Targets for the Mall repressor at the divergent Escherichia coli K-12 malX-mall promoters.

Lloyd, Georgina; Godfrey, Rita; Busby, Stephen

DOI: 10.1111/j.1574-6968.2010.01907.x

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

Users may freely distribute the URL that is used to identify this publication.
Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?
Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 16. Jan. 2019
RESEARCH LETTER

Targets for the MalI repressor at the divergent Escherichia coli K-12 malX-malI promoters

Georgina S. Lloyd, Rita E. Godfrey & Stephen J.W. Busby
School of Biosciences, University of Birmingham, Birmingham, UK

Correspondence: Stephen J.W. Busby, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. Tel.: +44 121 414 5439; fax: +44 121 414 5925; e-mail: s.j.w.busby@bham.ac.uk

Received 16 November 2009; revised 16 December 2009; accepted 4 January 2010. Final version published online 5 February 2010.

DOI:10.1111/j.1574-6968.2010.01907.x

Editor: Robert Gunsalus

Keywords
Escherichia coli; malX-malI; divergent promoters; MalI repressor; operator targets.

Abstract
Random mutagenesis has been used to identify the target DNA sites for the MalI repressor at the divergent *Escherichia coli* K-12 malX-malI promoters. The malX promoter is repressed by MalI binding to a DNA site located from position −24 to position −9, upstream of the malX promoter transcript start. The malI promoter is repressed by MalI binding from position +3 to position +18, downstream of the malI transcript start. MalI binding at the malI promoter target is not required for repression of the malX promoter. Similarly, MalI binding at the malX promoter target is not required for repression of the malI. Although the malX and malI promoters are regulated by a single DNA site for cyclic AMP receptor protein, they function independently and each is repressed by MalI binding to a different independent operator site.

Introduction
The *Escherichia coli* malX and malY genes encode proteins for the transport and metabolism of an as yet unidentified substrate (Zych et al., 1995; Clausen et al., 2000). They are cotranscribed from a single promoter (the malX promoter) whose activity is completely dependent on binding of the cyclic AMP receptor protein (CRP) to a single target centred at position −41.5, i.e. between base pairs −41 and −42, upstream from the malXY transcript start (Reidl & Boos, 1999; Lloyd et al., 2008). Upstream of malX, the divergent malI gene encodes a transcription repressor that represses malXY expression (Reidl et al., 1989). Expression of the malI gene is dependent on a single promoter that controls divergent transcription initiation from a location that is 85 base pairs upstream from the malX promoter transcription startpoint (Lloyd et al., 2008). The malI promoter is factor-independent, but can be activated ~1.6-fold by CRP binding to its target at the malI promoter, which is centred at position −43.5 with respect to the malI promoter transcription startpoint (Fig. 1).

Sequence analysis shows that MalI is a typical member of the LacI family of transcription repressors (Reidl et al., 1989; Weickert & Adhya, 1992). Most members of this family function as dimers that bind to inverted repeats, and Reidl et al. (1989) identified the sequence 5′-GATAAAACGTTTTATC-3′ as a likely target for MalI-dependent repression of the malI promoter. In this work, we describe a genetic screen to prove that this sequence, located from position −24 to position −9 at the malI promoter, and overlapping the −10 hexamer element, is indeed the binding target for MalI. The malX-malI regulatory region contains a closely related sequence, 5′-GGTAAACGTTTTATC-3′, from position +3 to position +18, downstream of the transcription start of the malI promoter. We describe a similar genetic screen to prove that this is the target for MalI-dependent autoregulation of the malI promoter.

Materials and methods
The starting materials for this work were the EcoRI–HindIII malX100 and malI100 fragments described by Lloyd et al. (2008). These fragments were inserted into the polylinker of the low copy number lac expression vector plasmid, pRW50, encoding resistance to tetracycline (Lodge et al., 1992). Recombinant pRW50 derivatives were propagated in the ΔlacE. coli K-12 strain, M182, or its Δcrp derivative, as in Hollands et al. (2007). Inserts in pRW50 were manipulated
after PCR using the flanking primers D10520 (5'-CCCT GCGGTGCCCCCTCAAG-3') and D10527 (5'-GCAGGTC GTTGAACTGAGCCTGAAATTCAGG-3') described in Lloyd et al. (2008). The shorter malX400 fragment was generated from malX100 by PCR using primer D10520 together with D62262 (5'-GACGAATTCCGTTGCGTA ATGTG-3'). Likewise, the shorter malI375 fragment was generated from malI100 by PCR using primer D10527 together with D65378 (5'-GGAATTCCAAATTTAGTGA GGCATAAATCAC-3'). DNA sequences are numbered with the respective transcription start sites labelled as +1 and upstream and downstream sequences are assigned negative and positive coordinates, respectively.

