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Abstract 29 

Prostate cancer is the primary male cancer with increasing global incidence rates making this 30 

malignancy a significant healthcare burden. Androgens promote normal prostate maturity but 31 

also influence the development and progression of prostate cancer. Intriguingly, evidence 32 

now suggests endogenous and exogenous oestrogens, in the form of phytoestrogens, may be 33 

equally as relevant as androgens in prostate cancer growth.  The prostate gland has the 34 

molecular mechanisms, catalysed by steroid sulphatase (STS), to unconjugate and utilise 35 

circulating oestrogens. Furthermore, prostate tissue also expresses enzymes essential for local 36 

oestrogen metabolism, including aromatase (CYP19A1) and 3β- and 17β-hydroxysteroid 37 

dehydrogenases. Increased expression of these enzymes in malignant prostate tissue 38 

compared to normal prostate indicates oestrogen synthesis is favoured in malignancy and thus 39 

may influence tumour progression. In contrast to previous reviews, here we comprehensively 40 

explore the epidemiological and scientific evidence on how oestrogens impact prostate 41 

cancer, particularly focusing on pre-receptor oestrogen metabolism and subsequent molecular 42 

action. We analyse how molecular mechanisms and metabolic pathways involved in 43 

androgen and oestrogen synthesis intertwine to alter prostate tissue. Furthermore, we 44 

speculate on whether oestrogen receptor status in the prostate affects progression of this 45 

malignancy. 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

Page 2 of 47



Introduction 54 

In the UK prostate cancer is the number one male malignancy accounting for 25% of all new 55 

cancer diagnoses in men (Siegel, et al. 2012). In 2011, there were almost 42,000 new cases 56 

with an age-standardised incidence rate of 104.7 per 100,000. Prostate cancer is the second 57 

leading cancer killer in UK men and 4
th

 most common cause of cancer death in the general 58 

population. Similarly, in Europe prostate cancer is the most common cancer in males and 59 

third most common cancer overall (Jacob and Henrik 2006) . It is the third most common 60 

cause of cancer deaths in men and sixth overall. Currently, prostate cancer is the second most 61 

common cancer in males worldwide after lung cancer. However, it is predicted that prostate 62 

cancer will become the most common cancer in men globally (Parkin, et al. 2001).  63 

Survival statistics from prostate cancer have improved dramatically over the last four decades 64 

which may be attributed to earlier detection and treatment granted by prostate specific 65 

antigen (PSA) testing and transurethral resection of the prostate (TURP). The UK 10-year 66 

survival has improved from 25% when diagnosed in 1970 to 84% in 2010 (Quaresma, et al. 67 

2015). Prostate cancer primarily affects the elderly with 99.9% of patients diagnosed over the 68 

age of 50 and the mean age at diagnosis being 73 (Parkin, et al. 1997). Furthermore, from 69 

autopsy studies of non-cancer-related deaths, there is histological evidence of prostate 70 

neoplasms in more than 50% of men in their 50s  (Sakr, et al. 1993). As average male life 71 

expectancy gradually increases, it is foreseeable that men will live longer with the disease 72 

and may experience a poorer quality of life. 73 

There are significant geographical variations between prostate cancer incidences around the 74 

world with up to a 24-fold difference between the regions with the highest rates (in Australia, 75 

North America and Western Europe) and the lowest rates (in India, Japan and China) (Center, 76 

et al. 2012). While some of the discrepancies might be explained by disparities in healthcare 77 
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access, diagnostic methods, screening programmes and reporting systems; environment and 78 

lifestyle remain considerable factors. Studies comparing the incidence of prostate cancer in 79 

first and second generation Asian immigrants to USA with age-matched controls in their 80 

native countries have found that migrants travelling from low risk countries to high risk 81 

countries adopt the higher risk (Cook, et al. 1999). This advocates that environmental risk 82 

factors may have a higher precedence than genetic associations in determining risk of 83 

prostate cancer. Furthermore, environmental and lifestyle factors, diet in particular, 84 

fundamentally alter endogenous hormones including sex steroids (Barazani, et al. 2014). 85 

Indeed, factors such as smoking, increased physical exercise and a vegetarian diet increased 86 

serum androgen concentrations in British men while obesity, high fat diet and sedentary 87 

occupation reduced serum androgen concentrations (Allen et al. 2002). Such hormonal 88 

changes have the propensity to subsequently affect tumour initiation and progression 89 

(Kolonel, et al. 2004). 90 

 91 

Sex Steroids and Prostate Cancer 92 

Both males and females produce sex steroid hormones; the predominant androgens are 93 

testosterone and the more biologically active dihydrotestosterone (DHT) and the predominant 94 

oestrogens are oestrone (E1) and the more biologically active oestradiol (E2). However, the 95 

ratio of the two hormones differs between the sexes significantly. In the prostate, androgens 96 

are required for normal development and function. However, the role of oestrogens in normal 97 

prostate development is ill defined as biochemical mechanisms are still under investigation;  98 

the current dogma being that oestrogens are involved in the differentiation of epithelial tissue 99 

(Chen, et al. 2012; Francis, et al. 2013) and regulation of prostatic angiogenesis (Montico, et 100 

al. 2013).  101 
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 102 

Androgens have been implicated in prostate carcinogenesis since 1941 when Huggins 103 

published his Nobel winning study showing testosterone injections exacerbate prostate cancer 104 

in patients with late-stage disease and androgen deprivation alleviated the disease (Huggins 105 

and Hodges 1941), this suggested prostate cancer as an androgen-dependent malignancy. The 106 

primary source of androgens in males is testosterone secreted by the testicles, however, the 107 

adrenal glands secrete 100-500 times greater amounts of dehydroepiandrostrone sulphate 108 

(DHEAS), a testosterone precursor which can be converted peripherally in the prostate into 109 

testosterone and DHT (Labrie, et al. 2005). Androgen ablation therapy is initially successful 110 

in the vast majority of prostate cancers but relapse is common as tumours become castration 111 

resistant; they still however continue to express androgen receptors which respond to very 112 

low concentrations (as low as 10 pM) of peripherally synthesised testosterone and DHT 113 

(Chen, et al. 2004; Mohler, et al. 2004). Using microarray experiments on LNCaP and 114 

