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ON GRADED CARTAN INVARIANTS OF SYMMETRIC GROUPS AND HECKE

ALGEBRAS

ANTON EVSEEV AND SHUNSUKE TSUCHIOKA

Abstract. We consider graded Cartan matrices of the symmetric groups and the Iwahori-Hecke algebras

of type A at roots of unity. These matrices are Z[v, v−1]-valued and may also be interpreted as Gram
matrices of the Shapovalov form on sums of weight spaces of a basic representation of an affine quantum

group. We present a conjecture predicting the invariant factors of these matrices and give evidence for

the conjecture by proving its implications under a localization and certain specializations of the ring
Z[v, v−1]. This proves and generalizes a conjecture of Ando-Suzuki-Yamada on the invariants of these

matrices over Q[v, v−1] and also generalizes the first author’s recent proof of the Külshammer-Olsson-

Robinson conjecture over Z.

1. Introduction

The main object of study in this paper is the graded Cartan matrix CvHn(k`;η`)
of the Iwahori-Hecke

algebra of type A (see Definition 1.1) in quantum characteristic `, whose entries belong to the Laurent
polynomial ring A = Z[v, v−1]. To provide background and motivation, we begin by describing the
relevant constructions and results for the ungraded case, obtained by substituting v = 1 (see §1.1).
In §1.3 we move on to the graded case and state conjectures and results on the “invariant factors” of
CvHn(k`;η`)

, which are studied in the rest of the paper. We freely use the notation and conventions of §1.7.

1.1. Generalized modular character theory of the symmetric groups. In [KOR], Külshammer,
Olsson, and Robinson initiated a study of an `-analogue of the modular character theory of the symmetric
group Sn for an arbitrary integer ` ≥ 2. They showed that many of the classical combinatorial aspects of
representation theory of Sn over a field of a prime characteristic p (such as cores, blocks and Nakayama
conjecture) generalize to the case when p is not necessarily a prime and is replaced by `. Our interest
focuses on the generalized Cartan matrices defined in [KOR, §1] (`-Cartan matrices, for short) and, in
particular, on their Smith normal forms over Z. It is convenient to define `-Cartan matrices in terms of
Hecke algebras rather than the symmetric groups. Throughout, we consider the Hecke algebra Hn(k`; η`)
defined as usual.

Definition 1.1. For a field F and q ∈ F×, Hn(F; q) is defined to be the F-algebra generated by {Tr | 1 ≤
r < n} subject to the relations

(Tr + 1)(Tr − q) = 0, TsTs+1Ts = Ts+1TsTs+1, TtTu = TuTt

for 1 ≤ r ≤ n− 1, 1 ≤ s ≤ n− 2 and 1 ≤ t, u < n such that |t− u| > 1. For ` ≥ 2, we fix a field k` which
has a primitive `-th root of unity η`.

Definition 1.2. Let A be a finite-dimensional algebra over a field F.

(a) We denote by Mod(A) the abelian category of finite-dimensional left A-modules and A-homomorphisms
between them.

(b) We define the Cartan matrix CA of A to be the matrix ([PC(D) : D′])D,D′∈Irr(Mod(A)) ∈ Mat|Irr(Mod(A))|(Z)
where PC(D) is the projective cover of D.
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2 ANTON EVSEEV AND SHUNSUKE TSUCHIOKA

1.2. The Külshammer-Olsson-Robinson conjecture.

Definition 1.3. Let X and Y be n ×m-matrices with entries in a commutative ring R. The matrices
X and Y are said to be unimodularly equivalent over R if Y = UXV for some U ∈ GLn(R) and
V ∈ GLm(R). In this case, we write X ≡R Y .

Due to a result of Donkin [Don, §2.2], the matrix CHn(k`;η`) is unimodularly equivalent over Z to the
aforementioned `-Cartan matrix of Sn. Since k` is a splitting field for Hn(k`; η`) (see also [Don, §2.2]),
the Smith normal form of CHn(k`;η`) does not depend on the choice of k` or η`.

It is a standard result in modular representation theory (due to Brauer-Nesbitt) that, for a prime p
and a finite group G, the elementary divisors of CFpG are described in terms of p-defects of p-regular

conjugacy classes of G. When p is replaced with a possibly composite number `, the Smith normal form
of CHn(k`;η`) is more complicated:

Theorem 1.4. Let ` ≥ 2. If k ∈ Z, write `k = `/ (`, k). For a partition λ, define

r`(λ) =
∏

k∈N\`Z

`
bmk(λ)

` c
k ·

⌊mk(λ)

`

⌋
!π(`k).(1.1)

Then

CHn(k`;η`) ≡Z diag({r`(λ) | λ ∈ CRP`(n)}),

where π(`k) is the set of prime divisor of `k and CRP`(n) is the set of `-class regular partitions of n
(see §1.7 below).

This result was proposed as a conjecture by Külshammer, Olsson and Robinson ([KOR, Conjecture
6.4]) and is known as the KOR conjecture. The determinant of the Cartan matrix CHn(k`;η`) was first
computed by Brundan and Kleshchev [BK1, Corollary 1] and was shown to agree with the conjecture
in [KOR]. Hill [Hil, Conjecture 10.5] gave a conjectural description of the invariant factors of the Cartan
matrix of each individual block of Hn(k`; η`) and proved this description in the case when each prime
divisor p of ` appears with multiplicity at most p in the prime decomposition of `. The description was
shown to imply Theorem 1.4 by Bessenrodt and Hill [BH, Theorem 5.2]. Finally, Hill’s conjecture and
hence Theorem 1.4 were proved in full generality by the first author [Evs, Theorem 1.1].

The proofs in [Hil] and [Evs] both use a reduction of the KOR conjecture to the problem of finding
the Smith normal form of a certain Par(d) × Par(d)-matrix which is smaller than CHn(k`;η`); here, d is
not greater than the `-weight of a fixed block of Hn(k`; η`). The reduction (for an individual block of
Hn(k`; η`)) is due to Hill: see [Hil, Theorem 1.1]; for an alternative approach, see [Evs, §3]. Among the
main conjectures and results of the present paper are Conjecture 1.9, which is a graded version of the
reduced problem, and Corollary 3.17, which is a graded version of the reduction. The ungraded versions
are recovered by substituting v = 1.

1.3. Graded Cartan matrices and Shapovalov forms. While the KOR conjecture is now a theorem,
the proof in [Evs] relies on technical combinatorial arguments and does not give a satisfactory conceptual
understanding of the result. In particular, unlike in the special case when ` is a prime and the Brauer-
Nesbitt result applies, it is hard to discern a link between the statement or the proof of the KOR conjecture
and the group-theoretic structure of Sn. In a search for better understanding, we consider a remarkable
grading on the Hecke algebras discovered independently by Brundan-Kleshchev [BK2, Theorem 1.1]
and Rouquier [Ro1, Corollary 3.20]. It is a consequence of an isomorphism between Hn(k`; η`) and a

cyclotomic KLR algebra RΛ0
n (A

(1)
`−1) defined by Khovanov-Lauda [KL, §3.4] and Rouquier [Ro1, §3.2.6].

A similar isomorphism and grading exist for the degenerate case, i.e., for the symmetric group algebra
FpSn (see [BK2, Theorem 1.1] and [Ro1, Corollary 3.17]). Using the grading, one defines the graded
Cartan matrix CvHn(k`;η`)

with entries in the ring A = Z[v, v−1] (see Definition 3.12). It is a refinement

of CHn(k`;η`) in the sense that we have CHn(k`;η`) = CvHn(k`;η`)
|v=1.

Remark 1.5. Rouquier [Ro2] has shown that interesting gradings are likely to exist for a large class of
blocks of arbitrary finite groups. More precisely, he has constructed a grading on local blocks (i.e., blocks
with normal defect group) whenever the defect group is abelian and has shown that, subject to the Broué
abelian defect group conjecture, these gradings can be transferred to arbitrary blocks with abelian defect
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groups. A study of the corresponding graded Cartan matrices up to unimodular equivalence may be of
considerable interest, though is beyond the scope of this paper.

An alternative approach to defining CHn(k`;η`) is via the Shapovalov form on the basic representation

V (Λ0) of the affine Kac-Moody Lie algebra of type A
(1)
`−1 (see [BK1, Hil]). Generalizing to the graded

case is natural from this point of view as well, as one can replace the universal enveloping algebra of

the Kac-Moody algebra with its quantized version Uv(A
(1)
`−1). The corresponding quantum Shapovalov

forms were studied by the second author [Tsu] and are reviewed in §3.1 below. The matrix CvHn(k`;η`)

can be described in terms of Gram matrices of quantum Shapovalov forms on weight spaces of V (Λ0)
(see Proposition 3.14). Since Shapovalov forms play an important role in representation theory of Lie
algebras and quantum groups, this description provides further motivation for studying CvHn(k`;η`)

.

1.4. A graded analog of the Külshammer-Olsson-Robinson conjecture. We propose the follow-
ing graded version of the KOR conjecture.

Conjecture 1.6. For ` ≥ 2, we have (see also Definition 3.12)

(1.2) CvHn(k`;η`)
≡A diag({rv` (λ) | λ ∈ CRP`(n)}).

Here we put `k = `/ (`, k) and for λ ∈ Par define

rv` (λ) =
∏
k≥1

bmk(λ)/`c∏
t=1

[
`ktπ(`k)

]
(`,k)tπ(`k)′

,(1.3)

where the right-hand side is interpreted according to §1.7.4 and §1.7.5.

The second author stated this conjecture in the special case when ` is a prime power (see [Tsu,
Conjecture 6.18]) and computed the determinant of CvHn(k`;η`)

, which agrees with the conjecture (see [Tsu,

Theorem 6.11]).

Remark 1.7. Conjecture 1.6 implies Theorem 1.4: comparing (1.1) and (1.3), we have(∏bmk(λ)/`c
t=1

[
`ktπ(`k)

]
(`,k)tπ(`k)′

)
|v=1 = `

bmk(λ)

` c
k ·

⌊mk(λ)

`

⌋
!π(`k).

While CvHn(k`;η`)
has a description in terms of affine Kazhdan-Lusztig polynomials by virtue of the

graded version of Lascoux-Leclerc-Thibon-Ariki theory [BK3, Corollary 5.15] (see also [Tsu, Remark
5.7]), there is no easy combinatorial description for the entries of CvHn(k`;η`)

in general. Nonetheless, we

are able to reduce Conjecture 1.6 to a conjecture concerning matrices that do admit such a description
up to unimodular equivalence over A .

Definition 1.8. For ` ≥ 2 and λ ∈ Par, we define Iv` (λ), Jv` (λ) ∈ A by

Iv` (λ) =
∏
k≥1

mk(λ)∏
t=1

[
`ktπ(`k)

]
(`,k)tπ(`k)′

, Jv` (λ) =
∏
k≥1

[`]
mk(λ)
k ,(1.4)

where again we put `k = `/ (`, k).

The following conjecture involves a matrix Mn, which for the purposes of the statement may be
assumed to be the character table of the symmetric group Sn (see Definition 2.1 and Remark 2.2 for
details).

Conjecture 1.9. For ` ≥ 2 and n ≥ 0, we have the following unimodular equivalence over A :

Mn diag({Jv` (λ) | λ ∈ Par(n)})M−1
n ≡A diag({Iv` (λ) | λ ∈ Par(n)}).(1.5)

In §3, we will show that Conjecture 1.9 implies Conjecture 1.6 (see Corollary 3.17). As is mentioned
above, this generalizes a reduction for the ungraded case proved in [Hil, BH].



4 ANTON EVSEEV AND SHUNSUKE TSUCHIOKA

1.5. Evidence for Conjecture 1.9. Although there is no a priori reason to assert that CvHn(k`;η`)
is

unimodularly equivalent to a diagonal matrix since A is not a principal ideal domain (PID, for short),
we can give evidence that such an equivalence is likely to exist, which suggests that a hidden structure
lies behind it and that one is unlikely to see this structure just by considering the ungraded case.

Theorem 1.10. For ` ≥ 2 and n ≥ 0, let X and D denote the matrices on the left-hand and right-hand
sides of (1.5). Then, we have

(a) X ≡Q[v,v−1] D;
(b) for any 0 6= θ ∈ Q, we have X|v=θ ≡Z[θ,θ−1] D|v=θ.

Hence, the unimodular equivalence of Conjecture 1.6 holds over Q[v, v−1] and holds over Z[θ, θ−1] when
one substitutes any θ ∈ Q× for v.

The last statement follows from parts (a) and (b) due to Corollary 4.3.

Remark 1.11. We note the following consequence and special case:

(a) Combined with Proposition 3.15, Theorem 1.10 (a) settles affirmatively a conjecture of Ando-Suzuki-
Yamada ([ASY, Conjecture 8.2]) and further generalizes it to the case of an arbitrary ` ≥ 2, not
necessarily a prime.

(b) The case θ = 1 of Theorem 1.10 (b) corresponds to the KOR conjecture (Theorem 1.4).

Our proof of Theorem 1.10 relies on the fact that the equivalences in the theorem are over PIDs (see
Remark 6.1). In part, the proof is a generalization of the one in [Evs].

Since A is 2-dimensional, it appears that completely new ideas will be needed to prove a unimodular
equivalence over A . In particular, while the ungraded version of Conjecture 1.9 is easily reduced to the
case when ` is a prime power (see [Hil]), there is no such apparent reduction in the graded case. The
authors hope that this paper will help advertise Conjecture 1.9 (and its meaning) to a wide audience not
restricted to representation theorists, as the conjecture is stated purely in the language of combinatorics
and linear algebra.

1.6. Organization of the paper. In §2 we introduce the matrix Mn, which is the table of values
of Young permutation characters of the symmetric group Sn. We also introduce a “p-local” and a
multicolored version of Mn, and we prove a number of integrality results about these matrices that are
needed later. In §3, we show how Conjecture 1.6 may be interpreted in terms of certain representations
of quantum groups. We prove Theorem 3.10, which shows that the graded Cartan matrix CvHn(k`;η`)

(or

CvFpSn) is unimodularly equivalent to a block-diagonal matrix with blocks of the form given by the left-

hand side of (1.5). Using this, we show that Conjecture 1.9 implies Conjecture 1.6. Theorem 1.10 is proved
in §4 and §5. In §4, we prove Theorem 1.10 (a) and reduce Theorem 1.10 (b) to Theorem 4.14, which
asserts a certain unimodular equivalence over the local ring Z(p) and is proved in §5. In §6 (and §4.1),
we discuss unimodular equivalences over arbitrary commutative rings and possible results that would be
stronger than Theorem 1.10 but weaker than Conjecture 1.9, including possible further evidence in terms
of equivalences over PIDs.

1.7. Notation and conventions.

1.7.1. Commutative rings. All commutative rings are assumed to contain a multiplicative identity, and
homomorphisms between commutative rings are assumed to respect those identities. We denote by
max-Spec(R) the set of maximal ideals of a commutative ring R.

