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Diversity Assessment in Many-Objective
Optimization

Handing Wang, Member, IEEE, Yaochu Jin, Fellow, IEEE, Xin Yao, Fellow, IEEE,

Abstract—Maintaining diversity is one important aim of multi-
objective optimization. However, diversity for many-objective
optimization problems is less straightforward to define than
for multi-objective optimization problems. Inspired by measures
for biodiversity, we propose a new diversity metric for many-
objective optimization, which is an accumulation of the dis-
similarity in the population, where an L,-norm-based (p < 1)
distance is adopted to measure the dissimilarity of solutions.
Empirical results demonstrate our proposed metric can more
accurately assess the diversity of solutions in various situations.
We compare the diversity of the solutions obtained by four pop-
ular many-objective evolutionary algorithms using the proposed
diversity metric on a large number of benchmark problems
with two to ten objectives. The behaviors of different diversity
maintenance methodologies in those algorithms are discussed
in depth based on the experimental results. Finally, we show
that the proposed diversity measure can also be employed for
enhancing diversity maintenance or reference set generation in
many-objective optimization.

Index Terms—diversity, many-objective optimization, metric,
evolutionary algorithm

I. INTRODUCTION

Many-objective optimization [1] has become an active
research topic in multi-objective evolutionary algorithms
(MOEAs) [2], because of the challenges it poses to evolution-
ary algorithms and practicability in the real world [3], [4], [5],
[6]. Many-objective optimization problems (MaOPs) [1], [7],
i.e. multi-objective optimization problems (MOPs) [8] with
more than three objectives, are hard to be solved by most
existing MOEAs [9], [10].

None of the three main approaches, Pareto-, aggregation-
and performance indicator-based MOEAs is able to efficiently
produce a solution set for MaOPs with satisfactory conver-
gence and diversity [9]. The failure of Pareto-based MOEAs
to converge on MaOPs comes from their ineffectiveness in
distinguishing the quality of solutions when the number of
objectives becomes large [11], [12], which is completely
different from their efficiency on MOPs with two or three
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objectives (eg. NNIA [13]), even though the speed of the
non-dominated sort for MaOPs has been improved by fast
sorts [14], [15], [16], [17]. Aggregation-based MOEAs such as
MOEA/D [18] decompose an MaOP into a number of single-
objective optimization problems using a set of pre-defined
weight vectors, thereby avoiding the convergence problem.
However, a limited number of weight vectors in the high-
dimensional space lead to poor diversity for MaOPs [19],
[20]. Indicator-based MOEASs use an indicator as their fitness
function to optimize an MaOP, which can be classified into
three categories (distance-, hypervolume-, R2-based MOEAs)
[10]. I.4 [21] is the earliest distance-based indicator that
is used in IBEA to improve convergence, but it is not a
diversity indicator and leads to poor diversity [12]. In contrast,
hypervolume evaluates both convergence and diversity [22],
thus many hypervolume-based MOEAs [23], [24], [25] have
been developed. Although the computational complexity for
calculating the exact hypervolume has been lowered [26],
[27], MOEAs rely on on-line hypervolume calculation have
not been applied to MaOPs [28]. R2 [29] evaluates both
convergence and diversity and R2-based MOEAs for MaOPs
have been reported in [30], [31].

Existing research on MaOPs can be roughly divided into
four categories, objective reduction [32], [33], incorporation
of preferences [34], modified dominance relationships, and
introduction of additional selection criteria. In case there is
a strong correlation between objectives, some objectives can
be removed [35]. To this end, statistical machine techniques,
such as feature selection [36], principal component analysis
(PCA) [37], [38], and maximum variance unfolding (MVU)
[39] can be employed for objective reduction. In practice,
users are often interested in only a part of the Pareto optimal
solutions [40]. Therefore, if user preferences are available,
preference-based approaches can be designed [41], [34], [42],
[43]. To improve the effectiveness in distinguishing solutions
in many-objective optimization, several modified dominance
relations [44], [45], [46], [47], [48] have been proposed. To
accelerate the convergence of MOEAs (Pareto-, aggregation-
and performance indicator-based) for solving MaOPs, addi-
tional selection criteria have been introduced [49]. For ex-
ample, NSGA-III [50] employs a set of reference points to
maintain population diversity, where the reference points can
be considered as a set of preferred solutions. Knee point
driven evolutionary algorithms (KnEA) [S1] uses the distance
of knee points to a hyperplane as an additional selection
criterion. Two_Arch2 [52] adapts an L,-norm distance-based
selection criterion in addition to its I.-based selection. The
dual population paradigm (DPP) [53] uses both Pareto- and
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aggregation-based techniques.

It is well recognized that performance indicators of MOEAs
should be able to account for convergence, diversity and
uniformity of the solution set [22], [54], [55]. However,
MaOPs may pose serious challenges to existing performance
indicators in assessing convergence, diversity and uniformity.
For instance, ratio-based performance indicators such as error
ratio (ER) [56] and ratio of non-dominated individuals (RNI)
[57], and binary performance indicators, including C-metric
[58] and Purity [59], require dominance comparisons, which
are less effective for MaOPs. In addition, distance-based
performance indicators, e.g., maximum Pareto front error
(MPEFE) [56], generational distance (GD) [56], and GD ,, [60]
need to sample a large set of uniformly distributed reference
points sampled from the true Pareto front, which is hard to
guarantee for MaOPs. Note that some performance indicators
are able to account for both convergence and diversity, such
as hypervolume [22], R2 [29], inverted generational distance
(IGD) [61], and averaged Hausdorft indicator A, [62].