LAPC4 cell lines, Chen et al. (2004) showed an increase in androgen receptor mRNA and 115 

protein expression in vitro and in vivo in castrated xenograft murine models which correlated 116 

with tumour growth. Increased expression of androgen receptors amplified signals from low 117 

levels of androgen ligands to confer castration resistance. Mohler et al (2004) demonstrated 118 

using immunostaining and radioimmunoassays that activation of androgen receptors occur 119 

even in human prostate cancer samples retrieved from chemically castrated patients. This 120 

explains why surgical or medical castration is not 100% effective.  121 

Previously, second-line hormonal therapy has proven to improve survival in patients with 122 

castration-resistant disease, both before and after docetaxel chemotherapy. Both inhibition of 123 

steroidogenic enzyme CYP17A1 using abiraterone and androgen receptor antagonism by 124 

enzalutamide have successfully ablated continued androgen receptor activation and prostate 125 

cancer growth (Beer , et al. 2014; de Bono , et al. 2011; Ryan , et al. 2013; Scher , et al. 126 
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2012). However, as with other androgen ablation therapy, resistance to abiraterone and 127 

enzalutamide inevitably develops. 128 

 129 

Even though molecular mechanisms were not elucidated, oestrogens were traditionally 130 

considered to protect against prostate cancer. Therapeutic use of oestrogens was based on 131 

their anti-androgenic effects. Huggins reported exogenous oestrogens had protective 132 

properties mediated by a negative feedback effect on the hypothalamic-pituitary-gonadal 133 

(HPG) axis which reduced stimulation for androgen secretion from the testes (Huggins and 134 

Hodges 1941). Diethylstilbestrol (DES), a synthetic non-metabolised oestrogen is still used in 135 

certain clinics as a non-first line therapy to chemically castrate patients with metastatic 136 

prostate cancer (Bosset, et al. 2012; Clemons, et al. 2013). DES negatively feedbacks on the 137 

pituitary gland to reduce secretion of luteinizing hormone which reduces the stimulus for the 138 

testes to synthesise sex hormones  In addition to the effects oestrogens have on the HPG axis, 139 

demonstrated by quantitative PCR,DES inhibits androgen-stimulated telomerase activity and 140 

gene expression  and induces apoptosis in LNCaP and PC3 prostate cancer cell lines in both 141 

the presence and absence of androgens (Geier, et al. 2010). On the contrary, while DES is 142 

still licensed in the UK for treatment of prostate cancer it is infrequently used as secondary 143 

treatment due to the accompanied high rates of cardiovascular toxicity (Malkowicz 2001). 144 

Importantly, the interactions of oestrogens on androgen receptors should be considered. For 145 

example, E2 can activate both wildtype and, with greater efficacy, mutated (T877A) androgen 146 

receptors in LNCaP cells (Susa et al J Cell Physiolog 2015; Yeh et al. 1998; Veldscholte et al 147 

J Steroid Biochem Mol Biol. 1992). Mutations of the androgen receptor are uncommon in the 148 

early stages of prostate cancer but are much more frequent in late-stage disease. In one study, 149 

out of 99 patients diagnosed with early stage prostate cancer none were found to have 150 
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mutations in the androgen receptor. On the contrary, eight tumours out of 38 patients with 151 

advanced prostate cancer were found to harbour androgen receptor mutations (Marcelli, et al. 152 

2000; Brooke and Bevan 2009). There is, however, mounting evidence that oestrogens may 153 

be involved in the initiation and progression of prostate cancer, although compelling evidence 154 

confirming oestrogen binding affinity to AR is lacking.   155 

 156 

Impact of Endogenous Oestrogens in Prostate Cancer 157 

Males are exposed to a high oestrogen/androgen (E/T) ratio twice in their lifetime. The first is 158 

as a foetus, during the third trimester when the maternal E2 levels increase and foetal 159 

androgen levels decrease. Raised E2 levels stimulate the developing epithelial cells of the 160 

prostate to proliferate but also cause morphological changes. For example, the prostate glands 161 

of neonatal rats and mice show abnormal proliferation and cell structure when the pregnant 162 

mother is injected with E2. (Wernert, et al. 1990). This early exposure may imprint 163 

intracellular changes by modulating expression pathways of steroid enzymes and receptors  164 

as shown in rat models where the response to endogenous androgens and oestrogens becomes 165 

abnormal, thus predisposing the animal to prostate cancer after sexual maturation (Rajfer and 166 

Coffey 1978). Moreover, studies in mice show that when exposed to high levels of oestrogens 167 

in utero, foetal prostate tissue develops abnormalities including intraepithelial neoplasia and 168 

predisposition to carcinogenesis in adult life (Prins, et al. 2006). This hypothesis is supported 169 

by epidemiological evidence obtained from African-American men having twice as high a 170 

risk of developing prostate cancer than comparable Caucasian men which correlates with 171 

African-American women having a higher serum oestrogen level during pregnancy compared 172 

to Caucasian women (Henderson, et al. 1988).  173 
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The second time men are exposed to a high E/T ratio is during old age when serum 174 

testosterone decreases, partly due to a dampened HPG axis and partly due to reduced Leydig 175 

cell function in the testes. In addition to this, sex hormone-binding globulin (SHBG), which 176 

has a higher affinity to testosterone than E2 (Knochenhauer, et al. 1998), also increases with 177 

age which further decreases free serum testosterone relative to free serum E2 (Samaras, et al. 178 

2012). Furthermore, there is evidence that E1 and E2 not only remain at the same level, but in 179 

fact increase with age even when accounted for BMI and other metabolic diseases (Jasuja, et 180 

al. 2013).  While the evidence for an association between serum oestrogen concentration and 181 

risk of prostate cancer is unclear and inconsistent, increased serum oestrogen concentrations 182 

may stimulate the prostate stroma and epithelia to proliferate and subsequently become 183 

neoplastic. Indeed a higher oestrogen:androgen ratio stimulates proliferation of normal 184 

prostate stromal (PrSC) and normal epithelial (PrEC) cell lines in vitro (King, et al. 2006).  185 

 186 

Another interesting population which is exposed to a high E/T ratio are transsexual male to 187 

female individuals. Often in this group of former males, individuals are orchiectomised and 188 

then supplemented with anti-androgens to relinquish masculine secondary sex characteristics. 189 

They are also supplemented with oestrogens to acquire and enhance feminine characteristics. 190 

Their prostates, however, remain unadulterated. A study observing such a cohort of 191 

transsexual persons for over 30 years has not identified any increase in risk for prostate 192 

cancer (Gooren and Morgentaler 2014). However the study has suggested that when 193 

presenting these patients are more likely to be diagnosed with a later stage disease. One 194 

limitation admitted by the authors is that the majority of the cohort has not reached the mean 195 

age at which prostate cancer is typically diagnosed (Gooren and Morgentaler 2014). 196 

Observations made to this cohort over the next two or three decades will be most 197 
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enlightening in ascertaining whether oestrogens have any significant effects in the 198 

development of prostate cancer. 199 

 200 

Oestrogen Metabolism in Adipose and Prostate Cancer 201 

 202 

While in pre-menopausal females the primary source of oestrogens are the ovaries, in males 203 

there is no central organ which produces substantial quantities of E2. Instead, peripheral 204 

conversion of oestrogen precursors is the main source of oestrogen in men. Local synthesis of 205 

E1 and E2 is regulated by a plethora of enzymes. DHEA secreted from the zona reticularis of 206 

the adrenal glands, and stored in the blood as a reservoir as DHEAS, is the ultimate 207 

precursor. Adipose tissue is another notable source of oestrogen synthesis (Cui, et al. 2013). 208 

