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ON GRADED CARTAN INVARIANTS OF SYMMETRIC GROUPS AND HECKE
ALGEBRAS

ANTON EVSEEV AND SHUNSUKE TSUCHIOKA

ABSTRACT. We consider graded Cartan matrices of the symmetric groups and the Iwahori-Hecke algebras
of type A at roots of unity. These matrices are Z[v,v~!]-valued and may also be interpreted as Gram
matrices of the Shapovalov form on sums of weight spaces of a basic representation of an affine quantum
group. We present a conjecture predicting the invariant factors of these matrices and give evidence for
the conjecture by proving its implications under a localization and certain specializations of the ring
Z[v,v~!]. This proves and generalizes a conjecture of Ando-Suzuki-Yamada on the invariants of these
matrices over Q[u,v '] and also generalizes the first author’s recent proof of the Kiilshammer-Olsson-
Robinson conjecture over Z.

1. INTRODUCTION

The main object of study in this paper is the graded Cartan matrix C3, (keime) of the Iwahori-Hecke

algebra of type A (see Definition in quantum characteristic £, whose entries belong to the Laurent
polynomial ring & = Z[v,v~!]. To provide background and motivation, we begin by describing the
relevant constructions and results for the ungraded case, obtained by substituting v = 1 (see {I.1)).
In §1.3] we move on to the graded case and state conjectures and results on the “invariant factors” of

. (kuine)? which are studied in the rest of the paper. We freely use the notation and conventions of

1.1. Generalized modular character theory of the symmetric groups. In [KOR], Kiilshammer,
Olsson, and Robinson initiated a study of an £-analogue of the modular character theory of the symmetric
group &,, for an arbitrary integer ¢ > 2. They showed that many of the classical combinatorial aspects of
representation theory of &,, over a field of a prime characteristic p (such as cores, blocks and Nakayama
conjecture) generalize to the case when p is not necessarily a prime and is replaced by £. Our interest
focuses on the generalized Cartan matrices defined in [KOR] §1] (¢-Cartan matrices, for short) and, in
particular, on their Smith normal forms over Z. It is convenient to define ¢-Cartan matrices in terms of
Hecke algebras rather than the symmetric groups. Throughout, we consider the Hecke algebra H,, (k¢;7¢)
defined as usual.

Definition 1.1. For a field F and g € F*, H,(F;q) is defined to be the F-algebra generated by {T, | 1 <
r < n} subject to the relations

(T’!' + 1)(T7 - Q) =0, TsTs+1Ts = Ts+1TsTs+1a T, =TT,

for1<r<n—-1,1<s<n-—2andl <t,u<n suchthat |t —u| > 1. For{ > 2, we fix a field k; which
has a primitive £-th root of unity n,.

Definition 1.2. Let A be a finite-dimensional algebra over a field .

(a) We denote by Mod(A) the abelian category of finite-dimensional left A-modules and A-homomorphisms
between them.

(b) We define the Cartan matriz Ca of A to be the matriz ([PC(D) : D']) p, preirr(Mod(4)) € Matjir(Mod(a))|(Z)
where PC(D) is the projective cover of D.
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2 ANTON EVSEEV AND SHUNSUKE TSUCHIOKA

1.2. The Kiilshammer-Olsson-Robinson conjecture.

Definition 1.3. Let X and Y be n X m-matrices with entries in a commutative ring R. The matrices
X and Y are said to be unimodularly equivalent over R if Y = UXV for some U € GL,(R) and
V € GL,,(R). In this case, we write X =g Y.

Due to a result of Donkin [Donl §2.2], the matrix Cy,, (x,:,) is unimodularly equivalent over Z to the
aforementioned ¢-Cartan matrix of &,,. Since kg is a splitting field for H,,(ke;n¢) (see also [Donl, §2.2]),
the Smith normal form of Cy;,, (x,,) does not depend on the choice of k; or 7.

It is a standard result in modular representation theory (due to Brauer-Nesbitt) that, for a prime p
and a finite group G, the elementary divisors of CF,,G are described in terms of p-defects of p-regular
conjugacy classes of G. When p is replaced with a possibly composite number ¢, the Smith normal form
of Cyy,, (kysn,) is more complicated:

Theorem 1.4. Let ¢ > 2. If k € Z, write {, = £/ (¢, k). For a partition X\, define
|32 m(A)

(1.1) re(A) = H 4, L ] J!W(Ek)'

kEN\(Z

Then
Cit, (keme) =z diag({re(A) | A € CRPy(n)}),

where w(ly) is the set of prime divisor of £ and CRP(n) is the set of £-class regular partitions of n
(see below).

This result was proposed as a conjecture by Kiilshammer, Olsson and Robinson ([KORl Conjecture
6.4]) and is known as the KOR conjecture. The determinant of the Cartan matrix Cy, (k,:m,) Was first
computed by Brundan and Kleshchev [BK1l, Corollary 1] and was shown to agree with the conjecture
in [KORJ. Hill [Hil, Conjecture 10.5] gave a conjectural description of the invariant factors of the Cartan
matrix of each individual block of H,, (k¢;n¢) and proved this description in the case when each prime
divisor p of ¢ appears with multiplicity at most p in the prime decomposition of . The description was
shown to imply Theorem by Bessenrodt and Hill [BH, Theorem 5.2]. Finally, Hill’s conjecture and
hence Theorem 1.4 were proved in full generality by the first author [Evs, Theorem 1.1].

The proofs in [Hil] and [Evs] both use a reduction of the KOR conjecture to the problem of finding
the Smith normal form of a certain Par(d) x Par(d)-matrix which is smaller than Cy, (x,,); here, d is
not greater than the ¢-weight of a fixed block of H,(k¢;n¢). The reduction (for an individual block of
Hn(ke;ne)) is due to Hill: see [Hill Theorem 1.1]; for an alternative approach, see [Evsl §3]. Among the
main conjectures and results of the present paper are Conjecture [1.9] which is a graded version of the
reduced problem, and Corollary which is a graded version of the reduction. The ungraded versions
are recovered by substituting v = 1.

1.3. Graded Cartan matrices and Shapovalov forms. While the KOR conjecture is now a theorem,
the proof in [Evs| relies on technical combinatorial arguments and does not give a satisfactory conceptual
understanding of the result. In particular, unlike in the special case when ¢ is a prime and the Brauer-
Nesbitt result applies, it is hard to discern a link between the statement or the proof of the KOR conjecture
and the group-theoretic structure of &,,. In a search for better understanding, we consider a remarkable
grading on the Hecke algebras discovered independently by Brundan-Kleshchev [BK2, Theorem 1.1]
and Rouquier [Roll Corollary 3.20]. It is a consequence of an isomorphism between H.,(k¢;n¢) and a
cyclotomic KLR algebra R2o (Aéi)l) defined by Khovanov-Lauda [KL, §3.4] and Rouquier [Roll §3.2.6].
A similar isomorphism and grading exist for the degenerate case, i.e., for the symmetric group algebra
F,S,, (see BK2, Theorem 1.1] and [Roll Corollary 3.17]). Using the grading, one defines the graded
Cartan matrix Cy; ;. with entries in the ring & = Z[v,v™1] (see Definition . It is a refinement

of Cy,, (k) 0 the sense that we have Cyy, (1) = C;’{n(kgm)h,:l.

Remark 1.5. Rouquier [Ro2] has shown that interesting gradings are likely to exist for a large class of
blocks of arbitrary finite groups. More precisely, he has constructed a grading on local blocks (i.e., blocks
with normal defect group) whenever the defect group is abelian and has shown that, subject to the Broué
abelian defect group conjecture, these gradings can be transferred to arbitrary blocks with abelian defect
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groups. A study of the corresponding graded Cartan matrices up to unimodular equivalence may be of
considerable interest, though is beyond the scope of this paper.

An alternative approach to defining Cy, (1., is via the Shapovalov form on the basic representation

keime
V(Ao) of the affine Kac-Moody Lie algebra of type Agl_)l (see [BK1 [Hil]). Generalizing to the graded
case is natural from this point of view as well, as one can replace the universal enveloping algebra of
the Kac-Moody algebra with its quantized version UU(Agi)l). The corresponding quantum Shapovalov
forms were studied by the second author [Tsu] and are reviewed in below. The matrix CF, ..
can be described in terms of Gram matrices of quantum Shapovalov forms on weight spaces of V' (Ap)
(see Proposition . Since Shapovalov forms play an important role in representation theory of Lie
algebras and quantum groups, this description provides further motivation for studying C;’{n( kesne)®

1.4. A graded analog of the Kiilshammer-Olsson-Robinson conjecture. We propose the follow-
ing graded version of the KOR, conjecture.

Conjecture 1.6. For ¢ > 2, we have (see also Definition [3.12])

(1.2) Ct, (kpme) = diag({r7(A) [ A € CRPy(n)}).
Here we put ¢, = ¢/ (¢,k) and for A € Par define
Lmi(A)/¢]
(1.3) rg(A) = H H [éktﬂ'“k)]([,k)tﬂ(zk)/ ’
k>1 t=1

where the right-hand side is interpreted according to §1.7.4] and §1.7.5]

The second author stated this conjecture in the special case when ¢ is a prime power (see [Tsul
Conjecture 6.18]) and computed the determinant of C’;ﬂln( ki) which agrees with the conjecture (see [Tsul,

Theorem 6.11]).
Remark 1.7. Conjecture [L.6] implies Theorem [1.4} comparing (L.1)) and (L.3), we have

Lmi(N)/£) e (M)
(T2 itati e ) bt =6 152 .

While C3, | (keime) has a description in terms of affine Kazhdan-Lusztig polynomials by virtue of the

graded version of Lascoux-Leclerc-Thibon-Ariki theory [BK3| Corollary 5.15] (see also [Tsul, Remark
5.7]), there is no easy combinatorial description for the entries of i (kesme) in general. Nonetheless, we
are able to reduce Conjecture [I.6] to a conjecture concerning matrices that do admit such a description
up to unimodular equivalence over ..

Definition 1.8. For ¢ > 2 and X\ € Par, we define I} (\), J} (A) € o/ by

v _ v _ mg ()
(1.4) N =11 I [teeo)en, - 7000 =TT
E>1 t=1 E>1

where again we put {, =€/ (L, k).

The following conjecture involves a matrix M,, which for the purposes of the statement may be
assumed to be the character table of the symmetric group &,, (see Definition and Remark for
details).

Conjecture 1.9. For £ > 2 and n > 0, we have the following unimodular equivalence over .«/:
(1.5) M, diag({JY(\) | X € Par(n) )M, ' =, diag({I(\) | A € Par(n)}).

In §3] we will show that Conjecture [1.9] implies Conjecture [I.6] (see Corollary [3.17)). As is mentioned
above, this generalizes a reduction for the ungraded case proved in [Hil, [BH]J.
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1.5. Evidence for Conjecture Although there is no a priori reason to assert that C%n(kl?"]Z) is
unimodularly equivalent to a diagonal matrix since & is not a principal ideal domain (PID, for short),
we can give evidence that such an equivalence is likely to exist, which suggests that a hidden structure
lies behind it and that one is unlikely to see this structure just by considering the ungraded case.

Theorem 1.10. For ¢ > 2 andn > 0, let X and D denote the matrices on the left-hand and right-hand
sides of (1.5). Then, we have

(a) X EQ[v,vfl] D,‘

(b) for any 0 # 6 € Q, we have X|,=¢ =z(9,6-1] Dl]v=0-

Hence, the unimodular equivalence of Conjecture holds over Q[v,v~!] and holds over Z[0,0~] when
one substitutes any 6 € Q* for v.

The last statement follows from parts @ and (]E[) due to Corollary

Remark 1.11. We note the following consequence and special case:

(a) Combined with Proposition Theorem settles affirmatively a conjecture of Ando-Suzuki-
Yamada ([ASY, Conjecture 8.2]) and further generalizes it to the case of an arbitrary ¢ > 2, not

necessarily a prime.
(b) The case 8 =1 of Theorem (o) corresponds to the KOR conjecture (Theorem [1.4).