Unlike uniformity metrics such as distribution (UD) [57],
spacing (SP) [63], and minimal SP [59], diversity is less
straightforward to characterize mathematically. Existing di-
versity metrics view diversity from different perspectives.
For examples, maximum spread (MS) [58] uses the spread
of a solution set, whereas both number of distinct choices
(NDC) [64] and entropy-based metric suggested in [65] em-
ploy divided grids in the objective space. By contrast, sigma
diversity metric (SDM) [66] assigns several reference lines
and diversity measure (DM) [67] adopts a reference set. In
addition, there are some metrics that can assess both diversity
and uniformity, such as A [68] and diversity comparison
indicator (DCI) [55]. However, the above-mentioned metrics
may encounter difficulties in assessing diversity for MaOPs
due to the following two reasons. First, spread will no longer
be able to fully characterize the diversity of the whole Pareto
front in a high-dimensional space. Second, parameters in the
diversity metrics are harder to specify for MaOPs.

This paper aims to address the difficulties the existing
diversity metrics encounter in many-objective optimization.
We propose a new diversity metric inspired by a measure for
biodiversity. We show that the proposed new diversity metric
is able to more accurately measure the diversity of solutions
in high-dimensional spaces. Furthermore, our results indicate
that the proposed diversity metric can enhance the diversity
performance of evolutionary algorithms for solving MaOPs
replying on a pre-defined reference set or weight vectors.

The rest of this paper is organized as follows. The dif-
ficulties in assessing diversity for MaOPs are discussed in
Section II. To address these difficulties, Section III presents
a new diversity metric, together with empirical comparative
analysis of its ability to measure diversity and the influence
of convergence on the diversity measure. In Section IV, we
employ the proposed metric to assess the diversity perfor-
mance of four popular MOEAs for MaOPs and discuss the
theoretical rationale behind these empirical results. In Section
V, the proposed diversity measure is adopted for maintaining
diversity or generating a reference set, which is shown to
be able to enhance the diversity of solutions obtained by the

MOEAs under comparison. Section VI concludes the paper.

II. DIVERSITY IN EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION

Diversity is an important topic in multi-objective optimiza-
tion, which provides decision makers information for choosing
preferred solutions. When clear user preferences are not avail-
able, it is highly desirable that a limited number of solutions
can be obtained that uniformly spread over the whole PF and
are as diverse as possible. However, unlike convergence, a
well established definition for diversity of solutions obtained
by MOEAs still lacks.

Diversity and uniformity are two related aspects for e-
valuating the distribution of an obtained solution set. More
often than not, researchers are confused about the meanings
of these two measures. It should be stressed that a solution
set with good uniformity does not necessarily mean that it
also has good diversity, and vice versa. Generally speaking,
solutions in a set with good uniformity should have the
same dissimilarity with their neighbors, whereas solutions in
a set with good diversity should provide decision makers the
maximum amount of information. Mathematically, diversity
and uniformity can be described as in Equations (1) and (2),
where X is a solution set and s is a solution in X. It is worth
noting that dissimilarity(s, X — s) is the dissimilarity of s
to the rest of X (or the diversity contribution to X'), which
measures the different degree of s to other solutions in X. In
the existing research, there are different metrics to describe
the dissimilarity between solutions, such as various distances.
Therefore, the sum of dissimilarity(s, X — s) indicates the
diversity of X, while the variance of dissimilarity(s, X —s)
specifies the uniformity.

diversity (X) = _ dissimilarity (s, X — s) (1)
seX

unifomity(X) = var (dissimilarity(s, X — s)) (2)
seX

In order to better understand Equations (1) and (2), we
use Fig. 1 to illustrate the differences between diversity and
uniformity. Solution sets in panels A, B, D and E of the figure
show good uniformity but relatively poor diversity. Solutions
in panels D and E are of obviously poor diversity, because they
are distributed only in small parts of the whole PF. Solutions in
panel B loses information of the boundary of the PF. Although
solutions in panel A are distributed over the whole PF with
perfect uniformity, there is redundancy in the information on
each objective, resulting in worse diversity than those in panel
C. From these examples, we can see that a solution set with
good diversity means that it contains the maximum amount of

information for decision makers.

A. Challenges in Diversity Assessment for MaOPs

The high-dimensional objective space in MaOPs does not
only make it very hard for decision makers to intuitively judge
the diversity of the solution set, but also creates difficulties in
quantitatively assessing the diversity. As we know, a solution
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Fig. 1. Tllustration of the differences between diversity and uniformity.

set of a limited size can distribute only very sparsely in a
high-dimensional space [69], which is known as “curse of
dimensionality”. In other words, a solution set of a limited
size is hard to describe a PF in high dimensions, which causes
trouble to decision makers in solving MaOPs. Therefore,
diversity maintenance and assessment pose a serious challenge
to many-objective optimization.

B. Existing Diversity Metrics

Existing diversity metrics can be divided into two classes,
mixed and unmixed diversity metrics. Unmixed metrics mea-
sure the diversity only, but mixed metrics try to capture more
aspects of the distribution of a solution set (convergence for
instance).

Table I provides a summary of widely used existing diversity
metrics.

TABLE I
EXISTING DIVERSITY METRICS AND THEIR CHARACTERISTICS.