White adipose tissues (the predominant type in obesity) express significant quantities of 209 

cytochrome P450 aromatase enzyme (CYP19A1) in the abdominal adipose fat of male human 210 

samples, which is the final catalyst in the conversion of androgens to oestrogens (Polari, et al. 211 

2015; Wang, et al. 2013). There is also a positive correlation between the amount of visceral 212 

adipose tissue and serum E2 levels as shown in a study of 229 man with a mean age of 53.6 213 

years where visceral fat was measured using magnetic resonance imaging (Gautier, et al. 214 

2013).  215 

 216 

There have been conflicting reports as to whether obesity is a risk factor for prostate cancer 217 

as some suggest it decreases risk while others have found the opposite. Allott et al. have 218 

summarised the findings published between 1991 to 2012 in their review and conclude 219 

obesity is associated with aggressive prostate cancer (Allott, et al. 2013). There is further 220 
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robust evidence that obese patients are more likely to present with aggressive high-grade 221 

prostate cancer (De Nunzio, et al. 2013; Vidal, et al. 2014). It is possible that the risk 222 

associated with obesity may in fact be due to elevated circulating oestrogen levels secondary 223 

to increased adipose deposition. If this is the case, it would parallel the effects of oestrogen 224 

that have been observed in colorectal cancer where oestrogen exposure in the form of 225 

hormone replacement therapy or oral contraceptives are initially protective against colorectal 226 

cancer but when patients present, they present with a later stage disease (Foster 2013). The 227 

intra- and extracellular handling and metabolism of oestrogens within the prostate gland may 228 

clarify what effects oestrogens have on tumours. However, studies are lacking regarding the 229 

exact intra-tumoural metabolism of oestrogens in prostate cancer cells and human prostate 230 

cancer tissue. 231 

 232 

Impact of Exogenous Oestrogen on Prostate Cancer 233 

Exogenous oestrogen intake and subsequent availability to the prostate should be considered 234 

when determining whether oestrogens affect the development and progression of prostate 235 

cancer. A Western diet comprising of high meat, saturated fat, and dairy products has been 236 

associated with increased risk of prostate cancer as highlighted by numerous epidemiological 237 

studies (Grönberg 2003; Howell 1974; Whittemore, et al. 1995). Additionally, it has been 238 

observed that such a Western diet is more likely to cause men diagnosed with prostate cancer 239 

to die from the disease when compared to a diet rich in fruits, vegetables, and whole grain 240 

cereals (Yang, et al. 2014). Supporting this, it has been widely speculated that dietary 241 

oestrogenic compounds from plant sources, termed phytoestrogens, are protective against 242 

prostate cancer and are the reason behind lower incidence rates in East Asia where per capita 243 

consumption of phytoestrogen-rich foods, such as soya beans, are considerably higher than 244 
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the Western world (Adlercreutz, et al. 2000; Goetzl, et al. 2007; Strom, et al. 1999). It is 245 

possible that phytoestrogens reduce the risk of prostate cancer through multiple mechanisms. 246 

In rodent models phytoestrogens can upregulate SHBG synthesis in the liver leading to a 247 

higher circulating concentration (Pilšáková, et al. 2010). Increased SHBG is anti-androgenic 248 

as it binds to free testosterone with a higher affinity than oestrogens (Knochenhauer et al. 249 

1998) implementing a net reduction of testosterone relative to E2 (Ronde, et al. 2005). This 250 

reduction in androgen is thought to be important in the reduction of risk. In addition to 251 

chelation of free testosterone via SHBG, phytoestrogens have a negative feedback effect on 252 

the HPG axis directly leading to reduced secretion of luteinising hormone and consequently 253 

reduced stimulation of androgen and oestrogen synthesis (Goetzl et al. 2007). 254 

 255 

 Phytoestrogen compounds are similar enough to endogenous oestrogens to be able to bind to 256 

oestrogen receptors (ER) and evoke ligand-specific intracellular responses (Usui 2006). 257 

Preference for different types of nuclear ER varies between phytoestrogens (see section on 258 

oestrogen receptors). Isoflavones and coumestans are two main categories of phytoestrogens 259 

and are structurally similar to E2 (Figure 1). The prostate cancer cell lines LNCaP and DU145 260 

are more sensitive to apoptotic factors when treated with isoflavones in vitro. A dose-261 

response relationship between concentration of biochanin A and apoptosis was observed 262 

using cytotoxicity and lactate dehydrogenase release assays, flow cytometry and fluorescence 263 

microscopy (Szliszka, et al. 2013). Coumestans are able to induce caspase-dependent 264 

apoptosis in LNCaP, DU145 and PC3 cells. When treated with wedelolactone, a plant derived 265 

coumestan, there was dose-dependent apoptosis in androgen-sensitive cell lines (LNCaP) and 266 

androgen-independent cell lines (DU145 and PC3). However, normal non-cancerous PrEC 267 

prostate epithelial cells were not affected as harshly showing 90% cell viability compared to 268 

circa 20% in cancerous cell lines at concentrations of 30µM. (Sarveswaran, et al. 2012). 269 
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While in vitro evidence argues that phytoestrogens are protective against prostate cancer, 270 

clinical trials looking at the relationship between consumption of dietary phytoestrogens and 271 

progression of prostate cancer have been inconclusive (Goetzl et al. 2007). One double blind 272 

randomised control trial in which 81 healthy men were either given a soy protein drink with 273 

high isoflavone concentration (83mg/day) or a drink with low isoflavone concentration 274 

(3mg/day) showed no significant difference in PSA over 12 months (Adams, et al. 2004). 275 

Another trial offering men with confirmed prostate cancer who had either failed 276 

medical/surgical therapy or had chosen active surveillance a high dose (450mg/day) oral 277 

isoflavone supplement for 6 months showed only a clinically insignificant improvement in 278 

PSA in the active surveillance group with no difference in the failed therapy group (deVere 279 

White, et al. 2004). Furthermore, a study following up 3628 men with diagnosed prostate 280 

cancer for a median duration of 11.5 years showed an increased risk of advanced prostate 281 

cancer (HR: 1.62) but a reduced risk of non-advanced prostate cancer (HR: 0.88) in the 282 

higher dietary intake of isoflavones group. Dietary intake of phytoestrogens was measured 283 

using a validated food frequency questionnaire and so exact doses of phytoestrogens are 284 

subject to variation (Reger et al. 2015). This preliminary evidence could infer that dietary 285 

phytoestrogens might protect against initiation of prostate cancer, however may promote the 286 

progression of advanced prostate cancer. 287 

  288 

 289 

 290 

Steroid metabolism in the prostate 291 

Androgens 292 
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The metabolism of oestrogens and oestrogen precursors is important for availability of 293 

biologically active E2 to prostate cancer cells. Oestrogens are synthesised from androgens 294 

which themselves are synthesised from progestogens (Khurana 2008). In addition to 295 

circulating androgens secreted from the testes, normal prostate tissues have the potential to 296 

produce androgens from circulating C19 steroids DHEA and androstenedione (Figure 2). 297 

