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ABSTRACT—Chondrichthyan-like scales with simple, single odontode crowns,

reminiscent of those of euselachians, have been reported from Silurian strata in a
number of previous studies. These specimens comprise the genera Elegestolepis (from
Siberia, Mongolia and Tuva) and Kannathalepis (from the Canadian Arctic), and have

been considered to exhibit contrasting patterns of ontogenetic development.

A study of elegestolepid microremains from the Chargat Formation of Mongolia
(Llandovery—lower Wenlock) and the Baital Formation of Tuva (Wenlock—Ludlow) has
been undertaken using SEM and micro-CT to examine scale canal system and hard
tissue structure. These investigations revealed scales at different stages of
development, whose morphogenesis is characterized by growth (elongation) of the
crown odontode and formation of neck canals. This ontogenetic pattern (Elegestolepis-
type morphogenesis) is also recognized in Kannathalepis and the Lower Devonian
species Ellesmereia schultzei, and forms the basis for the unification of these taxa into a
new chondrichthyan Order Elegestolepidida ordo nov. Similarities in crown
vascularization (branching pulp, single neck canal) shared by Elegestolepis,
Ellesmereia and Deltalepis gen. nov. (D. magna sp. nov. and D. parva sp. nov. erected
here in for Mongolian specimens) require the erection of the Family Elegestolepididae
fam. nov. that is distinguished from the mono-generic Kannathalepididae (non-

branching pulp, multiple neck canals).

Elegestolepid scales exhibit characteristics (neck canal formation and lack of enamel
and basal bone osteons) consistent with those of the chondrichthyan dermal skeleton.

This establishes Elegestolepidida as the stratigraphically oldest chondrichthyan taxon to

2
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42  develop monodontode scales, which, in contrast to the ‘placoid’ scales of euselachians,

43  are growing structures.

©CoO~NOUTA,WNPE

44
12 45
15 46
18 47
21 48

24 49

27 50
30 51
33 52

36 53

39 5y

55

56

57

58 60

60 3

Society of Vertebrate Paleontology



©CoO~NOUTA,WNPE

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Journal of Vertebrate Paleontology: For Review Only

INTRODUCTION

The type species of the genus Elegestolepis (E. grossi) was described by
Karatajuté-Talimaa (1973) from isolated scales from upper Ludlow—Pridoli strata
(Elegest and Kadvoj outcrops, Tuva, Russian Federation) of the Tuva-Mongol terrane
and, at the time of publication, was the earliest known taxon referred to the
Chondrichthyes. Subsequent studies on microvertebrate fossils from the lower
Paleozoic have led to the identification of stratigraphically older species attributed to
Elegestolepis. These are represented by middle Llandovery—lower Wenlock E. sp.
specimens from the Tuva-Mongol (Chargat Formation, north western Mongolia; Elegest
Formation, Tuva, Russia (Karatajuté-Talimaa et al., 1990; Sennikov et al., 2015)) and
Altai terranes (Gornaya Shoriya, Altai Republic, Russia (Sennikov et al., 2015)) and the
middle—upper Llandovery E. conica from the adjacent Siberian craton (Angara-llim,
Niuya-Bresovo and Tchuna-Biriussa sections, Siberian District, Russia (Karatajuté-
Talimaa and Predtechenskyj, 1995)). The paleogeographical and stratigraphical range
of Elegestolepis-like taxa was further expanded with the description (Vieth, 1980) of the
Laurussian chondrichthyan scale species Ellesmereia schultzei (from the Lochkovian of

Ellesmere Island, Nunavut Territory, Canada).

According to the categories of scale morphogenesis established by Karatajute-
Talimaa (1992) for Paleozoic chondrichthyans, Elegestolepis and Ellesmereia belong to
the Elegestolepis developmental type as the scales have a monodontode, non-growing
crown enclosing a pulp canal that opens at the crown neck via a single foramen.

Influenced by the lepidomorial theory put forward by Stensié and @rvig (Stensié and

4
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1

2

2 84  @rvig, 1951-1957; Stensid, 1961), Karatajate-Talimaa (Karatajate-Talimaa, 1992;

5

6 85 Karatajute-Talimaa, 1998) proposed that elegestolepid scale crowns represent the

-

g 86 simplest monodontode dermatoskeletal elements, exhibiting many of the characteristics
ig 87  of what were assumed to be the most elementary skeletal units of the integument

12

13 88 (lepidomoria). Thus, the development of odontodes in elegestolepids was differentiated
15 g9  from other chondrichthyans with ‘placoid’ (monodontode) scales, where the crowns

18 90 were considered to form through the coalescence of lepidomoria. Karatajuté-Talimaa
20 91 (1992, 1998) attributed this complex morphogenetic pattern to the Polymerolepis and
22 92  Heterodontus (euselachian; Fig. 1C) scale types. A hypothesis of odontode evolution in
25 93  stem chondrichthyans was founded upon these assumptions, placing lepidomorium-like

27 94  elements as the phylogenetic precursors of all chondrichthyan scales (Karatajate-

29 95  Talimaa, 1992).

96 In the years following the conceptualization of the lepidomorial theory, increasing
35 97 evidence from studies on the development of the integumentary skeleton of Recent

37 98 neoselachians (Reif, 1980b; Miyake et al., 1999; Johanson et al., 2008) has discredited
40 99 the concrescence model of odontode morphogenesis, and this is now refuted by most
42 100 authors (Smith and Coates, 1998; Donoghue, 2002 and references therein). The latter
44 101  view is strengthened with the inclusion of ‘acanthodians’ bearing polyodontode scales
47 102 with elaborately branching odontode pulps (e.g. in Poracanthodes Gross, 1956;

49 103 ValiukeviCius, 1992) within the chondrichthyan phylogenetic history (Zhu et al., 2013;
104 Brazeau and Friedman 2015; Giles et al., 2015). This contradicts the evolutionary

54 105  scenario predicted by the concrescence model, which claims origination of

56 106 neoselachian placoid scales and their complex canal system via fusion of simple

60 5

Society of Vertebrate Paleontology



©CoO~NOUTA,WNPE

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Journal of Vertebrate Paleontology: For Review Only Page 6 of 59

lepidomorial elements enclosing a single vascular loop (Stensié and Qrvig, 1951-1957;
Stensid, 1961). Advances in developmental biology have revealed an apparently
conserved gene regulatory network that maintains a variety of odontode morphogenetic
pathways (Fraser et al. 2010). This further corroborates the notion that all structures
resolvable into odontode units are, in a broad sense, homologous. In this context, a re-
examination of Elegestolepis and Elegestolepis-like Silurian scale taxa (e.g.
Ellesmereia, Kannathalepis) will enable a clearer understanding of the early evolution of
single odontode integumentary skeletal elements in the Chondrichthyes. To meet this
end, the present study investigates the histology, canal system and inferred
development of Elegestolepis grossi scales and that of previously undescribed scales
from the Lower Silurian of Mongolia referred to Elegestolepis (Karatajaté-Talimaa et al.,
1990). These new data permit a new systematic framework for Elegestolepis-like taxa

and allow for the further evaluation of their likely chondrichthyan affinities.