Metric Mixed | Parameter Needed | Reference Needed
MS [58]
NDC [64]

Entropy [65]
SDM [66]
DM [67]

A [68]

DCI [55]
Hypervolume [22]
IGD [61]

R2 [29]

Ay [62]

| | <| <] <| | 2| 2| 2| Z| 2
z| 2| 2| Z| <| Z| <| <| <| <| z
| < | <| 2| 2| <| <| 2| 2| Z

The first five metrics are unmixed, which can characterize
diversity only, and their disadvantages are obvious. MS [58]
uses the spread of a solution set as a measure of diversity,
which is incomplete to evaluate the diversity of the whole
solution set. NDC [64] and Entropy [65] divide the objective
space into a number of grids (b divisions for each objective),
NDC counts the number of grids having solutions in them
and Entropy calculates the entropy of all the non-empty
grids. They both require a pre-determined parameter b, which
greatly affects the assessment result. SDM [66] assigns several
reference lines to determine whether solutions are located near
the lines by a distance threshold d, thus the diversity based on
reference lines can be obtained. DM [67] uses the projection
of the solution set to reference (m-1)-dimensional grids for
measuring diversity, which requires both the number of grids
and the reference set.

The rest six metrics are unmixed, which evaluate more than
diversity. Consequently, it is hard to single out the performance
on diversity only from the value of these metrics. A assesses
the distribution of the solution set [68]. A is a combination of
the spread (measured by distances to the extreme points) and
uniformity (measured by distances to the nearest neighbors).
DCI [55] also employs a grid environment to assess both
spread and uniformity, so the number of grids needs to
be pre-defined. Hypervolume calculates the volume that the
obtained solution set dominates respect to a reference point
[70], but it cannot be applied to MaOPs in practice due to its
prohibitively high computational complexity [27]. IGD is the
average distance from a reference set (samplings on the true
PF) to the obtained set. The idea of R2 is similar to IGD, where
the reference set used is a set of weights, and the distance
from the reference set to the solutions is calculated using the
Tchebycheff function. A, is the Hausdorff distance between
the obtained solution set and the reference, which evaluates
both convergence and diversity and has been applied to both
MOPs [71], [72] and MaOPs [73]. However, a reference set
is still needed to calculate A,.

Ideally, a diversity metric should assess diversity only and
should be independent of any parameters or references. The
main reason is that parameters or references may reduce
the level of objectivity. Unfortunately, none of the existing
diversity metrics fully satisfy the above requirements.

III. PROPOSED PURE DIVERSITY METRIC

A widely accepted definition for diversity still lacks in the
area of evolutionary multi-objective optimization. By contrast,
measures for biodiversity has been extensively studied in
biology. Among various measures for biodiversity, the pure
diversity has been proposed for measuring the diversity of
species [74] as follows.

PD(X) = max(PD(X — ;) + d(s3, X — s;)) (3)
s;€X
where,
d(s, X)) = min (dissimilarity(s, s;)). 4)
s;€X

In the above equations, d(s;, X — s;) denotes the dissimi-
larity d from one species s; to a community X.

We can find that Equations (3) and (1) are equivalent except
for the difference in the defining the sum, if s is viewed as
a solution in the solution set X. In addition, Equation (3)
does not require any reference, nor any parameters. Thus,
pure diversity in Equation (3) can be a promising measure
for population diversity in multi-objective optimization.

Fig.2 provides an illustrative example of how pure diversity
is calculated. In the left panel of the figure, solution s; and
other solutions X — s; are considered as two communities.
Their diversity is the sum of diversity of X — s; (black dots)
and the dissimilarity of s; to X — s;. With the recursion in
Equation (3), the dissimilarity of every single solution to the
whole population can be evaluated, with each solution being
linked to its nearest unreplicated neighbor. Then, the sum
of those dissimilarity results in the diversity of the whole
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population, which can be seen as the structure of X, as shown
in panel B of Fig. 2 (where the darker lines are connected
earlier than the lighter lines).

(] i Y
® Si ®
o0 o -—--. op—o—0
@
®
L d(silx s|}
A B

Fig. 2. Illustration of the pure diversity metric. A: d(s;, X —s;) is calculated
by the dissimilarity of s; to its nearest neighbor. B: the PD value of X is the
sum of the linked dissimilarity.

To calculate the value of pure diversity (PD) of a population
with n solutions, an n X n dissimilarity matrix D for every
two solutions is needed. Details of the calculation of PD are
given in Algorithm 1. In each accumulation, solution ¢ with
the maximal dissimilarity to its nearest unmarked neighbor
j is chosen by line 5, where d = min(D,[],2) means the
smallest elements along the second dimension (the row of
D). In order to avoid repeated choice of i, we update D(i,:)
to -1. Furthermore, any connected subgraph is avoided in
PD, because a connected subgraph implies the dissimilarity
of those solutions is repeatedly evaluated. When 7 and j
can be connected via previously assessed solutions, we let
D(i,j) = Dmaz and D(j,i) = Djnaqe, thus dissimilarity i
and j cannot be used. If we skip line 8 in Algorithm 1, the
connected subgraphs cannot be linked by other solutions, the
dissimilarity from the subgraphs cannot be measured.

Algorithm 1 Pseudo code for the calculation of PD.
Input: D-dissimilarity matrix of every two solutions.
1: Set D,,.- as the maximal element of D.
20 Diaz = Diaz +1, PD = 0.
3: Set the diagonal elements of D as D,
4: fork=1:n—1do
5. d=min(D,]],2). // Find the nearest neighbor to each
solution according to D in each row.
6:  Find solution ¢ with the maximal d; to its neighbor j.
7. while ¢ and j is connected by previous assessed solu-
tions do
8: D(i,7) = Diaz and D(j, 1) = Dyyae. // Mark the
connected subgraph.