Plasmid pACYC184 was used as a vector for cloning of the malI gene, together with the control empty derivative pACYC-ΔHN (Mitchell et al., 2007). The malI gene, together with its promoter and flanking sequences, was amplified by PCR using genomic DNA from E. coli K-12 strain MG1655 as a template and primers D63433 (5'-CGA TAAGCTTCAAAACGTCTATCAATTTTAGTGA GGCATAAATCAC-3') and D63434 (5'-TGGTGCATGCGCAGATAAAGAGAGGATTAT TCCGC-3'). The product was restricted with HindIII and SphI and cloned into plasmid pACYC184 to generate plasmid pACYC-mali, which encodes malI and resistance to chloramphenicol.

Error-prone PCR, using the flanking D10520 and D10527 primers and Taq DNA polymerase, was used to generate libraries of random mutations in the malX400 or malI375 promoter fragments, with the respective fragments cloned in pRW50 as the starting templates, using the conditions described by Barne et al. (1997). For each promoter, the products of four PCR reactions were restricted with EcoRI and HindIII, purified separately, and cloned into pRW50. After transformation into E. coli strain M182 carrying pACYC-mali, colonies carrying recombinants were screened on MacKonkey lactose indicator plates containing 35 μg mL⁻¹ tetracycline and 25 μg mL⁻¹ chloramphenicol. Lac⁺ candidates were selected and purified, and for each candidate, the entire EcoRI–HindIII insert was sequenced. Mutations are denoted by their location with respect to the corresponding transcript start and the substituted base on the coding nontemplate strand. Activities of different malI and malI promoters cloned in pRW50 were deduced from measurements of β-galactosidase expression in M182 or its Δcrp derivative, carrying plasmid pACYC-mali or the control empty pACYC-ΔHN plasmid.

Results and discussion

Identification of the functional MalI-binding target at the malX promoter

Figure 1 shows a diagram illustrating the malX-mali intergenic region with the transcription start sites for the malX and malI promoters, the corresponding −10 elements, and the DNA site for CRP that is located at position −41.5 with respect to the malX transcription start and position −43.5 with respect to the malI transcription start. Figure 1 also shows the locations of two 16 base pair elements, suggested to be the operator targets for the MalI repressor. The aim of the work described here was to investigate this suggestion and to determine the functional operator(s) for each promoter.

In a previous work, Lloyd et al. (2008) described how the malX promoter could be assayed by cloning the malX100 fragment into the lac expression vector plasmid, pRW50. Measurements of β-galactosidase expression in M182 or its Δcrp derivative showed the malX promoter to be a typical Class II CRP-dependent promoter, which is consistent with the location of the DNA site for CRP (West et al., 1993). Lloyd et al. (2008) also reported that expression of the malX promoter::lac fusion carried by pRW50 is unaffected by the introduction of a multicopy plasmid carrying the malX-mali intergenic region, suggesting that the level of chromosomally encoded Mall is insufficient to repress the malX promoter significantly. Thus, to set up a system to measure
Mall-dependent repression of the malX promoter, we cloned the malI gene into plasmid pACYC184 to generate pACYC-malI. Measurements of β-galactosidase expression in M182 cells carrying pRW50 with the malX100 promoter show that the presence of pACYC-malI causes an ~30-fold reduction in expression, compared with the control with the empty pACYC-ΔHN plasmid (Table 1, upper panel). The experiment was then repeated with M182 cells carrying pRW50 with the malX400 promoter fragment, in which the malX promoter sequence upstream of the DNA site for CRP had been removed (illustrated in Fig. 1). The data in Table 1 (upper panel) show that neither malX promoter activity nor repression by MalI is substantially affected by the deletion, and thus sequences upstream of the DNA site for CRP must play little or no role.