Our proof of Theorem relies on the fact that the equivalences in the theorem are over PIDs (see
Remark . In part, the proof is a generalization of the one in [Evs].

Since &/ is 2-dimensional, it appears that completely new ideas will be needed to prove a unimodular
equivalence over &/. In particular, while the ungraded version of Conjecture is easily reduced to the
case when (¢ is a prime power (see [Hil|), there is no such apparent reduction in the graded case. The
authors hope that this paper will help advertise Conjecture (and its meaning) to a wide audience not
restricted to representation theorists, as the conjecture is stated purely in the language of combinatorics
and linear algebra.

1.6. Organization of the paper. In we introduce the matrix M,,, which is the table of values
of Young permutation characters of the symmetric group &,. We also introduce a “p-local” and a
multicolored version of M,,, and we prove a number of integrality results about these matrices that are
needed later. In §3] we show how Conjecture may be interpreted in terms of certain representations
of quantum groups. We prove Theorem @ which shows that the graded Cartan matrix C’;fin (keine) (or

Cﬂfﬂ’pgn) is unimodularly equivalent to a block-diagonal matrix with blocks of the form given by the left-
hand side of . Using this, we show that Conjectureimplies Conjecture Theorem|1.10]is proved
in 4] and In §4) we prove Theorem @ and reduce Theorem (b) to Theorem [4.14} which
asserts a certain unimodular equivalence over the local ring Z,) and is proved in In (and §4.1),
we discuss unimodular equivalences over arbitrary commutative rings and possible results that would be
stronger than Theorem but weaker than Conjecture [I.9] including possible further evidence in terms
of equivalences over PIDs.

1.7. Notation and conventions.

1.7.1. Commutative rings. All commutative rings are assumed to contain a multiplicative identity, and
homomorphisms between commutative rings are assumed to respect those identities. We denote by
max-Spec(R) the set of maximal ideals of a commutative ring R.

1.7.2. Matrices. Let R be a commutative ring. For any integer £ > 0, we denote by Mat,(R) the algebra
of all R-valued ¢ x {-matrices. More generally, Matg(R) is the algebra of S x S-matrices for any finite
set S. For a finite set S, 1g denotes the identity S x S-matrix. For an assignment S — R, s — rg, we
denote by diag({rs | s € S}) the diagonal matrix with the (s,¢)-entry equal to g7, for all s,¢ € S. We
often denote by M, the (r, s)-entry of a matrix M. If S = | |, S; is a disjoint union and M; € Matg, (R)
for each 4, then M = @, M; is the block-diagonal matrix given by M, = (M;), if r and s belong to the
same subset S; and M,; = 0 otherwise. We say that matrices X,Y € Mat,,(R) are row (resp. column)
equivalent over R if there exists U € GL,,(R) such that X = UY (resp. X =YU).
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1.7.3. Discrete valuation rings. When considering a discrete valuation ring R with valuation v: K* — Z,
where K is the field of fractions of R, we set v(0) = oo where oo is a symbol satisfying co > ¢ for all
¢ € Q. For a prime p, the valuation v,: Q* — Z is defined by v,(p™a/b) = m for m € Z and a,b € Z\ pZ.
It corresponds to the discrete valuation ring Z,) = {a/b € Q | b & pZ}.

1.7.4. Integers. We write N = {0,1,2,...} and Prm for the set of all prime numbers. For n > 1, we
denote by 7(n) the set of all prime divisors of n. For n > 1 and a subset II C Prm, we define the II-part
of n by n;y = Hpenp”P("). We write II' = Prm \ IT and p’ = Prm\ {p} for all p € Prm. For a,b > 1, (a,b)
is the greatest common divisor of a and b.

1.7.5. Quantum rings. Let v be an indeterminate. In much of the paper, we work over the field k = Q(v)
and its subring &/ = Z[v,v~!]. The Q-algebra involution bar: k — k is defined by bar(v) = v=!. For
t € Z, we write Infl;: &/ — & for the ring homomorphism given by v — vt. For m > 1 and n € Z, the
quantum integer [n],, is defined by [n], = (V™" —v=™")/(v™ — v~ ™) € &/. Note that [n]m,|,=1 = n.
We set [n]m! = [n]m[n — 1]m -+ [1]m. For a field F and ¢ € F*, the quantum characteristic of ¢ is defined
by qchar, F = min{k > 1 | [k]|,= = O} if the set on the right-hand side is non-empty and is set to be 0
otherwise.

1.7.6. Groups and generalized characters. Let G be a finite group. If R is a subring of C, we say that
a function x: G — C is an R-generalized character of G if x belongs to the R-span of the irreducible
characters of G. By a generalized character we mean a Z-generalized character. If g, h € G, we write
g =g h if g and h are G-conjugate. If p is a prime, then, as usual, g,, g, € (9) C G are the p-part and
the p’-part of g respectively, so that g = ¢,9,» = g gp, the order of g, is a p-power and the order of g,
is prime to p.

1.7.7. Partitions. We write & for the empty partition. For a partition A = (A1, Ag,...), we define my () =
{i > 1| X =k} for k> 1. Also, £(A\) = >",~; mi(\) and |A| = >°,~; A\i. We denote by Par(n) (resp.
CRP,(n),RP4(n)) the set of all (resp. s-class regular, s-regular) partitions of n > 0. Recall that, for s > 1,
a partition A is called

(i) s-class regular if we have mys(\) =0 for all k£ > 1,

(i1) s-regular if we have my(\) < s for all k£ > 1.
We put Par = | |-, Par(n) and Par,,(n) = {(A®)™, € Par™ | 31" | |A®)| = n} for m,n > 0.

For n > 0, p € Prm and v € CRP,(n), we define Par,(n,v) = {\ € Par(n) | 3 .o mjp(\p® =
m;(v)Vj € N\ pZ}. Further, Pow,(n) = Pary(n,(1")) and Pow, = |] -, Pow,(n) is the set of the
partitions with all parts being powers of p.

For A, i € Par, the partition A + u is defined by m; (A + p) = m;(A) + m;(p) for i > 1.

Acknowledgments. S.T. thanks Yuichiro Hoshi, Yoichi Mieda and Hiraku Kawanoue for discussions
on In particular, Theorem is due to Kawanoue (see Remark .

2. THE MATRIX M,

2.1. Definition of M,. As usual, let A = @, -, Wm o Zluy, ..., upn]S™ be the ring of symmetric

functions (see [Ful, §6] or [Macl §I.2]) where Z[ui,...,un], is the set of homogeneous polynomials of
degree n.
The ring A is categorified by the module categories {Mod(Q&,,)},,>0. More precisely, let x denote

the character afforded by a module V' € Mod(Q&,,). For u € Par, consider the power sum symmetric
function p, = Hf(:“l) Dy, » Where pj, = EBl u;‘ for £ > 1. Let C, be the conjugacy class of elements of

cycle type p in G,,. For p € Par, let
(21) zH:Hmi(’u)!,imi(#)’
i>1
so that #C), = |u|!/z,. Then the following character map is an isometry (see [Ful, §7.3]):

(2.2) ch: @B Ko(Mod(Q@E,)) =5A, [V]— zixv(c#)pu,

n>0 pEPar(n) ®
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where we write xv (C,,) for the value of xy on an arbitrary element of C,,.
Definition 2.1. Let A, € Par(n). Consider the parabolic subgroup
G =Aut({1,..., M\ }) x Aut({1 +1,.. ., 0 + A2}) X - 2 @516,
of 6, and let trivs, be its trivial representation. We set My, = xlnngtriVGA (Cy) and put M, =
(My,,.) € Matpye(n) (Z).

Remark 2.2. Recall the complete symmetric function hy, = [[;5, hy, for p € Par where

(2.3) > bt =J[Q - wit) = I:O[lexp (p:> .

n>0 i>1

There is a well-known identity ch([Indg;triVGA]) = hy for A € Par(n) (see [Ful, §7.2, Lemma 4]). Further,
we have

1
24 hy = — My Pps Pr= M, m
= uegr:(n) aw Megr:(w '
for A € Par(n), where m, is the monomial symmetric function (i.e., the function whose image in
Zluy, ..., U]y for m > £(X\) is the sum of the elements of the orbit of the monomial HZ(:”l) u}” un-
der the action of &,, on the variables); see [Full §6, (11), (12)]. Using the second identity , we see
that M) , has the following explicit combinatorial descriptions:

(a) My, is the coefficient of Hf(jl) u?j in [Toq(ul +---+ uz()\))mi(“),

(b) My, = #M,y,, where
Mo ={f{L... . lw} = {1, .. UM} [ 2 e p-13) B = A Whenever 1 <@ <I(A)}.

Remark 2.3. It is well known that the Z-span of {x; 4eny;. | A € Par(n)} is the whole set of
Sy Ve,

generalized characters of &, (see [Ful, §7.2, Corollary]); equivalently, the matrix M, is row equivalent
over Z to the character table of &,, (in which, as usual, rows correspond to irreducible characters and
columns to conjugacy classes, labeled by their cycle types). Therefore, as we claimed in the matrix
on the left-hand side of stays in the same unimodular equivalence class if one replaces M,, by the
character table of G,,.

In the remainder of this section, we prove a number of results on the matrix M, and some of its
analogues, mainly of a combinatorial nature. Proposition 2:4] will not be used until §5.4] The results in
are used in §4] and §5] whereas the results of are needed in

Proposition 2.4. Let n > 0 and let A, n € Par(n).

(a) My = HjZl m;(A)! and My \ divides My, ;

(b) £(A) < £(p) if My > 0;

(c) Let p > 3 be a prime, and assume that My, > 0 and X # p. Then v,(M)y ) > (X)) — £(p) +
ngl vp(m(p)!).

Proof. @ and (]ED follow immediately from the combinatorial descriptions in Remark To prove
, let C' be the set of maps c¢: {1,...,4(A)} — Par\ {&} such that Zi(j} c(k) = p and |c(k)| = A
for 1 < k < £(\). For ¢ € C, we define Mf\u to be the set of maps f € My, such that, whenever
1 <k <{(N), there is a multiset equality

{us 17 € f7H(R)} = {e(k); | 1< j < llc(k)}-
It is clear that My , = | ].cc MS ,, (thus, we have C # ) and

. m;(w)
! (mj@(l)),mj(c(z)), . ,mj<c<e<x>>>)'
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It suffices to prove that v, (#MS ) > €(A) — €(p) + 3255 vp(my(p)!) for c € C. By Lemma

()
vp(#MS ) = vp(mg (1)) — 6 + €)= D | ee(k)) =D wp(my(e(k))) =1 ] =0
k=1 i>1
and the equality holds exactly when £(c(k)) =1 for 1 < k < {()), i.e., when A = p. O

Lemma 2.5. Let p > 3 be a prime and A € Par\ {@}. We have £(A) — > ;5 vp(m;(A)!) > 1, and the
equality holds exactly when £(\) =1

Proof. Note that

(2.5) vp(a ):Z La/p'] <Za/p =a/(p—1)
i=1

=1
for a > 0. Thus,

Zyp (m;(N)) = (1=1/(p—1))£(N) > 1
j>1
when () > 3. When £()\) = 1,2, we have v,(m;(A)!) =0 for all j > 1. O

2.2. p-local version Nfzp) of M,. As in [Evs, §4], we consider a submatrix N,(Lp) of M, and use it to

construct a certain block-diagonal matrix L£3’ ), which is row equivalent over Z,y to M, for any fixed

prime p.
Definition 2.6. For p € Prm and n > 0, we define N(p) =M, |powp(n)xpowp(n) and

= P Q N

VECRP, (n) jEN\Z

We regard L? as an element of Matpar(n)(Z) by using the following identification:
(a) Par(n) =, ecrp, () Parp(n,v),

(b) Parp(n7 v)— HjGN\pZ POWP(mJ (V))? A ()‘(j))jGN\pZ where Myps ()\(])) = Myps ()\)

Proposition 2.7. Let p € Prm. For a Z-algebra R and a family of homomorphisms (rj: R —
R)jen\pz, assume that