9: d = min(D,[],2).
10: Find solution ¢ with the maximal d; to its neighbor
j-

11:  end while

122 PD=PD +d;.

13:  D(4,:) = —1. // Mark the chosen solution 4.

14 D(4,4) = Dz // Mark the used dissimilarity d;.
15: end for

Qutput: PD;

A. Dissimilarity

The evaluation of dissimilarity plays an important role in
calculating PD. Usually, the distance between two solutions is
adopted as their dissimilarity. Note however, that the Euclidean
distance is not well suited for measuring neighborhood in a
high-dimensional space [75], [76]. Since solutions of MaOPs
are distributed in a high-dimensional objective space, the
Euclidean distance (Lo-norm-based) is not suited for dissim-
ilarity calculation in PD. To address this issue, L,-norm-
based distances have been suggested for diversity maintenance
in solving MaOPs [76], [52], [77]. Fig. 3 illustrates the
differences between various L,-norm-based distances.

-... -— p:O
08 < p=0.25
p=0.35
06 p=l
..... p:2
—_—
04 P "
0.2 Y

Fig. 3. Contour lines of different unit length Ly,-norm. The smaller p is, the
more sensitive Ly, is to 0 in each dimension.

From Fig. 3 we can clearly see that the smaller p is, the
more sensitive L, is to 0 in each dimension. In contrast, the
L,-norm-based distance measures are not good for measuring
dissimilarity of high-dimensional data for p > 1. Therefore, it
is necessary to set p < 1 for measuring diversity in MaOPs.
It has been shown that the effectiveness of the measure is not
sensitive to p as long as p < 1 [75]. Therefore, p is not a
parameter in PD and we set p to 0.1 in this paper.

B. Behavior Study

Indicators use a single scalar value to describe an m-
dimensional distribution, thus some information will be lost
no matter whichever indicator it is. Therefore, it is hoped
that some key information is captured, although different
indicators may capture different information. In the case that
three extreme points of the PF f; + fo + f3 = 1 are obtained,
the values of diversity metrics vary with different solutions
added to the set of three extreme points. Fig. 4 is the changing
values of PD, MS, NDC (b = 4), and Entropy (b = 4) when
another solution from the PF is added to the set of three
extreme points, where the color shows the size of metrics
(the darker points have lower values than the lighter ones).
If one solution is selected based on those metrics to increase
diversity, the lighter parts in Fig. 4 have priority over the
darker parts. Once the extreme points have been obtained, the
MS value reaches its maximum. Thus, no solution is able to
improve MS anymore. Although the middle part is promoted
by NDC and Entropy, solutions cannot be distinguished within
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their grids. For PD, the middle part is promoted and the
values change continuously. From Fig. 4, we find that PD can
generally promote diverse solutions.

PD NDC

MS Entropy

Fig. 4. Changing values of PD, MS, NDC (b = 4), and Entropy (b = 4)
when another solution from the PF f; + fa 4+ f3 = 1 is added to the set of
three extreme points, where the color shows the size of metrics (the darker
points have lower values than the lighter ones).

To further understand PD, we calculate the PD values of six
sets of solutions with different PF distributions (f,+ fo+ f3 =
1) shown in Fig. 5, where red dots are solutions, lines are the
dissimilarity accumulated in PD, and the colors of lines denote
the chosen order (the darker lines are chosen earlier than the
lighter lines). From Fig. 5, we can see that set A spread very
well over the whole PF, while sets B, C, and D do not. Thus,
the diversity of sets B, C and D should be worse than that of
A, which is also reflected by the PD values.

Distinguishing sets A, E, and F from sets B, C, and D is
the first step of PD, which comes from the aspect of spread.
Further to spread to the whole PF, any repeated objective
values are redundant to decision markers. Comparing A with
E and F, we believe that A has better diversity than E and
F, because A shows perfect uniformity. However, as the bar
chart of the frequency of A shows, solutions in set A has many
repeated objective values on f7, whereas E has no repeated
objective values on f;. Fig. 6 also shows that A has repeated
objective values on fi, fo, and f3, but E does not. Therefore,
E can provide more information to decision markers than A,
which is therefore considered to have better diversity than A.
The PD values of these solution sets indicate that it is able to
detect the subtle differences in diversity between these solution
sets.

So far we have revealed some promising properties of PD
using illustrative examples. To further examine the usefulness
of PD in diversity maintenance in many-objective optimiza-
tion, we will perform a few additional experiments in the
following, where we use an m-objective problem whose front
can be characterized by Z —y fi =1, as shown in Fig. 5. We
use two different solution sets, one uniformly distributed set
U(n,m) denoted by A, and the other randomly distributed set
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Fig. 5. Six different solution sets and their PD values.
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Fig. 6. Parallel coordinates of examples A and E in Fig. 5.
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R(n,m) denoted as E, where n is the size of the set and m
is the number of objectives.

To show the influence of the number of objectives on PD,
we conduct the following experiments:

« Generate the test dataset R(100,m) for 30 times for m =
[2, ..., 10], respectively.

o Calculate their PD values.

Fig. 7 shows the average values of PD on a randomly dis-
tributed set with different numbers of objectives. Given a fixed
number of solutions, the higher the dimension of the objective
space, the more sparse the distribution of the solutions will be,
the higher the degree of diversity will probably be. Therefore,
MOEAs tend to achieve a set of solutions of a high degree
of diversity but poor convergence [10]. Because of that poor
balance of convergence and diversity, most MOEAs fail on
many-objective optimization problems. That is the reason why
the PD value increases dramatically with the increased number
of objectives.