MATERIALS AND METHODS

The isolated scales were extracted through dissolution of carbonate rock
samples with dilute acetic acid. The specimens come from the Chargat Formation of
north western Mongolia (Chargat outcrop, sample P-16/3 [2]) and the Baital Formation
(Elegest River outcrop, samples from beds 236, 291, 293 and 295 [1]) of central Tuva,

Russian Federation.

6
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1

2

2 128 Scale morphology was documented using the Zeiss EVO LS and the JEOL JSM-
5

6 129 6060 scanning electron microscopes at the School of Dentistry of the University of

7

g 130  Birmingham, UK. Prior to imaging, the specimens were sputter-coated with a 25 nm-

ig 131 thick layer of gold/palladium alloy.

12

13

14 132 Hard tissue microstructure and internal architecture of thin-sectioned specimens was
16 133 investigated by Nomarski differential interference contrast microscopy (using a ‘Zeiss
18 134  Axioskop Pol’ polarization microscope) and scanning electron microscopy (with a JEOL

21 135  JSM-6060 SEM at the School of Dentistry, University of Birmingham, UK).

24 136  Scale examination with X-ray radiation was conducted using the SkyScan 1172

26 137 microtomography scanner at the School of Dentistry of the University of Birmingham,
138 UK. The acquired microradiographs (tomographic projections) were taken at 0.3°

31 139 intervals over a 180° rotation cycle at exposure times of 400 ms, using a 0.5 mm thick
33 140 X-ray attenuating Al filter. These image data were processed with the SkyScan NRecon
3 141  reconstruction software in order to generate sets of microtomograms that were

38 142  converted into volume renderings in Amira 5.4 3D analysis software.

41 143  Figured material is deposited in the Lapworth Museum of Geology, University of

43 144  Birmingham, UK (BU prefix).
145
146  Definitions of Terms

147 Traditionally (Sykes, 1974; Duffin and Ward, 1993; Thies, 1995) the two main
55 148 components (crown and base) of chondrichthyan scales have been identified on the

57 149  basis of morphological and/or topological criteria without consideration of their

60 7
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developmental origin. This approach can lead to ambiguity when attempting to establish
the extent of these structures and, more importantly, can result in homologizing scale
parts with different tissue composition across taxa. To address the above issues,
Andreev et al. (2015) provided revised definitions of terms used in literature to describe

chondrichthyan scales, and these are followed in the present study.

SYSTEMATIC PALEONTOLOGY

Class CHONDRICHTHYES Huxley, 1880
Order ELEGESTOLEPIDIDA ordo nov.

Included Families—Kannathalepididae Marss and Gagnier 2001 and

Elegestolepididae fam. nov.

Diagnosis—Chondrichthyan fish with monodontode scale crowns composed of a

growing odontode that encloses neck-canal branches of the pulp cavity (Fig. 1B).

Remarks—The recent literature on putative basal chondrichthyan taxa (e.g.
mongolepids, elegestolepids, kathemacanthids and polymerolepidiforms) from the lower
Paleozoic expresses uncertainty regarding their systematic position relative to the major
clades (Subclasses) of the Chondrichthyes (Karatajute-Talimaa and Novitskaya, 1997;
Sansom et al., 2000; Marss et al., 2006; Hanke and Wilson, 2010; Hanke et al., 2013).

This reflects an inadequate understanding of the phylogenetic significance of scale-

8
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1

2

2 171  derived characters, which have been employed to diagnose these taxa given the

5

6 172 general absence of chondrichthyan endoskeletal and dental remains in the lower

-

g 173  Paleozoic.

10

g 174 The odontode growth that typifies the ontogenesis of Elegestolepis-like scales is
13

14 175 not seen within traditionally recognised chondrichthyan clades (sensu Grogan et al.,

16 176  2012), yet the Elegestolepidida consistently falls inside stem-group Chondrichthyes

19 177 when its affinities are tested via phylogenetic inference (Andreev et al., unpublished

21 178 data; Fig. 2). The erection of a new Order draws together species that possess scales
179  with growing single-odontode crowns whose morphogenesis can be differentiated from
26 180 that of elasmobranch ‘placoid’ scales (the Heterodontus morphogenetic type of

28 181 (Karatajuté-Talimaa, 1992, 1998; Fig. 1C). The formal recognition of the Elegestolepis-
182  type of scale development represents a change in concept from what was originally

33 183 identified as a purely morphogenic category (Karatajuté-Talimaa, 1992, 1998).

36 184
39 185 Family KANNATHALEPIDIDAE Marss and Gagnier, 2001
42 186 Included genera—Kannathalepis Mérss and Gagnier, 2001

187 Revised diagnosis—Elegestolepids possessing dermal scales with vertically
48 188 undivided pulp cavities from which multiple (up to five) horizontal neck canals emerge

50 189  basally.

53 190 Remarks—The mono-generic Family Kannathalepididae was introduced by Marss

191 and Gagnier (2001) to distinguish Kannathalepis, identified to exhibit a specialised type

60 9
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of scale morphogenesis, from other Silurian chondrichthyan scale taxa (mongolepid and
elegestolepid). It was reported that the squamation of Kannathalepis consists of single-
odontode scales along with more complex aggregates of fused ‘placoid’ scales that
were thought to provide evidence for two separate modes of scale development within
the genus (Marss and Gagnier, 2001: fig. 4f). The current study regards these
compound scales of Kannathalepis as aberrant, formed by anomalous patterning that is
thought to result from suppression of inter-scale domains in accordance with the
inhibitory field model outlined by Reif (1980a, 1982). Localised suturing of scales has
similarly been documented in stem (Hybodus delabechei (Reif, 1978: fig. 8 d, e) and
Lissodus sardiniensi (Fischer et al., 2010: fig. 71)) and crown (Echinorhinus brucus (Reif,
1985:pl. 15) and Asterodermus platypterus (Thies and Leidner, 2011:pl. 71))
euselachians with monodontode trunk scale cover that is known to be prevalent within
the Order (Reif, 1985; Thies and Leidner, 2011; Dick, 1978; Dick and Maisey, 1980;

Maisey, 1989; Wang et al., 2009).

Complexes of randomly sutured monodontode scales consequently cannot be
considered equivalent to polyodontode scales (e.g. those of Mongolepidida (Karatajate-
Talimaa, 1998)), since the odontodes of the latter are patterned as a unit in a particular
manner and are given support by a common base/pedicle tissue. The scale
development in Kannathalepis can thus be identified as that of ‘placoid’ scales with a
growing odontode and base, corresponding to the Elegestolepis morphogenetic type
(Fig. 1B) of Karatajuté-Talimaa (1992). On that basis, Kannathalepididae is placed

inside the new Order Elegestolepidida, and its validity is maintained by acknowledging

10
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the canal system characteristics (vertically undivided pulp cavity and multiple neck

canals) diagnostic for the Family, recognized in the original description of the taxon.

Kannathalepididae was expanded subsequent to its erection to include the
Wenlockian genus Frigorilepis, which was described from articulated body fossils
(Marss et al., 2002, 2006). Nevertheless, crown morphogenesis in Frigorilepis has not
been demonstrated to proceed in discrete growth phases as in elegestolepid taxa,
which are further distinguished by the presence of scale-neck canal openings. The
absence of characters diagnostic for Elegestolepidida results in treating Frigorilepis as

Family and Order incertae sedis for the time being.

