High-gain and low-profile metalens-horn antenna based on the fishnet metamaterial
Osuna, D; Beruete, M.; Teniente, J.; Navarro-Cia, Miguel

DOI:
10.1109/USNC-URSI.2015.7303333

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Osuna, D, Beruete, M, Teniente, J & Navarro-Cia, M 2015, High-gain and low-profile metalens-horn antenna based on the fishnet metamaterial. in Radio Science Meeting (Joint with AP-S Symposium), 2015 USNC-URSI. Institute of Electrical and Electronics Engineers (IEEE), pp. 49. https://doi.org/10.1109/USNC-URSI.2015.7303333

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 29. Sep. 2023
High-gain and Low-profile Metalens-horn Antenna based on the Fishnet Metamaterial

David Osuna(1), Miguel Beruete(1), Jorge Teniente(1) and Miguel Navarro-Cía*(2,3)
(1) Universidad Pública de Navarra, 31006 Pamplona, Spain
miguel.beruete@unavarra.es
(2) Imperial College London, London SW7 2AZ, UK, m.navarro@imperial.ac.uk
(3) University College London, London WC1E 7JE, UK

Lenses are commonly used to reduce the profile and enhance radiation properties of horn antennas. To this purpose, metallic as well as metamaterial lenses have been successfully employed in the past showing a clear gain enhancement and shortening of the horn antenna (D. Ramaccia, et al., IEEE Trans. Antennas Propag., 61, 2929-2937, 2013). The aim of this work is to implement a high-frequency metamaterial lens-antenna based on a fishnet structure which promises improved impedance matching compared to dielectric lenses.

Here, we show a metamaterial fishnet lens-antenna that enhances the antenna gain when it is coupled to the aperture of a modified H-plane sectorial horn showing also good matching in a narrow bandwidth. The fishnet consists in a pair of perforated metallic $0.089\lambda_0$-thick plates separated by a gap of $0.133\lambda_0$. The unit cell of each perforated plate is $0.535\lambda_0 \times 0.892\lambda_0$ and is perforated with a circular aperture of diameter $0.446\lambda_0$. The fishnet matches the aperture of the H-plane sectorial horn dimensions which are $5.89\lambda_0$ wide and $0.892\lambda_0$ high. Hence, it consists of a row of 11 unit cells, see Figure. The antenna is designed to work at 53.5 GHz. For given aperture dimensions a wide flare angle such as the one employed here means a low profile horn antenna (i.e. a shorter horn length). The semi-angle flare of the horn is 75° and this implies a horn length of $1.31\lambda_0$. The system was simulated using the commercial software CST MWS™. Results show good matching at 53.5 GHz, and a realized gain enhancement within a 1 GHz bandwidth, with a gain peak of 15.8 dB at 53.5 GHz (see Figure). A standard H-plane sectorial horn with a $5.16\lambda_0$ long and 30° semi-angle flare provides the same gain, which means that our design is about 74% shorter although it works in a narrower bandwidth. Gain is enhanced at the expense of bandwidth. Nevertheless, results show another range between 58 GHz and 60 GHz where gain is also enhanced. Experimental verification of the findings is now in progress.