1.7.2. Matrices. Let R be a commutative ring. For any integer ` ≥ 0, we denote by Mat`(R) the algebra
of all R-valued ` × `-matrices. More generally, MatS(R) is the algebra of S × S-matrices for any finite
set S. For a finite set S, 1S denotes the identity S × S-matrix. For an assignment S → R, s 7→ rs, we
denote by diag({rs | s ∈ S}) the diagonal matrix with the (s, t)-entry equal to δstrs for all s, t ∈ S. We
often denote by Mrs the (r, s)-entry of a matrix M . If S =

⊔
i Si is a disjoint union and Mi ∈ MatSi(R)

for each i, then M =
⊕

iMi is the block-diagonal matrix given by Mrs = (Mi)rs if r and s belong to the
same subset Si and Mrs = 0 otherwise. We say that matrices X,Y ∈ Matm(R) are row (resp. column)
equivalent over R if there exists U ∈ GLm(R) such that X = UY (resp. X = Y U).
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1.7.3. Discrete valuation rings. When considering a discrete valuation ring R with valuation ν : K× � Z,
where K is the field of fractions of R, we set ν(0) = ∞ where ∞ is a symbol satisfying ∞ > c for all
c ∈ Q. For a prime p, the valuation νp : Q× � Z is defined by νp(p

ma/b) = m for m ∈ Z and a, b ∈ Z\pZ.
It corresponds to the discrete valuation ring Z(p) = {a/b ∈ Q | b 6∈ pZ}.

1.7.4. Integers. We write N = {0, 1, 2, . . .} and Prm for the set of all prime numbers. For n ≥ 1, we
denote by π(n) the set of all prime divisors of n. For n ≥ 1 and a subset Π ⊆ Prm, we define the Π-part
of n by nΠ =

∏
p∈Π p

νp(n). We write Π′ = Prm \Π and p′ = Prm \ {p} for all p ∈ Prm. For a, b ≥ 1, (a, b)
is the greatest common divisor of a and b.

1.7.5. Quantum rings. Let v be an indeterminate. In much of the paper, we work over the field k = Q(v)
and its subring A = Z[v, v−1]. The Q-algebra involution bar : k → k is defined by bar(v) = v−1. For
t ∈ Z, we write Inflt : A → A for the ring homomorphism given by v 7→ vt. For m ≥ 1 and n ∈ Z, the
quantum integer [n]m is defined by [n]m = (vmn − v−mn)/(vm − v−m) ∈ A . Note that [n]m|v=1 = n.
We set [n]m! = [n]m[n− 1]m · · · [1]m. For a field F and q ∈ F×, the quantum characteristic of q is defined
by qcharq F = min{k ≥ 1 | [k]|v=q = 0} if the set on the right-hand side is non-empty and is set to be 0
otherwise.

1.7.6. Groups and generalized characters. Let G be a finite group. If R is a subring of C, we say that
a function χ : G → C is an R-generalized character of G if χ belongs to the R-span of the irreducible
characters of G. By a generalized character we mean a Z-generalized character. If g, h ∈ G, we write
g ≡G h if g and h are G-conjugate. If p is a prime, then, as usual, gp, gp′ ∈ 〈g〉 ⊆ G are the p-part and
the p′-part of g respectively, so that g = gpgp′ = gp′gp, the order of gp is a p-power and the order of gp′

is prime to p.

1.7.7. Partitions. We write ∅ for the empty partition. For a partition λ = (λ1, λ2, . . .), we define mk(λ) =
|{i ≥ 1 | λi = k}| for k ≥ 1. Also, `(λ) =

∑
i≥1mi(λ) and |λ| =

∑
i≥1 λi. We denote by Par(n) (resp.

CRPs(n),RPs(n)) the set of all (resp. s-class regular, s-regular) partitions of n ≥ 0. Recall that, for s ≥ 1,
a partition λ is called

(i) s-class regular if we have mks(λ) = 0 for all k ≥ 1,
(ii) s-regular if we have mk(λ) < s for all k ≥ 1.

We put Par =
⊔
n≥0 Par(n) and Parm(n) = {(λ(i))mi=1 ∈ Parm |

∑m
i=1 |λ(i)| = n} for m,n ≥ 0.

For n ≥ 0, p ∈ Prm and ν ∈ CRPp(n), we define Parp(n, ν) = {λ ∈ Par(n) |
∑
s≥0mjps(λ)ps =

mj(ν)∀j ∈ N \ pZ}. Further, Powp(n) = Parp(n, (1
n)) and Powp =

⊔
n≥0 Powp(n) is the set of the

partitions with all parts being powers of p.
For λ, µ ∈ Par, the partition λ+ µ is defined by mi(λ+ µ) = mi(λ) +mi(µ) for i ≥ 1.

Acknowledgments. S.T. thanks Yuichiro Hoshi, Yoichi Mieda and Hiraku Kawanoue for discussions
on §6. In particular, Theorem 6.5 is due to Kawanoue (see Remark 6.8).

2. The matrix Mn

2.1. Definition of Mn. As usual, let Λ =
⊕

n≥0 lim←−m≥0
Z[u1, . . . , um]Smn be the ring of symmetric

functions (see [Ful, §6] or [Mac, §I.2]) where Z[u1, . . . , um]n is the set of homogeneous polynomials of
degree n.

The ring Λ is categorified by the module categories {Mod(QSn)}n≥0. More precisely, let χV denote
the character afforded by a module V ∈ Mod(QSn). For µ ∈ Par, consider the power sum symmetric

function pµ =
∏`(µ)
i=1 pµi , where pk =

∑
j≥1 u

k
j for k ≥ 1. Let Cµ be the conjugacy class of elements of

cycle type µ in Sn. For µ ∈ Par, let

(2.1) zµ =
∏
i≥1

mi(µ)! · imi(µ),

so that #Cµ = |µ|!/zµ. Then the following character map is an isometry (see [Ful, §7.3]):

ch :
⊕
n≥0

K0(Mod(QSn)) ∼−−→Λ, [V ] 7−→
∑

µ∈Par(n)

1

zµ
χV (Cµ)pµ,(2.2)
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where we write χV (Cµ) for the value of χV on an arbitrary element of Cµ.

Definition 2.1. Let λ, µ ∈ Par(n). Consider the parabolic subgroup

Sλ = Aut({1, . . . , λ1})× Aut({λ1 + 1, . . . , λ1 + λ2})× · · · ∼= ⊗i≥1Sλi

of Sn, and let trivSλ be its trivial representation. We set Mλ,µ = χIndSn
Sλ

trivSλ
(Cµ) and put Mn =

(Mλ,µ) ∈ MatPar(n)(Z).

Remark 2.2. Recall the complete symmetric function hµ =
∏
i≥1 hµi for µ ∈ Par where

∑
n≥0

hnt
n =

∏
i≥1

(1− uit)−1 =

∞∏
r=1

exp

(
prt

r

r

)
.(2.3)

There is a well-known identity ch([IndSn
Sλ

trivSλ ]) = hλ for λ ∈ Par(n) (see [Ful, §7.2, Lemma 4]). Further,
we have

hλ =
∑

µ∈Par(n)

1

zµ
Mλ,µpµ, pλ =

∑
µ∈Par(n)

Mµ,λmµ(2.4)

for λ ∈ Par(n), where mµ is the monomial symmetric function (i.e., the function whose image in

Z[u1, . . . , um]n for m ≥ `(λ) is the sum of the elements of the orbit of the monomial
∏`(µ)
j=1 u

µj
j un-

der the action of Sm on the variables); see [Ful, §6, (11), (12)]. Using the second identity (2.4), we see
that Mλ,µ has the following explicit combinatorial descriptions:

(a) Mλ,µ is the coefficient of
∏`(λ)
j=1 u

λj
j in

∏
i≥1(ui1 + · · ·+ ui`(λ))

mi(µ),

(b) Mλ,µ = #Mλ,µ where

Mλ,µ = {f : {1, . . . , `(µ)} → {1, . . . , `(λ)} |
∑
j∈f−1(i) µj = λi whenever 1 ≤ i ≤ l(λ)}.

Remark 2.3. It is well known that the Z-span of {χIndSn
Sλ

trivSλ
| λ ∈ Par(n)} is the whole set of

generalized characters of Sn (see [Ful, §7.2, Corollary]); equivalently, the matrix Mn is row equivalent
over Z to the character table of Sn (in which, as usual, rows correspond to irreducible characters and
columns to conjugacy classes, labeled by their cycle types). Therefore, as we claimed in §1.4, the matrix
on the left-hand side of (1.5) stays in the same unimodular equivalence class if one replaces Mn by the
character table of Sn.

In the remainder of this section, we prove a number of results on the matrix Mn and some of its
analogues, mainly of a combinatorial nature. Proposition 2.4 will not be used until §5.4. The results in
§2.2 are used in §4 and §5, whereas the results of §2.3 are needed in §3.

Proposition 2.4. Let n ≥ 0 and let λ, µ ∈ Par(n).

(a) Mλ,λ =
∏
j≥1mj(λ)! and Mλ,λ divides Mλ,µ;

(b) `(λ) ≤ `(µ) if Mλ,µ > 0;
(c) Let p ≥ 3 be a prime, and assume that Mλ,µ > 0 and λ 6= µ. Then νp(Mλ,µ) > `(λ) − `(µ) +∑

j≥1 νp(mj(µ)!).

Proof. (a) and (b) follow immediately from the combinatorial descriptions in Remark 2.2. To prove

(c), let C be the set of maps c : {1, . . . , `(λ)} → Par \ {∅} such that
∑`(λ)
k=1 c(k) = µ and |c(k)| = λk

for 1 ≤ k ≤ `(λ). For c ∈ C, we define Mc
λµ to be the set of maps f ∈ Mλµ such that, whenever

1 ≤ k ≤ `(λ), there is a multiset equality

{µj | j ∈ f−1(k)} = {c(k)j | 1 ≤ j ≤ `(c(k))}.

It is clear that Mλ,µ =
⊔
c∈CMc

λ,µ (thus, we have C 6= ∅) and

#Mc
λ,µ =

∏
j≥1

(
mj(µ)

mj(c(1)),mj(c(2)), . . . ,mj(c(`(λ)))

)
.
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It suffices to prove that νp(#Mc
λ,µ) > `(λ)− `(µ) +

∑
j≥0 νp(mj(µ)!) for c ∈ C. By Lemma 2.5,

νp(#Mc
λ,µ)− νp(mj(µ)!)− `(λ) + `(µ) =

`(λ)∑
k=1

`(c(k))−
∑
j≥1

νp(mj(c(k))!)− 1

 ≥ 0

and the equality holds exactly when `(c(k)) = 1 for 1 ≤ k ≤ `(λ), i.e., when λ = µ. �

Lemma 2.5. Let p ≥ 3 be a prime and λ ∈ Par \ {∅}. We have `(λ) −
∑
j≥1 νp(mj(λ)!) ≥ 1, and the

equality holds exactly when `(λ) = 1.

Proof. Note that

(2.5) νp(a!) =

∞∑
i=1

ba/pic ≤
∞∑
i=1

a/pi = a/(p− 1)

for a ≥ 0. Thus,

`(λ)−
∑
j≥1

νp(mj(λ)!) ≥ (1− 1/(p− 1)) `(λ) > 1

when `(λ) ≥ 3. When `(λ) = 1, 2, we have νp(mj(λ)!) = 0 for all j ≥ 1. �

2.2. p-local version N
(p)
n of Mn. As in [Evs, §4], we consider a submatrix N

(p)
n of Mn and use it to

construct a certain block-diagonal matrix L
(p)
n , which is row equivalent over Z(p) to Mn, for any fixed

prime p.

Definition 2.6. For p ∈ Prm and n ≥ 0, we define N
(p)
n = Mn|Powp(n)×Powp(n) and

L(p)
n =

⊕
ν∈CRPp(n)

⊗
j∈N\pZ

N
(p)
mj(ν).

We regard L
(p)
n as an element of MatPar(n)(Z) by using the following identification:

(a) Par(n) =
⊔
ν∈CRPp(n) Parp(n, ν),

(b) Parp(n, ν) ∼−−→
∏
j∈N\pZ Powp(mj(ν)), λ 7−→ (λ(j))j∈N\pZ where mps(λ

(j)) = mjps(λ).

Proposition 2.7. Let p ∈ Prm. For a Z(p)-algebra R and a family of homomorphisms (rj : R →
R)j∈N\pZ, assume that

(i) there are maps f, g : Par→ R such that

f(λ) =
∏

j∈N\pZ

rj(f(λ(j))), g(λ) =
∏

j∈N\pZ

rj(g(λ(j)))

for all k ≥ 0, ν ∈ CRPp(k) and λ ∈ Parp(k, ν), where the assignment λ 7→ (λ(j))j∈N\pZ is defined as
above.

(ii) for all n ≥ 0, Mn diag({f(λ) | λ ∈ Par(n)})M−1
n is R-valued.

Then, we have

(a) N
(p)
k diag({f(λ) | λ ∈ Powp(k)})(N (p)

k )−1 is R-valued for all k ≥ 0,
(b) For a Z(p)-algebra R′ with a homomorphism φ : R→ R′, the following implication holds:

∀k ≥ 0, φ(N
(p)
k diag({f(λ) | λ ∈ Powp(k)})(N (p)

k )−1) ≡R′ φ(diag({g(λ) | λ ∈ Powp(k)}))
=⇒ ∀n ≥ 0, φ(Mn diag({f(λ) | λ ∈ Par(n)})M−1

n ≡R′ φ(diag({g(λ) | λ ∈ Par(n)})).

Proof. By [Evs, Lemma 4.8], the matrices Mn and L
(p)
n are row equivalent over Z(p) and hence over R.

Thus, by (ii) we have

Mn diag({f(λ) | λ ∈ Par(n)})M−1
n ≡R L(p)

n diag({f(λ) | λ ∈ Par(n)})(L(p)
n )−1.

By (i), the right-hand side is just⊕
ν∈CRPp(n)

⊗
j∈N\pZ

N
(p)
mj(ν) diag({rj(f(λ(j))) | λ(j) ∈ Powp(mj(ν))})(N (p)

mj(ν))
−1.
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We have shown that N
(p)
n diag({f(λ) | λ ∈ Powp(n)})(N (p)

n )−1 is a block submatrix of an R-valued
matrix which is unimodularly equivalent to Mn diag({f(λ) | λ ∈ Par(n)})M−1

n over R (note that, by (i),
r1(f(λ)) = f(λ) for λ ∈ Powp(n)). Thus, (a) is proved. Part (b) follows from the above equivalences and
hypothesis (i). �

Our next aim is to prove an integrality result (Proposition 2.12), which will be used in §5.3.

Definition 2.8. Let p ∈ Prm. For a sequence θ = (θj)j≥0 ∈ ZN
(p) and n ≥ 0, we define

a
(p)
θ (n) =

∑
ν∈Powp(n)

1

zν

∏
j≥0

θ
mpj (ν)

j .

Lemma 2.9. Let p ∈ Prm. For any θ ∈ ZN
(p) and n ≥ 0, we have

(a) a
(p)
θ+θ′(n) =

∑n
k=0 a

(p)
θ (k)a

(p)
θ′ (n− k), where (θ + θ′)j := θj + θ′j for j ≥ 0,

(b) a
(p)
θ (n) ∈ Z(p) if νp(θj) ≥ j + 1 for all j ≥ 0,

(c) a
(p)
(θ)(n) ∈ Z(p) if there exist s ∈ Z≥1 and c ∈ Z(p) such that θj = scp

j

for all j ≥ 0.

Proof. Consider the generating function Aθ =
∑
n≥0 a

(p)
θ (n)tn. By a straightforward calculation similar

to the one in the proof of [Mac, Equation (I.2.14)], we obtain the identity Aθ = exp(
∑
j≥0 p

−jθjt
pj ).

Hence, Aθ+θ′ = AθAθ′ , and part (a) follows by equating coefficients in tn. Part (b) follows from the
identity

a
(p)
θ (n) =

∑
ν∈Powp(n)

∏
j≥0

1

mpj (ν)!