There have been conflicting reports on the possibility of prostate cancer to synthesize 298 

androgens de novo through the conversion of progestogens via cytochrome P450 17A1 (17-299 

hydroxylase and 17, 20 lyase enzyme [CYP17A1]). In prostate cancer, the expression of 300 

cytochrome P450 17A1 was reportedly increased in LNCaP and LuCaP cells and human 301 

prostate tissue samples ascertained by PCR and immunoblotting (Locke, et al. 2008; 302 

Montgomery, et al. 2008); however not all studies support this (Ellem and Risbridger 2009; 303 

Hofland, et al. 2010). Although DHT formation from cholesterol was detected using mass 304 

spectrometry in castration-resistant prostate cancer (CRPC)  models in one study (Locke et al. 305 

2008) these steroid fluxes have not been confirmed quantitatively to date in either in vitro or 306 

in vivo models. 307 

 308 

Another key enzyme in the synthesis of biologically active androgens and oestrogens is 3-309 

betahydroxysteroid dehydrogenase (3β-HSD) which converts dehydroepiandrosterone and 310 

androstenediol to androstenedione and testosterone, respectively (White, et al. 2013). 3β-311 

HSD is expressed in the normal human prostate, with immunoblotting revealing that the 312 

highest concentrations are found in basal epithelial cells (Luu-The, et al. 2008). Certainly, in 313 

mouse xenograft studies using the CRPC LAPC4 cell line, expression of 3β-HSD is increased 314 

within the tumour in addition to AKR1C3 and 17β-HSD3 (Chang, et al. 2011), although its 315 

mRNA expression almost completely mutually excludes that of CYP17A1 (Hofland et al. 316 

2010).   317 
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 318 

Inhibitors of 3β-HSD have been explored as an androgen deprivation technique as they are 319 

effective in decreasing proliferation in androgen sensitive LNCaP or CRPC cell lines 22Rv1, 320 

VCaP and PC346C in vitro (Evaul, et al. 2010; Kumagai, et al. 2013). Furthermore, 321 

abiraterone was found to inhibit 3β-HSD activity in addition to CYP17A1 in prostate cancer 322 

cell lines and isolated yeast microsomes (Li, et al. 2012). This mechanism might rely on 323 

abiraterone being converted to the more active ∆(4)-abiraterone (D4A) within the prostate 324 

gland  by 3β-HSD itself (Li, et al. 2015b). Further research into 3β-HSD inhibition are 325 

currently being pursued, however alternative pathways which bypass androstenedione 326 

synthesis exist and so 3β-HSD function is not strictly necessary. 327 

 328 

 329 

An alternative pathway has been demonstrated by which synthesis of DHT within the 330 

prostate may bypass testosterone and instead be synthesised by reduction of androstenedione 331 

by 5α-reductase SRD5A1 to 5α-androstanedione which is converted to DHT by 17β-HSD5. 332 

Mass spectrometry has shown that even in patients on anti-androgen therapy with very low 333 

serum testosterone levels, intratumoral DHT concentrations remain at the pre-treatment level 334 

(Chang et al. 2011; Sharifi and Auchus 2012). 17β-HSD-5, also known as AKR1C3, appears 335 

to be the key enzyme responsible for intratumoural androgen production in CRPC. Its 336 

expression in LNCaP, DU145 and PC3 cellsare potently stimulated by androgen deprivation 337 

in vitro and in humans in vivo (Ellem and Risbridger 2009; Ellem, et al. 2004) and this 338 

secures continued production of testosterone and DHT from circulating adrenal androgens. 339 

Local growth factor activin A was shown to be a key intermediate in the castration-induced 340 

rise of AKR1C3 expression levels and intratumoural testosterone production as observed in 341 
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LNCaP, VCaP and PC3 cells. The concentration of activin A and testosterone were also 342 

shown to be increased in the cultured supernatants, as measured by ELISA and mass 343 

spectrometry  (Hofland, et al. 2011). 17β-HSD-5 has also been implicated in ezalutamide 344 

resistance to anti-androgen therapy. Knockdown of 17β-HSD-5 using shRNA or inhibition 345 

with indomethacin has shown to resensitise enzalutamide-resistant cells in vitro and in vivo 346 

(Liu, et al. 2015). 347 

Peripheral Oestrogen Metabolism in Prostate Cancer 348 

As mentioned previously, aromatase is a key enzyme required for oestrogen synthesis from 349 

androgen precursors. Aromatase converts androstenedione and testosterone to E1 and E2, 350 

respectively (White et al. 2013). The local synthesis of E2 within the prostate has previously 351 

been debated as not all experiments have identified aromatase expression in normal prostate 352 

tissue (Ellem et al. 2004). However, it has been demonstrated in human samples by substrate 353 

conversion assays and mass spectrometry that E2 synthesis does occur in prostate cancer cells 354 

(and benign prostatic hyperplasia) via aromatisation (Ellem and Risbridger 2009; Härkönen 355 

and Mäkelä 2004). In normal prostate, aromatase is expressed by the stromal tissue but not 356 

the epithelial cells, however once malignant, epithelial cells also express aromatase (Ellem 357 

and Risbridger 2007). Aberrant expression and activity of aromatase is crucial in the 358 

pathophysiology of endometrial and breast cancers where an imbalance of oestrogen is a key 359 

factor in tumour growth (Chen 1998; Cunha 1994). As with the developmental similarities 360 

between breast and prostate tissues (Ellem and Risbridger 2010), abnormal aromatase activity 361 

also plays a major role in breast and prostate tumourigenesis (Ellem and Risbridger 2010). 362 

Tumourigenic growth factors including epidermal growth factor and transforming growth 363 

factor-1 can modulate aromatase activity in androgen-sensitive LNCaP cells lines leading to 364 

decreased oestrogen synthesis (Block, et al. 1996). Furthermore, the expression of aromatase 365 

is up to 30-fold greater in metastatic prostate cancer compared to primary tumours 366 
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(Miftakhova, et al. 2016). In addition, overexpression of aromatase increased the progression 367 

of bony metastasis in xenograft experiments where nude mice were injected with PC3 cell 368 

lines transfected to overexpress aromatase (Miftakhova, et al. 2016).  Consequently, the use 369 

of aromatase inhibitors for the treatment of prostate cancer has been investigated many times 370 

in patient cohorts. The first generation aromatase inhibitor aminoglutethimide is non-371 

selective and showed poor objective responses including serum PSA levels and disease 372 

stability in some studies while showing a significant increase in survival in others (Santen, et 373 

al. 1997). One study treated 58 castrated men with advanced prostate cancer resistant to 374 

conventional therapy with 500-750mg daily aminoglutethimide; 11 men showed an objective 375 

response with a mean remission of 10 months and a further two showed disease stabilisation 376 

for a mean seven months (Murray and Pitt 1985). The second generation aromatase inhibitor, 377 