Family ELEGESTOLEPIDIDAE fam. nov.

Included genera—The type genus Elegestolepis Karatajaté-Talimaa 1973,

Ellesmereia Vieth, 1980 and Deltalepis gen. nov.

Diagnosis—Elegestolepids with scales that develop a vertically branched pulp cavity
that gives off a single horizontal neck canal and dentine canals that originate at the

lower neck/pedicle surface independently of the pulp (Fig. 9).

Genus ELEGESTOLEPIS Karatajuté-Talimaa, 1973

Included species—The type species E. grossi Karatajuté-Talimaa, 1973 and E.

conica Novitskaya and Karatajaté-Talimaa, 1986.

11
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Revised diagnosis—Elegestolepidids possessing up to three unornamented

scale crown lobes (Fig. 3A; Fig. 4A, B, D, E) incised by deep, linear grooves.

ELEGESTOLEPIS GROSSI Karatajate-Talimaa, 1973
(Figs. 1B, 3A, 4, 5, 9A-C)

Elegestolepis grossi Karatajaté-Talimaa, 1973:figs. 1-5, pl. 3 (original description).
Elegestolepis grossi Karatajaté-Talimaa, 1998:31, fig. 10.

Locality and horizon—Studied material comes from beds 236, 291, 293 and
295 of the Baital Formation (Wenlock—Ludlow (Vladimirskaya, 1978; Sennikov et al.,
2015)) at the type locality on the Elegest River, central Tuva, Russia (Karatajute-
Talimaa, 1973). E. grossi has also been reported from the Pridoli of Tuva, Russia
(Khondergei Formation (Sennikov et al., 2015)) as well as from strata of the lower

Wenlock Upper Tarkhata Subformation (Gorny Altai, Russia (Sennikov et al., 2015)).

Holotype—An ontogenetically mature scale (T-003) from the Baital Formation of

Tuva, Russian Federation (Karatajuté-Talimaa, 1973).

Referred material—Over 200 isolated scales that were examined for this study

are deposited in the Lapworth Museum of Geology, University of Birmingham, UK.

Revised diagnosis—Elegestolepis species possessing small (up to ¢c. 1 mm
long) scales that have deltoid to lanceolate, trilobate crowns and develop moderately to
strongly constricted necks and bulbous bases during their ontogenesis. Scale odontode

composed of dentine tissue with multipolar odontocyte lacunae from which emerge

12
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1

2

2 255  canaliculi with dendroid branching. Cellular basal bone with layered mineralised-fibre
5

6 256  organization.

-

8

9 257 Remarks—Certain differences were noted between the scale histology of E.
10

11 258  grossi scales and the original descriptions of Karatajté-Talimaa (1973). Some of these
14 259  concern the nature of the most superficial portion of the scale crown and neck,

16 260 understood by Karatajaté-Talimaa (1973) to consist of a type of hypermineralized

18 261  dentine tissue, durodentine (one of the less commonly used synonyms of enameloid

21 262  (Qrvig, 1967; Smith and Miles, 1971; Sire et al., 2009). This ‘enameloid’ layer is found
23 263 notto be a persistent feature of E. grossi scales, and even when present it appears

264  discontinuous across most of the upper crown surface (Fig. 5A—E), contrary to previous
28 265 depictions (Karatajuté-Talimaa, 1973: fig. 2a, b and Sire et al., 2009: fig. 10b). The layer
30 266 isinstead most prominent around the scale neck (Fig. 5A, C-E) and can extend all the
267 way down to the level of the basal bone (Fig. 5C). This distribution is contrary to that of
35 268 single crystalline enameloid in neoselachian scales, where it is confined mainly to the
37 269 upper crown region (Johns et al., 1997). Furthermore, the architecture of the superficial
40 270  crown region cannot be recognised in any of the known enameloid structural types

42 271 (Johns et al., 1997; Sansom et al., 2005; Gillis and Donoghue, 2007; Guinot and

44 772 Cappetta, 2011; Andreev and Cuny, 2012), but instead resembles that of the crown

47 273 dentine and is regarded as such. The more porous appearance of the surface dentine is
49 274  likely to be diagenetically induced and/or due to alteration of the original tissue

275  microstructure by preparation of the specimens with unbuffered acetic acid (even in low
54 276  concentration, the latter has been shown to damage the phosphatic tissues of conodont

56 277 elements (Jeppsson et al., 1985; Jeppsson and Anehus, 1995).

60 13

Society of Vertebrate Paleontology



©CoO~NOUTA,WNPE

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

Journal of Vertebrate Paleontology: For Review Only Page 14 of 59

This study also demonstrates the presence of not previously identified faint
depositional lines (Fig. 5G) in the basal bone of E. grossi scales, although growth of the
bone tissue has been inferred from specimens in different stages of development
(Karatajate-Talimaa 1973, 1998). The lamellae, demarcated by the depositional lines
produced by change in orientation of the matrix’s crystalline fibres, have convex down
profiles common for the scale bases of lower vertebrates (Jdrvig, 1966; Zangerl, 1968;

Denison, 1979; Burrow and Turner, 1998, 1999; Qu et al., 2013).

Genus ELLESMEREIA Vieth, 1980

Included species—Ellesmereia schultzei Vieth, 1980

Remarks—Ellesmereia (Fig. 3B) was assigned to the Elasmobranchii by Vieth
(1980) despite being recognized to possess an Elegestolepis-type of scale
morphogenesis (Reif, 1978; Karatajuté-Talimaa, 1992) that is atypical for an
elasmobranch, and consequently it is placed here within the Elegestolepidida. Mature
Ellesmereia scales also possess a canal system architecture (Vieth, 1980: fig. 26)
closely resembling the vascularization of Elegestolepis and Deltalepis gen. nov., and for

these reasons the three taxa are united at a familial level.

Genus DELTALEPIS gen. nov.

Included species—Deltalepis magna gen. et sp. nov. (type species) and

Deltalepis parva gen. et sp. nov.

14
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1

2

2 299 Derivation of name—From ‘delta’ (alluding to the resemblance of the scale

5

6 300 crown to the Greek letter A) and ‘lepis’, scale in Greek.

-

8 - - . .

9 301 Diagnosis—Elegestolepidids whose scales possess lobed crowns ornamented
10

11 302 by tuberculate ridges. Crown lobes and furrows extend down the anterior face of the

14 303  scale neck (Figs. 7, 8).