(
θj
pj

)mpj (ν)

.

and the inequality νp(d!) ≤ d (see (2.5)).
To prove (c), we recall a corollary of Brauer’s characterization of characters. Let G be a finite group.

Then the characteristic function of a p′-section Secp′(x) := {y ∈ G | yp′ ≡G x} of any p′-element x ∈ G
is an O-generalized character of G (see [Isa, Lemma 8.19]) for a certain DVR O with Z(p) ⊆ O ⊆ C.
In particular, the characteristic function of Secp′(1Sn) =

⊔
ν∈Powp(n) Cν is an O-generalized character of

Sn.
We denote by 〈·, ·〉G the usual inner product on the complex-valued class functions on G, so that

{χV | V ∈ Irr(Mod(CG))} is an orthonormal basis. Due to (a), we may assume that s = 1, so that

θj = cp
j

for all j. We have

a
(p)
θ (n) =

∑
ν∈Powp(n)

z−1
µ cn = cn〈χtrivSn

|⊔
ν∈Powp(n) Cν

, χtrivSn
〉Sn ∈ Q ∩ O = Z(p). �

Proposition 2.10. Let R ⊆ C be a ring, and consider a map ξ : Par(n)→ C be a map for some n ≥ 0.
If the class function ξcl defined by ξcl(Cλ) = ξ(λ) for λ ∈ Par(n) is an R-generalized character of Sn,
then Mn diag({ξ(λ) | λ ∈ Par(n)})M−1

n is R-valued.

Proof. Let Tn = (χV (Cλ))V ∈Irr(Mod(QSn)), λ∈Par(n) be the character table of Sn. Then, for V,W ∈
Irr(Mod(QSn)), the (V,W )-entry of Tn diag({ξ(λ) | λ ∈ Par(n)})T−1

n is equal to 〈ξclχV , χW 〉Sn . In-
deed, we have

〈ξclχV , χW 〉Sn =
∑

λ∈Par(n)

1

zλ
χV (Cλ)ξ(λ)χW (Cλ),

and z−1
λ χW (Cλ) is the (λ,W )-entry of T−1

n due to the orthogonality relations. The result follows since
Mn and Tn are row equivalent over Z (see Remark 2.3). �

Corollary 2.11. Let p ∈ Prm and n ≥ 0. For a map ξ : Powp(n) → C, if the class function ξcl defined
by

ξcl(Cλ) =

{
ξ(λ) if λ ∈ Powp(n),

0 if λ ∈ Par(n) \ Powp(n)

is a Z(p)-generalized character of Sn, then N
(p)
n diag({ξ(λ) | λ ∈ Powp(n)})(N (p)

n )−1 is Z(p)-valued.



ON GRADED CARTAN INVARIANTS 9

Proof. Put M̂n =
⊕

ν∈CRPp(n)Mn|Parp(n,ν)×Parp(n,ν) ∈ MatPar(n)(Z). Then Mn and M̂n are row equivalent

over Z(p) by [Evs, Lemma 4.6]. Thus, by Proposition 2.10, M̂n diag({ξcl(Cλ) | λ ∈ Par(n)})M̂−1
n ∈

MatPar(n)(Z(p)). Now N
(p)
n diag({ξ(λ) | λ ∈ Powp(n)})(N (p)

n )−1 is simply the Powp(n) × Powp(n)-
submatrix of this matrix, so the result follows. �

Proposition 2.12. Let p ∈ Prm and n ≥ 0, ` ≥ 2 be integers. Put r = νp(`). Then, for any a/b ∈ Z(p)

with a, b ∈ Z \ pZ and a2 − b2 ∈ pZ, we have

N (p)
n diag({p−r`(λ)

∏
j≥0

[`]
mpj (λ)

pr+j |v=a/b | λ ∈ Powp(n)})(N (p)
n )−1 ∈ MatPowp(n)(Z(p)).

Proof. Put θ = (θj)j≥0 ∈ ZN
(p) where θj = p−r[`]pr+j |v=a/b. Consider the map ξ : Powp(n)→ Q given by

ν 7→
∏
j≥0 θ

mpj (ν)

j . By Corollary 2.11, it is enough to show that ξcl is a Z(p)-generalized character of Sn.

By Frobenius reciprocity, for all λ ∈ Par(n) we have

〈ξcl, χIndSn
Sλ

trivSλ
〉Sn = 〈ResSnSλ

ξcl, χtrivSλ
〉Sλ =

∏`(λ)
i=1 a

(p)
θ (λi).

Therefore, since {χIndSn
Sλ

trivSλ
| λ ∈ Par(n)} is a Z-basis of the abelian group of generalized characters of

Sn, it suffices to show that a
(p)
θ (k) ∈ Z(p) for all k ≥ 0.

Let θ′′j = `p′(a/b)
−(`−1)pr+j and θ′j = θj−θ′′j for j ≥ 0, so that θ = θ′+θ′′. We know that a

(p)
θ′′ (k) ∈ Z(p)

by Lemma 2.9 (c). Thus, by Lemma 2.9 (a), it is enough to show that a
(p)
θ′ (k) ∈ Z(p). By Lemma 2.9 (b),

it will suffice to prove that νp(θ
′
j) ≥ j + 1. Note that

θ′j =

∑`−1
i=0(a/b)2ipr+j − `

pr
·
(a
b

)−(`−1)pr+j

=

∑`−1
i=0

(
(a/b)2ipr+j − 1

)
pr

·
(a
b

)−(`−1)pr+j

.

Since the assumption that a2 − b2 ∈ pZ implies that a2ipr+j − b2ip
r+j ∈ p1+r+jZ for all i ≥ 0 (see

e.g. Proposition 5.1 and its proof), we are done. �

2.3. `-colored version M`,d of Mn. Let R be a commutative ring and A ∈ Mat`(R) for some ` ≥ 1.
Let {v1, . . . , v`} be the standard basis of the free R-module R`. Then the symmetric power Symm(R`)
has a basis {vi1vi2 · · · vim | (i1, . . . , im) ∈ Multm(`)} where

Multm(`) = {(i1, . . . , im) ∈ Zm | 1 ≤ i1 ≤ · · · ≤ im ≤ `}.
Since Symm is a functor from the category of finitely generated R-modules to itself, the endomorphism
of R` given by A induces an endomorphism of Symm(R`), and the m-th symmetric power Symm(A) is
defined to be the matrix of this endomorphism with respect to the given basis (see e.g. [Evs, Equation
(3.15)] for a more explicit description). Thus, Symm(A) ∈ MatMultm(`)(R).

For `, d ≥ 0, we define

Ω`,d =
⊔

λ∈Par(d)

{(λ, (i1, . . . , i`(λ))) | 1 ≤ ij ≤ ` ∀j and λj = λj+1 ⇒ ij ≤ ij+1}.

There is a bijection Ω`,d ∼−−→Par`(d) given by (λ, i) 7→ (λ(1), . . . , λ(`)) where λ(j) consists of the parts λk
such that ik = j (see [Hil, Notation 3.1]).

Definition 2.13. For positive integers `, d and A ∈ Mat`(A ), we define (see §1.7.5)

Sd(A) =
⊕

λ∈Par(d)

⊗
t≥1

Symmt(λ)(Inflt(A)).

We may view Sd(A) as an Ω`,d × Ω`,d-matrix via the identification⊔
λ∈Par(d)

∏
t≥1

Multmt(λ)(`) ∼−−→Ω`,d,(
(it,1, . . . , it,mt(λ))

)
t≥1
7→ (λ, (i1,1, i1,2, . . . , i1,m1(λ), i2,1, i2,2, . . . , i2,m2(λ), . . .)).

Further, combining this with the above identification, we may (and do) view Sd(A) as an element of
MatPar`(d)(A ).
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Definition 2.14. The `-colored ring of symmetric functions is defined by Λ` =
⊗`

t=1 Λ(t), where each

Λ(t) is a copy of Λ. We write m
(t)
µ for the image of mµ in Λ(t) and adopt a similar convention for the

functions hµ and pµ. For ` ≥ 1 and d ≥ 0, we define the matrices M`,d,K`,d ∈ MatPar`(d)(Z) by the
following equations:

p
(1)

λ(1) · · · p
(`)

λ(`) =
∑

(µ(1),...,µ(`))∈Par`(d)

(M`,d)(λ(1),...,λ(`)),(µ(1),...,µ(`))m
(1)

µ(1) · · ·m
(`)

µ(`)

=
∑

(µ(1),...,µ(`))∈Par`(d)

(K`,d)(λ(1),...,λ(`)),(µ(1),...,µ(`))h
(1)

µ(1) · · ·h
(`)

µ(`) .

Remark 2.15. M1,n = trMn by (2.4) and M`,n =
⊕∑`

i=1 ni=n,ni≥0

⊗`
i=1M1,ni .

Remark 2.16. M`,d and K`,d are column equivalent over Z since both of

{
∏
i∈I m

(i)

µ(i) | (µ(i))i∈I ∈ Par`(d)}, {
∏
i∈I h

(i)

µ(i) | (µ(i))i∈I ∈ Par`(d)}

are bases of the same A -lattice of the degree d part of Λ` (see [Ful, §6, Proposition 1]).

The following result is similar to [Tsu, Proposition 2.3] and is proved by essentially the same argument
as that given in [BK1, §5]. We include a proof for clarity.

Proposition 2.17. Let F be a field of characteristic 0 and I = {1, . . . , `} for a fixed integer ` ≥ 0. We

regard the polynomial ring V = F[y
(i)
n | i ∈ I, n ≥ 1] as a graded F-algebra via deg y

(i)
n = n and denote by

Vd the F-vector subspace of V consisting of homogeneous elements of degree d for d ≥ 0. Assume that we
are given the following data:

(a) a ring involution σ : F ∼−−→F,

(b) a family of invertible matrices A = (A(m))m≥1 where A(m) = (a
(m)
ij )i,j∈I ∈ GLI(F),

(c) two bi-additive forms 〈·, ·〉S and 〈·, ·〉K : V × V → F such that
• 〈cf, g〉X = σ(c)〈f, g〉X and 〈f, cg〉X = c〈f, g〉X ,
• 〈1, 1〉X = 1, and 〈1, f〉X = 0 if f ∈ Vd for some d > 0,

• 〈my(i)
m f, g〉S = 〈f,

∑
j∈I a

(m)
ij

∂g

∂y
(j)
m

〉S and 〈my(i)
m f, g〉K = 〈f, ∂g

∂y
(i)
m

〉K
for X ∈ {S,K} and f, g ∈ V , c ∈ F, m ≥ 1,

(d) a family of new variables (x
(i)
n )i∈I,n≥1 such that x

(i)
n − y(i)

n ∈ F[y
(i)
m | 1 ≤ m < n] ∩ Vn for all n ≥ 1.

Set x
(i)
λ =

∏`(λ)
k=1 x

(ik)
λk

and y
(i)
λ =

∏`(λ)
k=1 y

(ik)
λk

for (λ, i) ∈ Ω`,d, and define the transition matrix P =

(p
(i,j)

λ,µ ) ∈ GLΩ`,d(F) by x
(i)
λ =

∑
(µ,j)∈Ω`,d

p
(i,j)

λ,µ y
(j)
µ . Then the Gram matrices MS = (〈x(i)

λ , x
(j)
µ 〉S)(λ,i),(µ,j)∈Ω`,d

and MK = (〈x(i)

λ , x
(j)
µ 〉K)(λ,i),(µ,j)∈Ω`,d are related by the identity

MS = σ(P )

 ⊕
λ∈Par(d)

⊗
t≥1

Symmt(λ)(A(t))

σ(P )−1MK .(2.6)

Proof. Let z
(i)
n =

∑
j∈I σ(a

(n)
ij )y

(j)
n for n > 0 and i ∈ I, and define z

(i)
λ =

∏`(λ)
k=1 z

(ik)
λk

for all (λ, i) ∈ Ω`,d.

First, we will prove by induction on d that, for all for all f ∈ V and (λ, i) ∈ Ω`,d, we have

(2.7) 〈y(i)
λ , f〉S = 〈z(i)

λ , f〉K
(cf. [BK1, Lemma 5.2]). We have 〈1, f〉S = 〈1, f〉K for all f ∈ V , as both sides are equal to the constant
term of f , so (2.7) holds when d = 0. If (2.7) holds for some (λ, i) ∈

⋃
d≥0 Ω`,d and all f ∈ V , then for

all n > 0, i ∈ I and f ∈ V we have〈
y

(i)
n y

(i)
λ , f

〉
S

=
〈
n−1y

(i)
λ ,
∑
j∈I a

(n)
ij

∂f

∂y
(j)
n

〉
S

=
〈
n−1z

(i)
λ ,
∑
j∈I a

(n)
ij

∂f

∂y
(j)
n

〉
K

=
∑
j∈I a

(n)
ij

〈
n−1z

(i)
λ , ∂f

∂y
(j)
n

〉
K

=
∑
j∈I a

(n)
ij

〈
y

(i)
n z

(i)
λ , f

〉
K

=
〈∑

j∈I σ(a
(n)
ij )y

(i)
n z

(i)
λ , f

〉
K

=
〈
z

(i)
n z

(i)
λ , f

〉
K
,

and therefore (2.7) holds in all cases.
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Let Q = (q
(i,j)

λ,µ )(λ,i),(µ,j)∈Ω`,d ∈ MatΩ`,d(F) be the transition matrix defined by

z
(i)
λ =

∑
(µ,j)∈Ω`,d

q
(i,j)

λ,µ y
(j)
µ .

For any (λ, i) ∈ Ω`,d, we have

z
(i)
λ =

∑
j∈I`(λ)

σ(a
(λ1)
i1,j1

) · · ·σ(a
(λ`(λ))

i`(λ),j`(λ)
)y

(j1)
λ1
· · · y(j`(λ))

λ`(λ)
, whence

Q =
⊕

λ∈Par(d)

⊗
t≥1

Symmt(λ)(σ(A(t)))

(cf. [BK1, Lemma 5.3]). Writing P−1 = (p̃
(i,j)

λ,µ )(λ,i),(µ,j)∈Ω`,d , we have〈
x

(i)

λ , x
(j)
µ

〉
S

=
∑

(ν,k)∈Ω`,d

σ(p
(i,k)
λ,ν )

〈
y

(k)
ν , x

(j)
µ

〉
S

=
∑

(ν,k)∈Ω`,d

σ(p
(i,k)
λ,ν )

〈
z

(k)
ν , x

(j)
µ

〉
K

=
∑

(ν,k),(η,r)∈Ω`,d

σ(p
(i,k)
λ,ν )σ(q(k,r)

ν,η )
〈
y

(r)
η , x

(j)
µ

〉
K

=
∑

(ν,k),(η,r),(θ,s)∈Ω`,d

σ(p
(i,k)
λ,ν )σ(q(k,r)

ν,η )σ(p̃
(r,s)
η,θ )

〈
x

(s)

θ , x
(j)
µ

〉
K

for any (λ, i), (µ, j) ∈ Ω`,d, where the second equality holds by (2.7). Therefore,

MS = σ(P )σ(Q)σ(P )−1MK = σ(P )

 ⊕
λ∈Par(d)

⊗
t≥1

Symmt(λ)(A(t))

σ(P )−1MK . �

The following is a corollary of the boson-fermion correspondence over Z (see [DcKK, Corollary 2.1]
and [Tsu, Proposition 2.4]).

Proposition 2.18. Let F, `, I, σ, V and Vd be as in Proposition 2.17.