4-hydroxyandrostenedione showed good subjective responses in 18 out of 25 patients with 378 

advanced CRPC, particularly alleviation of bone pain in prostate metastases.  However the 379 

objective responses were still poor with a reduction in tumour volume seen in only three 380 

patients and all patients progressed to have skeletal metastasis.  (Davies, et al. 1992). A Phase 381 

II clinical study looking at the effects of oral letrozole, a third-generation aromatase inhibitor 382 

more commonly used in the treatment of hormone-dependent breast cancer, in 43 men with 383 

CRPC showed no significant disease regression with serum PSA decreasing by more than 384 

50% in only one patient and decreasing by less than 50% in one further patient  (Smith, et al. 385 

2002). A very similar conclusion was drawn from clinical studies looking at anastrazole, 386 

another third generation aromatase inhibitor, where out of 14 patients with CRPC none 387 

showed a decrease in serum PSA and mild bone pain relief was reported by only two patients 388 

(Santen, et al. 2001). While aromatase is of utmost importance in local oestrogen synthesis, it 389 

appears as though therapeutic approaches targeting aromatase may be futile in treating 390 

prostate cancer. An alternative possibility is that E2 is not synthesised from androgens within 391 
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the prostate but instead is converted from systemic sulphated E1 within the prostate via 392 

steroid sulphatase (STS).  393 

 394 

STS is widely expressed in almost all peripheral tissues and is responsible for hydrolysing 395 

sulphate moieties off of circulating sulphate-conjugated steroids in order to make them 396 

biologically active (Mueller, et al. 2015). Oestrone sulphate (E1S) is the most abundant 397 

circulating oestrogen in adult humans (Muir, et al. 2004) with plasma levels between 2-398 

4nmol/L in men (Mueller et al. 2015) and while oestradiol sulphate also exists, plasma levels 399 

are very low. Furthermore, serum E1S levels have been correlated with increased risk of 400 

prostate cancer. In a cohort study of 5995 men aged over 65 where the mean serum E1S levels 401 

in the 275 patients who developed prostate cancer was significantly higher than those who 402 

did not develop prostate cancer (Daniels, et al. 2010).  403 

 404 

Before sulphated oestrogens can be unconjugated by intracellular STS, transport of sulphated 405 

oestrogens into cells requires the expression of organic anion transporter peptides (OATP) 406 

(Raftogianis, et al. 2000) and indeed several different OATPs involved in the transport of 407 

oestrone sulphate are expressed in prostate cancers (Buxhofer-Ausch, et al. 2013; Giton, et al. 408 

2015; Wright, et al. 2011). STS has been shown to be expressed in normal human prostate 409 

tissue (Reed, et al. 2005), prostate cancer cell lines LNCaP, DU-145 and PC3 (Nakamura, et 410 

al. 2006) and in primary prostate homogenates (Klein, et al. 1989). Furthermore, one study 411 

found that STS is expressed in the majority of localised prostate cancers showing higher 412 

expression in malignant tissues compared to benign (Nakamura, et al. 2006). The activity of 413 

STS has been proven within the human prostate for the desulphation of 414 

dehydroepiandrosterone sulphate (DHEAS) into DHEA, an androgen precursor (Farnsworth 415 
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1973). Moreover, E1 synthesis from desulphation of E1S within the prostate is putatively 10-416 

fold greater than synthesis via aromatase (Nakamura et al. 2006). The relevance of STS in 417 

cancer has been more extensively studied in breast cancer where there is significantly higher 418 

expression of STS than in normal breast (Utsumi, et al. 2000). Consequently, several STS 419 

inhibitors have been developed for the treatment of breast cancer, some of which have shown 420 

early promise (Stanway, et al. 2006). Moreover, first and second generation STS inhibitors 421 

have been effective pre-clinically against breast cancer (Foster et al. 2006; Foster et al. 2008; 422 

Purohit and Foster 2012). Meanwhile, investigations into the efficacy of STS inhibitors in 423 

prostate cancer have been undertaken. It has been observed that middle-aged rats treated with 424 

oral STS inhibitor, STX64 decreased conversion of E1S to E1 (Giton et al. 2015; Roy, et al. 425 

2013). Neither study presented evidence of STS inhibition affecting any proliferative markers 426 

of proliferation, however the latter study did demonstrate that STS inhibition in middle-aged 427 

rats prevented increase of prostate mass when treated with E1S + STX64 vs E1S alone where 428 

prostate mass increased (Giton et al. 2015). An alternative conjugate of circulating oestrogens 429 

is glucuronide (Raftogianis et al. 2000), however, research into oestrogen glucuronide 430 

transport into prostate cells and evidence of glucuronidase enzymes within the prostate is 431 

lacking. 432 

 433 

Conversion of E1 to E2 (and androstenedione to testosterone) requires 17-betahydroxysteroid 434 

dehydrogenase (17β-HSD) enzymes (White et al. 2013). 17β-HSDs enzymes are alcohol 435 

oxidoreductases which catalyse reduction (E1 to E2) and oxidation (E2 to E1) at carbon atom 436 

17. There are over 14 different isozymes of 17β-HSDs (17β-HSD 1-14) and certain 17β-437 

HSDs have a higher propensity to catalyse the reaction in a certain direction, for example 438 

17β-HSD-1 favours reduction whereas 17β-HSD-2 favours oxidation (Lukacik, et al. 2006; 439 

Oduwole, et al. 2003). 17β-HSDs play an important role in hormone sensitive cancers. 440 
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Increased expression of 17β-HSD-1 in breast cancers of post-menopausal women helps 441 

maintain high intratumoural E2 levels (Lukacik et al. 2006). Moreover, expression of 17β-442 

HSD-2 and 17β-HSD-3 mRNA is significantly higher in malignant prostatic tissues 443 

compared to normal prostate tissues (Day, et al. 2013) with one study reporting prostate 444 

cancer biopsies showing 30-fold higher mRNA expression than normal. In addition to 445 

converting androstenedione to testosterone, 17β-HSD 5 can convert E1 to E2. Inhibitors of 446 

17β-HSD 5 have been explored in castration-resistant prostate cancer and breast cancer, in 447 

the latter where androgens are not considered to play an important role (Adeniji, et al. 2013). 448 

The study found no appreciable decrease in E2 synthesis in breast cancer cell lines when 449 

treated with a 17β-HSD 5 inhibitor and only a moderate decrease in E2 synthesis in some 450 

subpopulations of prostate cancer cell lines. Interestingly, inflammation associated with 451 

tumours modulates the expression of 17β-HSD-2 and 17β-HSD-5 (and also 3β-HSD). 452 

Treatment of prostate cancer stromal cell lines PrSC with TGFβ1 showed a marked down-453 

regulation in mRNA expression of 17β-HSD-2 and 17β-HSD-5 in a dose-dependent manner 454 