WX 160 Randomly-distributed set

PD

3

N & ~ o
5% 6 8 10
Number of objectives

Fig. 7. Average PD values of a randomly distributed set with 100 solutions
and different numbers of objectives.

To show the effects of spread on PD, we conduct the
following experiment:
« Generate the test dataset R(100,m) for 30 times for m =
3, 10, respectively.
o Randomly remove different numbers of solutions in each
dataset to change the spread, then calculate their PD
values.

Randomly-distributed set with 3 Randomly-distributed set with 10

16X 10° objectives x1d° objectives
| 28
L4 N
T 2 “
1.2 g S
2 N 215
g
0.8 NG !
0.6 0.5 ]
i |
0.45

40 0 0 20 4 6
Number of random removed solutions Number of random removed solutions

Fig. 8. Average PD values of randomly-distributed set with different numbers
of dropped solutions for the 3 and 10-objective problems.

Fig. 8 shows the average PD values of randomly distributed
sets with different numbers of solutions being removed for a
3- and 10-objective problems. As the number of solutions to

be removed increases, the PD value decreases on all the test
datasets with different numbers of objectives. The results show
that PD is able to detect diversity loss resulting from the loss
of solutions.

Taking Fig. 9 as an example, when solution C is added to set
A,B, the PD value increases due to the dissimilarity of A and
C. However, when solution D is added to set A,B, the PD value
is not improved, because there is no more dissimilarity added.
Therefore, we find that the number of solutions is not directly
related to PD. The PD value increases only if the additional
solutions bring more dissimilarity to the solution set, which
can be shown in Fig. 10. Even the set of 3 solutions can have
a larger PD value than the set of 20 solutions, because the
former spreads more widely than the latter.

>
(R
o]

Fig. 9. Example of the effect of the number of solutions on PD.
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Fig. 10. PD values of two sets of 3 and 20 solutions.

To study the the impact of solutions having repeated objec-
tive values on PD, we conduct the following experiments:

o Generate datasets U(n,m) and R(n,m) for m = 3,10,

respectively, where n = C', +¢—1- For 3-objective and 10-
objective problems, n equals 105 and 220, respectively.
Construct datasets T'1(n,m,mg) with mg objectives
from U(n, m) and other objectives randomly sampled for
30 independent times, where myg increases from 1 to m.
Calculate their PD values.
Construct datasets T2(n,m, K) with K randomly sam-
pled from U(n,m) and n — K randomly-sampled from
R(n,m) for 30 independent times, where K increases
with a step of 10 solutions. Calculate their PD values.

Fig. 11 shows the average PD values of dataset
T1(n,m,mg) with 3 and 10 objectives. When m increases,
the diversity of T'1 decreases, because there are more ob-
jectives having repeated values. As expected, the PD values
decrease as mg increases. Fig. 12 shows the average PD
values of dataset 7'2(n, m, K) with 3 and 10 objectives. As K
increases, there will be more solutions with repeated objective
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Fig. 12. Average PD values of dataset T'2(n, m, K') with 3 and 10 objectives.

values, which decrease the diversity. Therefore, the PD value
drops as K grows.

Solution sets with different degrees of convergence might
have an impact on PD, because they might have different
spreads. Taking a sampling set R from a true PF as an ex-
ample, sets Y1(g) = R+ g and Y2(g) = Rg are dominated by
R as shown in Fig. 13. Y] is shifted from R, the dissimilarity
between solutions is not changed from R. Therefore, the
PD value of Y7 equals to that of R. However, the scale of
Y, is changed from R, Y5 has a larger spread than R, the
dissimilarity between solutions is g times as much as R, thus,
the PD value of Y5 is g times as much as R.

f oR

[+ f

F
w

Fig. 13. Illustration of sets Y7 and Ya.

From the above example in Fig. 13, it is clear that PD
is a sole metric that measures diversity only, which cannot
show any information about convergence. Convergence and
diversity are two important aspects to evaluate the obtained
solution set of MOPs. Unlike the mixed metrics such as IGD,
sole metrics such as GD and PD cannot compare solution
sets for convergence and diversity at the same time. Sole

metrics play a role of analyzing the reason why a solution
set has poor performance. For example, Y5 has an IGD value
worse than R, which is hard to know the reason only from
the IGD value. With the values of GD and PD, we can
know that Y5 distributes far from the true PF and has a
larger spread than the true PF. As mentioned in [78], metrics
compress the solution set into a single value to capture a
certain characteristic. Multiple metrics should be employed
to analyze the experimental results. Therefore, a combination
of sole metrics for convergence and diversity as well as mixed
metrics should be adopted to objectively evaluate solution sets,
for instance, the combinations (GD, IGD, PD) and (A,, PD)
are highly recommended.

IV. DIVERSITY ASSESSMENT OF MOEAS USING
PROPOSED METRIC

Not much work has been reported on comparing the di-
versity maintenance performance of existing MOEAs. In this
section, we use the proposed metric, PD to analyze the
diversity maintenance performance of four MOEAs for solving
MaOPs.