(a) There exists a unique bi-additive non-degenerate map 〈·, ·〉K : V × V → F such that
(i) 〈af, g〉K = σ(a)〈f, g〉K , 〈f, ag〉K = a〈f, g〉K and 〈f, g〉K = σ(〈g, f〉K),

(ii) 〈1, 1〉K = 1 and 〈my(i)
m f, g〉K = 〈f, ∂g

∂y
(i)
m

〉K ,

for all f, g ∈ V , a ∈ F and i ∈ I.

(b) Suppose further that for each 1 ≤ i ≤ ` the variables {x(i)
n | n ≥ 1} and {y(i)

n | n ≥ 1} are related by
the formal identity

1 +
∑
n≥1

x(i)
n tn = exp

∑
r≥1

y(i)
r tr

 .(2.8)

Then, for any d ≥ 0, the set of Schur functions{∏
i∈I

sλ(i)(x(i))
∣∣ ∑
i∈I
|λ(i)| = d

}

forms an orthonormal basis of the Z-lattice Z[x
(i)
n | i ∈ I, n ≥ 1] ∩ Vd of Vd with respect to 〈·, ·〉K .

Here, sλ(x(i)) := det(x
(i)
λk+j−k)1≤j,k≤|λ| for λ ∈ Par and x

(i)
m = δm,0 for m ≤ 0.

Note that the form 〈·, ·〉K : V × V → F satisfying the conditions of Proposition 2.17 is clearly unique.
Also, those conditions are implied by the properties satisfied by the form 〈·, ·〉K of Proposition 2.18 (a).
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Corollary 2.19. Assume all the hypotheses of Proposition 2.17. Suppose further that the variables

{x(i)
n | i ∈ I, n ≥ 1} and {y(i)

n | i ∈ I, n ≥ 1} are related as in Proposition 2.18 (b). Then

MS = K−1
`,d

 ⊕
λ∈Par(d)

⊗
t≥1

Symmt(λ)(A(t))

K`,dMK .(2.9)

and MK ∈ GLPar`(d)(Z).

Proof. Let Y =
⊕

λ∈Par(d)

⊗
t≥1 Symmt(λ)(A(t)). We identify the ring V with F ⊗ Λ` by setting y

(i)
n =

p
(i)
n /n. Then, comparing the hypothesis with (2.3), we see that x

(i)
n = h

(i)
n . Define wµ = µ1 · · ·µ`(µ)

for µ ∈ Par and i ∈ I, and let W = diag{wµ(1) · · ·wµ(`) | (µ(1), . . . , µ(`)) ∈ Par`(d)}. It follows from

Definition 2.14 that the change-of-basis matrix P of Proposition 2.17 is given by P = K−1
`,dW . Hence,

Proposition 2.17 yields

MS = σ(K`,d)
−1σ(W )Y σ(W )−1σ(K`,d)MK .

Observing that, when we view W as an Ω`,d × Ω`,d-matrix, each block of W corresponding to a fixed
λ ∈ Par(d) is a scalar matrix and also that σ(K`,d) = K`,d because K`,d is Q-valued, we obtain (2.9).

Thanks to Proposition 2.18, there exists Q ∈ GLPar`(d)(Z) such that MK = trQ ·Q. �

The following result is a quantized version of [Hil, Proposition 3.3], though our proof is different.

Theorem 2.20. For ` ≥ 1 and A ∈ Mat`(A ), we have M−1
`,d S

d(A)M`,d ∈ MatPar`(d)(A ) for any d ≥ 0.

Proof. Let I = {1, . . . , `}. By Remark 2.16, it will suffice to prove that K−1
`,dS

d(P )K`,d ∈ MatPar`(d)(A ).

In the rest of the proof, we identify k ⊗ Λ` with V = k[y
(i)
n | i ∈ I, n ≥ 1] by identifying p

(i)
n /n with

y
(i)
n . Write A = (aij)i,j∈I . Define new variables x

(i)
n ∈ V by the identity (2.8). Clearly, there exists a

unique bi-additive map 〈·, ·〉S : V × V → k such that

(a) 〈cf, g〉S = bar(c)〈f, g〉S , 〈f, cg〉S = c〈f, g〉S ,

(b) 〈1, 1〉S = 1, and 〈1, f〉S = 0 if f has zero constant term as a polynomial in the variables y
(j)
n ,

(c) 〈my(i)
m f, g〉S = 〈f,

∑
j∈I Inflm(aij)

∂g

∂y
(j)
m

〉S
for f, g ∈ V , c ∈ k, m ≥ 1, i ∈ I. Applying Corollary 2.19 with F = k, σ = bar and the form 〈·, ·〉K
supplied by Proposition 2.18 (a), we obtain MS = K−1

`,dS
d(A)K`,dMK (in the notation of Proposition 2.17)

and MK ∈ GLPar`(d)(Z).

Thus, it is enough to show that 〈x(i)

λ , x
(j)
µ 〉S ∈ A for (λ, i), (µ, j) ∈ Ω`,d, where x

(i)
λ is defined as in

Proposition 2.17. We argue by induction on |λ|. Expanding (2.8), we obtain

(2.10) x
(i)
n =

∑
λ∈Par(n)

∏
k≥1

(y
(i)
k )mk(λ)

mk(λ)! ,

and therefore ∂x
(i)
m /∂y

(j)
n = δijx

(i)
m−n for i, j ∈ I and m,n ≥ 1, where we put x

(i)
γ = δγ,0 for γ ≤ 0 (see

also [DcKK, page 129]). Combining (2.10) with the defining property (c) of 〈·, ·〉S , we obtain the identity

〈x(i)
n f, g〉S = 〈f,D(i)

n g〉S for all f, g ∈ V , n ≥ 1, i ∈ I, where the differential operator D
(i)
n : V → V is

defined by

D(i)
n =

∑
λ∈Par(n)

∏
k≥1

1

kmk(λ)mk(λ)!

∑
j∈I

Inflk(aij)
∂

∂y
(j)
k

mk(λ)

Let V A = A [x
(i)
λ | (λ, i) ∈ Ω`,d]. By the inductive hypothesis, it is enough to show that D

(i)
n (V A ) ⊂

V A for all i ∈ I, n ≥ 1. By a straightforward calculation, one obtains the product rule D
(i)
n (fg) =∑n

s=0D
(i)
s (f)D

(i)
n−s(g) for f, g ∈ V . Hence, it suffices to prove that D

(i)
n (x

(j)
m ) ∈ V A for all i, j ∈ I and

n,m ≥ 1. We have

D(i)
n (x(j)

m ) =

 ∑
λ∈Par(n)

∏
k≥1

Inflk(aij)
mk(λ)

kmk(λ)mk(λ)!

x
(j)
m−n,

and the result now follows from Lemma 2.21. �
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Lemma 2.21. For any f ∈ A , we have
∑
λ∈Par(n)

1
zλ

∏
k≥1 Inflk(f)mk(λ) ∈ A .

Proof. For θ = (θk)k≥1 ∈ A Z≥1 and n ≥ 0, we define bθ(n) =
∑
λ∈Par(n)

1
zλ

∏
k≥1 θ

mk(λ)
k (cf. Definition

2.8). Similarly to Lemma 2.9 (a), we have bθ+θ′(n) =
∑n
k=0 bθ(k)bθ′(n− k). Thus, it is enough to show

that bθ±m(n) ∈ A for m ∈ Z where θ±m = (±vm,±v2m,±v3m, . . .). By the orthogonality relations, we have∑
λ∈Par(n)

(±1)`(λ)

zλ
= (1± 1)/2, which implies that bθ±m(n) = (vmn ± vmn)/2. �

3. Graded Cartan matrices of symmetric groups and Hecke algebras

In this section we recall the definition of graded Cartan matrices CvHn(k`;η`)
and reduce the problem

of finding their unimodular equivalence classes to the same problem for the matrix Mn diag({Jv` (λ) | λ ∈
Par(n)})M−1

n (cf. Conjecture 1.9).

3.1. Gram matrices of quantized Shapovalov forms. We now recall some of the definitions and
results from [Tsu] and, in particular, define the Gram matrix QShM

λ,µ(X) of a quantized Shapovalov form
(cf. [Tsu, Definition 3.13]). For the theory of quantum groups, the book [Lus] is a standard reference.

Let X = (aij)i,j∈I be a symmetrizable generalized Cartan matrix and take the symmetrization d =
(di)i∈I of X, i.e., the unique d ∈ ZI≥1 such that diaij = djaji for all i, j ∈ I and gcd(di)i∈I = 1. We

consider a root datum (P,P∨,Π,Π∨) in the following sense:

(a) P∨ is a free Z-module of rank (2|I| − rankX) and P = HomZ(P∨,Z),
(b) Π∨ = {hi | i ∈ I} is a Z-linearly independent subset of P∨,
(c) Π = {αi | i ∈ I} is a Z-linearly independent subset of P,
(d) αj(hi) = aij for all i, j ∈ I.

We denote by Q+ =
⊕

i∈I Z≥0αi the positive part of the root lattice and denote by P+ the set of
dominant integral weights {λ ∈ P | ∀i ∈ I, λ(hi) ∈ Z≥0}. For each i ∈ I, Λi ∈ P+ is a dominant
integral weight determined modulo the subgroup {λ ∈ P | ∀i ∈ I, λ(hi) = 0} of P by the condition that
Λi(hj) = δij for all j ∈ I.

Recall that the Weyl group W = W (X) is the subgroup of Aut(P) generated by {si : P ∼−−→P, λ 7−→
λ− λ(hi)αi | i ∈ I}.

Definition 3.1. The quantum group Uv = Uv(X) is the unital associative k-algebra generated by {ei, fi |
i ∈ I} ∪ {vh | h ∈ P∨} with the following defining relations:

(a) v0 = 1 and vhvh
′

= vh+h′ for any h, h′ ∈ P∨,
(b) vheiv

−h = vαi(h)ei, v
hfiv

−h = v−αi(h)fi for any i ∈ I and h ∈ P∨,
(c) eifj − fjei = δij(Ki −K−1

i )/(vi − v−1
i ) for any i, j ∈ I,

(d)
∑1−aij
k=0 (−1)ke

(k)
i eje

(1−aij−k)
i = 0 =

∑1−aij
k=0 (−1)kf

(k)
i fjf

(1−aij−k)
i for any i 6= j ∈ I,

where Ki = vdihi , vi = vdi and e
(n)
i = eni /[n]di !, f

(n)
i = fni /[n]di !.

Let U+
v , U

0
v , U

−
v be the k-subalgebras of Uv defined by

U+
v = 〈ei | i ∈ I〉, U−v = 〈fi | i ∈ I〉, U0

v = 〈vh | h ∈ P∨〉.

Then, the following is a triangular decomposition theorem for quantum groups [Lus, §3.2]:

(i) the canonical map U−v ⊗k U
0
v ⊗k U

+
v → Uv is a k-vector space isomorphism,

(ii) U0
v is canonically isomorphic to the group k-algebra k[P∨].

For each λ ∈ P+, we denote by V (λ) the integrable highest weight Uv-module with highest weight λ
and a fixed highest weight vector 1λ ∈ V (λ).

Proposition 3.2 ([Tsu, Proposition 3.8]). For λ ∈ P+, there exist unique bi-additive non-degenerate
maps 〈·, ·〉QSh : V (λ)× V (λ)→ k and 〈·, ·〉RSh : V (λ)× V (λ)→ k with

(i) 〈aw1, w2〉Y = bar(a)〈w1, w2〉Y , 〈w1, aw2〉Y = a〈w1, w2〉Y and 〈w1, w2〉Y = bar(〈w2, w1〉Y ),
(ii) 〈1λ, 1λ〉Y = 1 and 〈uw1, w2〉QSh = 〈w1,Ω(u)w2〉QSh, 〈uw1, w2〉QSh = 〈w1,Υ(u)w2〉RSh.
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for all Y ∈ {QSh,RSh} and for all w1, w2 ∈ V (λ), u ∈ Uv and a ∈ k. Here, Ω and Υ are the Q-
antiinvolution and Q-antiautomorphism of Uv defined by

Ω(ei) = fi, Ω(fi) = ei, Ω(vh) = v−h, Ω(v) = v−1,

Υ(ei) = vifiK
−1
i , Υ(fi) = v−1

i Kiei, Υ(vh) = v−h, Υ(v) = v−1.

We denote by P (λ) := {µ ∈ P | V (λ)µ 6= 0} the set of weights of V (λ), which is W -invariant [Lus,

Proposition 5.2.7]. Let (U−v )A be the A -subalgebra of U−v generated by {f (n)
i | i ∈ I, n ≥ 0}. The

constructions below use the following deep results:

(a) (U−v )A is an A -lattice of U−v (see [Lus, Theorem 14.4.3]),
(b) V (λ)A

ν := V (λ)ν ∩ V (λ)A is an A -lattice of V (λ)ν for ν ∈ P (λ) where V (λ)A := (U−v )A 1λ ⊆ V (λ)
(see [Lus, Theorem 14.4.11]).

Definition 3.3 ([Tsu, Proposition 3.13]). For λ ∈ P+ and µ ∈ P (λ), we define

QShM
λ,µ(X) = (〈wi, wj〉QSh)1≤i,j≤dimV (λ)µ , RShM

λ,µ(X) = (〈wi, wj〉RSh)1≤i,j≤dimV (λ)µ

where {wi | 1 ≤ i ≤ dimV (λ)µ} is an A -basis of V (λ)A
µ .

For any n ≥ 0, define the equivalence relation ; on Matn(A ) as follows:

Y ; Z
def⇐⇒ ∃P ∈ GLn(A ), bar(trP )Y P = Z.

For Z ∈ {QShM
λ,µ(X),RShM

λ,µ(X)}, the equivalence class of Z under ; does not depend on the choice of
the basis in Definition 3.3. Thus, the A -unimodular equivalence classes of Z are uniquely determined.
Note that by construction trZ = bar(Z). The following is implicit in [Tsu, Proposition 3.16].

Proposition 3.4. For λ ∈ P+ and µ ∈ P (λ), there exists an A -basis of V (λ)A
µ whose associated

QShM
λ,µ(X) is an A bar-valued symmetric matrix.

Proof. Take an A -basis (vb)b of V (λ)A
µ of the form vb = Gb1λ with Gb ∈ (U−v )A and Gb = Gb, where

the bar involution : Uv → Uv is defined by

ei = ei, fi = fi, vh = v−h, v = v−1.

This is possible using the lower canonical basis of U−v (see the last paragraph of [Ka2]) or using [Lak,
Theorem 6.5].

Let HC : Uv → U0
v and evλ : U0

v → k be the following maps:

(i) the Harish-Chandra projection HC : Uv � U0
v , which is the k-linear projection from Uv = U0

v ⊕
((
∑
i∈I fiUv) + (

∑
i∈I Uvei)) onto U0

v ,

(ii) the evaluation map evλ : U0
v → k, which is the k-algebra homomorphism determined by the assign-

ment evλ(vh) = vλ(h) for each h ∈ P∨.