(Piao, et al. 2013).  The counterintuitive action of TGFβ1 again demonstrates how little is 455 

understood about oestrogenic pathways in prostate cancer. Regardless of the mechanisms by 456 

which oestrogens become available within the prostate gland, tumour-promoting or tumour-457 

suppressing effects must be mediated by activation of oestrogen receptors (ER).  458 

 459 

Oestrogen receptors (ER) in the prostate 460 

The effects of oestrogens on tissues are mediated via activation of oestrogen receptors (ER). 461 

There are two well studied ERs; ER alpha (ERα) and ER beta (ERβ) encoded by two separate 462 

genes ESR1 and ESR2, respectively. ERα and ERβ are members of the nuclear receptor 463 

superfamily (Robinson-Rechavi, et al. 2003). When bound and activated, ERs interact 464 
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directly with the genome acting as transcription factors (or activating transcription factors) 465 

which act directly on oestrogen response elements (Deblois and Giguere 2013). As well as 466 

E2, ERs can be stimulated by phytoestrogens, and different classes of phytoestrogens have 467 

selected preferences for each type of ER. In general, phytoestrogens show agonistic activity 468 

towards ERβ at lower concentrations than towards ERα using hamster uterine cells 469 

(Takeuchi, et al. 2009). When human cells are examined, the relative binding affinity (RBA) 470 

of genistein to ERβ is approximately 20-30 times greater than for ERα as shown in MCF-7 471 

breast cancer cell lines (Pilšáková et al. 2010). The affinity of phytoestrogens for ER widely 472 

varies with most molecules having an RBA to ERβ 1000-fold lower than E2. However, 473 

molecules such as genistein and coumesterol have an RBA 100-fold lower than E2. Genistein 474 

and coumesterol are able to activate transcriptional activities of ERα and ERβ at 475 

concentrations of 1-10nM compared to physiological E2 concentrations of 20-40pM in males 476 

(Kuiper, et al. 1998; Mueller et al. 2015). Of course, the ability of phytoestrogens to bind to 477 

ER also depends on the existing levels of E1 and E2 as these molecules are direct competitors 478 

with phytoestrogens.  479 

 480 

ERs have been studied more extensively in the context of breast cancers, a neoplasm that has 481 

been likened as the sister disease to prostate cancer, especially in regards to their hormonal 482 

responses and sensitivities (Risbridger, et al. 2010). In breast cancer, activation of ERα 483 

promotes tumour growth as it initiates anti-apoptotic (Chaudhri, et al. 2014; Razandi, et al. 484 

2000) and mitogenic effects (Bhatt, et al. 2012; Yamnik and Holz 2010). This anti-apoptotic 485 

effect of ERα  makes ERα positive breast cancers more likely to metastasise (Ross-Innes, et 486 

al. 2012). In fact, a review of ERs in breast and ovarian cancers has found ERα expression 487 

correlates with worse prognosis whereas ERβ expression correlates with better clinical 488 
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outcomes (Burns and Korach 2012). Generally, ERα activation promotes proliferative 489 

pathways whereas ERβ activation leads to apoptotic pathways (Acconcia, et al. 2005).  490 

 491 

Expression of ERα and ERβ in the normal prostate has been determined as the role of 492 

oestrogens in prostatic development was identified (Ho 2004). Recently it has been reported 493 

that prostate progenitor stem cells, while lacking expression of androgen receptor, express ER 494 

abundantly. Indeed, the expression of ERβ is putatively 6-fold greater and ERα 125-fold 495 

greater in progenitor cells compared to LNCaP mature cells (Di Zazzo, et al. 2016). Although 496 

this supports the importance of oestrogens in embryonic and neonatal development of 497 

prostate gland, it has been hypothesised that lack of androgen receptor expression could be an 498 

imprint which later predisposes to CRPC in the elderly. In non-cancerous prostate ERα is 499 

predominantly expressed in the stromal compartment and ERβ is predominantly expressed in 500 

basal-epithelial cells. However in prostate cancer, ERα expression is down-regulated in 501 

stromal cells and upregulated in the cancerous epithelial cells. ERβ expression is down-502 

regulated in epithelial cells as seen by immunostaining in human prostate tissue (Yeh, et al. 503 

2014). Indeed there is evidence that down-regulation of ERβ promotes activation of NF-κB 504 

mediated by hypoxia-inducible factor 1 (HIF-1). In immortalised normal prostate epithelial 505 

cell line PNT1a, loss of ERβ using shRNA showed an increase in NF-κB mRNA expression 506 

and activity. This mirrors what is seen in high grade, late stage prostate cancer (Mak, et al. 507 

2015). Consequently, it appears that an increase in ERα expression and decrease in ERβ 508 

expression is what shifts the balance between protective effects of oestrogens and 509 

proliferative effects of oestrogens as has been suggested in other cancers (Barzi, et al. 2013; 510 

Burns and Korach 2012). Figure 3 summarises the difference in ERα and ERβ expression 511 

between non-cancerous and cancerous prostate tissue. Single nucleotide polymorphisms 512 

(SNP)  in the ER genes have been investigated and associations have been made between 513 
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certain polymorphisms and the risk of prostate cancer (Holt, et al. 2013; Jurečeková, et al. 514 

2015). In both studies, the genomes from histologically confirmed human prostate cancer 515 

samples were analysed using polymerase chain reaction restriction fragment length 516 

polymorphism (PCR-RFLP) based analysis and compared to age-matched healthy control 517 

subjects. A meta-analysis exploring the results of 24 published studies that include 518 

Caucasian, Asian and African participants concluded that  ESR1 rs9340799 polymorphism is 519 

allied to increased risk in the general population of Caucasians and Africans whereas ESR2 520 

rs1256049 polymorphisms has been linked to increased risk only in Caucasians (Fu, et al. 521 

2014).  522 

 523 

Research into ERβ has been more extensive than in ERα. McPherson et al. (2007) highlighted 524 

the potential significance of ERβ manipulation when they treated prostate hyperplasia in 525 

oestrogen depleted mice with a selective ERβ agonist and found it to induce apoptosis and 526 

shrink the size of the prostate. Hussain et al. (2012) carried forward this research and initial 527 

studies have found ERβ agonist treatment with 8β-VE2 can induce apoptosis in primary 528 

human and murine prostatic basal cells, 
 
a lineage considered to be the cells of origin for 529 

prostate cancers (Taylor, et al. 2012). The mechanism behind how ERβ activation induces 530 

apoptosis in prostate cancer cells lines may be via up-regulation of p53-upregulated 531 

modulator of apoptosis (PUMA) and consequent intrinsic caspase-9 mechanisms. Dey, et al. 532 

overexpressed ERβ in LNCaP, PC3 and 22Rv1 prostate cancer cell lines in vitro, the latter 533 

which does not express ERβ, and treated with E2 and agonist 3β-adiol. Immunofluorescence 534 

revealed that cells which expressed ERβ were more likely to undergo apoptosis following 535 

expression of PUMA independent of p53  (Dey, et al. 2014).  (Dey, et al. 2014). It has even 536 

been reported that ERβ activation impedes on the epithelial-mesenchymal transition process 537 

thereby reducing the risk of invasion and metastasis. In human tissue samples and LNCaP 538 
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and PC3 cell lines, treatment with E2 and high concentration of ERβ1 agonist 3β-adiol 539 

resulted in inhibition of VEGF and destabilisation of HIF-1 in vitro thus suppressing the 540 

factors that drive epithelial-mesenchymal transition necessary for metastasis. Furthermore, 541 

loss of ERβ1 expression by means of shRNA transfection resulted in significant increase in 542 

migration and invasion (Mak, et al. 2010). Mounting evidence also suggests that 543 

pharmaceutical targeting of ERβ pathways may be effective in treating prostate cancer. 544 