(i) there are maps f,g: Par — R such that
fO =TI na), g =TI e
JEN\pZ JEN\pZ

for allk >0, v € CRP,(k) and X € Pary(k,v), where the assignment X — (A\9)) ez is defined as
above.
(ii) for all n >0, M, diag({f(A\) | A € Par(n)}) M, ! is R-valued.
Then, we have

(a) NP diag({f(\) | A € Pow,,(k)})(NP) =1 is R-valued for all k > 0,
(b) For a ZLpy-algebra R' with a homomorphism ¢: R — R', the following implication holds:

Vk 2 0, (N diag({ () | A € Pow, () D(NL”) ™) =r ¢(diag({g(}) | A € Pow,(k)}))
= V¥n >0, ¢(M, diag({f(\) | X € Par(n)}) M, ! =g ¢(diag({g()\) | A € Par(n)})).
Proof. By [Evs, Lemma 4.8], the matrices M,, and L%p ) are row equivalent over Z,) and hence over R.
Thus, by we have
M, diag({f(A) | A € Par(n)}) M, " =g L) diag({f(}) | A € Par(n)})(LP) ™"
By 7 the right-hand side is just

D Q N, diag({r;(fAD)) | AD € Pow, (m; @) NN )

vECRP,(n) jEN\pZ
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We have shown that N diag({f(A\) | X € Powp(n)})(Nr(Lp))’1 is a block submatrix of an R-valued
matrix which is unimodularly equivalent to M,, diag({f()\) | A € Par(n)})M,; ! over R (note that, by (i),

n

r1(f(A) = f(A) for A € Powp,(n)). Thus, (a)) is proved. Part follows from the above equivalences and
hypothesis (i). O

Our next aim is to prove an integrality result (Proposition , which will be used in
Definition 2.8. Let p € Prm. For a sequence 6 = (0;);>0 € Z?p) and n > 0, we define
1 m_;(v)
o= > —ILe
vEPowy, (n) Y j>0

Lemma 2.9. Let p € Prm. For any 0 € Z?’p) and n > 0, we have
(a) afly (n) = Sn_gal (k)aly (n — k), where (0 +0'); := 0; + 0} for j >0,
(b) aép)(n) € Ly if vp(05) > j+1 for all j >0,
(¢) aggg(n) € Zy) if there exist s € Z>1 and ¢ € Ly, such that 0; = sc?’ for all j > 0.

Proof. Consider the generating function Ag =3 -, aff )(n)t". By a straightforward calculation similar

to the one in the proof of [Mac, Equation (I.2.14)], we obtain the identity Ag = exp(}_;5, p‘]ﬂjt”j).
Hence, Agior = ApAyr, and part @ follows by equating coefficients in ¢". Part (]E[) follows from the
identity

Pw= Y Tt (2)

Gy " \N) = ] ] () .
vEPow, (n) j>0 M3 (V) P

and the inequality v, (d!) < d (see (2.5)).

To prove , we recall a corollary of Brauer’s characterization of characters. Let G be a finite group.
Then the characteristic function of a p’-section Sec, (z) := {y € G | ypy =¢ x} of any p’-element z € G
is an O-generalized character of G (see [Isa, Lemma 8.19]) for a certain DVR & with Z¢,) € ¢ C C.
In particular, the characteristic function of Sec, (1s, ) = | | (n) Cv is an O-generalized character of
Sy

We denote by (-, )¢ the usual inner product on the complex-valued class functions on G, so that
{xv | V € Irr(Mod(CG))} is an orthonormal basis. Due to (@), we may assume that s = 1, so that
0; = ¢ for all j. We have

aép) (n) = Z 2;16n = Cn<Xtriven ||_|,,€Powp<n) Cy» Xtrive,, e, EQNO = Lp)- U
vEPowy, (n)

vEPow,

Proposition 2.10. Let R C C be a ring, and consider a map &: Par(n) — C be a map for some n > 0.
If the class function & defined by €9(Cy) = &(\) for A € Par(n) is an R-generalized character of &,
then M, diag({£()\) | A € Par(n)}) M, ! is R-valued.

n

Proof. Let T, = (xv(Cx))veir(Mod(@&,)), xePar(n) b€ the character table of &,. Then, for V,IW €
Irr(Mod(Q&,,)), the (V,W)-entry of T, diag({&(\) | A € Par(n)})T; ! is equal to (¢%xv, xw)es,. In-
deed, we have

Exvowle, = Y —x(CENXw(O)

A€Par(n)
and zy 'xw (Cy) is the (A, W)-entry of T);* due to the orthogonality relations. The result follows since
M, and T,, are row equivalent over Z (see Remark . [l

Corollary 2.11. Let p € Prm and n > 0. For a map &: Pow,(n) — C, if the class function £ defined
by

€0y = {g(x) if X € Pow,(n),

0 if A € Par(n) \ Pow,(n)
is a ZLy)-generalized character of &, then NP diag({&(N) | A € Powjl,(n)})(N,(Lp))’1 is Z(p)-valued.
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Proof. Put ]\//77, = @VeCRPp(n) M, [Par, (n,v) xPary (n,v) € Matpar(ny(Z). Then M,, and ]\/4\n are row equivalent
over Z,) by [Evs, Lemma 4.6]. Thus, by Proposition M, diag({¢9(Cy) | X € Par(n)})lw\n_1 €
Matpar(n) (Zpy).  Now N diag({£(A) | A € Powy(n)})(N)~1 is simply the Pow,(n) x Pow,(n)-
submatrix of this matrix, so the result follows. O

Proposition 2.12. Let p € Prm and n > 0, £ > 2 be integers. Put r = v,({). Then, for any a/b € Z,
with a,b € Z\ pZ and a® — b* € pZ, we have

. _r pi (N) _
NY(LP) dlag({p ‘) H[ﬂ] T+J7 ‘v a/b ‘ A € Pow ( )})(N'r(Lp)) ! € MatPowp(n) (Z(p))
720

Proof. Put § = (9 )j>0 € ZI(\IP) where 0; = p~"[€],r+i|y=asp. Consider the map &: Pow,(n) — Q given by

v H]>O 0, i By Corollary [2.11] it is enough to show that £ is a Zp)-generalized character of &,,.
By Frobenius reciprocity, for all A € Par(n) we have

S, £(X
(6 XtnaS e, )60 = (RESGLE™ Xerve, Doy = T af” (M),

Therefore, since {x;, 497 trive, | A € Par(n)} is a Z-basis of the abelian group of generalized characters of

S, it suffices to show that a(p)(k) € Zy) for all k > 0.
Let 07 = £, (a/b)~ =17 and ¢, = 6; — 6" for j > 0, so that 6 = ¢’ +6". We know that al) (k) € Zy

by Lemmaa 9/ (d). Thus, by Lemma (&), it is enough to show that a(p)(k) € Zy)- By Lemma [®),
it will suffice to prove that v,(0;) > j + 1. Note that

" ) ipr i ,

gy~ S e gy Eiso (e —1) O

J pr b pr b '
Since the assumption that a? — b> € pZ implies that a2ir" e ¢ p! T HIZ for all i > 0 (see
e.g. Proposition and its proof), we are done. O

2.3. ¢-colored version M, 4 of M,. Let R be a commutative ring and A € Mat,(R) for some ¢ > 1.
Let {vi,...,v,} be the standard basis of the free R-module R‘. Then the symmetric power Sym™ (R¢)
has a basis {v;, i, -+ vi,, | (i1, .,0im) € l\/lultm(f)} where
MU't ()—{21,.. Zm‘1<21< SZmSE}
Since Sym™ is a functor from the category of ﬁnltely generated R-modules to itself, the endomorphism
of R’ given by A induces an endomorphism of Sym™(R’), and the m-th symmetric power Sym™(A) is
defined to be the matrix of this endomorphism with respect to the given basis (see e.g. [Evs, Equation
(3.15)] for a more explicit description). Thus, Sym™(A4) € Matuy,, (o) (R)-
For ¢, d > 0, we define
di— |_| { Zl,...,ig()\)))|1§ij </ Vj and /\j:/\j+1:>ij§ij+1}.
A€Par(d)
There is a bijection Q4 % Par,(d) given by (\,4) = (A, ... A®)) where A\U) consists of the parts )y,
such that i, = j (see [Hil, Notation 3.1]).

Definition 2.13. For positive integers £,d and A € Maty (&), we define (see

B X sym™ N (Infly(A)).

A€Par(d) t>1

We may view S(A) as an Qo.q x Qo qg-matriz via the identification

|_| HMU|tmt(>\)(£)L>Qg’d,
A€Par(d) t>1

((ie1, .- -ait,mt()\)))t21 (O (1,15 91,25 5 Ty (V) 2,15 82,25 -+ 12,ma (M) - - +))-

Further, combining this with the above identification, we may (and do) view S¢(A) as an element of
Matpa,e(d) (qu) .
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Definition 2.14. The {-colored ring of symmetric functions is defined by Ay = ®f=1 A® | where each

AW is a copy of A. We write mff) for the image of m,, in AY and adopt a similar convention for the
functions h,, and p,. For £ > 1 and d > 0, we define the matrices My q, K¢q € Matpar,(a)(Z) by the
following equations:

¢
{0 = > (Med) (300, MO a0 sy = 20
(M ..., (D) EPary(d)
1 14
- Z (Kz,d)(xl),...,,\<f>),(u<1>,--~7W’)hft<)1> "'hi()“'

(b, uD)€Par,(d)
Remark 2.15. M, ="M, by (2.4) and M, = @Ze nimnni >0 ®l M,

Remark 2.16. M, 4 and K, 4 are column equivalent over Z since both of

(TLic; mY | (1D)icr € Pare(d)},  {TLies B | (1D)icr € Parg(d)}

are bases of the same &7-lattice of the degree d part of A, (see [Ful, §6, Proposition 1]).

The following result is similar to [Tsul, Proposition 2.3] and is proved by essentially the same argument
as that given in [BKIl §5]. We include a proof for clarity.

Proposition 2.17. Let F be a ﬁeld of characteristic 0 and I = {1,...,¢} for a fixed integer £ > 0. We
regard the polynomial ring V = Flyy @ |i€l,n>1] as a graded F- algebm via deg y( ) = n and denote by
Vi the F-vector subspace of V' consisting of homogeneous elements of degree d for d > 0. Assume that we
are given the following data:
(a) a ring involution o: F "5 F,
(b) a family of invertible matrices A = (A™),,>1 where A™ = (agn))i’jel € GL;(F),
(c) two bi-additive forms (-,-)s and (,"Yx: V x V. — F such that

o (cf9)x = o(c){f,9)x and (f,cg)x = c(f,9)x

o (1, 1>X71 and (1, fyx =0 if f € Vg for some d > 0,

° <mym fv >S - <fvzjej E] )aa(J)>S and <mym)f, >K = <f7 oy (1)>K

for X e {S,K} and f,g €V, ceF, m>1,

(d) a family of new variables (st))zeI n>1 such that x%’ ygf) € F[y%) |1 <m<n]NV, foraln>1.
Set a:() Hf;()‘im ) and y Hk )‘i ygf’“ for (A1) € Quq, and define the transition matric P =

(4,4) (&,49) (5 . @ @)
2w “2) e GLg, ,(F) byx)\ =2 )eQea PAu Wi yff). Then the Gram matrices Mg = ((Jc)\Z Lz, )S) (i), (115) €2,

and My = ((x g\),$S)>K>(A7Z),(#,l‘)€9£)d are related by the identity

(2.6) Ms=oP)| @ QSym™N(AD) ] o(P)" M.
A€Par(d) t>1

Proof. Let 25 = = jer cr(az(-?)) @) for n > 0 and i € I, and define z( D= i(:)‘i zf\ikk) for all (A, i) € Qpq.
First, we will prove by induction on d that, for all for all f € V and ()\ i) € Q 4, we have

(2.7) W, Ns =9 Hr

(cf. [BKIl Lemma 5.2]). We have (1, f)s = (1, f)x for all f € V, as both sides are equal to the constant
term of f, so (2.7) holds when d = 0. If (2.7)) holds for some (X,%) € ;s Q2e,q and all f € V, then for
alln > 0,7€ I and f € V we have B

7 % _ n) o — n) 9
<y7(z)y§*),f>s = <” 1y§)’ jEI Eg)ay{7>> = < 12,(\)72;61 Eg)ay{n >K
n) n i) (2
= Zje[ a’z(j < (J)> = Z]EI E]) <y§l)2§\)a >K
= <Zj€[ ( (n))yn (Z 7f> = <Z7(7,)Z)\7 ’f>K

and therefore (2.7]) holds in all cases.
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Let Q = (g e j))(,\ 0.(mj)ee.a € Matg, ,(F) be the transition matrix defined by
i (@3), (3
SO
(1,5)€Qe,a
For any (A,3) € Q¢,4, we have

Z/(\g): Z o(a (Al))".g(a(/\zm) )y(jl),”y(ﬂ'em) whence

Ay i To(n)-Je(n) /7 A1 Aeny !
jeIt™)

= B Rsym™N(o(4M))

A€Par(d) t>1

_(4,)
(p,\i (i), (n )€ ar WE have

(9.50), = o) (i),

(cf. [BK1, Lemma 5.3]). Writing P~ =

(v,k)€Q,a
ik (k) ()
= 3 o) (a7 m?)
K
(v,k)€EQe,a

= Z (pg\Zf)) (qﬁknr)) <y£}£)’x§f)>K

(v,k),(n,r)EQ,a

i,k r r,s (s) ()
=Y et (2w )

(v,k),(n,r),(0,8)€Qe,a

for any (X, ), (1, j) € Q,q4, where the second equality holds by (2.7)). Therefore,

Ms =o(P)o(Q)o(P) "Mk =o(P) | P Q) Sym™ N (AD) | o(P)" M. 0

A€EPar(d) t>1

The following is a corollary of the boson-fermion correspondence over Z (see [DcKKl| Corollary 2.1]
and [Tsul Proposition 2.4]).