These maps exist by parts (i), (ii) in the triangular decomposition theorem respectively.
By the construction of 〈·, ·〉QSh (see the proof of [Tsu, Proposition 3.8]), we have

〈vb, v′b〉QSh = evλ(HC(Ω(Gb)Gb′)).(3.1)

Since HC(Ω(Gb)Gb′) ∈ U0
v ∩UA

v , where UA
v is an A -subalgebra of Uv generated by {vh, e(n)

i , f
(n)
i | i ∈

I, n ≥ 0, h ∈ P∨}, and it is known (see [Lus2, Theorem 4.5] or [DDPW, Theorem 6.49]) that U0
v ∩UA

v is
the A -subalgebra of U0

v generated by{
vh, [Ki;0n ] :=

∏n
j=1

Kiv
−j+1
i −K−1

i vj−1
i

vji−v
−j
i

∣∣ i ∈ I, n ≥ 1, h ∈ P∨
}
,

(3.1) is A -valued. Since Ω(Gb)Gb′ is bar-invariant, (3.1) is A bar-valued due to the isomorphism U0
v
∼=

k[P∨]. (For an estimate of (3.1) when Gb is the lower canonical basis, see [Ka1, Problem 2].) �

Corollary 3.5. For λ ∈ P+ and µ ∈ P (λ), we have QShM
λ,µ(X) ≡A

trQShM
λ,µ(X).

The proof of Proposition 3.4 also shows that RShM
λ,µ(X) is A -valued, which is again implicit in [Tsu,

Proposition 3.16].
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. . .
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Figure 1. Finite and untwisted affine Dynkin diagrams of types A,D,E.

Proposition 3.6 ([Tsu, Proposition 3.16]). For λ ∈ P+ and µ ∈ P (λ), there exists an A -basis of V (λ)A
µ

whose associated QShM
λ,µ(X) and RShM

λ,µ(X) satisfy DQShMλ,µ(X) = RShMλ,µ(X) for a diagonal matrix D

all of whose diagonal entries belong to vZ.

3.2. Specialization to the basic representations. Let X = (aij)i,j∈I be a Cartan matrix of type

A,D,E and let X̂ = X(1) be the extended (generalized) Cartan matrix of X indexed by Î = {0} t I as in

Figure 1. Let (ai)i∈Î be the numerical labels of X̂ in Figure 1 and let δ =
∑
i∈Î aiαi. We set Uv = Uv(X̂)

and apply the notation of §3.1 to this algebra. By [Kac, Lemma 12.6], we have P (Λ0) = {wΛ0− dδ | w ∈
W,d ≥ 0}.

Definition 3.7. For d ≥ 0 and w ∈ W , we define Cvd (X) to be QShM
Λ0,wΛ0−dδ(X̂). For ` ≥ 2, we put

Cv`,d = Cvd (A`−1).

The equivalence class of Cvd (X) under ; does not depend on the choice of w ∈ W [Tsu, Proposition
3.18]. The following is implicit in the proof of [Tsu, Theorem 4.4]. For convenience, we give a proof.

Theorem 3.8. Let X = (aij)i,j∈I be a Cartan matrix of type A, D or E, where I = {1, . . . , `}. For any

d ≥ 0, we have Cvd (X) ≡A M−1
`,d S

d([X])M`,d where [X] = ([aij ]) ∈ MatI(A ).

Proof. Let I = {1, . . . , `}. As in the proof of [Tsu, Theorem 4.4], V (Λ0)A
Λ0−dδ can be regarded as an

A -lattice of the polynomial ring k[hi,−r | i ∈ I, r ≥ 1]. More precisely, defining new variables y
(i)
r and

x
(i)
r (for i ∈ I, r ≥ 1) by y

(i)
r = hi,−r/[r] and (2.8), we have

(i) V (Λ0)Λ0−dδ has a k-basis {y(i)
λ | (λ, i) ∈ Ω`,d},

(ii) V (Λ0)A
Λ0−dδ has an A -basis {x(i)

λ | (λ, i) ∈ Ω`,d},

where x
(i)
λ and y

(i)
λ are defined as in Proposition 2.17. Moreover, by an identity in the proof of [Tsu,

Theorem 4.4]1 (together with the definition of 〈·, ·〉QSh), we have〈
sy(i)
s H, y(i1)

r1 · · · y
(im)
rm

〉
QSh

=
〈
H,
∑m
k=1δs,rk [ai,ik ]sy

(i1)
r1 · · · y

(ik−1)
rk−1

y(ik+1)
rk+1

· · · y(im)
rm

〉
QSh

1Our x
(i)
r and y

(i)
r correspond respectively to P̃−i,r and h′i,−r in loc. cit.
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for H ∈ k[hi,−r | i ∈ I, r ≥ 1] and i, ik ∈ I, s, rk ≥ 1. We can rewrite this identity as〈
sy(i)
s H,H ′

〉
QSh

=
〈
H,
∑`
j=1[ai,j ]s

∂

∂y
(j)
s

H ′
〉
QSh

.

Therefore, by Corollary 2.19, we have (〈x(i)
λ , x

(j)
µ 〉QSh)(λ,i),(µ,j)∈Ω`,d = K−1

`,dS
d([X])K`,dMK where MK ∈

GLPar`−1(d)(Z). By Remark 2.16, we are done. �

Lemma 3.9. For ` ≥ 1, there exist Q`, T` ∈ GL`(A ) such that Q`[A`]T` = [A′`] where A′` = diag({1, . . . , 1, `+
1}) ∈ Mat`(Z).

Proof. Define Q` ∈ Mat`(A ) by

(Q`)ij =


vj [i] if j = i or j = i+ 1,

vi[j] if j < i,

0 otherwise.

A straightforward calculation shows that the matrix Q`[A`] is upper-triangular with diagonal entries
1, . . . , 1, v`[`+ 1] and hence is column equivalent to [A′`] over A . Also, det(Q`[A`]) = v`[`+ 1]. We have
det([A`]) = [`+1] by an easy inductive argument (cf. [Tsu], proof of Corollary 4.5). Hence, det(Q`) = v`,
so Q` ∈ GL`(A ). �

Theorem 3.10. For ` ≥ 2 and d ≥ 0, we have

Cv`,d ≡A

d⊕
s=0

(
Ms diag({

∏
i≥1[`]

mi(λ)
i | λ ∈ Par(s)})M−1

s

)⊕|Par`−2(d−s)|
.(3.2)

Proof. By Theorem 3.8, we have Cv`,d ≡A M−1
`−1,dS

d([A`−1])M`−1,d. Let Q`−1 and T`−1 be the matri-

ces supplied by Lemma 3.9. By the functoriality of symmetric powers, Sd(Q`−1)Sd([A`−1])Sd(T`−1) =
Sd([A′`−1]). Further, the matricesM−1

`−1,dS
d(Q`−1)M`−1,d andM−1

`−1,dS
d(T`−1)M`−1,d belong to GLPar`−1(d)(A ).

Indeed, these matrices are A -valued by Theorem 2.20, and their determinants are invertible elements of
A since that is the case for the determinants of Q`−1, T`−1. Therefore,

Cv`,d ≡A M−1
`−1,dS

d([A`−1])M`−1,d = M−1
`−1,dS

d([A′`−1])M`−1,d.(3.3)

It follows from Definition 2.13 that (see §1.7.2)

Sd([A′`−1]) =
⊕

di≥0∑`−1
i=1 di=d

((⊗`−2
j=1 1Par(dj)

)
⊗ diag({

∏
i≥1[`]

mi(λ)
i | λ ∈ Par(d`−1)})

)
.

Substituting this identity and the formula of Remark 2.15 into (3.3), we obtain

(3.4) Cv`,d ≡A

d⊕
s=0

(
M−1

1,s diag({
∏
i≥1[`]

mi(λ)
i | λ ∈ Par(s)})M1,s

)⊕|Par`−2(d−s)|
.

By Corollary 3.5, we have Cv`,d ≡A
trCv`,d. Hence, transposing both sides of (3.4) and using the fact

that trM1,s = Ms (see Remark 2.15), we obtain (3.2). �

Remark 3.11. In the rest of the paper, we will see an implication of Conjecture 1.9 for “invariant factors”
of Cv`,d (Proposition 3.15) and give evidence for Conjecture 1.9 (Theorem 1.10). For Cartan matrices X

of the other simply-laced finite types (D and E), we can prove the existence of QX , TX ∈ GLI(A ) such
that

(a) QX [X]TX = diag({1, . . . , 1,det[X]}) for X 6= D2m,
(b) QX [X]TX = diag({1, . . . , 1, [2], [2]2m−1}) for X = D2m,

where m ≥ 2 (for the ungraded case v = 1, see [Hil, Table 1]). For the value of det[X], see [Tsu, proof
of Corollary 4.5]. These results allow us to analyze Cvd (X) further: a conjectural formula for invariant

factors of QShM
Λ0,µ(Z) for µ ∈ P (Λ0) and evidence for it in the spirit of this paper when Z = X(1) and X

is of type D or E as well as for the twisted affine A,D,E cases will be given elsewhere. Results on these
invariant factors would provide information on modular reductions of V (Λ0)A , namely, on the structure
of the F ⊗A UA

v -module F ⊗A V (Λ0)A and its unique simple quotient, where F is any field, viewed as
an A -module via a fixed ring homomorphism A → F .
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3.3. Graded Cartan matrices and implications of Conjecture 1.9.

Definition 3.12. Let A be a finite-dimensional graded algebra over a field F, i.e., A has a decomposition
A =

⊕
i∈ZAi into F-vector spaces such that AiAj ⊆ Ai+j for all i, j ∈ Z.

(a) We denote by Modgr(A) the abelian category of finite-dimensional left graded A-modules and degree
preserving A-homomorphisms between them. The n-component of M ∈ Modgr(A) is denoted by Mn.
For M ∈ Modgr(A) and k ∈ Z, the shifted graded module M〈k〉 of M is defined to be the same module
as M with the grading given by (M〈k〉)n = Mk+n for all n ∈ Z.

(b) Fix a grading on each simple A-module, and let S(A) be the resulting set of graded simple modules.
We define the graded Cartan matrix CvA of A by

CvA =
(∑

k∈Z[PC(D) : D′〈−k〉]vk
)
D,D′∈S(A)

∈ MatS(A)(A ),

where PC(D) is the projective cover of D ∈ Modgr(A).
(c) Let Projgr(A) be the full subcategory of Modgr(A) consisting of graded projective A-modules. The

Cartan pairing is defined as follows:

〈·, ·〉 : [Projgr(A)]× [Modgr(A)] −→ A , 〈[P ], [M ]〉 =
∑
k∈Z

dimF HomA(P,M〈k〉)vk,

where [M ] denotes the image of M in the graded Grothendieck group [Modgr(A)] of Modgr(A), which
has an A -module structure given by v[N ] = [N〈−1〉] for N ∈ Modgr(A).

Remark 3.13. (a) Each simple A-module has a unique grading up to grading shift (see [NVO, Theorem
9.6.8]). Moreover, each simple graded A-module has a unique graded projective cover. Consequently,
changing S(A) results in CvA being conjugated by a diagonal matrix with integer powers of v on the
diagonal. Certainly, the A -unimodular equivalence class of CvA does not depend on the choice of
S(A),

(b) CvA = (〈[PC(D)], [PC(D′)]〉)D′,D∈S(A) when F is a splitting field for A,
(c) CvA is a refinement of CA in the sense that CvA|v=1 = CA.

Let ` ≥ 2 and n ≥ 0. As usual, a partition ρ is an `-core if ρ contains no rim `-hooks. We denote
by Bl`(n) the set of tuples (ρ, d) where ρ is an `-core and d ≥ 0 is an integer such that |ρ| + `d = n.
It is well known that the set Bl`(n) parameterizes the blocks of Hn(k`; η`) (see [DJ]). When ` = p is a

prime, Bl`(n) parameterizes the blocks of FpSn. We denote by B
(`)
ρ,d the corresponding block algebra of

A := Hn(k`; η`) or of A := FpSn for (ρ, d) ∈ Bl`(n) (for the latter case, ` = p is a prime).

From now on, we view B
(`)
ρ,d as a graded algebra, with the grading defined by [BK1, Corollary 1]

(cf. §1.3). Consequently, A becomes graded. Clearly, we have

CvA ≡A
⊕

(ρ,d)∈Bl`(n) C
v

B
(`)
ρ,d

.(3.5)

In fact, the two sides are equal if appropriate choices are made.

By [BK3, Theorem 4.18], there is an isomorphism ι : [Projgr(A)] ∼−−→V (Λ0)A as Uv(A
(1)
`−1)-modules,

which identifies the Cartan pairing 〈·, ·〉 with the form 〈·, ·〉RSh on V (Λ0)A . For (ρ, d) ∈ Bl`(n), we

have ι([Projgr(B
(`)
ρ,d)]) = V (Λ0)A

Λ0−βρ,d where βρ,d ∈
∑
i∈Î Z≥0αi is defined as in [Tsu, Definition 5.5(c)]

under the identification Î ∼= Z/`Z. Noting Remark 3.13 (b), we have Cv
B

(`)
ρ,d

; RShM
Λ0,Λ0−βρ,d(A

(1)
`−1) (see

Definition 3.3).

By Proposition 3.6, Definition 3.7 and the fact that Λ0 − βρ,d = wΛ0 − dδ for some w ∈W (A
(1)
`−1), we

obtain the following result, which is implicit in the proof of [Tsu, Theorem 5.6].

Proposition 3.14. Let ` ≥ 2 and n ≥ 0. For any (ρ, d) ∈ Bl`(n), we have Cv
B

(`)
ρ,d

≡A Cv`,d.

The following is an immediate consequence of Theorem 3.10.

Proposition 3.15. Let ` ≥ 2 and let d ≥ 0. If Conjecture 1.9 is true, then

Cv`,d ≡A diag

(
d⊔
s=0

{Iv` (λ) | λ ∈ Par(s)}|Par`−2(d−s)|

)
.(3.6)



18 ANTON EVSEEV AND SHUNSUKE TSUCHIOKA

Lemma 3.16 ([BH, Lemma 5.5]). For any ` ≥ 2 and n ≥ 0, we have the multiset identity⊔
(ρ,d)∈Bl`(n)

d⊔
s=0

⊔
λ∈Par(s)

{cut`(λ)}|Par`−2(d−s)| = {red`(λ) | λ ∈ CRP`(n)}

where the maps cut`, red` : Par→ Par are defined as follows for k ≥ 1:

mk(red`(λ)) = bmk(λ)/`c, mk(cut`(λ)) =

{
mk(λ) if k /∈ `Z,
0 otherwise.

Note that rv` (λ) = Iv` (red(λ)) and Iv` (λ) = Iv` (cut(λ)) for all λ ∈ Par. Combining these identities and
Lemma 3.16 with (3.5) and Proposition 3.14, we see the following implication.

Corollary 3.17. Conjecture 1.9 implies Conjecture 1.6.

Remark 3.18. When ` = pr is a prime power, the equivalence (3.6) is nothing but [Tsu, Conjecture 6.8].
Similarly, Conjecture 1.6 reduces to [Tsu, Conjecture 6.18] in this case. Indeed, the Laurent polynomials
Ivp,r(λ) and rvp,r(λ) defined in loc. cit. satisfy Ivp,r(λ) = Ivpr (λ) and rvp,r(λ) = rvpr (λ).

4. Combinatorial reductions

4.1. Variants of unimodular equivalences.

Definition 4.1. Let R be a commutative ring, and let Y and Z be n ×m-matrices with entries in R.
We say that Y and Z are

(a) unimodularly pseudo-equivalent over R (abbreviated as Y ≡′R Z) if we have CokY ∼= CokZ as R-
modules where CokT = Coker(Rm → Rn,v 7→ Tv) for T ∈ {Y,Z},

(b) Fitting equivalent (abbreviated as Y ≡FR Z) if CokY and CokZ have the same Fitting invariants
(see [Nor, §3.1]), i.e., we say that Y ≡FR Z if Fittd(Y ) = Fittd(Z) whenever 0 ≤ d < r := min{m,n}
where the d-th Fitting ideal Fittd(T ) of T ∈ {Y,Z} over R is the ideal of R generated by all (r− d)×
(r − d)-minors of T .