However, recently a ‘switching roles’ theory has been proposed suggesting the effects of ERβ 545 

activation switches from protective to proliferative as cancer progresses (Savoy and Ghosh 546 

2013). The theory is based on the observation that castration-resistant prostate cancers have 547 

higher expression of ERβ compared to hormone-naïve prostate cancers. It is possible that 548 

decreased levels of circulating androgens and up-regulation of androgen receptors may be 549 

important in this switch however the actual mechanisms and processes are yet unknown.  550 

 551 

Splice variants of ERβ are also important as it has been shown that at least 5 different 552 

isoforms exist, many of which are expressed in the prostate (Leung, et al. 2006). Activation 553 

of different isoforms may have opposing effects; for example ERβ1 is tumour-suppressing 554 

whereas ERβ2 is tumour-promoting in LNCaP cells (Chen, et al. 2009). In a study of primary 555 

prostate cancer samples from 144 patients who underwent radical prostatectomy, two 556 

particular isoforms ERβ2 and ERβ5 have been identified to promote invasion and metastasis 557 

of prostate cancer and thus correlate with worse outcomes while others continue to be studied 558 

(Leung, et al. 2010; Nelson, et al. 2014). Certain ERβ isoforms, such as ERβ2 and ERβ3, 559 

when activated interact with transcription factors which enable and promote the epithelial 560 

mesenchyme transition and hence might be why advanced prostate cancers have higher 561 

expression of ERβ (Leung et al. 2010). More research needs to be carried out to understand 562 

the mechanisms of the complex downstream pathways of ERβ activation in prostate cancer. 563 
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 564 

The tumour promoting effects of ERα within the prostate are not as well defined. ERα is 565 

expressed in significant quantities in the stromal tissue of prostate cancer where they have 566 

been associated with cancer-associated fibroblasts (CAF) (Slavin, et al. 2015). Da, et al. 567 

isolated CAF from adenocarcinoma of mouse prostate lentivirally transduced ERα. 568 

Conditioned media from ERα+ CAF promoted proliferation of LNCaP, PC3, C4-2 and 569 

22Rv1 cells. Furthermore, in xenograft experiments mice co-implanted with ERα+ CAF 570 

showed a higher growth rate of tumour mass compared to injection of prostate cancer cell 571 

lines alone (Da, et al. 2015). Activation of ERα on CAFs stimulates the release of tumour-572 

promoting factors which act on prostate epithelia in a paracrine manner. Slug (SNAI2), a 573 

transcription factor with anti-apoptotic pathways can repress ERα expression by binding to 574 

gene promotor regions and consequently promote epithelial-mesenchymal transition in 575 

prostate cancer cells and human breast cancer samples (Li, et al. 2015a). In contrast, 576 

downstream pathways of ERα activation can inhibit metastasis by down-regulating 577 

expression of matrix metalloproteinase 3 and upregulating expression of thrombospondin 2  578 

as seen in a range of breast cancer cell lines and LNCaP cell line, however this is not 579 

evidence in primary human prostate tissue (Li et al. 2015a). This may be an effect of ERα 580 

activation which diverts cell resources towards growth of prostate cancer rather than spread 581 

and invasion (Hanahan and Weinberg 2011). A study investigating the role of ERα in prostate 582 

cancers of PTEN-deficient mice has shown expression of ERα correlates strongly with the 583 

expression of Ki67,- a proliferative marker. In addition, inhibition and knockdown of ERα 584 

decreases proliferation but has no effect on cell viability thus the tumour mass remained 585 

static. This further demonstrates that ERα regulates cell proliferation through PI3K and 586 

MAPK signalling (Takizawa, et al. 2015).   587 

 588 
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Human trials in 1590 men with high grade intraepithelial neoplasia of the prostate has shown 589 

no significant decrease in risk of prostate cancer when treated with daily toremifene, a 590 

selective oestrogen receptor modulator (SERM) used for the treatment of metastatic breast 591 

cancer, compared with placebo. Of the 1467 men who underwent a biopsy during the three-592 

year study, cancer was detected in 34.7% in the placebo group compared to 32.3% in the 593 

treatment group (p= 0.39) (Taneja, et al. 2013). Conversely, experimental use of toremifene, 594 

in cell lines and nude mice models have suggested that ERα antagonists can repress the 595 

tumorigenicity of prostate cancer (Hariri, et al. 2015). Intriguingly, there is recent evidence 596 

that abiraterone, used frequently in advanced prostate cancer is able to activate ER. Capper, 597 

et al. demonstrated an increase in proliferation of MCF-7 and T47D breast cancer cell lines 598 

when treated with abiraterone. The proliferative effects were diminished when the cells were 599 

treated with ER antagonist ICI 182,78 (Capper, et al. 2016). ER-mediated progression of 600 

prostate cancer might thus constitute a novel mechanism of resistance to abiraterone that 601 

warrants further investigation. The signalling mechanisms of ERα and ERβ are summarised 602 

in Figure 4. 603 

 604 

In addition to the two nuclear ERs, ERα and ERβ, another relatively recently discovered ER 605 

exists. G-protein coupled oestrogen receptor (GPER), alternatively known as GPR30, is a 606 

membrane-bound receptor discovered in 1998 (O'Dowd, et al. 1998). GPER is found in 50% 607 

of breast cancers and is believed to be critically involved in how Tamoxifen (a SERM) 608 

resistance is developed (Mo, et al. 2013). Tamoxifen can bind and stimulate GPER in breast 609 

cancer (Prossnitz, et al. 2008a) activating downstream cancer promoting pathways. GPER has 610 

also been shown to be expressed in various hormone-sensitive tissues in the body including 611 

the prostate (Prins and Hu 2013; Prossnitz, et al. 2007) and has very similar affinity for E2 as 612 

ERα and ERβ with almost no interaction with androgens or glucocorticoids (Prossnitz, et al. 613 
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2008b). In addition to being activated by endogenous E2, GPER can also be activated by 614 

phytoestrogens with similar RBA as phytoestrogens have to ERβ and elicit an oestrogenic 615 

signalling pathways (Thomas and Dong 2006).  616 

 617 

Evidence of changes in GPER expression within prostate cancer is scarce, though it has been 618 

established with immunofluorescence and immunoblotting that GPER is expressed LNCaP, 619 