On MacConkey lactose indicator plates, colonies of M182 carrying pRW50 with either the malX100 or malX400 promoter fragments, together with pACYC-malI, appear as white Lac− colonies. In contrast, if pACYC-malI is replaced with pACYC-ΔHN, colonies have a bright red, clear Lac+ appearance. Thus, to pinpoint the operator sequences essential for repression of the malX promoter by MalI, we used error-prone PCR to generate a library of random mutations in the malX400 promoter fragment and screened for mutations that resulted in pink or red colonies of cells containing pACYC-malI. We reasoned that such colonies

<table>
<thead>
<tr>
<th>Promoter fragment cloned in pRW50</th>
<th>Activity in M182 pACYC-ΔHN</th>
<th>Activity in M182 pACYC-malI</th>
<th>Repression ratio due to MalI</th>
</tr>
</thead>
<tbody>
<tr>
<td>malX100</td>
<td>1622 ± 170</td>
<td>51 ± 4</td>
<td>31.8</td>
</tr>
<tr>
<td>malX400</td>
<td>1735 ± 49</td>
<td>57 ± 3</td>
<td>30.4</td>
</tr>
<tr>
<td>malX400 – 24C</td>
<td>3657 ± 130</td>
<td>940 ± 50</td>
<td>3.9</td>
</tr>
<tr>
<td>malX400 – 22C</td>
<td>3452 ± 123</td>
<td>881 ± 126</td>
<td>3.9</td>
</tr>
<tr>
<td>malX400 – 18G</td>
<td>1131 ± 48</td>
<td>372 ± 12</td>
<td>3.0</td>
</tr>
<tr>
<td>malX400 – 17T</td>
<td>8332 ± 37</td>
<td>4925 ± 71</td>
<td>1.7</td>
</tr>
<tr>
<td>malX400 – 16A</td>
<td>2676 ± 7</td>
<td>1256 ± 10</td>
<td>2.1</td>
</tr>
<tr>
<td>malX400 – 15C</td>
<td>2312 ± 59</td>
<td>1063 ± 11</td>
<td>2.2</td>
</tr>
<tr>
<td>malX400 – 14A</td>
<td>6475 ± 52</td>
<td>2101 ± 82</td>
<td>3.1</td>
</tr>
<tr>
<td>malX400 – 14C</td>
<td>1895 ± 32</td>
<td>1097 ± 22</td>
<td>1.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Promoter fragment cloned in pRW50</th>
<th>Activity in M182 pACYC-ΔHN</th>
<th>Activity in M182 pACYC-malI</th>
<th>Repression ratio due to MalI</th>
</tr>
</thead>
<tbody>
<tr>
<td>malI100</td>
<td>2118 ± 63</td>
<td>138 ± 4</td>
<td>15.3</td>
</tr>
<tr>
<td>malI375</td>
<td>1575 ± 28</td>
<td>89 ± 6</td>
<td>17.6</td>
</tr>
<tr>
<td>malI375 + 5C</td>
<td>1728 ± 78</td>
<td>472 ± 14</td>
<td>3.7</td>
</tr>
<tr>
<td>malI375 + 8G</td>
<td>1990 ± 92</td>
<td>1137 ± 35</td>
<td>1.8</td>
</tr>
<tr>
<td>malI375 + 9G</td>
<td>1913 ± 141</td>
<td>744 ± 16</td>
<td>2.6</td>
</tr>
<tr>
<td>malI375 + 11A</td>
<td>2649 ± 191</td>
<td>1415 ± 77</td>
<td>1.9</td>
</tr>
<tr>
<td>malI375 + 12C</td>
<td>2277 ± 149</td>
<td>1196 ± 85</td>
<td>1.9</td>
</tr>
<tr>
<td>malI375 + 13C</td>
<td>2340 ± 54</td>
<td>1407 ± 18</td>
<td>1.7</td>
</tr>
<tr>
<td>malI375 + 16T</td>
<td>2923 ± 71</td>
<td>345 ± 17</td>
<td>8.5</td>
</tr>
<tr>
<td>malI375 – 49T</td>
<td>6023 ± 406</td>
<td>956 ± 25</td>
<td>6.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Promoter fragment cloned in pRW50</th>
<th>Activity in M182Δcrp pACYC-ΔHN</th>
<th>Activity in M182Δcrp pACYC-malI</th>
<th>Repression ratio due to MalI</th>
</tr>
</thead>
<tbody>
<tr>
<td>malI100</td>
<td>1230 ± 52</td>
<td>58 ± 4</td>
<td>21.2</td>
</tr>
<tr>
<td>malI375</td>
<td>869 ± 98</td>
<td>44 ± 4</td>
<td>19.7</td>
</tr>
<tr>
<td>malI375 + 5C</td>
<td>1455 ± 72</td>
<td>237 ± 23</td>
<td>6.1</td>
</tr>
<tr>
<td>malI375 + 8G</td>
<td>1167 ± 25</td>
<td>487 ± 32</td>
<td>2.3</td>
</tr>
<tr>
<td>malI375 + 9G</td>
<td>1126 ± 23</td>
<td>300 ± 20</td>
<td>3.8</td>
</tr>
<tr>
<td>malI375 + 11A</td>
<td>1399 ± 48</td>
<td>414 ± 43</td>
<td>3.4</td>
</tr>
<tr>
<td>malI375 + 12C</td>
<td>1277 ± 38</td>
<td>397 ± 35</td>
<td>3.2</td>
</tr>
<tr>
<td>malI375 + 13C</td>
<td>998 ± 81</td>
<td>389 ± 41</td>
<td>2.5</td>
</tr>
<tr>
<td>malI375 + 16T</td>
<td>1574 ± 102</td>
<td>129 ± 19</td>
<td>12.2</td>
</tr>
<tr>
<td>malI375 – 49T</td>
<td>8798 ± 186</td>
<td>1239 ± 93</td>
<td>7.1</td>
</tr>
</tbody>
</table>

