web: www.inhanse.org

Abstract

Purpose of review:
The management of advanced nodal disease in patients treated with chemoradiotherapy has been a controversial topic for many years. New data has recently been reported, including the results of a multicenter randomized trial making this review timely.
Recent findings:

The PET NECK trial showed that PET CT surveillance is as effective as planned neck dissection in terms of overall survival, but results in much fewer neck dissections, less complications and is more cost effective. Cost effectiveness data from a single centre study demonstrated that strategies that include PET CT were more effective than CT-alone guided strategies.

Summary: There is now level I evidence to support image-guided surveillance strategies as the standard of care for advanced nodal disease in patients treated with primary chemoradiotherapy.

KEY WORDS: neck dissection, Positron emission tomography, chemoradiotherapy
Introduction

The management of advanced nodal (N2-N3) disease in patients with head neck cancer treated with primary chemoradiotherapy (CRT) continues to vary widely between institutions and countries. Whilst many in the US adopt image-guided, response-based strategies, a significant proportion in other countries still practice planned neck dissection. For example, up to 48% of patients with oropharyngeal cancer in the UK were found to have neck dissection as their first treatment in a recent national audit.\(^1\) In France, 35% of head neck clinicians surveyed reported that they commonly or routinely performing neck dissection before CRT\(^2\).

These variations in practice are the mainly due to contradicting evidence and the lack of randomized comparative studies. This article reviews the most recent data in the field:

Literature supporting planned neck dissection

Previous retrospective studies showed that 40% of neck dissections post chemoradiotherapy contained persistent disease on histopathological examination.\(^3\) There was also level 3 evidence from retrospective studies
demonstrating a significant survival advantage in favour of planned neck
dissection, compared to CRT alone.\(^\text{4, 5}\) As a result, traditionally, these
patients have been treated with a ‘planned’ neck dissection, either before or
after chemoradiotherapy, despite the risk of significant morbidity and even
mortality.\(^\text{6}\)

Literature supporting image-guided surveillance

As the quality of cross-sectional imaging improved over the past two decades,
studies consistently reported low rates of recurrence following image-guided
surveillance. For example, Thariat et al reported rates of recurrence of 4% in
the 30% of subjects showing complete response on CT scans.\(^\text{2}\) However
those patients who showed partial response or equivocal complete response
on CT scanning had high recurrence rates of 37% and 32% if they did not
have a neck dissection. Such data has stimulated the increasing adoption of
response-based approaches following CRT.

The efficacy of FDG PET-CT in this indication

The advent of Positron Emission Tomography (PET), using \[^{18}\text{F}\]-
fluorodeoxyglucose [FDG PET], is a form of functional imaging which
identifies abnormal metabolic activity of tumour cells and specifically
increased glucose metabolism in tumour cells. It potentially conferred
advantages over other cross-sectional imaging modalities in identifying
residual disease following CRT. More recently, combined PET-CT scanners
have been developed. PET-CT localizes abnormal functional metabolic
activity of tumour cells, and also shows structural abnormalities, such as nodal enlargement. There have been two notable meta-analyses assessing the diagnostic performance of FDG-PET and FDG PET-CT in this indication. These have included mainly, single hospital, retrospective and prospective studies. The meta-analyses demonstrated high negative predictive values of 94.5- 96% with positive predictive values of approximately 50% for FDG PET and FDG PET-CT scanning following chemoradiotherapy [CRT].\(^\text{(7, 8)}\) FDG PET and PET-CT scanning may therefore be able to identify even more patients with complete response following chemoradiotherapy, resulting in fewer neck dissections.\(^\text{(9)}\)

Till recently, there was no prospective multi-centre, randomised evidence. However, the PET NECK study has recently reported\(^\text{(10)}\). The study recruited 564 patients, randomized into either a planned neck dissection arm or a PETCT active surveillance arm. PET CT was non-inferior in terms of overall survival (i.e. there was no survival detriment for not having or delaying neck dissection) and only 19% of patients had a neck dissection in the PET CT arm, with less complications and the same overall quality of life. The active surveillance PET-CT arm was significantly more cost-effective than the planned neck dissection arm.