Proposition 2.18. Let F, ¢, I, o, V and V; be as in Proposition [2.17
(a) There ezists a unique bi-additive non-degenerate map (-,-)x: V x V. — F such that
(i) (af.9)kx = 0(a)<f,g>1_<, (f,a9)k = a(f, 9k and (f,9)x = o((g, [) k),
(i) (1, 1)x =1 and (mys f,9)x = (f, H5)xc.
forall f,geV,acF andiel.
(b) Suppose further that for each 1 < i < £ the variables {ng) | n > 1} and {yﬁf) | n > 1} are related by
the formal identity

(2.8) 1+ Z D" = exp Zyri)tr

n>1 r>1

Then, for any d > 0, the set of Schur functions

{H @) | S| = "}

icl icl
forms an orthonormal basis of the Z-lattice Z[xg) |iel,n>1NVy of Vg with respect to (-, ") k.

Here, s)(zV) := det(m&iz+j_k)1§j7k§|>\‘ for A € Par and 2l = m,0 form < 0.

Note that the form (-,-)gx: V x V — F satisfying the conditions of Proposition is clearly unique.
Also, those conditions are implied by the properties satisfied by the form (-, -)x of Proposition @
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Corollary 2.19. Assume all the hypotheses of Proposition [2.17.  Suppose further that the variables
{x |iel,n>1} and {yn |i€I,n>1} are related as in Proposition|2.18 (b). Then

(2.9) Ms =K, @ ®Sym N(ADY | KpaMg.
A€Par(d) t>1

and Mg € GLParg(d) (Z)

Proof. Let Y = @Aepar(d) @51 Sym™ ) (A®). We identify the ring V with F ® A, by setting yy(f) =
ng)/n. Then, comparing the hypothesis with (2.3]), we see that :ch’ = hgf) Define wy, = p1 -+ pig()
for p € Par and i € I, and let W = diag{w, ) - w,e | (uM, ..., u®) € Parg(d)}. Tt follows from
Definition |2.14] that the change-of-basis matrix P of Proposition is given by P = K ;W. Hence,
Proposition n yields
Mg =o(Kpa) lo(W)Y (W) o(Kpq)Mk.

Observing that, when we view W as an € 4 X € 4-matrix, each block of W corresponding to a fixed
A € Par(d) is a scalar matrix and also that o(K; ) = Ky 4 because Ky 4 is Q-valued, we obtain (2.9).

Thanks to Proposition there exists Q € GLpar,(a)(Z) such that Mg ="Q - Q. O

The following result is a quantized version of [Hil, Proposition 3.3], though our proof is different.

Theorem 2.20. For ¢ > 1 and A € Mat, (<), we have MZdlSd(A)MZ,d € Matp,, () () for any d > 0.

Proof. Let I ={1,...,¢}. By Remark it will suffice to prove that K[;Sd( VK4 € Matpaw(d)(ﬂi)

In the rest of the proof, we identify k @ A, with V k[yn @ | i € I,n > 1] by identifying py, )/n with
y,(f). Write A = (a;5);jer. Define new variables x b ev by the identity (2.8] . Clearly, there exists a
unique bi-additive map (-,-)s: V x V — k such that
(a) (cf.g)s = bar(c)(f,9)s, (f,cq)s = c(f,9)s,

(b) (1,1)s =1, and (1, f)s = 0 if f has zero constant term as a polynomial in the variables yy;
(c) (myki £, 9)s = (£, 5251 nflyn (%‘)%ﬁ

for f,ge V,cek, m>1, i€ I. Applying Corollary -Wlth F =k, 0 = bar and the form (-, -)x
supplied by Proposition@ @) we obtain Mg = K, ;S (A)K; ¢Mk (in the notation of Proposmon12__1L7
and Mg € GLParg(d)(Z)~

Thus, it is enough to show that <.’L‘§\i),$g)>s € o for ()\,1'), (:“’1) € Qg 4, where sr:g\i) is defined as in
Proposition We argue by induction on |A|. Expanding (2.8), we obtain

(U)mk(*)
(2.10) ) = > \cPar(n) Hk>1 OO

and therefore 8x(1)/8y(]) = él]x(l) for i,7 € I and m,n > 1, where we put :c({) = dy0 for v < 0 (see
also [DcKK] page 129]). Combining (|2 with the deﬁnlng property (c) of (-,-)s, we obtain the identity
(;v%i)f, 9s = {f, Dgf)g>5 for all f,g € V, n > 1,1 € I, where the dlfferentlal operator DYV 5 Vis
defined by

(J)

my(N)

= > ]I kmko‘)mk Zmﬂk am

A€Par(n) k>1 jel

Let V< = d[ ® | (A, i) € Qgq]. By the inductive hypothesis, it is enough to show that D(i)(V‘Z{)
V“ for all i € I, n > 1. By a straightforward calculation, one obtains the product rule D ( fg) =

> Dsl)( )DSZS( ) for f,g € V. Hence, it suffices to prove that D,g)( %)) € V¥ for all 4,7 € I and
n,m > 1. We have
N Infly, (a;;)™+ M) »
@) (,.(5)) — k( w (@)
DTL (1‘7£ ) - Z H kmk()\)mk ‘ 'rm—n’
A€Par(n) k>1
and the result now follows from Lemma 2.21] O
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1 A
Lemma 2.21. For any f € &/, we have Z,\ePar(n) B Hk21 Infl, ()X € o

Proof For 0 = (0))k>1 € @721 and n > 0, we define by(n) = Z)\epar(n) o s Ok g (cf. Definition
. Similarly to Lemma [2.9 W @ we have bgio(n) = > 1 _bo(k)bg/(n — k). Thus, it is enough to show
that by (n) € o for m € Z where 0t = (o™, £v®™, +0°™ .. .). By the orthogonality relations, we have

2 NePar(n) EDD (14 1)/2, which implies that by (n) = (v™" £ v"")/2. O

ZX

3. GRADED CARTAN MATRICES OF SYMMETRIC GROUPS AND HECKE ALGEBRAS

In this section we recall the definition of graded Cartan matrices C7, ) and reduce the problem

n(kesne
of finding their unimodular equivalence classes to the same problem for the matrix M, diag({Jy(\) | A €

Par(n)})M,;; ! (cf. Conjecture [1.9).

3.1. Gram matrices of quantized Shapovalov forms. We now recall some of the definitions and
results from [Tsu] and, in particular, define the Gram matrix QSh'/\\/', . (X) of a quantized Shapovalov form
(cf. [Tsul Definition 3.13]). For the theory of quantum groups, the book [Lus| is a standard reference.

Let X = (aij)ijer be a symmetrizable generalized Cartan matrix and take the symmetrization d =
(di)icr of X, i.e., the unique d € Z%, such that d;a;; = djaj; for all i,j € I and ged(d;)ie; = 1. We
consider a root datum (P, PV, II,IIV) in the following sense:

(a) PV is a free Z-module of rank (2|I| — rank X) and P = Homgz(P",Z),
(b) IIV = {h; | i € I} is a Z-linearly independent subset of PV,

(¢) I ={w; | i€ I} is a Z-linearly independent subset of P,

(d) «j(hi) =ay; foralli,j e 1.

We denote by Q* = @,.; Z>o; the positive part of the root lattice and denote by P* the set of
dominant integral weights {\ € P | Vi € I,\(h;) € Z>o}. For each i € I, A; € PT is a dominant
integral weight determined modulo the subgroup {\ € P | Vi € I, A(h;) = 0} of P by the condition that
Ai(hj) =6;5 for all j € I.

Recall that the Weyl group W = W(X) is the subgroup of Aut(P) generated by {s; : P =P, \ —>
Definition 3.1. The quantum group U, = U,(X) is the unital associative k-algebra generated by {e;, f; |
i€ IYU{v" | h € PV} with the following defining relations:

(a) v =1 and v™" = """ for any h, W € PV,

(b) vheju=h = v*Me,, vhfiv*h = v’o‘i(h)fl- foranyi€ I and h € PV,

(c) eifj — fiei = 6:5(K; — K_ )/ (vi — v t) for any i, j €1,

(d) Spsp? (—1)FelPejelt e =0 = Yo, 20 (— ) L for any i £ j € 1,

where K; = v v; = v and eg " = e?/[n]di.,fi = fI/[nla,!
Let U, UV, U be the k-subalgebras of U, defined by
UfF=(ei|licI), U =(filiel), U=@"|hecPY).

Then, the following is a triangular decomposition theorem for quantum groups [Lus| §3.2]:
(i) the canonical map U, ®y UY @y U,” — U, is a k-vector space isomorphism,
(i) U? is canonically isomorphic to the group k-algebra k[PV].

For each A € P, we denote by V()) the integrable highest weight U,-module with highest weight A
and a fixed highest weight vector 1) € V/(A).

Proposition 3.2 ([Tsul Proposition 3.8)). For A € PT, there exist unique bi-additive non-degenerate
maps (-, -)qsh : V(A) x V(A) = k and (-, )rsh : V(A) x V(A) = k with

(i) (awi,wa)y = bar(a){wy,ws)y, (w1, aws)y = a{wy,ws)y and {(wy,ws)y = bar({ws,w1)y),
(i) (Ix,Ia)y =1 and (uwr, w2)qsh = (w1, Q(u)w2)qsh, (uwi, w2)qsh = (w1, T(u)wa)rsh-
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for all Y € {QSh,RSh} and for all wi,wy € V(N), u € U, and a € k. Here, Q and T are the Q-
antiinvolution and Q-antiautomorphism of U, defined by

Qles) = fi, Qf)=e;, Q") =0v"" Q)=0vt,

T(e;) = v,»fiKi_l, T(fi) = vi_lKiei, T =v" T =vl

We denote by P(A) := {u € P | V(A), # 0} the set of weights of V' (A), which is W-invariant [Lus|
Proposition 5.2.7]. Let (U, )® be the «7-subalgebra of U, generated by {fi(n) | i € I,n > 0}. The
constructions below use the following deep results:

(a) (U;)“ is an o/-lattice of U, (see [Lus, Theorem 14.4.3]),

v

(b) VINZ :=V(A\), NV (N is an o/-lattice of V (), for v € P()\) where V(A := (U; )1, C V()

14

(see [Lus, Theorem 14.4.11]).
Definition 3.3 ([Tsul, Proposition 3.13]). For A € P* and u € P()\), we define
QSh[\\A,u(X) = ((wi, wj)Qsh)1<i,j<dim V(A),» RSh',\\A,,L(X) = ((wi, wj)Rsh)1<i,j<dim V(\),,
where {w; | 1 <i <dimV(X),} is an o7 -basis of V()\)f.