17 304 Remarks—The material referred here to Deltalepis gen. nov. has not previously
19 305 been formally described or figured, although was considered to belong to the genus

21 306  Elegestolepis by Karatajité-Talimaa et al. (1990) and Karatajute-Talimaa and

24 307 Novitskaya (1997) in their work on the mongolepid taxa from the Chargat Formation.
26 308 Deltalepis gen. nov. scales possess crown morphology, ornamentation and pulp cavity
309 branching pattern that differentiate them from Elegestolepis and Ellesmereia, and

31 310 therefore require the erection of a new taxon. This distinction and the erection of two
33 311 Deltalepis species is based on the documented intra- and inter-generic variation of

36 312 trunk-scale morphology (e.g. crown shape, number of crown ridges/lobes and

38 313 ornamentation) in Recent neoselachian Families (Reif, 1985; Compagno, 1988; Voigt
40 314  and Weber, 2011). Comparable differences in ornament have also been used to

43 315 distinguish taxa at genus level among thelodonts (e.g. Erepsilepis (Marss et al., 2006))
45 316 and mongolepid chondrichthyans (Shigianolepis and Rongolepis (Sansom et al., 2000)).
317 Ridged lobes are also a feature in the putative chondrichthyan taxon Areyongalepis

5o 318 oervigi (Young, 1997, 2000) known solely from micro-remains from the Darriwilian

52 319  Stokes Siltstone (Amadeus Basin, Northern Territory, Australia). The crown necks and

320 bases of elegestolepid scales, however, are not developed in Areyongalepis elements,
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and the latter do not demonstrate identifiable vertebrate mineralised tissues (Young,

1997), making their systematic position uncertain for the time being.

DELTALEPIS MAGNA sp. nov.
(Figs. 3C, 6, 8A-B, 9D-F)
Derivation of name—From the feminine form of the Latin word for large,

referring to the scale size of the species relative to that of D. parva gen. et sp. nov.

Locality and horizon—The type and only known locality for D. magna is 80 km
north of Lake Khar-Us, north-western Mongolia (Karatajaté-Talimaa et al., 1990). All
specimens come from sample P-16/3 collected from the upper Llandovery—lower
Wenlock (Salhit regional Stage) horizons of the Chargat Formation (Qrvig, 1977,

Karatajuté-Talimaa et al., 1990).

Holotype—An isolated, presumably trunk, scale BU5269 (Figs. 3C, 6A-C).

Referred material—Six isolated scales (BU5269-BU5274).

Diagnosis—Deltalepis species possessing scales with deltoid to elliptic crowns
divided into three to five discrete lobes by posteriorly widening grooves. Parallel
tuberculate ridges developed on the undersurface of the crown. The rami of the pulp

cavity formed inside the scale crown connect directly to the main pulp canal.

Description

16
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1

2

2 341 Morphology—Scales possess monodontode crowns with ovate to acuminate
5

6 342  outlines (Fig. 6) that are 500—700 ym long and 400—-700 ym wide. The crown surface
7

g 343  displays a complex topography that is produced by three to five lobes separated by
ig 344  deeply recessed inter-lobe regions (Fig. 6A-C, E, G, H). The lobes are lanceolate-
12

13 345 shaped and can exhibit slight divergence towards the posterior of the scale. Their

15 346  surface is ornamented by sub-parallel tuberculate ridges (up to 8 per lobe) that are

18 347  absent from the smooth-faced inter-lobe segments of the crown. Longitudinally directed
20 348 ridges are similarly developed on the undersurface of the crown (Fig. 6F, |, J), and

22 349  these demonstrate regular spacing across its width.

350 The crown transitions into an unornamented narrow neck (down to a third of the
28 351 maximal crown width) that is located at the anterior of the scale, overhung on all sides
30 352 by the crown. The lower portion of the neck is either gently curved outwards or flares
353 out to form an ellipse-shaped pedicle. In specimens with a developed pedicle support
35 354 (Fig. 6E-G, I, J) the posterior face of the neck is pierced by a single centrally positioned
37 355 foramen (Fig. 6F) with a diameter of c. 30—40 um. The lower pedicle surface of some
40 356 specimens is deeply indented (Fig. 61) and penetrated by the scale’s canal system,

42 357 whereas in others it is nearly flat (Fig. 6J), exhibiting only a greatly constricted opening

44 358  of the pulp.

359 Histology—The scale odontodes are composed solely from a highly vascular
50 360 tubular dentine (Fig. 8A, B). The canaliculi of the dentine have a coiled appearance and
52 361 display a tangled organization as well as extensive ramification along their length (up to
362 ¢. 20 uym). In the upper portion of the crown, the canalicular network emerges from a

57 363 complex of horizontally and vertically branched, interconnected, small-calibre dentine
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canals (diameter of c. 5-25 pym; Fig. 9D). The latter are most prominent inside the
crown lobes where they associate with and connect to branches (c. 30—60 pm in
diameter) of the pulp canal. For most of their length the pulp branches extend parallel
the crown surface, before curving basally to merge (Fig. 9F) into a single pulp canal (c.
60-90 uym wide) inside the scale neck. From the posterior of the pulp issues an
unbranched horizontal canal (c. 70 um long; Fig. 9F) that opens on the scale neck
surface. Separate from the pulp cavity system, the posterior half of the scales houses
numerous closely spaced (up to c. 10 ym apart) dentine canals (10-20 ym in diameter)
whose paths parallel that of the lower crown surface (Fig. 9E). The lower ends of these
canals ramify inside the scale neck before either exiting the scale basally (Fig. 9E) or

ending blindly inside it.

The tissue (c. 40 uym thick) closing off the lower pedicle opening displays an
optically discernable boundary with the overlying dentine (Fig. 8A), but it could not be

ascertained whether it constitutes a distinct tissue type.

DELTALEPIS PARVA sp. nov.
(Figs. 3D, 7, 8C-D, 9G-J)
Derivation of name—From the feminine form of the Latin word for small,

referring to the scale size of the species relative to that of D. magna gen. et sp. nov.

Locality and horizon—The type and only known locality situated 80 km north of
Lake Khar-Us, north-western Mongolia (Karatajtté-Talimaa et al., 1990). All specimens

come from the upper Llandovery—lower Wenlock (Salhit regional Stage) horizons

18
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1

2

2 386 (sample P-16/3) of the Chargat Formation (Karatajité-Talimaa et al., 1990; Zigaité et
5

6 387 al., 2011).

-

8

9 388 Holotype—An isolated, presumed trunk, scale BU5275 (Figs. 3D, 7A, B).

10

11

12 389 Referred material—Six isolated scales (BU5275, BU5277, BU5278-BU5280,
13

14 390 BU5282).

15

16

g 391 Diagnosis—Deltalepis species with ovoid scale crowns compartmentalized into
19

20 392 seven to ten lobes. The lateral crown branches of the pulp cavity do not connect directly

22 393 to the main pulp canal.
25 394
28 395 Description

31 396 Morphology—The scale crowns are single odontode structures with ovoid
34 397 outlines (Fig. 7) that are 200-500 pm long and 200-400 ym wide. Upper crown surface
36 398 is divided into seven to ten antero-posteriorly aligned lobes (40—-60 ym wide; Fig. 7A-F)
38 399 separated by much narrower, deeply incised grooves that expand towards the posterior
41 400  (up to c. 20 ym wide). Tubercles organized into parallel rows ornament the upper
43 401 surface of the crown lobes (up to three rows per lobe), whereas all other scale surfaces

402  are smooth.

403 The anterior of the crown is constricted into a vertically orientated neck that
51 404 reaches a third to three-quarters of the maximal crown width, and which in some
53 405 specimens expands basally to form a pedicle support (Fig. 7C—F, H, 1). The posterior

406 lower-neck/pedicle face of these scales is pierced by a single foramen (Fig. 7D, H, 1)
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with a diameter of 20-35 ym. A canal opening is also present on the lower pedicle
surface (Fig. 7H), while a row of elliptical foramina of laterally decreasing diameter (from

70 um to 40 um in Fig. 7G) mark the lower face of scales lacking a pedicle attachment.