A. Test Problems and MOEAs under Comparison

DTLZ [79] and WFG [80] are two widely used MaOP test
suites. We study the diversity of MOEAs on those problems
with 2-10 objectives. The simulation includes four MOEAs
for solving MaOps, including Two_Arch2 [52], NSGA-III
[50], IBEA (with I.;) [21], and MOEA/D (T' = 50)[18].
These MOEAs represent four different approaches in solving
MaOPs. Two_Arch2 is a hybrid method combining Pareto
dominance and performance indicators; NSGA-III is a Pareto
dominance based method with an additional mechanism for
maintaining diversity with respect to a reference set; IBEA
is a performance indicator based algorithm, and MOEA/D is
a decomposition approach. To conduct a fair comparison, we
use the same crossover (SBX with n = 15) and mutation
(polynomial mutation with = 15) for the compared MOEAs.
30 independent runs are performed for each MOEA with a
maximum of 90000 function evaluations.

B. Performance of MOEAs in terms of PD

Each MOEA obtains a total of 100 solutions for compar-
ison on the DTLZ and WFG problems. The PD values of
Two_Arch2, NSGA-III, IBEA, and MOEA/D on the problems
with 2-10 objectives are shown in Figs. 14 and 15.

In Figs. 14 and 15, IBEA (with I.;) has the worst PD
values on all low-dimensional problems. IBEA exhibits a clear
advantage on convergence over others in solving MaOPs [12].
However, the diversity of the solution set obtained by IBEA is
poor, because there is hardly any explicit diversity maintenance
mechanism in IBEA. As shown in Fig. 16, IBEA performs
the worst in terms of diversity on two multi-modal MaOPs,
DTLZ1 and DTLZ3, as the solutions it has achieved cannot
spread over the whole PF. For other MaOPs, the solutions
achieved by IBEA spread randomly on the whole PF and
the resulting PD values keep increasing as the number of
objectives increases, as shown in Fig. 7.
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Fig. 14. PD values of Two_Arch2, NSGA-III, IBEA, and MOEA/D on the
DTLZ problems with 2-10 objectives.

MOEA/D and NSGA-III perform differently from IBEA,
as illustrated in Figs. 14, 15, and 16. On the multi-modal
test functions, DTLZ1 and DTLZ3, the PD values of the
solution sets obtained by MOEA/D and NSGA-III are better
than that of the solutions achieved by IBEA because their
solutions have better spread than those of IBEA. On the other
MaOPs, MOEA/D and NSGA-III perform worse in terms of
PD values than IBEA, which can be attributed to the fact that
their solutions contain many repeated objective values, which
is clearly observed in Fig. 16. Note that both MOEA/D and
NSGA-III rely on a similar diversity maintenance mechanism.
The former is based on a pre-defined set of weight vectors,
whereas the latter is based on reference points. As a result,
the diversity performance of both algorithms heavily depends
on the pre-defined reference set. Very typically, these reference
sets contain a large number of solutions having repeated values
on each objective, which degrades the diversity in terms of PD
values.

By contrast, Two_Arch2 performs relatively poorly in terms
of the PD values on 2- or 3-objective MOPs but performs the
best in terms of the PD values on MaOPs having more than
three objectives, as shown in Figs. 14 and 15. This is due to the
fact that Two_Arch2 adopts a different mechanism for diversi-
ty maintenance from MOEA/D and NSGA-III. The L,-norm-
based diversity maintenance mechanism without any reference
set that Two_Arch2 employs can avoid the disadvantages of
the reference set based diversity maintenance mechanism both
MOEA/D and NSGA-III use. Note however that Two_Arch2
is not best suited for solving MOPs with 2-3 objectives.

To show the diversity changes during the search of MOEAs
in solving MaOPs, Fig.17 plots the average PD values over the
generations of Two_Arch2, NSGA-III, IBEA, and MOEA/D
on DTLZ1 with 10 objectives. At the very beginning, the four
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WEFG problems with 2-10 objectives.
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Fig. 17.  Average PD values over generations of Two_Arch2, NSGA-III,
IBEA, and MOEA/D on DTLZ1 with 10 objectives.

algorithms all have a large PD value, because the solutions
they obtain are distributed randomly in the high-dimensional
space, resulting in good diversity in terms of PD. In the
late generations, the population converge towards the true PF,
reducing the PD values. It is noticed that IBEA performs the
worst in terms of the PD value during the whole evolutionary
research, while Two_Arch2 obtains the best PD value. NSGA-
IIT and MOEA/D show similar PD values that are better than
those of IBEA but worse than Two_Arch?2.

V. PD-BASED DIVERSITY MAINTENANCE AND
REFERENCE SET GENERATION

The above empirical results suggest that PD is an effective
and subject diversity metric independent of a reference set.
In this section, we test the idea of using PD for diversity
maintenance in selection, where n solutions need to be selected
from a population (F,) having N candidate solutions. The
PD-based selection in essence chooses the solution having the
maximal degree of dissimilarity to the selected population in
each iteration. The details of the PD-based diversity mainte-
nance scheme are given in Algorithm 2.

Algorithm 2 Pseudo code of the PD-based diversity mainte-
nance scheme.
Input: P.-population of N candidates, D-dissimilarity matrix
of P,, n-required size.
1: Set the index set of P, as I, =[1: N].
2: Set P and I, empty.
3: Move the first candidate from P. to P and index 1 from
1. to I,.
4: fork=1:n—1do
5:. A = D(I.I;) // dissimilarity from candidates to
selected solutions.
6:  Find the nearest solution in P, to each candidate in P
according to A in each row.
d=min(A,]],2).
Find candidate ¢ with the maximal d;.
9:  Move the ¢-th solution from P, to P and index ¢ from
I. to I.
10: end for
Output: P.