DU145 and PC3 cellswhich have varying degrees of invasiveness (Maier, et al. 2006). In 620 

addition, expression of GPER has been identified by immunohistochemistry and 621 

immunoblotting in prostate adenocarcinomas and in pre-neoplastic lesions in 50 patients with 622 

confirmed prostate cancer of varying grades of aggressiveness and in 5 patients with benign 623 

prostatic disease (Rago, et al. 2016). Naturally, more research has been conducted in 624 

aggressive cell lines and primary tissues. In contrast to the effects of GPER activation in 625 

breast and ovarian cancers where it promotes growth, it has been identified that treatment of 626 

castration-resistant prostate cancer with a specific GPER agonist, G1, actually inhibits the 627 

growth of prostate cancer in PC-3, DU145 and LNCaP cell lines in vitro and in vivo PC3 628 

xenografts (Chan, et al. 2010; Lam, et al. 2014). While most studies only reported tumour 629 

inhibition in castration-resistant cell lines, Lam et al. found that G1 treatment has no effect on 630 

androgen-sensitive LNCaP cells in vitro and in vivo xenograft mouse models whereas it had a 631 

significant effect on castration-resistant tumours without apparent toxicity to the host (Lam et 632 

al. 2014). Furthermore, GPER expression is significantly increased in androgen-deprived 633 

environments compared to androgen-replete milieus (Prins and Hu 2013)with increased 634 

GPER expression also evident in cells isolated from distant metastases in patients with CRPC 635 

CRPC compared to tissue from primary prostate cancers (Lam et al. 2014). Androgen 636 

receptor activation downregulates GPER expression thus explaining why expression of 637 

GPER is greater in androgen deprived environments (Lam et al. 2014).  The mechanisms by 638 
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which the GPER agonist G1 has anti-tumour effects has been explored in PC3 cell line in 639 

vitro and in vivo xenograft castrated mice models and is reported to be via up-regulation of 640 

p21 and consequent cell cycle arrest at G2 phase (Chan et al. 2010). Although GPER 641 

activation inhibits growth of prostate cancer, it increases proliferation of other tissues 642 

including testicular germ cells and urothelial cells of the bladder and urinary tract (Chevalier, 643 

et al. 2011; Huang, et al. 2015). The fact that GPER activation can have opposing effects in 644 

different tissues through the same pathway illustrates the complexity of intracellular 645 

oestrogen signalling. Figure 4 grossly summarises GPER signalling pathways that have thus 646 

far been identified in prostate cancer. 647 

 648 

Conclusion 649 

This review has presented evidence that suggests an imbalance of circulating oestrogens and 650 

androgens may be responsible for changes to the development and progression of prostate 651 

cancer. In addition to endogenous oestrogen availability, exposure to exogenous oestrogens 652 

in the form of phytoestrogens may also have a profound effect. However, there is substantial 653 

evidence that intratumoural synthesis of oestrogens, and indeed androgens, plays a significant 654 

role as the prostate is endowed with the ability to express key enzymes required for oestrogen 655 

synthesis. There is a relationship between stage of disease and level of expression of these 656 

enzymes, as is evident from the emergence of resistance to anti-androgen therapy further 657 

supports this hypothesis.    658 

 659 

Changes in the expression pattern of ERα and ERβ greatly affect whether oestrogens are 660 

tumour promoting or tumour suppressing. In normal prostate and during early stages of 661 
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prostate cancer where ERβ is the prominent ER, oestrogens may be beneficial as ERβ 662 

activation initiates apoptotic pathways. Perhaps this is why a lifetime of increased 663 

phytoestrogen consumption can reduce the risk of prostate cancer development. In late stage 664 

prostate cancer where ERα is the dominating ER within the prostate, oestrogens are 665 

deleterious as ERα activation regulates cell proliferation through PI3K and MAPK signalling. 666 

Activation of GPER inhibits growth of prostate cancer however, GPER is not uniformly 667 

expressed in all prostate cancer and thus any GPER targeted therapy will be of benefit to a 668 

limited number of patients. Figure 5 summarises how the expression of ERs change during 669 

the progression of prostate cancer.  670 

 671 

Before any definitive conclusions can be drawn over whether oestrogens are good or bad for 672 

prostate cancer, further research has to be conducted exploring the signalling pathways of ER 673 

within prostate tissue. In addition an understanding of the mechanisms behind abiraterone 674 

(Romanel, et al. 2015) and enzalutamide resistance (Claessens, et al. 2014), and whether this 675 

is linked to altered androgen and oestrogen metabolism, will be required before the next big 676 

step is taken towards development of endocrine therapy for prostate cancer.  677 

 678 

 679 

 680 

 681 

 682 

  683 
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Figure Legends 

 

Figure 1: Molecular similarities between phytoestrogens and E2. E2 contains the 

cyclopenta[α]phenanthrene ring structure common to all steroid molecules. Isoflavonesand 

coumestans are two common categories of phytoestrogens and have a molecular structure 

similar to E2. As a result phytoestrogens can also bind and activate the oestrogen receptors. 

 

Figure 2: Oestrogen and Androgen synthesis pathways.  

Intratumoural E2 can be formed from desulfation and reduction of circulating oestrone-

sulphate (E1S) by steroid sulphatase (STS) and 17β-hydroxysteroid dehydrogenase (HSD). 

Alternatively, oestrogens can be produced from androstenedione or testosterone by 

aromatase. Aromatase competes with 5α-reductase (SRD5A1), responsible for potentiating 

androgens, for these substrates. DHEA, the precursor for androstenedione, is most likely 

derived from the large pool of circulating DHEAS by STS, as intratumoural synthesis from 

progestogens remains disputable.  

 

Figure 3: The expression of ERα and ERβ changes during prostate cancer progression. 

During development of prostate cancer the ERβ isoform is downregulated in epithelial cells. 

On the other hand, ERα is upregulated in tumour cells as well as the surrounding 

environment. The remainder of the ‘normal’ prostate retains its existing expression of ERα 

and ERβ 
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Figure 4: Signalling pathways in prostate cancer through ERα, ERβ and GPER. ERα 

and ERβ bind to the oestrogen response elements (ERE) of DNA and regulate transcription. 

Activation of ERα induces mitogenic pathways via PI3K which in turn promotes HIF-1α 

which activates anti-apoptotic pathways; whereas activation of ERβ induces apoptosis, cell 

cycle arrest and inhibits dedifferentiation pathways. GPER activation in prostate cancer is 

anti-tumourigenic as it upregulates p21 and induces cell cycle arrest. 

 

Figure 5: The altered expression of ERs during prostate cancer development. Changes in 

ERα and ERβ have been studied throughout the evolution of prostate cancer; however, 

expression of GPER in normal prostate and early stages of prostate cancer is currently 

unknown. 
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