Proposition 4.2. The following general statements hold:

(a) Y ≡R Z =⇒ Y ≡′R Z =⇒ Y ≡FR Z.
(b) for a ring homomorphism φ : R → R′ (see §1.7.1), we have the implications Y ≡R Z =⇒ φ(Y ) ≡R′

φ(Z), Y ≡′R Z =⇒ φ(Y ) ≡′R′ φ(Z) and Y ≡FR Z =⇒ φ(Y ) ≡FR′ φ(Z).
(c) Let (Xλ)λ∈Λ and (Yλ)λ∈Λ be families of R-valued matrices where Λ is a finite set and for each λ ∈ Λ

the matrix Xλ has the same dimensions as Yλ. Then, for any ∼∈ {≡R,≡′R,≡FR}, we have the
implication ∀λ ∈ Λ, Xλ ∼ Yλ =⇒

⊕
λ∈ΛXλ ∼

⊕
λ∈Λ Yλ.

(d) Y ≡FR Z =⇒ Y ≡R Z when R is a PID.
(e) Y ≡FR Z ⇐⇒ ∀m ∈ max-Spec(R), Y ≡FRm

Z,
(f) Y ≡′R Z =⇒ Y ≡R Z when R is a semiperfect ring.

Proof. (a) is obvious and (d) is “Elementary Divisor Theorem”. The cases of ≡ and ≡F in (b) are
obvious. The right exactness of the functor R′ ⊗R - implies that R′ ⊗R CokY ∼= Cokφ(Y ). Thus, the case

≡′ follows. When ∼∈ {≡R,≡′R}, (c) is obvious. The case ≡FR follows from the equality Fittd(Y ⊕ Z) =∑
d1+d2=d Fittd1(Y ) Fittd2(Z) (see [Nor, §3.1, Exercise 3]). (e) follows from the fact that for ideals I and

J in R, we have I = J ⇐⇒ ∀m ∈ max-Spec(R), Im = Jm (see e.g. [Kun, Chapter IV, Corollary 1.4]). For
(f), when R is a local ring, for any given two R-module surjections α : Rk �M, β : Rk � N , we can lift

any R-module isomorphism f : M ∼−−→N to the isomorphism g : Rk ∼−−→Rk such that f ◦ α = β ◦ g by
the Nakayama Lemma. Thus, (f) holds when R is local. Since a semiperfect ring is the same thing as a
finite direct product of local rings [Lam, (23.11)], (f) follows by (b) (see also [LR, (4.3)]). �

By the reasoning used to prove Corollary 3.15 and Corollary 3.17, Proposition 4.2 (b) and (c) imply:

Corollary 4.3. Let R be a commutative ring with a ring homomorphism φ : A → R and ∼∈ {≡R,≡′R
,≡FR}. Suppose that Conjecture 1.9 holds when we specialize A and ≡A to R and ∼ respectively via φ,
i.e., that

φ
(
Mn diag({Jv` (λ) | λ ∈ Par(n)})M−1

n

)
∼ diag({φ(Iv` (λ)) | λ ∈ Par(n)})
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for all n ≥ 0. Then we have φ(Y ) ∼ φ(Z) if either

(i) Y and Z are the matrices on the two sides of (3.6), or
(ii) Y and Z are the matrices on the two sides of (1.2).

Throughout, we omit φ(-) if φ is evident when we apply Proposition 4.2 (b).

4.2. A pseudo-equivalence over Z(p)[v, v
−1].

Definition 4.4. For n ≥ 3, we denote by Φn ∈ Z[v] the n-th cyclotomic polynomial and put Ψn =
v−φ(n)/2Φn ∈ A bar where φ is the Euler function: φ(n) = #(Z/nZ)×.

It is easy to see that, for n,m ≥ 1,

[n]m =
∏
b≤3, 2mn∈bZ, 2m 6∈bZ Ψb.(4.1)

Thus, each Iv` (λ) and Jv` (λ) is a product of certain scaled cyclotomic polynomials Ψb.

Definition 4.5. Let p ∈ Prm and z ∈ N \ pZ. Let P =
∏
i∈I Ψbi be a finite product of scaled cyclotomic

polynomials (with bi ≥ 3 for all i ∈ I, as in Definition 4.4). We define ρ
(p)
z (P ) =

∏
(bi)p′=z

Ψbi .

Recall the famous equality #CRPs(n) = #RPs(n) for s ≥ 1 and n ≥ 0. We reserve the symbol ϕs,n

for an arbitrary bijection ϕs,n : RPs(n) ∼−−→CRPs(n) and put ϕs = tn≥0 ϕs,n. As a standard choice, we
can take the Glaisher bijection (see [ASY, §4], for example) for s ≥ 2 or the Sylvester bijection for s = 2
(see [Bes], for example).

Definition 4.6. Fix M ≥ 1. For any λ ∈ Par, consider the decomposition λ = λdiv + λreg defined
by ma(λdiv) = Mbma(λ)/Mc, ma(λreg) = ma(λ) − ma(λdiv) for a ≥ 1. We define a size-preserving

auto-bijection βM : Par ∼−−→Par by βM (λ) = µ + ϕM (λreg) where maM (µ) = ma(λdiv)/M for a ≥ 1 and
mb(µ) = 0 for all b 6∈MZ.

Definition 4.7. For ` ≥ 2, k, t ≥ 1 and p ∈ Prm, define

g
(`,p)
k,t =

{
[`p′ ]kp′ (`t){p} if νp(k) ≥ νp(`),
[`t{p}/k{p}]k if νp(k) < νp(`),

and set Iv`,p(λ) =
∏
k≥1

∏mk(λ)
t=1 g

(`,p)
k,t for λ ∈ Par.

Further, we define f
(`)
k,t = [`ktπ(`k)](`,k)tπ(`k)′

and note that Iv` (λ) =
∏
k≥1

∏mk(λ)
t=1 f

(`)
k,t .

Proposition 4.8. Let p be a prime, ` ≥ 2, and z ∈ N \ pZ. For any λ ∈ Par, we have

ρ(p)
z (Iv` (λ)) = ρ(p)

z (Iv`,p(βz/ (z,2`)(λ))).

First, we need two lemmas. Fix p and z to be as in the statement of the proposition. For any k, t ≥ 1,
define

F (`,p)
k,t,z = {s ≥ 0 | 2`t ∈ zpsZ and 2(`, k)tπ(`k)′ /∈ zpsZ},

G(`,p)
k,t,z =

{
{s ≥ 0 | 2`t{p}kp′ ∈ zpsZ and 2(`t){p}kp′ /∈ zpsZ} if νp(k) ≥ νp(`),
{s ≥ 0 | 2`t{p}kp′ ∈ zpsZ and 2k /∈ zpsZ} if νp(k) < νp(`).

The following is an immediate consequence of (4.1) and the definitions:

Lemma 4.9. For k, t ≥ 1, we have ρ
(p)
z (f

(`)
k,t ) =

∏
s∈F(`,p)

k,t,z

Ψzps and ρ
(p)
z (g

(`,p)
k,t ) =

∏
s∈G(`,p)

k,t,z

Ψzps .

Define M = z/(z, 2`).

Lemma 4.10. For any k, t ≥ 1, we have ρ
(p)
z (f

(`)
k,tM ) = ρ

(p)
z (g

(`,p)
kM,t).

Proof. Due to Lemma 4.9, it is enough to show that F (`,p)
k,tM,z = G(`,p)

kM,t,z. Fix s ≥ 0: we will show that

s ∈ F (`,p)
k,tM,z if and only if s ∈ G(`,p)

kM,t,z. Note that M /∈ pZ. If 2`t /∈ psZ, then s belongs to neither of the
sets in question, for the first conditions in the definitions of those sets fail. Thus, we may assume that
2`t ∈ psZ. Since we always have 2`M ∈ zZ (due to the definition of M), now the first conditions in the
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definitions of F (`,p)
k,tM,z and G(`,p)

kM,t,z are guaranteed to hold. So we may focus on the second conditions: it
remains to show that

2(`, k)(tM)π(`k)′ ∈ zpsZ ⇐⇒

{
2(kM)p′(`t){p} ∈ zpsZ if νp(k) ≥ νp(`),
2kM ∈ zpsZ if νp(k) < νp(`).

This follows from the conjunction of the following two equivalences:

2(`, k)(tM)π(`k)′ ∈ psZ ⇐⇒

{
2`t ∈ psZ if νp(k) ≥ νp(`),
2k ∈ psZ if νp(k) < νp(`)

and(4.2)

2(`, k)(tM)π(`k)′ ∈ zZ ⇐⇒ 2kM ∈ zZ.(4.3)

The equivalence (4.2) is immediate in each of the cases on its right-hand side, so it remains only to
prove (4.3).

We always have
(2(`, k)tM)π(`k)′ = (2`tM)π(`k)′ ∈ zπ(`k)′Z

since 2`M ∈ zZ. Further, (2k)π(`k)′ ∈ (2`)π(`k)′Z, so (2kM)π(`k)′ ∈ (2`M)π(`k)′Z ⊆ zπ(`k)′Z. This means
that the truth values of the statements on both sides of (4.3) do not change if we replace z by zπ(`k). In
other words, it is enough to show that for all q ∈ π(`k),

(4.4) νq(2(`, k)) ≥ νq(z) ⇐⇒ νq(2kM) ≥ νq(z).
Now νq(k) < νq(`), so νq(2(`, k)) = νq(2k). Using the definition of M , we obtain νq(2kM) = νq(2k) +
νq(z)−νq((2`, z)). If νq(2`) ≥ νq(z), then νq(2kM) = νq(2k) and the equivalence (4.4) is clear. Otherwise,
we have νq(2k) < νq(2`) < νq(z) and neither side of (4.4) holds. �

Proof of Proposition 4.8. Fix λ ∈ Par, and let λdiv, λreg, µ be as in Definition 4.6. It is clear that

Iv`,p(βM (λ)) = Iv`,p(µ)Iv`,p(ϕM (λreg)). In the expansion Iv` (λ) =
∏
k≥1

∏mk(λ)
t=1 f

(`)
k,t , only t ∈ MZ con-

tribute to ρ
(p)
z (Iv` (λ)) by Lemma 4.9, as 2`t ∈ zZ implies t ∈ MZ. Further, ρ

(p)
z (Iv`,p(ϕM (λreg))) = 1 by

the same lemma, as 2`t{p}kp′ /∈ zZ for any k /∈MZ and t ≥ 1. It follows that

ρ(p)
z (Iv` (λ)) =

∏
k≥1

bmk(λ)/Mc∏
t=1

ρ(p)
z (f

(`)
k,tM ),

ρ(p)
z (Iv`,p(βM (λ))) =

∏
k≥1

bmk(λ)/Mc∏
t=1

ρ(p)
z (g

(`,p)
kM,t).

The two right-hand sides are equal by Lemma 4.10. �

Proposition 4.11. Let R be a commutative ring and let a ∈ R. Suppose that a =
∏
λ∈Λ

∏
x∈Tλ x for a

finite set Λ and a family of finite multisets (Tλ ⊆ R)λ∈Λ such that any x ∈ Tλ and x′ ∈ Tλ′ are coprime
(i.e., xy + x′y′ = 1 for some y, y′ ∈ R) whenever λ 6= λ′. Then, as R-modules, we have

R/(a) ∼=
⊕
λ∈Λ

R/(
∏
x∈Tλx).

Proof. Observe that (
∏
x∈Tλ x)λ∈Λ are pairwise coprime (in the above sense): this follows from the

elementary fact that if x, y, z ∈ R and x, y are both coprime to z, then xy is coprime to z. Now the
proposition follows from the Chinese remainder theorem for ideals. �

Corollary 4.12. For p ∈ Prm and n ≥ 0, ` ≥ 2, we have

diag({Iv` (λ) | λ ∈ Par(n)}) ≡′Z(p)[v,v−1] diag({Iv`,p(λ) | λ ∈ Par(n)}).

Proof. Whenever 3 ≤ b < c and c/b is not a p-power, there exist u,w ∈ Z(p)[v, v
−1] such that Ψbu+Ψcw =

1 (see [Fil, Lemma 2]). By Proposition 4.11, we have

Cokdiag({f(λ)|λ∈Par(n)}) ∼=
⊕

λ∈Par(n)

⊕
z∈N\pZ

Z(p)[v, v
−1]/(ρ(p)

z (f(λ)))(4.5)

as Z(p)[v, v
−1]-modules for any f ∈ {Iv` , Iv`,p}. By Proposition 4.8, the isomorphism class of (4.5) does

not depend on the choice of f . �
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4.3. A conditional proof of Theorem 1.10.

Proof of Theorem 1.10 (a). For λ ∈ Par and ` ≥ 2 we have Iv`,p(λ) = Jv` (λ) for every sufficiently large

p ∈ Prm (as g
(`,p)
k,t = [`]k for p > max(k, t, `)). Thus, Theorem 1.10(a) is a consequence of Corollary 4.12

(note that Mn ∈ GLPar(n)(Q)). �

Recall the matrix N
(p)
n defined in §2.2. Applying Proposition 2.7 (a) for

R = Z(p)[v, v
−1], f = Jv` , g = Iv`,p, (rj = Inflj : R→ R, v 7→ vj)j∈N\pZ,(4.6)

we get the following.

Proposition 4.13. For any p ∈ Prm, ` ≥ 2 and n ≥ 0, the matrix N
(p)
n diag({Jv` (λ) | λ ∈ Powp(n)})(N (p)

n )−1

is Z(p)[v, v
−1]-valued.

Further, in §5, we will prove the following result.

Theorem 4.14. Suppose that 0 6= θ = a/b ∈ Q, where a, b ∈ Z and (a, b) = 1. Let p be a prime such
that a, b /∈ pZ. Then, for any ` ≥ 2 and n ≥ 0, we have

N (p)
n diag({Jv` (λ)|v=θ | λ ∈ Powp(n)})(N (p)

n )−1 ≡Z(p)
diag({Iv`,p(λ)|v=θ | λ ∈ Powp(n)}).(4.7)

Proof of Theorem 1.10 (b) assuming Theorem 4.14. Fix 0 6= θ = a/b ∈ Q with a, b ∈ Z, (a, b) = 1. By
Proposition 4.2 (d) and (e), it is enough to show that,

Mn diag({Jv` (λ)|v=θ | λ ∈ Par(n)})M−1
n ≡Z(p)

diag({Iv` (λ)|v=θ | λ ∈ Par(n)})(4.8)

for any p ∈ {p ∈ Prm | pZ 63 ab} ∼= Spec(Z[a/b, b/a]). Applying Proposition 2.7 (b) for R′ = Z(p), φ =
(R→ R′, v 7→ θ) in addition to (4.6), we obtain

Mn diag({Jv` (λ)|v=θ | λ ∈ Par(n)})M−1
n ≡Z(p)

diag({Iv`,p(λ)|v=θ | λ ∈ Par(n)}).

The unimodular equivalence (4.8) now follows by substituting v = θ to Corollary 4.12 and Proposition
4.2 (a). �

5. Proof of Theorem 4.14

5.1. Elementary prime power estimates. The following fact is classical.

Proposition 5.1. Let p be a prime. Suppose that x, y ∈ Z\pZ satisfy d := νp(x−y) ≥ 1. If either p ≥ 3
or d ≥ 2, then νp(x

n − yn) = d+ νp(n) for all n ≥ 1.