For any n > 0, define the equivalence relation = on Mat, (&) as follows:

Y =24 3p e GL, (o), bar("P)YP = Z.

For Z € {QSh/I\\/',M(X)7 RSh&{N (X)}, the equivalence class of Z under = does not depend on the choice of
the basis in Definition Thus, the «/-unimodular equivalence classes of Z are uniquely determined.
Note that by construction ¥ Z = bar(Z). The following is implicit in [Tsul, Proposition 3.16].

Proposition 3.4. For A € Pt and p € P()\), there exists an </ -basis of V(/\)j{ whose associated
QSh§A7H(X) is an 2/ -valued symmetric matriz.

Proof. Take an &/-basis (vp)p of V(A)j{ of the form v, = Gyl with Gy € (U;)? and Gy = G}, where

the bar involution : U, — U, is defined by
ei=e, fi=Ff, vh=0vh w=0"l
This is possible using the lower canonical basis of U, (see the last paragraph of [Ka2]) or using [Lakl,
Theorem 6.5].
Let HC: U, — U? and evy: U2 — k be the following maps:
(i) the Harish-Chandra projection HC: U, —» U?,
(XCier fiU) + (e Uves)) onto Uy,
(ii) the evaluation map evy: U? — k, which is the k-algebra homomorphism determined by the assign-
ment evy (v") = 0¥ for each h € PV.
These maps exist by parts , in the triangular decomposition theorem respectively.
By the construction of (-, -)qsh (see the proof of [Tsul Proposition 3.8]), we have

(3.1) (b, vy)qsh = eVA(HC(UGy)Gy)).

Since HC(QUGy)Gy ) € USNUZ , where U is an «-subalgebra of U, generated by {v",e{™, f™ | i e
I,n>0,h € PV}, and it is known (see [Lus2, Theorem 4.5] or [DDPW] Theorem 6.49]) that U° N U is
the «/-subalgebra of U? generated by

VSRR AN Gulb Y At .
{Uh7[K;l;0];:H’ﬂ Kiv,; . Klll }’LEI,nZl,hEPV},

Jj=1 vy —v;j

which is the k-linear projection from U, = U? &

(3.1) is «7-valued. Since Q(G,)Gy is bar-invariant, is @7"-valued due to the isomorphism U? =
k[PV]. (For an estimate of (3.1)) when G} is the lower canonical basis, see [Kall, Problem 2].) O

Corollary 3.5. For A € Pt and p € P(\), we have QShgﬂ,M(X) =y tr(I)Sh/'\\/"#(X).

The proof of Proposition also shows that RSh)'\f[ 4 (X) is /-valued, which is again implicit in [Tsul,
Proposition 3.16].
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FIGURE 1. Finite and untwisted affine Dynkin diagrams of types A,D,E.

Proposition 3.6 ([Tsu, Proposition 3.16]). For A € Pt and pu € P()), there exists an o/ -basis of V()\)f
whose associated QSh';\/"M(X) and RShgﬂ,H(X) satisfy DQSh%H(X) = RSh%H(X) for a diagonal matriz D
all of whose diagonal entries belong to v”.

3.2. Specialization to the basic representations. Let X = (a;;); jer be a Cartan matrix of type
ADE and let X = X be the extended (generalized) Cartan matrix of X indexed by I= {0}U T as in
Figure(l} Let (a;),.7 be the numerical labels of X in Figure [1|and let 6 = Y ietaici. Weset U, = U, ()?)
and apply the notation of to this algebra. By [Kad, Lemma 12.6], we have P(Ag) = {wAo—dd | w €
W,d > 0}.

Definition 3.7. For d > 0 and w € W, we define C(X) to be QSh%OwwAgfd(;(X'), For £ > 2, we put
Cpqg=Cg(Ap-1).

The equivalence class of CY(X) under = does not depend on the choice of w € W [Tsu, Proposition
3.18]. The following is implicit in the proof of [Tsul Theorem 4.4]. For convenience, we give a proof.

Theorem 3.8. Let X = (a;5)i jer be a Cartan matric of type A, D or E, where I = {1,...,¢}. For any
d >0, we have CY(X) =z MZ_’;Sd([X])M&d where [X] = ([a;;]) € Mat; (7).

Proof. Let I = {1,...,£}. As in the proof of [Tsu, Theorem 4.4], V/(A¢)¥ _;5 can be regarded as an
o/ -lattice of the polynomial ring k[h; _, | ¢ € I,r > 1]. More precisely, defining new variables y,(«i) and
2 (forie I, r>1)by g = hi,—/[r] and (2.8]), we have

(i) V(Ao)ag—as has a k-basis {y%) | (A1) € Qal,

(ii) V(Ao)¥ 45 has an o/-basis {Q:E\D | (A 2) € Qoals
where x(f) and y%) are defined as in Proposition Moreover, by an identity in the proof of [Tsul
Theorem 4.4]E| (together with the definition of (-, -}qsh), we have

<Sy£Z)H’ y’f‘il) e y’f‘/:::])>Qsh = <I{7 Z’]:;n:lésﬂ'k [ai7ik]sy$il) . y’gjc]izl)y’f‘zitl) . ygi;n)>QSh

Lour x,(j) and yq(ni) correspond respectively to Pfr and h; _, in loc. cit.
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for H € klh; |t € I,r > 1] and 4,4 € I, 5,7, > 1. We can rewrite this identity as

<3y§i>H,H’>Q —<H,E§:1[ai7j] 9 H'>Q5h.

Sh Saygj)
Therefore, by Corollary [2.19} we have ((96%)7xibi)}QSh)(A,g),(#,z)em,d = KZéSd([X])Kg,dMK where My €
GLpar,_, (4)(Z). By Remark 2.16|, we are done. O

Lemma 3.9. For( > 1, there exist Q¢, Ty € GLy() such that Q,[A¢]T, = [A}] where A, = diag({1,...,1,(+
1}) € Maty(Z).

Proof. Define Q; € Maty(«/) by
vI[i] ifj=diorj=1i+1,
(Qe)ij = v'li] ifj <,
0 otherwise.
A straightforward calculation shows that the matrix Q[A¢] is upper-triangular with diagonal entries
1,...,1,v*[¢ + 1] and hence is column equivalent to [A}] over 7. Also, det(Q.[As]) = v’[f + 1]. We have

det([A¢]) = [¢+1] by an easy inductive argument (cf. [Tsu], proof of Corollary 4.5). Hence, det(Q,) = v,
so Qy € GL[(JZ{). [l

Theorem 3.10. For { > 2 and d > 0, we have

d
) m 1\ ®IParg_>(d—s)|

(32) Ci o =or @D (M. ding({TT5, 107" | X € Par(s)}) 2 .

s=0
Proof. By Theorem we have Cé’)d = M[_117d.5'd([Ag,ﬂ)Mg,17d. Let Qy_1 and Ty_1 be the matri-
ces supplied by Lemma By the functoriality of symmetric powers, S4(Q_1)S%([A¢—1])SHT,_1) =
S%([A}_,]). Further, the matrices M, "} ;S*(Q¢—1)M;_1,q and M"Y ;S%(Ty—1)M;_1q belong to GLpar, , (a)().
Indeed, these matrices are o/-valued by Theorem [2.20] and their determinants are invertible elements of
&/ since that is the case for the determinants of Qy_1, Ty_1. Therefore,
(3.3) CFa = My S (Arca) Mooy = M7 S (A) )Mo .
It follows from Definition that (see §1.7.2))

0— . m; (A
S A =@ _az0 (@ eatay) @ ding({TTix [0 | A € Par(de—)}) ).

izl di=d

Substituting this identity and the formula of Remark into (3.3]), we obtain

d
) . @®|Par;_o(d—s)|
(3.4) Cia=o @ (M} dig({TTo1 (07" | A € Par(s) )My,
s=0
By Corollary we have Cf ; = trC’Zd. Hence, transposing both sides of (3.4) and using the fact
that "M, s = M, (see Remark [2.15]), we obtain (3.2)). O

Remark 3.11. In the rest of the paper, we will see an implication of Conjecture[L.9for “invariant factors”
of C7 4 (Proposition @ and give evidence for Conjecture (Theorem . For Cartan matrices X
of the other simply-laced finite types (D and E), we can prove the existence of Qx,Tx € GL;(%/) such
that

(a) Qx[X]Tx = diag({1, ..., 1,det[X]}) for X # Dy,

(b) @x[X]Tx =diag({1,...,1,[2],[2]2m-1}) for X = Doy,

where m > 2 (for the ungraded case v = 1, see [Hil, Table 1]). For the value of det[X], see [Tsul proof
of Corollary 4.5]. These results allow us to analyze CJ(X) further: a conjectural formula for invariant
factors of QShX'mH(Z) for 1 € P(Ag) and evidence for it in the spirit of this paper when Z = X(!) and X
is of type D or E as well as for the twisted affine A)D.E cases will be given elsewhere. Results on these
invariant factors would provide information on modular reductions of V(Ag)?, namely, on the structure
of the F ®, U -module F ®, V(A¢)? and its unique simple quotient, where F' is any field, viewed as
an «7/-module via a fixed ring homomorphism & — F'.
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3.3. Graded Cartan matrices and implications of Conjecture (1.9

Definition 3.12. Let A be a finite-dimensional graded algebra over a field F, i.e., A has a decomposition

A =@,y Ai into F-vector spaces such that A;A; C Ay for alli,j € Z.

(a) We denote by Modg (A) the abelian category of finite-dimensional left graded A-modules and degree
preserving A-homomorphisms between them. The n-component of M € Modg (A) is denoted by M,,.
For M € Modg, (A) and k € Z, the shifted graded module M (k) of M is defined to be the same module
as M with the grading given by (M (k))n = Mj4n, for alln € Z.

(b) Fiz a grading on each simple A-module, and let S(A) be the resulting set of graded simple modules.
We define the graded Cartan matriz Cy of A by

Ch = (Chez[PCD) : D'(=R)V") 1 presiay € Matsia) (),

where PC(D) is the projective cover of D € Modg(A).
(c) Let Projg,(A) be the full subcategory of Modg,(A) consisting of graded projective A-modules. The
Cartan pairing is defined as follows:

()¢ [Projg (A)] x [Modg (A)] — o, {[P],[M]) =3 dimg Homa (P, M (k))o",
kEZ

where [M] denotes the image of M in the graded Grothendieck group [Modg (A)] of Modg, (A), which
has an o/ -module structure given by v[N] = [N(—1)] for N € Modg (A).

Remark 3.13. (a) Each simple A-module has a unique grading up to grading shift (see [NVO, Theorem
9.6.8]). Moreover, each simple graded A-module has a unique graded projective cover. Consequently,
changing S(A) results in CY being conjugated by a diagonal matrix with integer powers of v on the
diagonal. Certainly, the ./-unimodular equivalence class of C does not depend on the choice of
S(A),

(b) €% = (([PC(D)], [PC(D")])) p’,pes(a) when [ is a splitting field for A,

(c) CY is a refinement of Cy in the sense that CY|,=1 = Ca.

Let £ > 2 and n > 0. As usual, a partition p is an f-core if p contains no rim ¢-hooks. We denote
by Ble(n) the set of tuples (p,d) where p is an f-core and d > 0 is an integer such that |p| + ¢d = n.
It is well known that the set Bly(n) parameterizes the blocks of H, (k¢;ne) (see [DJ]). When ¢ = p is a

prime, Bl;(n) parameterizes the blocks of F,&,,. We denote by Bég the corresponding block algebra of
A =M, (ke;ne) or of A:=F,6,, for (p,d) € Bly(n) (for the latter case, £ = p is a prime).

From now on, we view Béﬁ)i as a graded algebra, with the grading defined by [BKIl Corollary 1]
(cf. . Consequently, A becomes graded. Clearly, we have

(3.5) Ch = D(payesiom) C;“Z'
Py

In fact, the two sides are equal if appropriate choices are made.