A. Simulation for PD-Based Diversity Maintenance Scheme

In this subsection, we simulate the situation that MOEAs
may encounter in maintaining diversity. We assume the PF is
defined by ZZZI fi = 1, set P with n randomly generated
solutions on the PF is considered to be the parent set, and
set @ with 3n random samplings is viewed as the variations
of P. We employ the PD-based diversity maintenance scheme
on P UQ to select n solutions P, as the parent set for the
next generation for 30 times. We compare the PD values
of P and P, in Table II, where the results are analyzed
using Wilcoxon signed-rank tests [81]. In the population with
100 solutions, the PD-based diversity maintenance mechanism
significantly improves the diversity of the population for the
next generation except for the 2-objective case, because of the
small number of objectives and the small population size n.
When the population size n increases to 200, the improvement
becomes greater than the case of n = 100. To conclude,
the PD-based diversity maintenance scheme is effective for
MOEAs in solving MaOPs.

B. Simulation for PD-Based Reference Set Generation

As the results in Section IV-B show, the diversity perfor-
mance of the reference-based MOEAs in solving MaOPs is
limited in terms of PD values. Consequently, if the reference
set used in these algorithms is generated based on PD, their
performance on diversity can be improved. The reference
points can be selected by maximizing the PD value from a
much larger initial set that is generated either randomly or
using an existing method such as the one proposed in [18].

In this experiment, 100 solutions are selected from a random
reference set with 3000 points and a uniform reference set
with 10000 points, respectively. Fig. 18 shows the PD values
of reference sets with 2-10 objectives using the PD-based
reference set generation scheme. We find that a uniformly
selected reference set containing 10000 points can achieve
the same diversity level of a randomly generated reference
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TABLE 11
PD VALUES OF P (PARENT POPULATION) AND P, (SELECTED POPULATION BY THE PD-BASED DIVERSITY MAINTENANCE SCHEME). RESULTS ARE
ANALYZED USING WILCOXON SIGNED-RANK TEST.

n = 100 7 = 200
Obj # P P, P P,

2 1.61626+0322.10996+02 | 1.73396+03£2.35706+02 | 1.8129e+0312.4503¢+02 | 1.9489¢+03L2.1205¢+02
3 1.5928e+051.0169e+04 | 2.2184e+05+5.6274e+03 | 2.1922e+0549.8770e+03 | 3.0502¢+05-:3.8101e+03
4 | 3.2375e+06£1.5822e+05 | 4.6241e+061:1.0429e+05 | 5.0011e+06-21.5294e+05 | 7.1498e+06--1.1297e+05
5 | 3.0798e+074+9.1594e+05 | 4.3179e+07-9.3915¢+05 | 4.9674e+07+1.4424e+06 | 6.9709e+07-+7.3509¢+05
6 1.8432¢+08:4.8132e+06 | 2.5407e+08:3.2081e+06 | 3.1189¢+08-:6.3874e+06 | 4.2528e+08-:4.1760e+06
7 | 8.2660e+08+2.4181e+07 | 1.1120e+09-1.4090e+07 | 1.4230e+09+3.1177e+07 | 1.9016e+09-+1.6540¢+07
8 | 3.0117e+0948.1670e+07 | 3.9801e+09-4.7710e+07 | 5.2839e+09:+1.0238¢+08 | 6.9010e+09-+-5.3581e+07
9 | 9.4154e+094+1.9182e+08 | 1.2056e+10-21.5229e+08 | 1.6523e+10+2.3478¢+08 | 2.1191e+10-2.0042¢+08
10 | 2.5594e+10£4.2749¢+08 | 3.2446e+10+3.0182e+08 | 4.5737e+10£7.0830e+08 | 5.7618e+10+4.0182¢+08

set containing 3000 points. Fig. 19 presents the reference set
after the PD-based selection for 3-objective problems. Both
sets have good diversity. Thus, a reference set selected based
on the PD value can enable reference-based MOEAs to achieve
solutions of better diversity.
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Fig. 18. PD values of reference sets with 2-10 objectives after the selection
by PD guidance.
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Fig. 19. Reference sets with 3 objectives after the selection by PD guidance
from a random reference set with 3000 points and a uniform reference set
with 10000 points.

We replace the reference set generation method in NSGA-
III with the PD-based method, which is termed NSGA-III-PD
for convenience. We compare NSGA-III and NSGA-III-PD on
DTLZ1 and DTLZ2 with 2-10 objectives. We use g(x) that
is a part of the DTLZ problems to show the performance of
convergence as [39] and PD to assess diversity. The results are
shown in Table III, which are analyzed using the Wilcoxon
signed-rank test [81]. It is clear that the new reference set
generated using the PD-based scheme significantly improves
the diversity performance of NSGA-III on all the test prob-
lems. Furthermore, the PD-based reference set generation has

no negative effect on the convergence of DTLZ1 with 2-8
objectives, but improves the convergence of DTLZ1 with more
than 8 objectives and DTLZ2 with 2-6 objectives. Note that the
PD-based reference set generation degrades the convergence
performance of NSGA-III on DTLZ2 with more than 6 objec-
tives, which remains unclear. Nevertheless, we can conclude
that the PD-based reference set generation scheme can improve
the diversity of reference-based MOEAs for MaOPs.

VI. CONCLUSIONS

A bio-inspired diversity metric, termed pure diversity (PD),
is proposed to assess the performance of diversity of MOEAs
for solving MaOPs. PD is a sum of the dissimilarity of
solutions to the rest of the population in a greedy order, and
the solution with the maximal dissimilarity has the highest
priority to accumulate its dissimilarity. Thus, the diversity can
be presented by the main dissimilarity in the population.