The second and third columns of the table list β-galactosidase activities (in Miller units) measured in the Δlac strain M182 or its Δcrp derivative carrying pACYC-malI or control plasmid pACYC-ΔHN, together with different promoter -lacZ fusions cloned in pRW50. Cells were grown aerobically at 37 °C in Luria-Bertani medium containing 35 μg mL−1 tetracycline and 25 μg mL−1 chloramphenicol to the exponential phase (OD600nm=0.4). Each value is the mean ± 1 SD from at least three independent experiments. The upper section of the table lists the effects of different single mutations in the malX promoter from position −24 to −14. The lower two parts of the table list the effects of different mutations on malI promoter activity. The fourth column of the table lists the factor by which MalI represses expression in each case. Activity measurements were as in Lloyd et al. (2008).
would contain pRW50 carrying the \textit{malX400} fragment with mutations that interfered with Mall binding. After screening over 2500 colonies, we identified eight different single-base changes that are shown in Fig. 2. Strikingly, all these substitutions fall in the 16 base pair sequence from position -24 to position -9 that had been suggested to be a target for Mall (Reidl et al., 1989). Our result argues strongly that this sequence alone is necessary for Mall-dependent repression. The upper panel of Table 1 lists the effects of the different point mutations on \textit{malX} promoter activity and Mall-dependent repression. Different mutations reduce repression from ~30-fold to 1.7- to 3.9-fold. Interestingly, many of the base changes up- or downregulate the activity of the \textit{malX} promoter in the absence of Mall. This is consistent with their location upstream of the -10 hexamer element (Fig. 2). Recall that many \textit{E. coli} promoters carry weakly conserved promoter elements in this region that contribute to the overall promoter activity (Mitchell et al., 2003).

\textbf{Identification of the functional Mall-binding target at the \textit{mal} promoter}

Measurements of β-galactosidase expression in M182 cells carrying pRW50 with the \textit{malI100} promoter show that the presence of pACYC-\textit{malI} causes a sharp reduction in expression, compared with the control with the empty pACYC-\textit{AHN} plasmid (Table 1, middle panel). To check whether the DNA site for Mall at the \textit{malX} promoter plays any role in this repression, the experiment was repeated with pRW50 carrying the \textit{malI375} promoter fragment, in which the \textit{malI} promoter sequence upstream of the DNA site for CRP had been removed (illustrated in Fig. 1). The data in Table 1 show that the absence of the DNA site for Mall at the \textit{malX} promoter does not compromise Mall-dependent repression of the \textit{malI} promoter. However, \textit{malI} promoter activity in the shorter \textit{malI375} fragment is reduced by $\sim25\%$ compared with the \textit{malI100} fragment. This was expected as we reported previously that upstream sequences are essential for optimal expression from the \textit{malI} promoter (Lloyd et al., 2008).