Histology—Tubular dentine tissue (Fig. 8C, D) is the only component of the
scale crown. The dentine canaliculi are less than 2 um in diameter and up to c. 20 ym
long, with arborescent branching (Fig. 8D) that gives the tubular system a tangled
appearance. Inside the lobed regions of the crown, the tubules connect to a network of
vertically (c. 5—10 um wide and 25—40 pm long) and horizontally (c. 5 um wide) oriented
dentine canals (Fig. 8C; Fig. 9J) that are confluent with branches of the pulp cavity.
These pulp branches (from c. 20 um to c. 45 ym in diameter; Fig. 9G—J) occupy the
crown lobes (one canal per lobe) before curving basally to merge with one another
inside the scale neck. The three medial branches emerge from the main pulp canal—
confined to the scale neck/pedicle—whereas the more lateral ones are only indirectly
connected to it through the medial rami (Fig. 91). Near its lower end, the main pulp canal

gives off a short neck canal (Fig. 9l, J) that opens at the scale surface.

Posterior of the pulp-cavity canal system the scale houses a number (c. 15) of
mutually parallel, ascending dentine canals (Fig. 9G) with diameters between c. 10 ym
and 15 um. These canals follow the posterior scale profile without establishing
connections at any point with the pulp cavity and terminate basally at the lower pedicle

surface.

DISCUSSION

20
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Chondrichthyan Characteristics of Elegestolepid Scales

The odontogenic component of the vertebrate skeleton develops primarily as
discrete elements (odontodes), each of which being the product of a single epithelia-
mesenchymal cell condensation (drvig, 1977; Reif, 1982; Fraser et al., 2010).
Odontodes are one of the main structural units of scales and in certain groups (e.g. in
neoselachian chondrichthyans (Fig. 1C; Sire and Huysseune, 2003; Eames et al., 2007,
Sire et al., 2009) can form the entire squamation in the absence of osteogenic
contribution to the integumentary skeleton. In lower Paleozoic vertebrates, dermal
odontodes are usually patterned in clusters (polyodontodia in @Drvig, 1977) that form
compound scale crowns; these have been documented in pteraspidomorphs (Gross,
1961; Denison, 1967; Sansom et al., 2009; Keating et al., 2015), anaspids (Marss,
1968; Blom et al., 2002; Marss, 2002; Keating and Donoghue, 2016), galeaspids (Wang
et al., 2005), osteostracans (Stensiod, 1932; Marss et al., 2014) and jawed
gnathostomes (Schultze, 1968, 1977; Gross, 1969; Denison, 1979; Karatajuté-Talimaa,
1995; Sansom et al., 1996; 2012; Burrow and Turner, 1998, 1999; Giles et al., 2013).
The Thelodonti (Marss et al., 2007), Elegestolepidida (Karatajtté-Talimaa, 1973, 1998
and this study) and some euchondrichthyans (sensu Janvier and Pradel, 2015)—e.g.
iniopterygians (Zangerl R, Case, 1973; Grogan and Lund, 2009), petalodonts (Malzahn,
1968), symmoriiforms (Lund, 1985, 1986; Coates and Sequeira, 2001), living
holocephalians (Patterson, 1965) and euselachians (Thies and Leidner, 2011)—are the

exception, as their scale crowns form only from a single-odontode element.
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The integumentary skeleton of thelodonts demonstrates perhaps the most
phylogenetically primitive mode of monodontode scale morphogenesis (Figs. 1A, 2; Sire
et al., 2009; Smith and Hall, 1990, 1993). In contrast to polyodontode scale
development, where each of the component odontodes mineralizes in a single step, the
scales of thelodonts go through several ontogenetic phases that result in gradual
elongation of the crown in basal direction (Gross, 1967; Karatajaté-Talimaa, 1978).
Thelodonts can also possess basal bone tissue (Fig. 1A), the deposition of which
commences only after cessation of odontode growth (Karatajuté-Talimaa, 1978; Marss
et al., 2007). It is argued here that a thelodont-like pattern of scale development evolved
convergently in the early chondrichthyans (Fig. 2), with the appearance of
Elegestolepida in the middle Llandovery. Nevertheless, during ontogenesis
elegestolepid scales develop a more derived canal system architecture that features
neck canal opening(s) of the odontode pulp (documented outside the Euchondrichthyes
in ‘acanthodians’ (Denison, 1979) and stem osteichthyans (Gross, 1953, 1968; Qu et
al., 2013) but absent from the dermal skeleton of the Thelodonti (Fig. 2; Gross, 1967;
Karatajuté-Talimaa, 1978; Marss et al., 2007). The depth of insertion of the scale into
the integument has been suggested to influence the formation of neck canals (Hanke
and Wilson, 2010) and this interpretation is supported by the position of scale necks
inside the upper vascular layer (stratum spongiosum) of the dermis in Recent
neoselachians (Reif, 1980b; Miyake et al., 1999). Similar topological relationship
between scales and surrounding integumentary tissues is attributed here to the

elegestolepids, whereas the dermal odontode papillae of thelodonts have been

22

Society of Vertebrate Paleontology



Page 23 of 59 Journal of Vertebrate Paleontology: For Review Only

1

2

2 473  interpreted to form superficially at the epithelium-mesenchyme boundary and therefore
5

6 474  not to intersect the vascular system (Karatajaté-Talimaa, 1978; Marss et al., 2007).

-

8

9 475 Outside the Chondrichthyes, other derived gnathostomes regarded to possess
10

11 476  monodontode body scales belong to the basal ‘placoderm’ Orders Stensioellida and

14 477  Antiarcha (Fig. 2; also refer to Johanson, 2002; Giles et al., 2015; Brazeau and

16 478 Friedman, 2015 and citations therein for recent vertebrate phylogenies) whose scale

18 479  structure is still insufficiently investigated. The available data on the squamation of

21 480 these taxa (e.g. Stensioella (Gross, 1962) and Parayunnanolepis (Upeniece, 2011; Zhu
23 481 etal. 2012)) provides evidence for non-growing odontodes, implying this to be a

482  plesiomorphic feature of the single-odontode scales of jawed gnathostomes.

