Spectral Characterization of Murine Arthritis Models

Sophie Glinton¹, Amy J Naylor², Ela Claridge³

¹ Centre for Physical Sciences of Imaging in the Biomedical Sciences (PSIBS), University of Birmingham, Birmingham, B15 2TT, U.K.
² Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, U.K.
³ School of Computer Science, University of Birmingham, Birmingham, B15 2TT, U.K.

Email: cvg957@student.bham.ac.uk

Abstract: Monte Carlo modelling of light propagation through mouse paw tissues reveals that hypoxia and erythema occurring in arthritis characteristically alter the shape of reflectance spectra. Measurements from normal and arthritic mice show similar trends.

OCIS codes: (170.4580) Optical diagnostics for medicine; (170.3660) Light propagation in tissues; (170.6510) Spectroscopy, tissue diagnostics.

1. Introduction

Rheumatoid Arthritis is a chronic autoimmune disease affecting around 1% of the Western population. It is characterized by progressive inflammatory polyarthritis, initially causing inflammation and hyperplasia of the synovial membrane. As the disease progresses, an influx of immune cells damage the cartilage and subchondral bone reducing the functionality of the joint. The early phase of disease is the most efficacious for drug targeting, but it is problematic for imaging due to the expertise and waiting times associated with ultrasound and MRI, the most proficient modalities for grading inflammation. Consequently, optical imaging presents a possibility as a future clinical imaging aid due to its non-ionising radiation, inexpensive equipment, and rapid imaging speeds.

Animal models are frequently used in rheumatoid research, both to study the complex aetiology and pathology of the disease, and to discover novel molecular targets for drug therapy. Many of these studies involve the long-term observation in order to track symptom severity over the course of a treatment or experiment. The potential for a non-invasive, non-ionising imaging system that predicts the severity of inflammation would therefore be a useful adjunct to conventional measurements such as paw size, and observational evaluation of mouse appearance and behaviour.

There are several changes that take place in the rheumatoid joint which are responsible for altering the optical properties of the tissue. Decreased oxygen tension is thought to be a consequence of the high metabolic demands of the immune cell influx, and the proliferating synovium. This is now recognized to extend to the haemoglobin balance in the tissue surrounding the joint with a decrease in the ratio of oxyhaemoglobin to deoxyhaemoglobin. Inflammatory signals and the formation of angiogenic vasculature bring an increase in the local blood volume fraction and localized oedema. The unique wavelength-dependent absorption spectra of the three absorbers, oxyhaemoglobin, deoxyhaemoglobin and water, contribute to the shape of the reflectance spectra of a tissue in the visible and near-infrared (NIR) wavelengths.

In this study the mouse hind paw was modelled as a multi-layer model (Table 1). The changes which occur in arthritis were modelled to investigate whether they translate into detectable changes in the reflectance spectra. For validation, the modelled spectra were compared to the measured spectra of healthy and arthritic mice.

Table 1. The layers and parameter values used in the model of the mouse hind paw.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>n [-]</th>
<th>d [µm]</th>
<th>A [-]</th>
<th>M [-]</th>
<th>k [10^-3]</th>
<th>Blood VF [%]</th>
<th>Hb balance [%]</th>
<th>H2O [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidermis</td>
<td>0.70</td>
<td>1.34</td>
<td>25 (5-30)</td>
<td>59.64</td>
<td>760</td>
<td>-4.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dermis</td>
<td>0.80</td>
<td>1.45</td>
<td>200 (50-250)</td>
<td>50.87</td>
<td>813</td>
<td>-4.7</td>
<td>2-10</td>
<td>70 (40-90)</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.93</td>
<td>1.33</td>
<td>500 (0-700)</td>
<td>10.17</td>
<td>1770</td>
<td>-6.6</td>
<td>2-15</td>
<td>75 (40-90)</td>
</tr>
<tr>
<td>Bone</td>
<td>0.90</td>
<td>1.64</td>
<td>200 (0-400)</td>
<td>72.23</td>
<td>1550</td>
<td>-4.9</td>
<td>1-3</td>
<td>70 (60-80)</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>0.90</td>
<td>1.40</td>
<td>200 (0-300)</td>
<td>50.88</td>
<td>175</td>
<td>-4.0</td>
<td>10</td>
<td>80 (60-90)</td>
</tr>
</tbody>
</table>