Through experiments on synthetic datasets, we show that
PD is able to properly indicate the diversity of the population.
Consequently, we used PD to assess the diversity of four
MOEAs for solving MaOPs and analyze the characteristics
of their diversity maintenance mechanisms. From the experi-
mental results, we find that IBEA cannot achieve an adequately
diverse solution set for MaOPs. Neither MOEA/D nor NSGA-
IIT is able to maintain a large degree of diversity because
their solution sets contain many solutions whose objective
values heavily overlap. Independent of a reference set, the L,-
norm-based diversity maintenance in Two_Arch2 outperforms
MOEA/D and NSGA-III in terms of PD values.

A PD-based diversity maintenance is also proposed for
MOEAs, which is shown to be able to significantly improve
solution diversity. Further, the PD-based diversity maintenance
can be employed for the reference set generation in reference-
based MOEAs, such as NSGA-III and MOEA/D, if the refer-
ence set is selected from a much larger reference set using the
PD-based diversity maintenance scheme. It is shown that the
diversity of NSGA-III is improved after embedding the new
PD-based reference set generation method.

Although it can assess the diversity of the population of
MOEAs for solving MaOPs, PD cannot be solely used to
compare two solution sets for both convergence and diversity.
A combination of different metrics should be adopted to
completely evaluate the performance of MOEAs.

Much work remains to be done in the future. First, the com-
plex relationship between convergence and diversity in many-
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PD AND g(z) VALUES OF NSGA-III AND NSGA-III-PD oN DTLZ1 AND DTLZ2 WITH 2-10 OBJECTIVES. RESULTS ARE ANALYZED BY THE

TABLE III

WILCOXON SIGNED-RANK TEST.

PD (x)
Obj # NSGA-III NSGA-III-PD NSGA-III NSGA-III-PD
2 1.6727e+03£2.7442e+02 | 1.8346e+03+£2.1573e+02 | 7.0679e-04£2.3335¢-03 | 4.1325e-04+7.0457e-04
3 1.3320e+05+9.4639e+03 | 2.2082e+05+2.2913e+04 | 1.5029e-03£3.3840e-03 | 2.4170e-0343.2106e-03
4 1.0958e+06+4.0122e+05 | 4.2543e+06+5.2960e+05 | 1.6038e-03£1.6340e-03 | 2.7882e-0343.1630e-03
5 1.0205e+07£1.8923e+06 | 3.7418e+07+4.5229e+06 | 2.3350e-03£1.8665¢-03 | 3.7366e-031-4.8890e-03
DTLZ1 6 4.8452e+0741.2605e+07 | 2.1620e+08+-2.0696e+07 | 5.3858e-03£7.7352e-03 | 5.5380e-03+5.0331e-03
7 1.5559e+08+1.1569e+08 | 8.8898e+08+5.9677e+07 | 5.0270e-02£2.0703e-01 | 8.3622e-0314.8014e-03
8 6.4514e+08+£3.3415e+08 | 2.9444e+09+£5.2647e+08 | 4.7582e-02+1.4214e-01 | 5.2672e-02+2.3234e-01
9 2.5235e+09£2.2741e+09 | 8.9356e+09+£1.0713e+09 | 3.8532e-01+£7.1802e-01 | 1.4316e-02+6.9197e-03
10 5.1432e+09+4.2678e+09 | 2.1881e+10£3.0617e+09 | 2.9395e-01+£5.9308e-01 | 1.5193e-02+1.4187e-02
2 1.4941e+03£1.5933e+02 | 1.5904e+03+1.4061e+02 | 8.3077e-06£1.7834e-05 | 5.4126e-0611.6576e-05
3 1.7236e+05£7.0653e+03 | 2.3926e+05+1.1987e+04 | 2.4075e-04£1.1921e-04 | 1.3364e-0411.1428e-04
4 1.3743e+06£2.0159¢+05 | 5.8579e+06+1.2859e+05 | 3.3985e-04+3.0994e-04 | 4.8578e-05+9.3405e-05
5 8.2560e+06£6.2260e+05 | 6.4730e+07+7.3188e+05 | 3.6085e-041+2.1909¢-04 | 1.2418e-04-£6.5325¢-05
DTLZ2 6 2.5035e+07£2.8693e+06 | 4.2078e+08+4.5902e+06 | 7.2631e-04+£5.5324e-04 | 4.3826e-04+1.7594e-04
7 3.9486e+07+9.2457e+06 | 2.0619e+09+2.3283e+07 | 8.8805e-04+£4.9660e-04 | 1.3534e-0313.2693e-04
8 9.6059e+07£1.5636e+07 | 7.5109e+09+£9.2085e+07 | 1.0299e-03+£5.3518e-04 | 2.2345e-03+3.9988e-04
9 3.9851e+08+£1.4748e+08 | 2.4613e+10£2.8665e+08 | 2.3494e-03+£1.3268e-03 | 3.4445e-03+4.1437e-04
10 6.0377e+08+£2.0209e+08 | 7.1405e+10£8.7984e+08 | 2.0842e-03+9.5192¢-04 | 4.6100e-03+6.2766e-04

objective optimization needs better understanding. Second,
more experiments need to be done to verify the effectiveness
of PD on MaOPs having complex PFs. Finally, the impact of
p in L,-norm based distance on the dissimilarity of MaOPs
needs further investigation.
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