2og 483  Histological descriptions of scale hard-tissues are presently not available for the above
30 484 taxa, but known examples of ‘placoderm’ scale structure often demonstrate formation of
485 an osteon-rich vascular layer inside the upper portion of the basal bone (Burrow and

35 486  Turner 1998, 1999; Giles et al., 2013; Rucklin and Donoghue 2015). Osteon mediated
37 487  bone remodeling and resorption is widespread in the dermal skeleton of ‘placoderms’
a0 488  (Donoghue et al. 2006; Downs and Donoghue, 2009; Giles et al., 2013) and basal

42 489 osteichthyans (Zhu et al., 2006), but, critically, is absent from the elegestolepid skeleton
44 490  and in conventional chondrichthyans. Other characteristics placing elegestolepids with
47 491 the Chondrichthyes among derived gnathostomes are the pattern of scale histogenesis
49 492  and their hard tissue composition, both of which match those of polyodontode

493  chondrichthyan scales by being two-component skeletal elements formed out of

54 494 lamellar basal bone and crown dentine (Karatajuté-Talimaa, 1992).
57 495
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Elegestolepidida in the Context of Paleozoic Chondrichthyans

Although rare, elegestolepids are a significant component of pre-Devonian
chondrichthyan faunas with five currently identified species grouped into two Families
(Fig. 10), being second only in diversity to the Order Mongolepidida (Karatajtté-Talimaa
et al., 1990; Karatajute-Talimaa and Novitskaya, 1992, 1997; Sansom et al., 2000,
2001). Whilst the mongolepids (Sansom et al., 2001) and several other putative
chondrichthyan lineages (represented by Areyongalepis (Young, 1997), Tantalepis
(Sansom et al., 2012), Tezakia (Sansom et al., 1996; Andreev et al., 2015) and
Canyonlepis (Sansom et al., 2001; Andreev et al., 2015)) have their origination in the
Ordovician, no remains attributable to Elegestolepidida have yet to be reported from this
period. These Ordovician taxa possess compound (polyodontode) scale crowns and
lack neck canal openings; the latter are now understood not to develop in all basal

chondrichthyans (Marss et al., 2007; Hanke and Wilson, 2010).

Neck pulp-canal openings stratigraphically first appear in the oldest elegestolepid
species (E. conica Novitskaya and Karatajuté-Talimaa, 1986; Karatajuté-Talimaa and
Predtechenskyj, 1995), in the Middle Llandovery, and can be recognized as a persistent
feature of the canal system of mature elegestolepid scales (Fig. 10; Karatajuté-Talimaa,
1973; Vieth, 1980; Marss and Gagnier, 2001). This condition is similarly developed in
Silurian polyodontode chondrichthyan species (e.g. Tuvalepis, Zigaité and Karatajate-
Talimaa, 2008) and the monogolepids Mongolepis, Teslepis (Karatajuate-Talimaa, 1998),
Shigianolepis and Rongolepis (Sansom et al., 2000). In monogolepids pulps exit the
lower part of crown either by giving off short rami (termed ‘horizontal canals’ by

Karatajuté-Talimaa (1995) and considered equivalent to the neck canals of
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elegestolepid scales) or opening directly to the crown surface (in Shigianolepis and

Rongolepis (Sansom et al., 2000)).

Elegestolepidida and Mongolepidida might represent two distinct lineages of
early chondrichthyans that provide an insight into the variability of scale characteristics
within what appear to be monophyletic groups. Inside each of these clades the features
shared by its member genera are those relating to the pattern of crown morphogenesis,
whereas aspects of their scale vascularization and hard tissue structure can exhibit
differences. Moreover, characters with a limited distribution in one of the Orders can
have a constant presence in the other, as is the case with the neck canal openings of
the elegestolepids. The identification of elegestolepid taxa is thus regarded to require
the unique character combination of a growing monodontode scale crown (Order-grade

character) and neck canal openings (plesiomorphy of crown-group gnathostomes).

Under the diagnosis formulated here, the Wenlockian species Frigorilepis
caldwelli, placed inside Kannathalepididae by Marss et al. (2002, 2006), is removed
from Elegestolepidida for not demonstrating recognisable stages of scale crown growth.
As Frigorilepis does not develop neck canals (Fig. 10), the polygonal ultrasculptural
pattern of the crown surface it shares with Kannathalepis has been used instead as a
character to support its chondrichthyan affinity (Marss, 2006; Marss et al., 2006). Crown
ornamentation is regarded non-diagnostic at higher taxonomic levels (see above) and at
present no further evidence is available to unite Frigorilepis with basal chondrichthyans.
As a consequence, the Elegestolepis-type of morphogenesis is the only mechanism of
development recognised in monodontode chondrichthyan scales from the Silurian. The

inclusion of Ellesmereia into Elegestolepidida also shows that odontode growth has

25

Society of Vertebrate Paleontology



©CoO~NOUTA,WNPE

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

Journal of Vertebrate Paleontology: For Review Only Page 26 of 59

persisted as a feature of the integumentary skeleton of chondrichthyans at least until the
Early Devonian (Fig. 10). This last known appearance of an elegestolepid species
coincides with a major diversification of chondrichthyans at the base of the Devonian
(Ginter, 2004; Turner, 2004; Grogan et al., 2012) that sees the emergence of taxa with
body cover of non-growing monodontode scales. Some of these species are known
from body fossils and represent examples of the earliest recorded articulated
chondrichthyan remains (Fig. 10; Lupopsyrus pygmaeus (Bernacsek and Dineley, 1977;
Hanke and Davis, 2012) and Obtusacanthus corroconis (Hanke and Wilson, 2004)).
Polymerolepis whitei (Karatajaté-Talimaa, 1968, 1998; Hanke et al., 2013), is also
added to the above by being identified on the basis of CT data (Andreev, 2014) to
possess body scales with single odontode crowns that are randomly compartmentalized
into chambered spaces. These scales lack the bony base component of the
elegestolepid squamation, which within the Chondrichthyes has only been documented
in scales with growing crowns (either mon- or poly-odontode). Moreover, Lupopsyrus
and Obtusacanthus, a pair of genera that have been repeatedly recovered as stem
chondrichthyans in recent hypotheses of early gnathostome phylogeny (Brazeau, 2009;
Davis et al., 2012; Zhu et al., 2013; Giles et al., 2015) are resolved as sister taxa to
Elegestolepidida (Fig. 2) and do not possess scale-neck openings of the pulp canal. A
pattern of vascularization where the pulp opens only towards the lower surface of scales
has a homoplastic distribution inside the stem group, and it is also a feature of the
earliest recorded chondrichthyan polyodontode scales (Sansom et al., 1996; 2001;

Donoghue and Sansom, 2002; Andreev et al., 2015).
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1

2

S 565 CONCLUSIONS

5

6

7 566

8

20 567 The original concept of Elegestolepis-type scale morphogenesis (Karatajute-
11

12 568 Talimaa, 1992) is re-interpreted here to feature a stepwise crown growth and neck canal
14 569  formation as its diagnostic characteristics. The presence of neck canal openings in

17 570  Elegestolepis-type scales is considered to distinguish them from the growing

19 571 monodontode scales of the Thelodonti (Marss et al., 2007), whereas the absence of

21 575 basal bone osteons and hard tissue resorption in these taxa are chondrichthyan

24 573  apomorphies within crown gnathostomes. This implies that the total-group

26 574 Chondrichthyes has evolved two distinct morphogenetic processes for generation of

575 single odontode scales, one characteristic for the elegestolepids and the other

31 576  producing the non-growing Heterodontus-type scales (sensu Karatajuté-Talimaa, 1992),
33 577  known in detail in euselachians. Consequently, the elegestolepid integumentary

36 578 skeleton is seen to demonstrate one of the early forms of chondrichthyan scale

38 579 development that are absent from more derived taxa of the clade. It is further

40 580  speculated that the contribution of osteogenic tissues to elegestolepid scale units

43 581 represents a phylogenetically basal state in relation to that of taxa with a solely

45 582 odontogenically derived squamation.