Proof. We have x = y + pdz for some z ∈ Z \ pZ. The binomial expansion yields

xn − yn = npdzyn−1 +

n∑
k=2

(
n

k

)
pkdzkyn−k,

so it suffices to show that νp(
(
n
k

)
) + kd > d + νp(n) for 2 ≤ k ≤ n. Since νp(

(
n
k

)
) ≥ νp(n) − νp(k!), it is

enough to prove the inequality kd − νp(k!) − d > 0. Using (2.5), we easily see that νp(k!) ≤ k − 1 and
that this inequality is strict unless k = p = 2. It follows that the desired inequality holds unless we have
d = 1 and k = p = 2, which is ruled out by the hypothesis. �

Corollary 5.2. Let p ∈ Prm and let a, b ∈ Z\pZ with a2−b2 ∈ pZ. Then, we have νp([n]m|v=a/b) = νp(n)
for all n,m ≥ 1.

Proof. We may assume that a2 6= b2: otherwise, [n]m|v=a/b = ±n. Consider d ≥ 1 and z ∈ Z \ pZ such

that a2 − b2 = pdz. Note that d ≥ 2 if p = 2. By Proposition 5.1, we have

νp([n]m|v=a/b) = νp

(
a2nm − b2nm

a2m − b2m

)
= (νp(nm) + d)− (νp(m) + d) = νp(n). �

Corollary 5.3. Let p ≥ 3 be a prime and a, b ∈ Z \ pZ. Suppose that a2 − b2 6∈ pZ and a2n − b2n ∈ pZ
for some n ≥ 2. Put γ = νp(a

t0 − bt0) where t0 = min{t ≥ 1 | a2t − b2t ∈ pZ} (t0 exists and divides n).
Then νp([n]ps |v=a/b) = νp(n) + s+ γ for any s ≥ 0.
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Proof. Note that t0 6∈ pZ. We have

νp([n]ps |v=a/b) = νp

(
a2nps − b2nps

a2ps − b2ps
)

= νp(a
2nps − b2np

s

)

= νp(2np
s/t0) + γ = νp(n) + s+ γ,

where the third equality follows from Proposition 5.1. �

Proposition 5.4. Let p ∈ Prm and n ≥ 1. Suppose that a, b ∈ Z \ pZ satisfy a2n − b2n 6∈ pZ. Then,
νp([n]ps |v=a/b) = 0 for any s ≥ 0.

Proof. The hypothesis implies that a2nps − b2nps /∈ pZ, whence we also have a2ps − b2ps /∈ pZ. Since
νp([n]ps |v=a/b) = νp((a

2nps − b2nps)/(a2ps − b2ps)), the result follows. �

5.2. Some definitions and results from [Evs, §5]. For the remainder of §5, we fix a prime p and an
integer n ≥ 0. The matrices considered in the sequel implicitly depend on these parameters. Let ` ≥ 2
and θ = a/b ∈ Q \ {0} be as in the statement of Theorem 4.14. We set r = νp(`). In what follows,
diagonal matrices are generally denoted by lower-case letters.

Define the matrices b(`,θ) = diag({Jv` (λ)|v=θ | λ ∈ Powp(n)}) and z = diag({zλ | λ ∈ Powp(n)}), where
zλ is given by (2.1).

Lemma 5.5 ([Evs, Lemma 5.1]). The matrices (N
(p)
n )−1 and z−1(trN

(p)
n ) are column equivalent over

Z(p).

We write N = N
(p)
n . It follows from the lemma that the left-hand side of Theorem 4.14 is unimodularly

equivalent over Z(p) to the matrix Y := Nb(`,θ)z−1(trN), so Theorem 4.14 is equivalent to the identity

(5.1) Y ≡Z(p)
diag({Iv`,p(λ)|v=θ | λ ∈ Powp(n)}).

Definition 5.6. (a) For λ ∈ Powp, we define partitions λ<r, λ≥r, λ
r ∈ Powp by setting mpi(λ

≥r) =
mpr+i(λ),

mpi(λ
<r) =

{
mpi(λ) if i < r,

0 if i ≥ r,
mpi(λ

r
) =


mpi(λ) if i < r,∑
j≥r p

j−rmpj (λ) if i = r,

0 if i > r,

for all i ≥ 0.
(b) For λ ∈ Powp, we set xλ =

∏
s≥0mps(λ)! and yλ =

∏
s≥0 p

smps (λ), so that zλ = xλyλ.

(c) We define the following seven elements of MatPowp(n)(Z): x = diag({xλ}λ), x<r = diag({xλ<r}λ),

x≥r = diag({xλ≥r}λ), y<r = diag({yλ<r}λ), y≥r = diag({yλ≥r}λ), ỹ(r) = diag({
∏
i≥r p

rmpi (λ)}λ) and

C(r), where the latter is given by

(C(r))λ,µ =

{
(N

(p)

|λ≥r|)λ≥r,µ≥r if λ
r

= µ r,

0 if λ
r 6= µ r.

Here, λ, µ run over all elements of Powp(n).

Put K(p,r) = {λ ∈ Powp | λ
r

= λ} ⊆ Powp. For κ ∈ K(p,r), set Powp,r(n, κ) := {λ ∈ Powp(n) | λ r =
κ}. Observe that there is a bijection

Powp,r(n, κ) ∼−−→Powp(mpr (κ)), λ 7−→ λ≥r.(5.2)

We will call a matrix Z ∈ MatPowp(n)(Q) block-diagonal if Zλ,µ = 0 for all λ, µ ∈ Powp(n) with λ
r 6= µ r.

In particular, C(r) is block-diagonal. Applying Lemma 5.5 to each κ ∈ K(p,r)
n := Powp(n) ∩ K(p,r)

and noting that Powp(n) =
⊔
κ∈K(p,r)

n
Powp,r(n, κ), we see that there exists a block-diagonal matrix

W (r) ∈ GLPowp(n)(Z(p)) such that (C(r))−1W (r) = (x≥ry≥r)−1 · trC(r). We define A(r) = N(C(r))−1 and

U (r) = (x<r)−1A(r), so that N = x<rU (r)C(r).
In §5.3, §5.4, and §5.5, we consider separate cases and use Corollaries 5.2 and 5.3 and Proposition 5.4

respectively. The cases of §5.3 and §5.4 will require the following specialization of [Evs, Lemma 5.6].
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Lemma 5.7. Let R be a DVR with valuation ν : K× � Z, where K is the field of fractions of R. Let
I be a finite set. Suppose that P , Q, s = diag({si | i ∈ I}) and t = diag({ti | i ∈ I}) are elements of
GLI(K) such that

ν(Pij − δij) >
ν(ti)− ν(tj)

2
and ν(Qij − δij) >

ν(tj)− ν(ti)

2

for all i, j ∈ I. Then sP tQs ≡R s2t.

Proof. Apply [Evs, Lemma 5.6] with αi = v(ti)/2 and βi = −v(ti)/2. Verifying the hypotheses is
straightforward. �

5.3. Case a2 − b2 ∈ pZ. This is a generalization of the case v = 1, and we generalize the proof in [Evs,
§5], Proposition 2.12 being an extra needed ingredient.

Observe that z = x<rx≥ry<ry≥rỹ(r). Put b(<r,`,θ) = diag({Jv` (λ<r)|v=θ | λ ∈ Powp(n)}), b(≥r,`,θ) =

b(`,θ)(b(<r,`,θ))−1 and d = b(<r,`,θ)(x<ry<r)−1. Let

X = C(r)b(≥r,`,θ)(ỹ(r))−1(C(r))−1W (r).

Note that all the matrices in this product are block-diagonal, so X is block-diagonal. Setting also
V = X · trU (r) ·X−1, we have

Y = Nb(`,θ)n z−1 · trN

= x<rU (r)C(r)b(<r,`,θ)b(≥r,`,θ)(x<rx≥ry<ry≥rỹ(r))−1 · trC(r) · trU (r)x<r

= x<rU (r)C(r)d · b(≥r,`,θ)(ỹ(r))−1(x≥ry≥r)−1 · trC(r) · trU (r)x<r(5.3)

= x<rU (r)C(r)d · b(≥r,`,θ)(ỹ(r))−1(C(r))−1W (r) · trU (r)x<r(5.4)

= x<rU (r)C(r)d · (C(r))−1C(r)b(≥r,`,θ)(ỹ(r))−1(C(r))−1W (r) · trU (r)x<r

= x<rU (r)C(r)d(C(r))−1X · trU (r)x<r(5.5)

= x<rU (r)d ·X · trU (r)x<r(5.6)

= x<rU (r)dV Xx<r(5.7)

= x<rU (r)dV x<rX(5.8)

≡Z(p)
x<rU (r)dV x<r.(5.9)

Here, Equations (5.3), (5.4), (5.5) and (5.7) follow from the defining equations of the matrices d, W (r),
X and V respectively. Equations (5.6) and (5.8) follow from the facts that the matrices C(r) and X are
block diagonal and that any block-diagonal matrix commutes with b(<r,`,θ), x<r, y<r, and hence also
with d.

The equivalence (5.9) is due to the fact that X ∈ GLPowp(n)(Z(p)), which may be proved as follows.

Note that (ỹ(r))λ,λ = pr`(λ
≥r) for all λ ∈ Powp(n). We have

C(r)b(≥r,`,θ)(ỹ(r))−1(C(r))−1

=
⊕

κ∈K(p)

N
(p)
mpr (κ) diag({p−r`(µ)

∏
j≥0

[`]
mpj (µ)

pr+j | µ ∈ Powp(mpr (κ))})(N (p)
mpr (κ))

−1,
(5.10)

where the right-hand side is interpreted via the identification (5.2): this identity is readily verified from
the definitions of the matrices involved. By Proposition 2.12, the right-hand side of (5.10) is Z(p)-valued.
By Corollary 5.2, we have

νp((b
(≥r,`,θ))λ,λ) = νp

∏
i≥r

[`]
mpi(λ)
pi

 = r`(λ≥r) = νp((ỹ
(r))λ,λ).

for λ ∈ Powp(n). So the p-adic valuation of the determinant of the left-hand side of (5.10) is 0. Therefore,

the left-hand side of (5.10) belongs to GLPowp(n)(Z(p)). Since W (r) ∈ GLPowp(n)(Z(p)), we see that
X ∈ GLPowp(n)(Z(p)), as claimed.
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We will complete the proof by applying Lemma 5.7 to the product x<rU (r)dV x<r. For λ ∈ Powp(n),
define

f
(r)
λ =

∑
0≤s<r

(r − s)mps(λ) and e
(r)
λ =

∑
0≤s<r

νp(mps(λ)!).

We have νp((x
<r
n )λ,λ) = e

(r)
λ . Using Corollary 5.2, we obtain

νp(dλ,λ) = νp(b
(<r,`,θ)
λ,λ )− νp(y<rλ,λ)− νp(x<rλ,λ) =

∑
0≤s<r

νp([`]
mps (λ)
ps )−

∑
0≤s<r

smps(λ)− e(r)
λ

= f
(r)
λ − e(r)

λ =: k
(r)
λ and

νp(I
v
`,p(λ)|v=θ) =

∑
s≥0

mps (λ)∑
t=1

νp(g
(`,p)
ps,t |v=θ) =

∑
0≤s<r

mps (λ)∑
t=1

(r + νp(t)− s) = f
(r)
λ + e

(r)
λ

(cf. Definition 4.7). The hypotheses of Lemma 5.7 are verified as follows. By [Evs, Lemma 5.4], we have

νp(U
(r)
λ,µ − δλ,µ) > max{k(r)

λ − k
(r)
µ ,−1} for all λ, µ ∈ Powp(n), which implies the first desired inequality,

namely

(5.11) νp(U
(r)
λ,µ − δλ,µ) >

k
(r)
λ − k

(r)
µ

2
.

The second desired inequality concerns V = X · tr(U (r)) · X−1 and follows from (5.11) because X ∈
GLPowp(n)(Z(p)) is block-diagonal and the right-hand side of (5.11) depends only on λ

r
and µ r.

By Lemma 5.7, we have Y ≡Z(p)
(x<r)2d, and (5.1) follows because νp((x

<r
λ,λ)2dλ,λ) = f

(r)
λ + e

(r)
λ =

νp(I
v
`,p(λ)|v=θ) for all λ ∈ Powp(n).

5.4. Case a2 − b2 6∈ pZ and a2` − b2` ∈ pZ. Note that the assumption implies that p ≥ 3. Let γ be as

in Corollary 5.3. Applying that corollary, we obtain νp(g
(`,p)
ps,t |v=θ) = γ + r + νp(t) for all t ≥ 1 and s ≥ 0

(see Definition 4.7). Hence,

(5.12) νp(I
v
`,p(λ)|v=θ) = (γ + r)`(λ) +

∑
s≥0

νp(mps(λ)!) = (γ + r)`(λ) + νp(xλ).

Consider the matrix K ∈ MatPowp(n)(Q) such that N = xK. For each λ ∈ Powp(n), we have Mλ,λ =
xλ by Proposition 2.4 (a), so Kλ,λ = 1 (in fact, K is Z-valued by the same Proposition). We have

Y = xKb′(trK)x where b′ = b(`,θ)z−1. We will apply Lemma 5.7 to this product. Using Corollary 5.3,
we obtain

νp(b
′
λ,λ) = νp(J

v
` (λ)|v=θ)− νp(zλ) =

∑
s≥0

mps(λ)(r + s+ γ)−
∑
s≥0

(smps(λ) + νp(mps(λ)))

= (γ + r)`(λ)− νp(xλ).(5.13)

In order to verify the hypotheses of Lemma 5.7, we only need to show that νp(Kλ,µ−δλ,µ) > (νp(b
′
λ,λ)−

νp(b
′
µ,µ))/2 for all λ, µ ∈ Powp(n). This inequality is immediate if Mλ,µ = 0 or if λ = µ (as Kλ,λ = 1).

In the remaining case, we have

νp(Kλ,µ)−
νp(b

′
λ,λ)− νp(b′µ,µ)

2

= (νp(Mλ,µ)− νp(xλ)) +
νp(xλ)− νp(xµ) + (γ + r)(`(µ)− `(λ))

2

=
νp(Mλ,µ)− νp(xλ)

2
+
νp(Mλ,µ)− νp(xµ) + `(µ)− `(λ)

2
+
`(µ)− `(λ)

2
(γ + r − 1) > 0,

as the first, second, and third summands are nonnegative by parts (a), (c), and (b) of Proposition 2.4
respectively; moreover, the second summand is positive.

By Lemma 5.7, Y ≡Z(p)
b′x2. It follows from (5.12) and (5.13) that νp(b

′
λ,λx

2
λ) = νp(I

v
`,p(λ)|v=θ),

so (5.1) holds.
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5.5. Case a2` − b2` 6∈ pZ. By Proposition 5.4, the determinants of the matrices on both sides of (4.7)
are invertible in Z(p). Since both of these matrices are Z(p)-valued (see Proposition 4.13), they are both
unimodularly equivalent over Z(p) to the identity matrix.

This completes the proof of Theorem 4.14 and hence of Theorem 1.10.

6. Remarks on possible generalizations of Theorem 1.10

Our aim here is to demonstrate how far we still are from proving Conjecture 1.9 and to discuss
natural statements that are stronger than Theorem 1.10 but are weaker than Conjecture 1.9, as well as
implications between those statements. Proving some of them – if indeed they are true – would provide
further evidence for Conjecture 1.9 and would be of interest in its own right.