By [BK3, Theorem 4.18], there is an isomorphism ¢: [Proj,, (A)] ==V (Ag)“ as UU(Aéljl)—modules,
which identifies the Cartan pairing (-,-) with the form (-,-)rsp on V(Ag). For (p,d) € Bly(n), we
have L([Projgr(Bg?j)D = V(Ao)ﬁ_gm where 8,4 € D, 7Z>o0c; is defined as in [Tsul Definition 5.5(c)]

under the identification I = Z/¢Z. Noting Remark [3.13 {EI}, we have C;([fz = RSh?\AO,Aofﬁp,d(Ale—)l) (see

Definition [3.3).
. . B _ _ (1)
By Proposition [3.6] Definition [3.7|and the fact that Ag — 5,4 = wA¢ — do for some w € W(A,”,), we
obtain the following result, which is implicit in the proof of [Tsul, Theorem 5.6].

Proposition 3.14. Let £ > 2 and n > 0. For any (p,d) € Bly(n), we have Clo = Cig.
p.d

The following is an immediate consequence of Theorem
Proposition 3.15. Let £ > 2 and let d > 0. If Conjecture[I.9 is true, then

d
(3.6) Clq =o diag <|_|{I;(A) | A€ Par(s)}lPa”—z(dS)> .

s=0
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Lemma 3.16 ([BH, Lemma 5.5]). For any ¢ > 2 and n > 0, we have the multiset identity

d
L L L feutepPre=0-91 = {redy(3) | A € CRPy(n)}

(p,d)€EBIlg(n) s=0 XePar(s)

where the maps cuty, redy: Par — Par are defined as follows for k > 1:

mip(N)  if k ¢ (Z,
0 otherwise.

mi(rede (V) = [mi(N)/E], mi(eute(N) = {

Note that 7§ (A\) = I} (red(\)) and I} (X) = I} (cut(A)) for all A € Par. Combining these identities and
Lemma with (3.5) and Proposition [3.14] we see the following implication.

Corollary 3.17. Conjecture implies Conjecture [1.6]

Remark 3.18. When ¢ = p” is a prime power, the equivalence (3.6|) is nothing but [Tsul, Conjecture 6.8].
Similarly, Conjecture reduces to [Tsu, Conjecture 6.18] in this case. Indeed, the Laurent polynomials
Iy .(\) and 7} () defined in loc. cit. satisfy I} .(A) = I}-()\) and rp .(X) = 75 ().

4. COMBINATORIAL REDUCTIONS

4.1. Variants of unimodular equivalences.

Definition 4.1. Let R be a commutative ring, and let Y and Z be n x m-matrices with entries in R.

We say that'Y and Z are

(a) unimodularly pseudo-equivalent over R (abbreviated as' Y =5 Z) if we have Coky = Cokz as R-
modules where Coky = Coker(R™ — R™, v — Tw) for T € {Y, Z},

(b) Fitting equivalent (abbreviated as Y =% Z) if Coky and Cokz have the same Fitting invariants
(see [Norl, §3.1]), i.e., we say that Y =5 Z if Fitty(Y) = Fitty(Z) whenever 0 < d < r := min{m,n}
where the d-th Fitting ideal Fitty(T) of T € {Y, Z} over R is the ideal of R generated by all (r — d) X
(r — d)-minors of T

Proposition 4.2. The following general statements hold:

(a) Y=pZ=Y=hHhZ=Y=£2Z.

(b) for a ring homomorphism ¢: R — R’ (see , we have the implications Y =r 7 = ¢(Y) =g/
HNZ),Y = Z= () = ¢(Z) and Y =% 7 = ¢(Y) =L, ¢(2).

(¢) Let (Xa)aea and (Ya)aea be families of R-valued matrices where A is a finite set and for each X € A
the matriz X has the same dimensions as Yx. Then, for any ~€ {=g,=%, =k}, we have the
implication VA € A, X\ ~ Yy = @, cp Xo ~ Pyca Yo

(d) Y=£ 7= Y =xr Z when R is a PID.

(e) Y =} Z <= Vm € max-Spec(R),Y =, Z,

(f) Y =f4 Z =Y =g Z when R is a semiperfect ring.

Proof. @) is obvious and @ is “Elementary Divisor Theorem”. The cases of = and =f in (]EI) are
obvious. The right exactness of the functor R’ ®g - implies that R’ ®r Coky = Cokgyyy. Thus, the case
=’ follows. When ~€ {=g, =L}, is obvious. The case = follows from the equality Fitty(Y & Z) =
Y dy +dy—a Fitta, (Y) Fitta, (Z) (see [Norl §3.1, Exercise 3]). follows from the fact that for ideals I and
J in R, we have I = J <= Vm € max-Spec(R), Iy, = Ji (see e.g. [Kun, Chapter IV, Corollary 1.4]). For
@)7 when R is a local ring, for any given two R-module surjections a: R¥ — M, : RF — N, we can lift
any R-module isomorphism f: M -~ N to the isomorphism g: R¥ =~ R* such that foa = Sog by
the Nakayama Lemma. Thus, @ holds when R is local. Since a semiperfect ring is the same thing as a
finite direct product of local rings [Laml, (23.11)], (f) follows by (b)) (see also [LR] (4.3)]). O

By the reasoning used to prove Corollary and Corollary Proposition and imply:

Corollary 4.3. Let R be a commutative ring with a ring homomorphism ¢: & — R and ~€ {=g,=h
,=F}. Suppose that Conjecture holds when we specialize & and =4 to R and ~ respectively via ¢,
i.e., that

¢ (M, diag({J}(\) | A € Par(n)})M, ") ~ diag({#(I{(\)) | A € Par(n)})



ON GRADED CARTAN INVARIANTS 19

for allm > 0. Then we have ¢(Y) ~ ¢(Z) if either
(i) Y and Z are the matrices on the two sides of (3.6]), or
1.2

(1)) Y and Z are the matrices on the two sides of (1.2)
Throughout, we omit ¢(-) if ¢ is evident when we apply Proposition @
4.2. A pseudo-equivalence over Z,[v, v~ 1.

Definition 4.4. For n > 3, we denote by ®,, € Z[v] the n-th cyclotomic polynomial and put ¥, =
v=?M/2d, € /™" where ¢ is the Buler function: ¢(n) = #(Z/nZ)*

It is easy to see that, for n,m > 1,
(4.1) [n]m = Hb§3,2mnebZ, 2m bz Wy,
Thus, each I} () and JJ(\) is a product of certain scaled cyclotomic polynomials ¥y,
Definition 4.5. Let p € Prm and z € N\ pZ. Let P = [[,.; Vs, be a finite product of scaled cyclotomic
polynomials (with b; > 3 for alli € I, as in Definition . We define pgp)(P) =1lp,), - ¥
i) =

Recall the famous equality #CRP4(n) = #RPs(n) for s > 1 and n > 0. We reserve the symbol ¢;

for an arbitrary bijection ¢, ,: RPs(n) == CRPs(n) and put ¢s = U,>0 ¢sn. As a standard choice, we
can take the Glaisher bijection (see [ASY], §4], for example) for s > 2 or the Sylvester bijection for s = 2
(see [Besg], for example).

Definition 4.6. Fiz M > 1. For any A € Par, consider the decomposition A = Agiv + Areg defined
by ma(Adiv) = M[ma(XN)/M], ma(Aeg) = ma(A) — mqa(Aaiv) for a > 1. We define a size-preserving

auto-bijection Brr: Par = Par by Bar(X) = 1+ ©anr(Areg) where mans (1) = ma(Adiv)/M for a > 1 and
my(p) =0 for allb & MZ.

Definition 4.7. For{ > 2, k,t > 1 and p € Prm, define

(pr) — [épl]kp’(ﬁ){p} Zf Vp(k) Z VP(€)7
ot [Et{p}/k{p}]k if V;v(k) < Vp(g):

and set Iy ,(N) = [14> ™ gk P ) for X € Par.
Further, we define f,gzt) = [Z}Ctﬂ-(zk)](gyk)tw(zk), and note that I} (\) = Hk>1 I ’\)

Proposition 4.8. Let p be a prime, £ > 2, and z € N\ pZ. For any X € Par, we have
pPP(IF(N) = PP (17 (B2 (.20)(N))-

First, we need two lemmas. Fix p and z to be as in the statement of the proposition. For any k,¢ > 1,
define
]:,gfz) ={s>0]20t € 2p°Z and 2({, k)tr(s,y & 20°Z},
gltr) _ {s > 0] 20ty ky € 2p°Z and 2(Lt) gy by & 2p° L} if vy (K) > vp(4),
{s > 0|20ty ky € 2p°Z and 2k ¢ 2p°Z} if v, (k) < vp(f).
The following is an immediate consequence of (4.1]) and the definitions:

Lemma 4.9. For k,t > 1, we have py )( (Z)) = Hsef(“’) U, and pg (g;(fip)) = Hseg“«f‘) Ups.
k,t,z k,t,z

Define M = z/(z, 2¢0).

(P)( (f) ) ()(g(f’p))

Lemma 4.10. For any k,t > 1, we have p =Pz (Grare)-

Proof. Due to Lemma it is enough to show that f,ggt’@[z Q,(f]\’f;’)t’z. Fix s > 0: we will show that
s € F5Pif and only if s € G\5F), .. Note that M ¢ pZ. If 26t ¢ p*Z, then s belongs to neither of the
sets in question, for the first conditions in the definitions of those sets fail. Thus, we may assume that
20t € p°Z. Since we always have 2¢0M € zZ (due to the definition of M), now the first conditions in the
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definitions of ]—',ilé\’/)[ ., and g,ﬁ‘}}’)t , are guaranteed to hold. So we may focus on the second conditions: it
remains to show that

2(kM), (£t 57 if vy(k) > v, (4
2(& k)(tM)w(fk)’ c ZpSZ — ( )p ( ){p} € zp 1 VP( ) = VP( )a
2kM € zp°Z if v, (k) < vp(£).

This follows from the conjunction of the following two equivalences:

20t € p°Z it v,(k) > v,(€
(4.2) 200, k) (M) (4 € P°Z = €rL k) zu0, g
2k € p°Z i vp(k) < vp(0)
(4.3) 204, k) (tM) p(sy € 2Z < 2kM € zZ.
The equivalence (4.2) is immediate in each of the cases on its right-hand side, so it remains only to
prove (4.3)).

We always have

(2(L, k)tM) () = (QEtM)ﬂ(gk) € Zn(0y) 7
since 20M € 2Z. Further, (2k)x(¢,) € (20) ()2, 50 (2kM )z, € (26M )0,y Z C 20,y Z. This means
that the truth values of the statements on both sides of (4.3 . ) do not change if we replace z by z(s,). In
other words, it is enough to show that for all ¢ € m(¢y),
(4.4) ve(2(6,k)) > vy(2) <= v,(2kM) > vy(2).
Now vy(k) < v4(£), so v4(2(¢,k)) = v4(2k). Using the definition of M, we obtain v, (2kM) = v,(2k) +
ve(2)—1q((2¢, 2)). If v4(20) > v4(2), then vy (2kM) = v4(2k) and the equivalence (4.4) is clear. Otherwise,
we have yq(2k) < 14(2¢) < v4(z) and neither side of (4.4) holds. O
Proof of Proposition[{.8 Fix X\ € Par, and let Agiv, Areg, ¢ be as in Definition @ It is clear that
Iéjp(ﬁM()\)) =17, (1 )I}’p(goM()\,eg)). In the expansion Ij(\) = Hk>1 Hm’“()‘ k“ only t € MZ con-
tribute to pi”) (I7 (X)) by Lemma as 20t € z7Z implies t € MZ. Further, p(p)(l” (err(Mreg))) = 1 by
the same lemma, as 2(t(,\k, ¢ 2Z for any k ¢ MZ and t > 1. It follows that

Lmi(N)/M]

PP (1¥ (A H H (:D)(f(f) ),
k=1 t=1
Lmik(A)/M] p)
(P)(Iep (Bar (A H H (p)(ngt)
k51 t=1
The two right-hand sides are equal by Lemma [£.10] O

Proposition 4.11. Let R be a commutative ring and let a € R. Suppose that a = HAEA HICETx x for a
finite set A and a family of ﬁm'te multisets (Tx C R)xea such that any x € Ty and 2’ € Ty are coprime
(i.e., zy + 'y’ =1 for some y,y' € R) whenever A # X. Then, as R-modules, we have

@ R/ :Z‘GT)\
AEA

Proof. Observe that ([[,cp, #)xen are pairwise coprime (in the above sense): this follows from the
elementary fact that if z,y,2z € R and z,y are both coprime to z, then xy is coprime to z. Now the
proposition follows from the Chinese remainder theorem for ideals. O

Corollary 4.12. Forp € Prm and n > 0,¢ > 2, we have
diag({1(\) | X € Par(n)}) =5, 1, -+ diag({Z{, (M) | A € Par(n)}).