48 583 The shared mode of scale morphogenesis unites Elegestolepis (Karatajaté-Talimaa,
50 584 1973) with Ellesmereia (Vieth, 1980), Kannathalepis (Marss and Gagnier, 2001) and
53 585 Deltalepis gen. nov into the newly erected Order Elegestolepidida, extending the known

55 586  stratigraphic range of elegestolepid taxa from the Lower Silurian (middle Llandovery) to

g; 587 the Lower Devonian (Lochkovian). Furthermore, a division of the Order into two
59
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Families is established upon differences in pulp cavity architecture between

Kannathalepis and all the other recognised elegestolepid genera.
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1
2

2 970 FIGURE CAPTIONS
5

6

2 971

8

9

10 972 FIGURE 1. Diagrammatic representation of monodontode scale types in A, the

12 973  Thelodonti and (B, C) the Chondrichthyes. A, a Thelodus calvus scale (adapted from

15 974 Marss and Karatajutée-Talimaa 2002: fig. 15F) exemplifying the thelodont morphogenetic
17 975 type; B, the Elegestolepis morphogenetic type represented by an Elegestolepis grossi
976  scale (BU5284); C, the Heterodontus morphogenetic type represented by a Triakis

22 977  semifasciata scale (BU5341). Color-coded tissues: blue, enameloid; brown, dentine;

24 978 gold, bone. (2/3rd of a whole page width)
27 979

30 980 FIGURE 2. Distribution of relevant to the study scale characters among select groups of
33 981 Paleozoic gnathostomes. Tree topology reconstructed from published phylogenies of

35 982 total-group Chondrichthyes (Grogan et al., 2012) and vertebrates (Sire et al., 2009;

37 983  Giles et al., 2013, 2015), with the position of Elegestolepidida on the chondrichthyan

40 984 branch determined from yet to be published analysis by Andreev et al. (representative
42 985 tree generated in TNT version 1.1 (Goloboff et al., 2008) using a data matrix of 68

986 equally weighted scale-based characters and 49 Paleozoic jawed-gnathostome taxa).

47 987 (whole page width)
50 988

53 989 FIGURE 3. Line drawings depicting the range of crown-surface morphologies in

55 990 elegestolepid scales. A, Elegestolepis grossi (BU5284); B, Ellesmereia schultzei
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(adapted from Vieth 1980:pl. 9.2); C, Deltalepis magna (holotype BU5269); D,

Deltalepis parva (holotype BU5275). Anterior towards the bottom. (column width)

FIGURE 4. Scales of Elegestolepis grossi from the Baital Formation of Tuva, Russian
Federation; ontogenetically mature scales shown in A, antero-lateral (BU5285), B,
lateral-crown (BU5285), C, lateral (BU5286) and (D, BU5286), (E, BU5287) crown
views. F, postero-lateral view of BU5289 showing the single neck canal opening of the
scale crown; G, postero-basal view of an ontogenetically young scale (BU5343) with not
fully formed pedicle support; H, basal view of a scale (BU5343) with pedicle support at
an advanced stage of formation; |, mature scale (BU5289) in basal view exhibiting
bulbous basal bone. SEM micrographs. Anterior towards right in (B), towards left in (C),
towards the bottom in (D, E) and towards the top in (H, I); arrows indicate neck canal
openings, arrowhead indicates the basal opening of the main pulp canal. Scale bars

represent 200 um in (A-E, G, H) and 100 um in (F, ). (whole page width)

FIGURE 5. Hard tissue structure of Elegestolepis grossi scales from the Baital
Formation of Tuva, Russian Federation. A, vertical cross section of a scale (BU5290) in
early stage of bony base formation, etched in 0.5% chromium sulphate solution for 2
hours; B, detail of A, showing the upper medial portion of the crown; C, vertical
longitudinal section of a scale (BU5291) in advanced stage of basal bone developed
(ontogenetically old), etched in 0.5% orthophosphoric acid for 10 minutes; D, detail of

BUS5291 depicting the lower posterior margin of the crown; E, detail of the anterior
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1

2

2 1013  portion of the crown of BU5291; F, vertical transverse section of an ontogenetically old
5

6 1014 scale (BU5292); G, basal bone of ontogenetically old scale (BU5293) in vertical

-

g 1015 longitudinal section. (B—E) SEM micrographs; (A, F, G) Nomarski interference contrast
ig 1016  micrographs. Anterior towards the right in (C—E, G); (B), base; arrowheads in (B-E)

12

13 1017 demarcate the extent of artificially altered dentine, asterisks in (G) denote the borders of
15 1018  depositional bone lamellae. Scales bars represent 100 um in (A, C, F, G) 50 ym in (B,

18 1019 E)and 20 ym in (D). (whole page width)
21 1020

24 1021  FIGURE 6. Scales of Deltalepis magna gen. et sp. nov. from the Chargat Formation of
26 1022 north-western Mongolia. Holotype specimen (BU5269, scale with a five-lobed crown
1023  and a gracile neck) in A, anterior, B, antero-lateral and C, crown view. D, scale

31 1024 (BU5270) with gracile neck in basal view. Scales with three-lobe crowns in E, anterior,
33 1025 F, posterior, G, lateral (E-G, BU5273) and H, crown (BU5271) views. |, BU5273 in basal
36 1026  view revealing the lower pedicle surface; J, basal view of a scale (BU5272) with fully

38 1027 formed pedicle support. (A—C, H-J) SEM micrographs; (D-G) volume renderings.

40 1028  Anterior towards the right in (B), towards the bottom in (C, H) towards the top in (D, I, J);

43 1029  arrow indicates a neck canal opening. Scale bars represent 200 ym. (whole page width)
46 1030

49 1031 FIGURE 7. Scales of Deltalepis parva gen. et sp. nov. from the Chargat Formation of
51 1032 north-western Mongolia. Holotype (BU5275) in A, crown and B, anterior-crown view.
1033  Scale (BU5280) with a gracile neck in C, anterior and D, posterior view. Scale (BU5277)

56 1034 in E, anterior and F, crown view. G, scale (BU5278) with a gracile neck in basal view,
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exposing the rami of the pulp canal system. Scale (BU5279) with formed pedicle
support in H, basal and I, postero-basal view. (A, B, E-lI) SEM micrographs; (C, D)
volume renderings. Anterior towards the bottom in (A, F) towards the top in (G-I);
arrows indicate neck canal openings, arrowhead indicates the basal opening of the
main pulp canal. Scale bars represent 200 um in (A-D, G) and 100 uym in (E, F, H, I).