Remark 6.1. In the proof of Theorem 1.10 (cf. §4.3), we have used the fact that the local-global
correspondence holds when R is a PID by Proposition 4.2 (d) and (e), i.e.,

Y ≡R Z ⇐⇒ ∀m ∈ max-Spec(R), Y ≡Rm
Z.

An advantage of considering unimodular pseudo-equivalences ≡′R is that:

Proposition 6.2. Let R be a 1-dimensional Noetherian domain. For n ×m-matrices Y,Z with entries
in R, we have

Y ≡′R Z ⇐⇒ ∀m ∈ max-Spec(R), Y ≡′Rm
Z(6.1)

if CokT = TorR(CokT )(:= {x ∈ CokT | ∃a ∈ R \ {0}, ax = 0}) for T ∈ {Y, Z} (for example, when n = m
and detT 6= 0 for T ∈ {Y,Z}).

Proof. The ⇒ direction follows from Proposition 4.2 (b), so we need only prove the ⇐ direction. Since
R is an integral domain, the intersection of any two non-zero ideals of R is non-zero, and in particular
I := AnnR(CokY ) ∩ AnnR(CokZ) 6= 0. Clearly, Y ≡′R Z ⇔ Y ≡′R′ Z where R′ := R/I. Since R′ is
Artinian, max-Spec(R′) is a finite set and the natural ring homomorphism R′ →

∏
m∈max-Spec(R′)R

′
m is

an isomorphism (see [Mat, (24.C)]). Thus, Y ≡′R′ Z ⇔ ∀m ∈ max-Spec(R′), Y ≡′R′m Z by Proposition 4.2

(b). Let φ : R � R′ be the natural surjection. Since R′m
∼= Rφ−1(m)/Iφ−1(m) (see [Kun, Example 4.18

(a)], if Y ≡′Rφ−1(m)
Z for all m ∈ max-Spec(R′), then Y ≡′R Z. Noting that I ⊆ φ−1(m) ∈ max-Spec(R)

for all m ∈ max-Spec(R′), we deduce the result. �

An advantage of considering Fitting equivalences ≡FR is that for a large class of rings R we have
an algorithm to decide whether two explicitly given matrices Y and Z are Fitting equivalent or not
(see [RFW, Chapter VIII] and references therein). If we have Y ≡FR Z, then by Proposition 4.2 (d) it
is not possible to demonstrate that Y 6≡R Z by localization or specialization to a PID R′. Thus, as far
as unimodular equivalences over PIDs are concerned, the ultimate piece of evidence for Conjecture 1.9
would be to prove that X ≡FA D, where X and D are the matrices on the two sides of (1.5).

Remark 6.3. If X ≡FA D, then, in particular, X ≡Fp[v,v−1] D for any prime p. Whether or not the
latter equivalence holds is an interesting intermediate open problem.

Proposition 6.4. Let X and Y be n ×m-matrices with entries in A . If X|v=θ ≡FZ[θ,θ−1] Y |v=θ for all

θ ∈ Q \ {0}, then X ≡FA Y .

We conclude the paper by proving Proposition 6.4, which implies that, in order to show that X ≡FA D,
it would suffice to generalize Theorem 1.10 (b) by proving that X|v=θ ≡FZ[θ,θ−1] D|v=θ for all non-

zero algebraic numbers θ. Despite Proposition 4.2 (a) and Proposition 6.2, proving the equivalence
X ≡FZ[θ,θ−1] D for an arbitrary θ ∈ Q \ {0} (if it is true) is likely to be considerably more difficult

than proving Theorem 1.10 because Z[θ, θ−1] is not integrally closed (equivalently, it is not a Dedekind
domain) in general. However, it may be possible to use the methods of the present paper to prove that
X ≡Oθ D, where Oθ is the integral closure of the ring Z[θ, θ−1] in its field of fractions, at least for some
classes of algebraic numbers θ. Establishing whether X and D are Fitting equivalent – or, indeed, settling
Conjecture 1.9 – is likely to require new ideas.

Proof of Proposition 6.4. The proposition is an immediate corollary of Theorem 6.5. �
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In the following, let S be the set of non-constant irreducible polynomials in Z[v]. Let θ ∈ Q \ {0}
be a root of f ∈ S. For an ideal I of A , we denote by I|v=θ the image of I under the ring surjection
πθ : A � Z[θ, θ−1] given by v 7→ θ. Then, by Gauss’s Lemma we have Ker πθ = A f .

Theorem 6.5. Let I and J be ideals of A . If I|v=θ = J |v=θ in Z[θ, θ−1] for all θ ∈ Q \ {0}, then I = J .

Lemma 6.6. Let R be a Noetherian commutative ring. For any ideal I of R, we have

I =
⋂

I⊆m∈max-Spec(R)

⋂
n≥1

(I + mn).

Proof. Replacing R with R/I, we may assume that I = 0. Let J = ∩m∈max-Spec(R) ∩n≥1 mn. For
m ∈ max-Spec(R), we have Jm ⊆ ∩n≥1m

n
m, and ∩n≥1m

n
m = 0 in Rm by Krull intersection theorem. So

Jm = 0 for all m, whence J = 0 (see the proof of Proposition 4.2 (e)). �

Lemma 6.7. Let m ∈ max-Spec(Z[v]) and let n ≥ 1. Then, mn ∩ S is an infinite set.

Proof. It is well known that m = (p, h) for some p ∈ Prm and non-constant monic irreducible polynomial
h which remains irreducible in Fp[v] (see [GP, Exercise 7.9]). For any q ∈ Prm with q 6= p, put fq :=
pn + qhn ∈ mn. Then fq is primitive by construction and is in S by Eisenstein’s criterion (applied to the
prime q). �

Proof of Theorem 6.5. For m ∈ max-Spec(A ) and n ≥ 1, there exists f ∈ mn ∩ S such that f 6= ±v by
Lemma 6.7 applied to m ∩ Z[v] ∈ max-Spec(Z[v]). By the hypothesis, we have I|v=θ = J |v=θ for a root
θ ∈ Q \ {0} of f , whence I + A f = π−1

θ (I|v=θ) = π−1
θ (J |v=θ) = J + A f . Since A f ⊆ mn, it follows that

I + mn = J + mn. By Lemma 6.6, we have I = J . �

Remark 6.8. We learned Theorem 6.5 from Hiraku Kawanoue. His proof yields the existence of f ∈ S
such that I + A f 6= J + A f for ideals I 6= J ⊆ A and can be applied when we replace Z by any unique
factorization domain R which has infinitely many prime elements modulo R×. In order to keep this
section short, we adapted the proof to one sufficient for Proposition 6.4. While the above proof depends
on the description of max-Spec(Z[v]) and does not allow the indicated generalization, it shares the same
spirit with Kawanoue’s.

Index of notation

The following index gives references to subsections where symbols are defined:

Sn symmetric group 1.1
Hn(F; q) Hecke algebra 1.1
η` ∈ k` a primitive `-th root of unity in a field 1.1
Mod(A) the category of finite-dimensional left A-modules 1.1
PC(D) projective cover of D 1.1
CA Cartan matrix of an algebra A 1.1
≡R unimodular equivalence of matrices 1.2
`k `/(`, k) 1.2
Iv` (λ), Jv` (λ) Laurent polynomials in Definition 1.8 1.4
max-Spec(R) the set of maximal ideals of a ring R 1.7.1
Mat`(R), MatS(R) matrix algebra 1.7.2
1S identity matrix 1.7.2
diag({rs | s ∈ S}) diagonal matrix 1.7.2⊕

iMi block-diagonal matrix 1.7.2
νp p-adic valuation 1.7.3
N the set of nonnegative integers 1.7.4
Prm the set of prime numbers 1.7.4
nΠ Π-part of n 1.7.4
Π′, p′ the complements of Π, {p} in Prm 1.7.4
(a, b) greatest common divisor of a and b 1.7.4
k the function field Q(v) 1.7.5
A the ring of Laurent polynomials Z[v, v−1] 1.7.5
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bar bar-involution v 7→ v−1 on k 1.7.5
Inflt the inflation map v 7→ vt on A 1.7.5
[n]m quantum integer 1.7.5
[n]m! quantum factorial 1.7.5
≡G conjugacy relation in a group G 1.7.6
gp, gp′ p-part and p′-part of g 1.7.6
mk(λ) multiplicity of k in a partition λ 1.7.7
`(λ) length of a partition λ 1.7.7
|λ| size of a partition λ 1.7.7
Par, Par(n) set of partitions 1.7.7
CRPs(n) the set of s-class regular partitions of n 1.7.7
RPs(n) the set of s-regular partitions of n 1.7.7
Parm(n) the set of m-multipartitions of n 1.7.7
Parp(n, ν) the set of partitions of n with “p′-part” ν 1.7.7
Powp(n) the set of p-power partitions of n 1.7.7
λ+ µ sum of two partitions 1.7.7
Λ ring of symmetric functions 2.1
χV character of Sn afforded by module V 2.1
pµ, pk power sum symmetric functions 2.1
Cµ conjugacy class corresponding to a partition µ 2.1
zµ order of centralizer of an element of Cµ 2.1
ch isometry between a Grothendieck group and symmetric functions 2.1
Sλ parabolic subgroup of Sn 2.1
trivSλ trivial representation of Sλ 2.1
Mn table of permutation characters of Sn 2.1
hµ complete symmetric function 2.1
mµ monomial symmetric function 2.1
Mλ,µ a certain set of size Mλ,µ 2.1

N
(p)
n “p-local” submatrix of Mn 2.2

L
(p)
n a certain block-diagonal matrix 2.2

a
(p)
θ (n) a rational number from Definition 2.8 2.2

Symm symmetric power functor 2.3
Multm(`) the set of weakly increasing m-tuples of elements of {1, . . . , `} 2.3
Ω`,d a set of tuples, which is in bijection with Par`(d) 2.3
Sd(A) matrix in Definition 2.13 2.3

Λ` =
⊗`

t=1 Λ(t) `-colored ring of symmetric functions 2.3

m
(t)
µ , h

(t)
µ , p

(t)
µ images of mµ, hµ, pµ in Λ(t) 2.3

M`,d, K`,d transition matrices in Definition 2.14 2.3
P, P∨ weight lattice and its dual 3.1
Π, Π∨ sets of simple roots and corresponding coroots 3.1
Q+ positive part of the root lattice 3.1
P+ set of dominant integral weights 3.1
Λi a dominant integral weight 3.1
W = W (X) Weyl group 3.1
Uv = Uv(X) quantum group 3.1
U+
v , U0

v , U−v subalgebras in the triangular decomposition of Uv 3.1
V (λ) highest weight module 3.1
1λ highest weight vector 3.1
〈·, ·〉QSh, 〈·, ·〉RSh versions of Shapovalov form from Proposition 3.2 3.1
P (λ) the set of weights of V (λ) 3.1
V (λ)µ µ-weight space of V (λ) 3.1
(U−v )A an A -lattice in U−v 3.1
V (λ)A , V (λ)A

ν A -lattices in V (λ), V (λ)ν 3.1
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QShM
λ,µ, RShM

λ,µ Gram matrices of Shapovalov forms, see Definition 3.3 3.1
; an equivalence relation on matrices 3.1

X̂ extended Cartan matrix of X 3.2
δ null-root 3.2
Modgr(A) category of finite-dimensional graded A-modules 3.3
Mn graded n-component of a module M 3.3
M〈k〉 graded module M with grading shifted down by k 3.3
S(A) set of representatives of simple graded A-modules 3.3
CvA graded Cartan matrix of A 3.3
Projgr(A) category of projective graded A-modules 3.3
Bl`(n) the set of pairs (ρ, d) where ρ is an `-core and d ∈ N 3.3
CokT cokernel of the map given by a matrix T 4.1
≡′R unimodular pseudo-equivalence of matrices, see Definition 4.1 4.1

≡FR Fitting equivalence of matrices, see Definition 4.1 4.1
Fittd(T ) d-th Fitting ideal of a matrix T 4.1
Φn, Ψn cyclotomic polynomial and its scaled version 4.2

ρ
(p)
z function from Definition 4.5 4.2
ϕs,n a bijection from s-regular to s-class regular partitions 4.2
βM auto-bijection of Par from Definition 4.6 4.2

g
(`,p)
k,t , f

(`)
k,t , I

v
`,p(λ) certain products of quantum integers, see Definition 4.7 4.2

F (`,p)
k,t,z , G(`,p)

k,t,z certain sets of integers related to f
(`)
k,t , g

(`,p)
k,t 4.2

λ<r, λ≥r, λ
r

p-power partitions from Definition 5.6 5.2
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Birkhäuser/Springer, New York, 2010.

[Lus2] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras,
J. Amer. Math. Soc. 3 (1990), 257–296.

[LR] L.S. Levy and J.C.Robson, Matrices and pairs of modules, J. Algebra 29 (1974), 427–454.

[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, 2 ed., Oxford University Press, Oxford, 1995.
[Mat] H. Matsumura, Commutative algebra, 2 ed., Mathematics Lecture Note Series, 56. Benjamin/Cummings Publish-

ing, 1980.
[Nor] D.G. Northcott, Finite free resolutions, Cambridge Tracts in Mathematics, No.71. Cambridge University Press,

Cambridge-New York-Melbourne, 1976.

[NVO] C. Năstăsescu and F. Van Oystaeyen, Methods of graded rings, Lecture Notes in Mathematics, 1836. Springer-
Verlag, Berlin, 2004.

[RFW] R. Mines, F. Richman and W. Ruitenburg, A course in constructive algebra, Universitext. Springer-Verlag, New

York, 1988.
[Ro1] R. Rouquier, 2-Kac-Moody algebras, arXiv:0812.5023.

[Ro2] R. Rouquier, Automorphismes, graduations et catégories triangulées. J. Inst. Math. Jussieu 10 (2011), 713–751.

[Tsu] S. Tsuchioka, Graded Cartan determinants of the symmetric groups, Trans. Amer. Math. Soc. 366 (2014), 2019–
2040.

School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

E-mail address: a.evseev@bham.ac.uk

Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8914, Japan

E-mail address: tshun@kurims.kyoto-u.ac.jp


	1. Introduction
	1.1. Generalized modular character theory of the symmetric groups
	1.2. The Külshammer-Olsson-Robinson conjecture
	1.3. Graded Cartan matrices and Shapovalov forms
	1.4. A graded analog of the Külshammer-Olsson-Robinson conjecture
	1.5. Evidence for Conjecture 1.9
	1.6. Organization of the paper
	1.7. Notation and conventions

	2. The matrix Mn
	2.1. Definition of Mn
	2.2. p-local version N(p)n of Mn
	2.3. -colored version M,d of Mn

	3. Graded Cartan matrices of symmetric groups and Hecke algebras
	3.1. Gram matrices of quantized Shapovalov forms
	3.2. Specialization to the basic representations
	3.3. Graded Cartan matrices and implications of Conjecture 1.9

	4. Combinatorial reductions
	4.1. Variants of unimodular equivalences
	4.2. A pseudo-equivalence over Z(p) [v,v-1]
	4.3. A conditional proof of Theorem 1.10

	5. Proof of Theorem 4.14
	5.1. Elementary prime power estimates
	5.2. Some definitions and results from [§5]Evs
	5.3. Case a2-b2pZ
	5.4. Case a2-b2pZ and a2-b2pZ
	5.5. Case a2-b2pZ

	6. Remarks on possible generalizations of Theorem 1.10
	Index of notation
	References