On MacConkey lactose indicator plates, colonies of M182 carrying pRW50 with either the \textit{malI100} or the \textit{malI375} promoter fragments together with pACYC-\textit{malI} appear as white Lac$^-$ colonies. In contrast, if pACYC-\textit{malI} is replaced with pACYC-\textit{AHN}, colonies have a bright red clear Lac$^+$ appearance. Thus, we used error-prone PCR to generate a library of random mutations in the \textit{malI375} promoter fragment and screened for mutations that resulted in pink or red colonies of cells containing pACYC-\textit{malI}. After screening over 2500 colonies, we identified eight different single base changes shown in Fig. 2. Seven of the eight substitutions fall in the sequence from position $+3$ to position $+18$, which resembles the operator for Mall at the \textit{malX} promoter, while the eighth is located at position -49.

\begin{figure}

\textbf{Fig. 2.} Base sequence of \textit{malX400} and \textit{malI375} promoter fragments. The figure shows the sequence of the coding non-template strand of the \textit{malX400} promoter fragment (upper part of the figure) and the \textit{malI375} promoter fragment (lower part of the figure), from the upstream EcoRI site to the downstream HindIII site (both underlined). Each sequence is numbered from the respective transcript startpoint, which is boxed and marked $+1$. The shared DNA site for CRP is doubly underlined. The location and nature of each of the point mutations that reduced Mall-dependent repression is indicated and the two 16 base pair Mall-binding elements are highlighted by a box.

\end{figure}
The middle panel of Table 1 lists the effects of the different point mutations on *malI* promoter activity and *MalI*-dependent repression. Different mutations reduce repression from ~17.5-fold to 1.7- to 8.5-fold. Strikingly, with the control pACYC-Δ*HN* plasmid, the +5C, +8G, +9G, +11A, +12C, +13C, and +16T mutations all cause small increases in β-galactosidase expression, while the −49T mutation causes a fourfold increase. The simplest explanation for these observations is that the −49T mutation considerably increases the intrinsic activity of the *malI* promoter, and that the reduction in *MalI*-dependent repression is a secondary consequence of the promoter being substantially stronger. In contrast, we suggest that the primary effect of the other seven substitutions is to interfere with *MalI*-dependent repression of the *malI* promoter, but that these changes also produce secondary effects, possibly by altering the structure at the 5’ end of the *malI* transcript.

The lower panel of Table 1 shows the results of an experiment to measure *MalI*-dependent repression of the *malI* promoter in a Δ*crp* background and the effects of the different mutations. Recall that, unlike the *malX* promoter, the *malI* promoter is active in the absence of CRP (Lloyd *et al*., 2008). The results show that *MalI*-dependent repression is slightly greater in the absence of CRP, but each of the different mutations has a similar effect.

Conclusions

Members of the LacI–GalR family of transcriptional repressors are usually functional as dimers, although in some cases, repression depends on the dimerization of dimers or interactions with other proteins, such as CRP (Weickert & Adhya, 1992; Valentin-Hansen *et al*., 1996). Such repressors bind to inverted repeats at target sites and binding is modulated by a ligand (Weickert & Adhya, 1992; Swint-Kruse & Matthews, 2009). In the case of *MalI*, the ligand is unknown, but it is assumed that it must be related to the function of MalX and MalY, which, to date, is unknown. Reidl *et al*. (1989), who first discovered the *malG* gene, and the divergent *malXY* operon, identified 16 base pair sequences, each containing an inverted repeat, that were both suggested to be targets for dimeric MalI. The aim of this work was to investigate these sequences and to determine if repression of the *malXY* and *malI* transcription units required one or both targets. In preliminary work, we attempted a biochemical approach, but we were unable to overexpress soluble functional MalI protein (G.S. Lloyd, unpublished data). Hence, we turned to a genetic approach by setting up an *E. coli* strain where *MalI*-dependent repression of the *malI* promoter yielded a clear phenotype, which was then used to screen for mutations that interfere with repression. Our results with the *malI* promoter unambiguously identify the 16 base pair target from