Proof. Whenever 3 < b < cand ¢/b is not a p-power, there exist u,w € Z[v, v~ 1] such that Vpyu+¥.w =
1 (see [Fil, Lemma 2]). By Proposition we have

(4.5) Cokging((freParn = D D Zlv, v /(6P (F(N))
AEPar(n) z€N\pZ

as Z)[v,v™!]-modules for any f € {17, 1} ,}. By Proposition the isomorphism class of (4.5) does
not depend on the choice of f. ([
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4.3. A conditional proof of Theorem [1.10

Proof of Theorem[1.1(] (d). For A € Par and ¢ > 2 we have Ij (X\) = J¢()) for every sufficiently large
p € Prm (as g,(f;p) = [{]; for p > max(k,t,£)). Thus, Theorem @D is a consequence of Corollary
(note that M,, € GLpar(n)(Q)). O

Recall the matrix N,Sp ) defined in Applying Proposition (Eb for
(4.6) R =Z, [v,vil], f=J7, g= IZP, (rj=1Infl;: R— R,v+> vj)jeN\pZ,

we get the following.

Proposition 4.13. For anyp € Prm, £ > 2 andn > 0, the matriz N’ diag({JF(\) | A € Powp(n)})(NTSp))_1
is Zpy[v, v -valued.

Further, in §5] we will prove the following result.

Theorem 4.14. Suppose that 0 # 0 = a/b € Q, where a,b € Z and (a,b) = 1. Let p be a prime such
that a,b ¢ pZ. Then, for any £ > 2 and n > 0, we have

(4.7) NP diag({J§ (M)o=o | A € Pow,, (n)})(N{P) ™! =z, diag({1{,,(M)|o=s | A € Powy(n)}).

Proof of Theorem[1.10| (§)) assuming Theorem[{.1j} Fix 0 # 6 = a/b € Q with a,b € Z, (a,b) = 1. By
Proposition @ and (), it is enough to show that,

(4.8) M,, diag({J¢ (N)|p=o | X € Par(n)}) M, * =z, diag({I{ (N)]v=¢ | A € Par(n)})

for any p € {p € Prm | pZ & ab} = Spec(Z]a/b,b/a]). Applying Proposition @ for R = Zy, ¢ =
(R — R',v+ 0) in addition to (4.6)), we obtain

M, diag({Jf (V)]s | A € Par(m) )M =z, diag({17, (Mg | A € Par(n)}).
The unimodular equivalence (4.8]) now follows by substituting v = 6 to Corollary and Proposition

2 @ 0

5. PROOF OF THEOREM [4.14]

5.1. Elementary prime power estimates. The following fact is classical.

Proposition 5.1. Let p be a prime. Suppose that x,y € Z\pZ satisfy d := vp(x—y) > 1. If either p > 3
ord > 2, then v,(2"™ —y™) = d+vp(n) for alln > 1.

Proof. We have x = y + p?z for some z € Z \ pZ. The binomial expansion yields
_ n _
" yn _ TLdeyn 1 + Z <k)pkdzkyn k,

so it suffices to show that v,((})) + kd > d + vp(n) for 2 < k < n. Since v,((})) = vp(n) — vp(k!), it is
enough to prove the inequality kd — v, (k!) —d > 0. Using , we easily see that v,(k!) < k —1 and
that this inequality is strict unless kK = p = 2. It follows that the desired inequality holds unless we have
d =1 and k = p = 2, which is ruled out by the hypothesis. O

Corollary 5.2. Let p € Prm and let a,b € Z\pZ with a*>—b* € pZ. Then, we have vy([n]m|y—a/p) = vp(n)
for allm,m > 1.

Proof. We may assume that a® # b%: otherwise, [n]y|y—q/s = £n. Consider d > 1 and z € Z \ pZ such
that a® — b?> = p?z. Note that d > 2 if p = 2. By Proposition we have

a2nm _ b2nm

(o) = i (g ) = (o) ) = (vym) +-d) = o). 0

Corollary 5.3. Let p > 3 be a prime and a,b € Z \ pZ. Suppose that a> — b* & pZ and a** — v¥*™ € pZ
for some n > 2. Put v = v,(af® — b') where to = min{t > 1 | a®" — b* € pZ} (to exists and divides n).
Then vy([n]pslv=ass) = Vp(n) + s+ for any s > 0.
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Proof. Note that ty € pZ. We have

s s
a2np _ b2np

ol o) = vy (S ) =l =)
=vp(2np°/to) + v =1p(n) + s+,
where the third equality follows from Proposition [5.1 .

Proposition 5.4. Let p € Prm and n > 1. Suppose that a,b € Z \ pZ satisfy a** — b** & pZ. Then,

Vp([n]pslv=ayp) = 0 for any s > 0.
Proof. The hypothesis implies that a2’ — p2np’ ¢ pZ, whence we also have a?” — p° ¢ pZ. Since
Vp([n]pslomayp) = vp((@®™P" — b2"P") /(a®P" — b?P7)), the result follows. O

5.2. Some definitions and results from [Evs, §5]. For the remainder of §5] we fix a prime p and an
integer n > 0. The matrices considered in the sequel implicitly depend on these parameters. Let ¢ > 2
and 0 = a/b € Q\ {0} be as in the statement of Theorem We set 7 = vp(£). In what follows,
diagonal matrices are generally denoted by lower-case letters.

Define the matrices b9 = diag({J}(A\)|v=0 | A € Pow,(n)}) and z = diag({zx | A € Pow,(n)}), where

zy is given by (2.1)).
Lemma 5.5 ([Evs, Lemma 5.1]). The matrices (]\77(1”))_1 and z_l(“]\h(lp)) are column equivalent over
Z(p)-

We write N = Nflp ). Tt follows from the lemma that the left-hand side of Theorem is unimodularly
equivalent over Z, to the matrix Y := N0 2z=1(* N), so Theorem is equivalent to the identity

(5.1) Y =z, diag({1;,(M)|v=0 | A € Pow,(n)}).
Definition 5.6. (a) For A € Pow,, we define partitions AT Az A" e Pow, by setting m,:(A\=") =
myr+i ()\),
. myi(A) ifi <,
, myi(A) ifi <, - ’ . s
mpi()‘< ) = {0 b Zfl > mpi(/\r) = ZjZij mpj()‘) Zfl =T,
- 0 ifi >,
for alli > 0.

(b) For A € Pow,,, we set xx = [[ 5o myp=(A)! and y\ = [Liso2"™»* W), s0 that 2y = x\yy.

(c) We define the following seven elements of Matpow,(n)(Z): ® = diag({za}r), T<, = diag({zr<r}r),

22" = diag({zy= 1), y<" = diag({ya<r}2), v=" = diag({yr=r 1), 57 = diag({T ], "> V}a) and
C") | where the latter is given by

(C(’I‘)))\ — (N‘(;\Dirl))\zr’MZT Zf} :ﬁ ,
e 0 - -
Here, A\, i run over all elements of Pow,(n).

T

Put K" = {\ € Pow, | A" = A} C Pow,. For k € K®7"), set Pow,,,(n, k) := {\ € Powy(n) | A" =
k}. Observe that there is a bijection

(5.2) Pow,, -(n, k) =% Pow, (myr (k)), A A",

We will call a matrix Z € Matpgy, (n)(Q) block-diagonal if Z , = 0 for all A, u € Pow,,(n) with PN T
In particular, C") is block-diagonal. Applying Lemma to each k € IC%W’) = Powp(n) N K@)
and noting that Pow,(n) = || __,e.» Powy (0, k), we see that there exists a block-diagonal matrix
W e GLpow, (n) (Z(p)) such that (CONTIW ) = (g2ryzr)~1. O We define A" = N(C)~! and
UM = (z<7)"1A") | so that N = z<"U" ("),

In §5.3] §5.4] and §5.5 we consider separate cases and use Corollaries [5.2] and [5.3] and Proposition [5.4]
respectively. The cases of and will require the following specialization of [Evs, Lemma 5.6].
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Lemma 5.7. Let R be a DVR with valuation v: K* — Z, where K 1is the field of fractions of R. Let
I be a finite set. Suppose that P, Q, s = diag({s; | ¢ € I}) and t = diag({t; | i € I}) are elements of
GL;(K) such that

v(Pij — 6i5) > M and v(Qqj — 0i5) > M

2 2
for alli,j € I. Then sPtQs =g s*t.
Proof. Apply [Evs, Lemma 5.6] with a; = v(¢;)/2 and 8; = —v(t;)/2. Verifying the hypotheses is
straightforward. O

5.3. Case a? — b? € pZ. This is a generalization of the case v = 1, and we generalize the proof in [Evs),
§5], Proposition being an extra needed ingredient.

Observe that z = <"227y<"yZ ("), Put b(<"40) = diag({JP(A<")|y=0 | A € Pow,(n)}), bEH0) =
b(e,e)(b(q,e,e))q and d = b(<“5’9)(:c<ry<r)*1. Let

X = ¢MpEr o) Gt (cy =ty (),
Note that all the matrices in this product are block-diagonal, so X is block-diagonal. Setting also
V=X -"U" . X! we have
Y = Nb(@,G) -1 tr
_ x<rU(r)C(r)b(<r£ H)b(>r£ 0) (x<r$>ry<ry>r~(r)) 1 _trC«(r) _trU(r)x<r

(5.3) = 2<ryM O g . pErO) () =1 (p2ry2r) =1 o) | ) ;<
(5.4) = <TI0 g . pEHE0) (G =L (O~ () () 5 <
— 2<ryM o). (C ) Lo >ru))(y T))*I(C’(T))*W(T) () <
(5.5) - :c<’“U(’“)C(’“)d(C<’"))—1X gy (r) p<r
(5.6) 27U g X ) <
(5.7) = z<"UMav Xa <"
(5:8) =< UMdVa<X
(5.9) =z, v<"UNdVa=".

Here, Equations (5.3), (5.4)), (5.5) and (5.7)) follow from the defining equations of the matrices d, W (),
X and V respectively. Equations (5.6) and (5.8)) follow from the facts that the matrices C and X are
block diagonal and that any block-diagonal matrix commutes with b(<™%  2z<" y<" and hence also
with d.

The equivalence (5.9) is due to the fact that X € GLpow,(n)(Z(p)), which may be proved as follows.