HPV disease and equivocal PET-CT results

In our PET NECK study, patients with equivocal responses on FDG PET-CT scanning received a neck dissection. Our definition of equivocal responses
included those patients with residual masses but no FDG uptake or those patients with mild FDG uptake regardless of nodal size.

Patients who had demonstrated equivocal complete responses on CT scanning after chemoradiotherapy had a high nodal recurrence rate of 37%, similar to that of patients who showed partial or no response.\(^{(2)}\)

Recent reports suggest HPV+ nodal disease make take longer to reduce in size\(^{(11)}\), and therefore may present with equivocal FDG PET-CT scans (in particular with enlarged nodes on the CT scan component, but without FDG avidity) at the 12 week post CRT assessment. Other recent reports suggest that patients who show no FDG uptake had very low recurrence rates, especially if they had HPV + disease \((93\%)^{(9,12)}\). Therefore, patients with HPV+ disease who show enlarged nodes but no FDG uptake after CRT may be considered for close surveillance with serial frequent scans. Patients with FDG uptake should continue to have a neck dissection, especially if they have HPV negative or high risk HPV-positive disease. The role of ultrasound guided biopsies and diffusion weighted MRI should be evaluated in this group of patients.

FDG PET-CT versus CT-guided surveillance

A prospective study by Moeller et al reported that the diagnostic accuracy of FDG PET-CT was only better than CT in high-risk patients who have HPV negative disease, non-oropharyngeal primaries or who have a smoking or
alcohol history. There was no benefit seen in low risk patients who are non-smokers with HPV+ oropharyngeal primaries. The authors acknowledge that the study limited for several reasons. Firstly, it was performed in high-throughput cancer institution where the proportion of high risk patients and radiotherapy non-responders may be greater than in other treatment settings. Secondly, FDG PET-CT nodal response was assessed at mean of 8 weeks [range 5-12 weeks] following treatment, which may not be the optimal timing for FDG PET-CT after RT. And finally, histopathology of post CRT neck dissection was used as evidence of persistent disease, which overestimates tumour persistence.

Indeed, other studies that compared FDG PET-CT to CT have reported much higher efficacy of FDG PET-CT compared to CT in HPV+ patients. Mak et al reported that FDG PET/PET-CT scanning at a mean time of 12 weeks [range 8-16 weeks] following treatment was significantly more accurate at predicting complete response (90%) compared to contrasted CT assessment (46%), and especially for HPV+ patients (93% vs 50%) In one of the largest studies to date which specifically considered FDG PET-CT response in HPV+ oropharyngeal cancer, FDG PET-CT at 12 weeks post CRT demonstrated high NPV for loco-regional failure though with disappointing PPV and sensitivity.

Pryor et al demonstrated that surveillance strategies utilising FDG PET-CT were more cost effective than CT guided surveillance alone, regardless of the HPV status of the patient. Furthermore, that study showed that combined
strategies using CT followed by FDG PET-CT in non-responders were only slightly more cost effective than FDG PET - CT alone, and were very sensitive to changes in circumstances(14).

As yet, independent validation of CT scan-driven response systems or comparison with PET-CT –driven systems in \textit{multicenter, randomised} settings have not been published. Even if further studies shows FDG PET-CT is of limited value in HPV+ patients, it should perhaps be noted that in many countries, this low risk HPV+ constitutes only a minority of patients, and FDG PET-CT would still have a important role in the majority of patients.

\textbf{Conclusions}

There now appears to be strong, level 1 evidence to support FDG PET-CT - guided surveillance for patients with advanced nodal disease treated with CRT. There is also a large body of retrospective evidence to support CT guided surveillance. However, the available evidence favours FDG PET-CT guided policies over CT-only guided regimens on the basis of cost-effectiveness.
Acknowledgements
We would like to thank all the co-investigators, collaborators and patients of the PET NECK study for participating in the study.

Financial support and sponsorship
This work was supported by the University of Birmingham, University of Warwick and University Hospitals Coventry and Warwickshire NHS Trust. The PET NECK Trial was funded by an academic grant awarded by the Department of Health’s National Coordinating Centre’s Health Technology Assessment Unit (grant no. 06/302/129).

Conflicts of interest
A has received honoraria from Merck and MSD, as well as academic grants from GSK, SPMSD and Astra Zeneca. The remaining authors have no conflicts of interest.