Fig. 3. Base sequences upstream of the *malX* and *malI* genes in different strains. The upper part (a) of the figure identifies the *malX* translation start (doubly underlined) and shows the upstream sequences in bacterial genome sequences taken from the XBASE database (Chaudhuri *et al*., 2008). Sequences are aligned to show the conservation of positioning of putative −10 hexamer elements (shaded box) and 18 base pair DNA sites for MalI binding (singly underlined). The lower part (b) of the figure similarly displays the malI translation start and upstream sequences. The listed sequences are taken from the genome sequences of *Escherichia coli* K-12 (K12), *E. coli* O157:H7 EDL933 (O157), *E. coli* APEC O1 (APEC), *E. coli* W3110 (W3110), *E. coli* UTI89 (UTI89), *E. coli* CFT073 (CFT073), *Shigella flexneri* 2a str.301 (301), *Shigella boydii* Sh227 (Sh227), *Shigella flexneri* 5 str.8401 (8401), *Shigella dysenteriae* Sd197 (Sd197), and *Shigella sonnei* Ss046 (Ss046).
position — 24 to position — 9 as the target for Mall binding and show that the second 16 base pair element, which is located upstream (Fig. 1), plays little or no role. In contrast, this second element, which is located from position +3 to position +18, downstream of the mall transcript start, appears to be the key target for Mall-dependent repression of the mall promoter, and the Mall operator site at the mall promoter plays little or no role. This repression appears to be independent of CRP. Indeed, repression in the absence of CRP appears to be slightly stronger than in its presence (Table 1).

The divergent mallX and mall promoters share a common DNA site for CRP. As for other divergent bacterial promoters that share an activator-binding site, activation in one direction is largely independent of activation in the opposite direction and this is likely to be due to the low frequency of initiation at most promoters (El-Robh & Busby, 2002). Although the mallX and mall promoters share a DNA site for CRP, each has a separate and independent DNA site for Mall. The mallX promoter Mall operator is located upstream of the transcript start and overlaps the upstream end of the — 10 hexamer, while the mall promoter Mall operator is located downstream of the transcript start. This organization is well conserved in the genomes of different strains of E. coli and related Shigella. Figure 3 shows a comparison of the base sequences upstream of the mallX and mall translation start sites in these genomes, and the comparison emphasizes how the precise locations of — 10 elements and Mall operator sequences have been maintained. This provides yet another example of how efficient repression can result from a repressor interacting at different locations at a bacterial promoter (Rojo, 2001; Barnard et al., 2004). Interestingly, repression is marginally greater at the mallX promoter than at the mall promoter, and this is consistent with Mall action at the mall promoter being autoregulatory.

The E. coli K-12 mallX-mall intergenic regulatory region provides a simple example of ‘evolution and tinkering’ (Jacob, 1977). The mallX promoter is an unremarkable CRP-dependent promoter that resembles scores of Class II promoters (Busby & Ebright, 1999) and it can be shut off by Mall. In contrast, although the divergent mall promoter resembles a Class II CRP-dependent promoter, it has adapted to ensure that the Mall repressor is always made. Thus, Mall-dependent repression is marginally less efficient compared with the mallX promoter, the dependence on CRP is relaxed by the DNA site for CRP being located at position — 43.5, and the promoter carries seven repeats of a 5'-TANn3'-motif, to facilitate RNA polymerase recruitment (Lloyd et al., 2008).

Acknowledgements
This work was funded by a Wellcome Trust program grant. We thank undergraduate project students, Clare Mensley, James Fuller, and Maria Jesus Pina, for some of the constructions.

References
Barne KA, Bown JA, Busby SJ & Minchin SD (1997) Region 2.5 of the Escherichia coli RNA polymerase sigma 70 subunit is responsible for the recognition of the extended — 10 motif at promoters. EMBO J 16: 4034–4040.
Reidl J, Romisch K, Ehrmann M & Boos W (1989) Mall, a novel protein involved in the regulation of the maltose system of...