Note that (7). = PO for all A € Pow,(n). We have
C( )b(>rZ 9)( ) (C(r )
5.10 - —r My (/L) _
G100 — @ N, dieg(p 0 T, | 1€ Pow, (myr () HIVE, ()7
KEK(P) j>0

where the right-hand side is interpreted via the identification (5.2)): this identity is readily verified from
the definitions of the matrices involved. By Proposition the right-hand side of (5.10)) is Z,)-valued.
By Corollary we have

v ()5 3 = v [ TTI ) = r£OZT) = v (FT))a0)-
i>r
for A € Pow,(n). So the p-adic valuation of the determinant of the left-hand side of ([5.10]) is 0. Therefore,
the left-hand side of (5.10) belongs to GLpow, (n)(Z(p))- Since W) € GLpow, (n)(Z(p)), we see that
X € GLpow, (n)(Z(p)), as claimed.
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We will complete the proof by applying Lemma to the product x<"U"dVz<". For \ € Pow,,(n),
define

V= 3 = mype () and e = 37 wp(my (WD),

0<s<r 0<s<r

We have v, ((z55")an) = eg\ ") Using Corollary m we obtain

€, T r Mps A r
vo(dan) = vp5 ) = v () —mp(esn) = S w0 ™) = 3 smpe () — el

0<s<r 0<s<r
= f)\r) — e(r) =: k:g\r) and
M (A) mps (A)
Iy Mlo=0) = D0 3 wplgp R lome) = Do D0 () —s) = £ + el
s>0 t=1 0<s<r t=1

(cf. Definition [4.7). The hypotheses of Lemma[5.7) are verified as follows. By [Evs, Lemma 5.4], we have

V,,(U/{T; —Oap) > max{ky) (T)

namely

—1} for all A, u € Pow,(n), which implies the first desired inequality,

kg\r) . kl(Lr) |
2
The second desired inequality concerns V = X - "(UM) . X1 and follows from (5.11)) because X €
GLpow, (n)(Z(p)) is block-diagonal and the right-hand side of depends only on A and I3
By Lemma we have Y =z (z<")2d, and follows because vp((2375)%dxx) = Y) + eg\r) =
Up(L§ ,(A)|v=p) for all A € Powy(n).

(5.11) vp(UY) = 0x00) >

5.4. Case a® — b & pZ and o — b** € pZ. Note that the assumption implies that p > 3. Let v be as

in Corollary [5 . Applying that corollary, we obtain l/p(gps t)|y 9) =7+r+uvy(t) forallt >1and s >0
(see Definition [4.7)). Hence,

(5.12) vp(Lfp(Mo=e) = (v + 1)) + Y wp(mps (W) = (7 + 7)) + vp(a).
s>0

Consider the matrix K € Matpoy,(n)(Q) such that N = zK. For each A\ € Pow,(n), we have My x =
zx by Proposition 2.4 (a)), so Kxx = 1 (in fact, K is Z-valued by the same Proposition). We have
Y = 2KV (" K)z where b’ = b(% 0),-1 . We will apply Lemma to this product. Using Corollary .
we obtain

Vp(bg\)\) = Vp(J7 (A)]o=0) — p(22) Zmp (r+s+7v) - Z(Smpso\) + vp(mpe ()

s>0 s>0
(5.13) = (Y +7)lQA) = vp(zr).

In order to verify the hypotheses of Lemma we only need to show that v (K ,—6x.) > (vp(b) ) —
vp(bl, ,.))/2 for all A, i € Powy(n). This inequality is immediate if My , = 0 or if A = p (as Ky = 1).
In the remaining case, we have

vp(by, ) = ¥p(bl,)
2

vp(K ) —

= (M) — vy + 22D ) £ O ) — (V)
= + L) — Y

V;D(Mk,u) - Vp(x/\) Vp(Mk,u) - Vp(xu) + £(p) — L(N)
2 2 2

as the first, second, and third summands are nonnegative by parts @, , and (]ED of Proposition
respectively; moreover, the second summand is positive.

By Lemma Y =g, Va?. Tt follows from (5.12) and (5.13) that v, (b z23) = vp(I,(N)lu=s),

so (5.1)) holds.

(’7+T—1)>0,
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5.5. Case a?* — b** ¢ pZ. By Proposition the determinants of the matrices on both sides of
are invertible in Z,). Since both of these matrices are Z,)-valued (see Proposition , they are both
unimodularly equivalent over Z, to the identity matrix.

This completes the proof of Theorem and hence of Theorem [1.10

6. REMARKS ON POSSIBLE GENERALIZATIONS OF THEOREM [1.10]

Our aim here is to demonstrate how far we still are from proving Conjecture and to discuss
natural statements that are stronger than Theorem [I.10] but are weaker than Conjecture [[.9] as well as
implications between those statements. Proving some of them — if indeed they are true — would provide
further evidence for Conjecture [1.9] and would be of interest in its own right.

Remark 6.1. In the proof of Theorem (cf. §4.3), we have used the fact that the local-global
correspondence holds when R is a PID by Proposition @ and @, ie.,

Y = Z < Vm € max-Spec(R),Y =g, Z.
An advantage of considering unimodular pseudo-equivalences =, is that:

Proposition 6.2. Let R be a 1-dimensional Noetherian domain. For n x m-matrices Y, Z with entries
i R, we have

(6.1) Y = Z <= Vm € max-Spec(R),Y = Z

if Coky = Torg(Coky)(:= {z € Cokr | Ja € R\ {0},ax = 0}) for T € {Y,Z} (for example, when n =m
and detT # 0 for T € {Y,Z}).

Proof. The = direction follows from Proposition (]ED, so we need only prove the <= direction. Since
R is an integral domain, the intersection of any two non-zero ideals of R is non-zero, and in particular
I := Anng(Coky) N Anng(Cokz) # 0. Clearly, Y =% Z < Y =%, Z where R’ := R/I. Since R’ is
Artinian, max-Spec(R’) is a finite set and the natural ring homomorphism R" = []cmax-spec(r/) Bim 8
an isomorphism (see [Mat} (24.C)]). Thus, Y =f, Z < Vm € max-Spec(R'),Y =}, Z by Proposition
@. Let ¢: R — R’ be the natural surjection. Since R = Ry-1(m)/ly-1(m) (see [Kun, Example 4.18
(a)], if Y E/Rarl(no Z for all m € max-Spec(R’), then Y =, Z. Noting that I C ¢~*(m) € max-Spec(R)

for all m € max-Spec(R’), we deduce the result. O

An advantage of considering Fitting equivalences =% is that for a large class of rings R we have
an algorithm to decide whether two explicitly given matrices Y and Z are Fitting equivalent or not
(see [RFW, Chapter VIII] and references therein). If we have Y =% Z, then by Proposition @ it
is not possible to demonstrate that Y #gr Z by localization or specialization to a PID R’. Thus, as far
as unimodular equivalences over PIDs are concerned, the ultimate piece of evidence for Conjecture
would be to prove that X 52 D, where X and D are the matrices on the two sides of .

Remark 6.3. If X =, D, then, in particular, X =F,[v,0-1] D for any prime p. Whether or not the
latter equivalence holds is an interesting intermediate open problem.

Proposition 6.4. Let X and Y be n x m-matrices with entries in <. If X|,=¢ Eg[e 0-1] Y |y=g for all
0 €Q\ {0}, then X =L, v.

We conclude the paper by proving Pro position which implies that, in order to show that X Ef; D,
it would suffice to generalize Theorem [1.10 by proving that X|,—¢ 52[979,1] D|,—p for all non-
zero algebraic numbers 6. Despite Proposition @ and Proposition proving the equivalence
X 55[0,9,1] D for an arbitrary § € Q \ {0} (if it is true) is likely to be considerably more difficult
than proving Theorem because Z[0,071] is not integrally closed (equivalently, it is not a Dedekind
domain) in general. However, it may be possible to use the methods of the present paper to prove that
X =g, D, where 0j is the integral closure of the ring Z[f,0~1] in its field of fractions, at least for some
classes of algebraic numbers 6. Establishing whether X and D are Fitting equivalent — or, indeed, settling
Conjecture [1.9|— is likely to require new ideas.

Proof of Proposition[6.4} The proposition is an immediate corollary of Theorem O
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In the following, let S be the set of non-constant irreducible polynomials in Z[v]. Let § € Q \ {0}
be a root of f € S. For an ideal I of &7, we denote by I|,—¢ the image of I under the ring surjection
mg: o/ — Z[0,071] given by v — 6. Then, by Gauss’s Lemma we have Ker my = & f.

Theorem 6.5. Let I and J be ideals of . If I|,—¢ = J|v—g in Z[0,071] for all € Q\ {0}, then I = J.

Lemma 6.6. Let R be a Noetherian commutative ring. For any ideal I of R, we have

I= ﬂ ﬂ([—i—m”).

ICméemax-Spec(R) n>1

Proof. Replacing R with R/I, we may assume that [ = 0. Let J = Nmemax-Spec(r) MNn>1 m". For
m € max-Spec(R), we have Jyn C N,>1myy, and N,>1myy, = 0 in Ry, by Krull intersection theorem. So

Jim = 0 for all m, whence J = 0 (see the proof of Proposition (e)- O
Lemma 6.7. Let m € max-Spec(Z[v]) and let n > 1. Then, m™ NS is an infinite set.

Proof. Tt is well known that m = (p, h) for some p € Prm and non-constant monic irreducible polynomial
h which remains irreducible in F,[v] (see [GP| Exercise 7.9]). For any ¢ € Prm with ¢ # p, put f, :=
p™ +gh™ € m™. Then f, is primitive by construction and is in S by Eisenstein’s criterion (applied to the
prime q). O

Proof of Theorem[6.5. For m € max-Spec(«7) and n > 1, there exists f € m” NS such that f # +v by
Lemma [6.7] applied to m N Z[v] € max-Spec(Z[v]). By the hypothesis, we have I|,—g = J|,—¢ for a root
0 € Q\ {0} of f, whence [ + & f = 7, ' (I|y—g) = 7y ' (J|v=o) = J + & f. Since & f Cm™, it follows that
I'+m™ =.J+m". By Lemma[6.6] we have [ = J. O

Remark 6.8. We learned Theorem from Hiraku Kawanoue. His proof yields the existence of f € S
such that I + .o/ f # J 4+ o/ f for ideals I # J C & and can be applied when we replace Z by any unique
factorization domain R which has infinitely many prime elements modulo R*. In order to keep this
section short, we adapted the proof to one sufficient for Proposition While the above proof depends
on the description of max-Spec(Z[v]) and does not allow the indicated generalization, it shares the same
spirit with Kawanoue’s.

INDEX OF NOTATION

The following index gives references to subsections where symbols are defined:

G, symmetric group

Hn(F; q) Hecke algebra

Ne € kg a primitive /-th root of unity in a field

Mod(A) the category of finite-dimensional left A-modules

PC(D) projective cover of D

Ca Cartan matrix of an algebra A

=R unimodular equivalence of matrices

Ly /(L k)

Ip(N), Jj (N Laurent polynomials in Definition

max-Spec(R) the set of maximal ideals of a ring R .
Mat,(R), Matg(R) matrix algebra 1.7.2
ls identity matrix 1.7.2
diag({rs | s € S}) diagonal matrix 1.7.2
P, M; block-diagonal matrix 1.7.2
Vp p-adic valuation 1.7.3)
N the set of nonnegative integers 1.7.4]
Prm the set of prime numbers 1.7.4
ni II-part of n 1.7.4
Ir, o’ the complements of II, {p} in Prm 174
(a,b) greatest common divisor of @ and b 1.7.4
k the function field Q(v) 1.7.5)
o the ring of Laurent polynomials Z[v,v~}] 1.7.5)
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size of a partition A
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order of centralizer of an element of C),
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trivial representation of &)

table of permutation characters of &,,
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Shg{" 10 RSh&’[ " Gram matrices of Shapovalov forms, see Definition
= an equivalence relation on matrices
X extended Cartan matrix of X
1) null-root
Modg (A4) category of finite-dimensional graded A-modules
M, graded n-component of a module M
M (k) graded module M with grading shifted down by &
S(A) set of representatives of simple graded A-modules
cy graded Cartan matrix of A
Projg, (A) category of projective graded A-modules
Ble(n) the set of pairs (p,d) where p is an ¢-core and d € N
Cokr cokernel of the map given by a matrix T'
=k unimodular pseudo-equivalence of matrices, see Definition
=£ Fitting equivalence of matrices, see Definition
Fitta(T) d-th Fitting ideal of a matrix T
o, U, cyclotomic polynomial and its scaled version
pgp ) function from Definition
Os.n a bijection from s-regular to s-class regular partitions
Bm auto-bijection of Par from Definition
4 4 . . .-
glg P ), f,g t) , I}’p()\) certain products of quantum integers, see Definition
4 14 . . 14 4
]—",27;2, g,;fz) certain sets of integers related to f,g}, g,(c)’tp)
A<T oAz N p-power partitions from Definition
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