2. Optical properties and their modelling

This study uses a multi-layer tissue model informed by H&E stained mouse paw sections for the thicknesses of the different tissue layers. Tissue layer-specific absorption coefficients (Fig. 2a) were incorporated into the model as a linear summation of the layer absorbers, allowing changes in their concentration to represent tissue variability or disease states. The scatter coefficients for each tissue layer (Fig. 2b) were sourced from literature and fitted according to the equation \(\sigma_a(\lambda) = A + Me^{-k\lambda}\) where \(\lambda\) is wavelength and A, M and k are independent variables.

Scatter coefficients are wavelength-dependent and significantly affect the shapes of spectra remitted from the tissue. Due to the lack of published data on the scatter coefficients of live mouse tissues, published data from human tissues was used. Values for the anisotropy (g), refractive index (n) and tissue layer thickness (d) were taken from the
published data (references not listed due to the shortage of space). Table 1 lists values of the parameters used in the model. The reflectance spectra representative of the mouse paw were modeled using MCML Monte Carlo (MC) simulations [1] employing a GPU-optimized version of the code [2].

3. Murine data acquisition

Spectroscopic measurements were taken from the hind paw of a live arthritic mouse and a normal control littermate. During measurements the mice were anaesthetized with 3% isoflurane. All experiments were carried out at the University of Birmingham, UK following strict guidelines governed by the UK Animal (Scientific Procedures) Act 1986 and approved by the local ethics committee (BERSC: Birmingham Ethical Review Subcommittee). The output from a tungsten halogen light source (Ocean Optics HL2000 FHSA) was transmitted through an optical fiber to the spectrophotometer (Ocean Optics Flame-S-Vis-NIR-ES). The reflected light was collected from a distance of 3mm with the collection radius of 4mm. This set-up was used in consideration of the size of the mouse paws in order that background reflections were kept minimal. The reflectance was calibrated against Spectralon® (Labsphere) reflectance standards.

4. Experiments and results

The main absorbing agents of interest in a model of arthritis are haemoglobin, oxyhaemoglobin and water. The first experiment was to determine whether the changes in the quantities of the individual absorbers result in observable changes in the shape of the whole tissue reflectance spectra. The resulting spectra are shown in Figure 1.

In the second experiment the tissue model was modified to simulate changes that occur in arthritis. The objective was to verify whether the modelled spectral reflectance is consistent with the measured reflectance at the tissue surface. The changes that were incorporated in the arthritic model are a 30% increase in the muscle water content and volume to represent oedema, a 3% increase in blood volume fraction in the muscle layer near to the bone, and a 10% decrease in the muscle blood oxygenation. Figure 2c shows the results of the MC simulation, figure 2d shows the measured spectra in a healthy and an arthritic mouse. It should be noted that the arthritic symptoms evolve with the effector phase of the disease and can vary between the different models of murine arthritis. The data shown here is from a pilot experiment on which we will expand to include a variety of mouse arthritis models at various stages of disease progression. Both the modelled and the measured data presented in figures 2c and 2d are therefore approximations based on the observations of a number of papers [3-6] and our pilot data.

4. Discussion and conclusions

Changes in the blood volume fraction (BVF) and haemoglobin balance (HB) appreciatively change the shape of the reflectance spectra. Moreover, the changes for different tissue layers are occurring at different spectral locations. For instance, BVF changes in the dermis show primarily around $\lambda=450-600$nm whereas in the muscle they show at
mouse paws and, subsequently, of human joints for which molecular imaging is not routinely done at present. A joint and spectral imaging to extract information on blood flow. This study lays foundations towards the number of techniques being developed for human joints include imaging the infrared transmission profile of the arthritic human joints [8]. Cross-polarization imaging was successfully used to extract Erythema Index images of the arthritic human joints [9]. References

Acknowledgments: AJN is funded by Arthritis Research UK. SG gratefully acknowledges financial support from the EPSRC through a studentship from the PSIBS Doctoral Training Centre (EP/F50053X/1).

References