(whole page width)

FIGURE 8. Hard tissue structure of Deltalepis gen. nov. A, longitudinal tomographic
slice of a Deltalepis magna scale (BU5273); B, detail of the dentine tissue at the upper
anterior margin of the crown of a longitudinally sectioned Deltalepis magna scale
(BU5274); C, longitudinal tomographic slice of a Deltalepis parva scale (BU5280); D,
view of the posterior portion of a Deltalepis parva scale (BU5282) crown immersed in
clove oil. (B, D) Nomarski interference contrast micrographs; (A, C) volume renderings.
Anterior towards the right in (A) and towards the left in (C). Scale bars represent 100 um

in (A, C, D) and 50 um in (B). (whole page width)

FIGURE 9. Volume renderings of the scale canal system (in red) of examined
elegestolepids. The scales are made translucent in all renderings, with the exception of
(G). A—C, Elegestolepis grossi scale (BU5284) from the Baital Formation of Tuva
(Russian Federation) in A, anterior, B, postero-lateral and C, crown (depicting the lower
portion of the specimen that is transversely sliced through the neck region) view. D—F,

Deltalepis magna scale (BU5273) from the upper Llandovery—lower Wenlock of north
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1

2

2 1057  western Mongolia in D, crown and E, posterior view and a F, crown view of the lower
5

6 1058 portion of the same specimen sliced through the neck region. G-J, Deltalepis parva

-

g 1059  specimens (BU5280 and BU5281) from the upper Llandovery—lower Wenlock of north
ig 1060 western Mongolia; G, BU5280 sliced transversely through the crown in crown view; H,
12

13 1061 BU5280 in anterior view; I, J, BU5281 in | posterior and J, postero-lateral view. Anterior
15 1062 towards the left in (B), towards the top in (C, F, G) and towards the bottom in (D);
18 1063  arrows indicate neck canal openings, arrowheads point at the basal opening of the main

20 1064 pulp canal. Scale bars represent 100 ym. (whole page width)
23 1065

26 1066 FIGURE 10. Characteristics of monodontode scales of recognised lower Paleozoic
1067 chondrichthyans and their stratigraphic range. Pink rectangle designates elegestolepid
31 1068 taxa. Elegestolepis (Karatajute-Talimaa, 1973 and data from this study), Deltalepis

33 1069 (data from this study), Kannathalepis (Marss and Gagnier, 2001), Ellesmereia (Vieth,
1070  1980), Frigorilepis (Marss et al., 2002, 2006), Polymerolepis Karatajuté-Talimaa, 1998;
38 1071 Hanke et al., 2013), Lupopsyrus and Obtusacanthus (Hanke and Wilson, 2004; Hanke

401072 and Davis, 2012). (whole page width)
43 1073
1074
1075
1076

1077
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FIGURE 1. Diagrammatic representation of monodontode scale types in A, the Thelodonti and (B, C) the
Chondrichthyes. A, a Thelodus calvus scale (adapted from Marss and Karatajuté-Talimaa 2002: fig. 15F)
exemplifying the thelodont morphogenetic type; B, the Elegestolepis morphogenetic type represented by an
Elegestolepis grossi scale (BU5284); C, the Heterodontus morphogenetic type represented by a Triakis
semifasciata scale (BU5341). Color-coded tissues: blue, enameloid; brown, dentine; gold, bone. [2/3 of a
whole page width]

Figl
91x69mm (300 x 300 DPI)

Society of Vertebrate Paleontology

Page 50 of 59



Page 51 of 59 Journal of Vertebrate Paleontology: For Review Only

stem gnathostomes crown gnathostomes
Jawed fih
Chonarohinyes

stem crown

©CoO~NOUTA,WNPE

=
o

basal bone osteons
bone/dentine resorption
enamel

enameloid

basal bone

neck canals
polyodontode scales
monodontode scales
growing odontodes

[
-

el
w N

=
I

[
(&)

e
© 0~

S
Thelodonti
Galeaspida
Osteostraci
Antiarchi
Petalichthyida
Acanthothoraci
Arthrodira
Osteichthyes
Brochoadmones
Lupopsyrus
Elegestolepidida
Elasmobranchii
Paraselachii

NNDNNNDNNDN
O~NO U WN PP

N
©

w
o

W ww
wWN P

FIGURE 2. Distribution of relevant to the study scale characters among select groups of Paleozoic
gnathostomes. Tree topology reconstructed from published phylogenies of total-group Chondrichthyes
(Grogan et al., 2012) and vertebrates (Sire et al., 2009; Giles et al., 2013, 2015), with the position of

Elegestolepidida on the chondrichthyan branch determined from yet to be published analysis by Andreev et
al. (representative tree generated in TNT version 1.1 (Goloboff et al., 2008) using a data matrix of 68
equally weighted scale-based characters and 49 Paleozoic jawed-gnathostome taxa). [whole page width]
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FIGURE 3. Line drawings depicting the range of crown-surface morphologies in elegestolepid scales. A,
Elegestolepis grossi (BU5284); B, Ellesmereia schultzei (adapted from Vieth 1980:pl. 9.2); C, Deltalepis
magna (holotype BU5269); D, Deltalepis parva (holotype BU5275). Anterior towards the bottom. (column
width)!I +
Fig. 3
101x116mm (300 x 300 DPI)
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FIGURE 4. Scales of Elegestolepis grossi from the Baital Formation of Tuva, Russian Federation;
ontogenetically mature scales shown in A, antero-lateral (BU5285), B, lateral-crown (BU5285), C, lateral
(BU5286) and (D, BU5286), (E, BU5287) crown views. F, postero-lateral view of BU5289 showing the single
neck canal opening of the scale crown; G, postero-basal view of an ontogenetically young scale (BU5343)
with not fully formed pedicle support; H, basal view of a scale (BU5343) with pedicle support at an advanced
stage of formation; I, mature scale (BU5289) in basal view exhibiting bulbous basal bone. SEM micrographs.
Anterior towards right in (B), towards left in (C), towards the bottom in (D, E) and towards the top in (H, I);
arrows indicate neck canal openings, arrowhead indicates the basal opening of the main pulp canal. Scale
bars represent 200 um in (A-E, G, H) and 100 um in (F, I). [whole page width]

Fig. 4
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FIGURE 5. Hard tissue structure of Elegestolepis grossi scales from the Baital Formation of Tuva, Russian
Federation. A, vertical cross section of a scale (BU5290) in early stage of bony base formation, etched in
0.5% chromium sulphate solution for 2 hours; B, detail of A, showing the upper medial portion of the crown;
C, vertical longitudinal section of a scale (BU5291) in advanced stage of basal bone developed
(ontogenetically old), etched in 0.5% orthophosphoric acid for 10 minutes; D, detail of BU5291 depicting the
lower posterior margin of the crown; E, detail of the anterior portion of the crown of BU5291; F, vertical
transverse section of an ontogenetically old scale (BU5292); G, basal bone of ontogenetically old scale
(BU5293) in vertical longitudinal section. (B-E) SEM micrographs; (A, F, G) Nomarski interference contrast
micrographs. Anterior towards the right in (C-E, G); (B), base; arrowheads in (B-E) demarcate the extent
of artificially altered dentine, asterisks in (G) denote the borders of depositional bone lamellae. Scales bars
represent 100 um in (A, C, F, G) 50 um in (B, E) and 20 um in (D). [whole page width]

Fig. 5
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FIGURE 6. Scales of Deltalepis magna gen. et sp. nov. from the Chargat Formation of north-western
Mongolia. Holotype specimen (BU5269, scale with a five-lobed crown and a gracile neck) in A, anterior, B,
antero-lateral and C, crown view. D, scale (BU5270) with gracile neck in basal view. Scales with three-lobe

crowns in E, anterior, F, posterior, G, lateral (E-G, BU5273) and H, crown (BU5271) views. I, BU5273 in
basal view revealing the lower pedicle surface; J, basal view of a scale (BU5272) with fully formed pedicle
support. (A-C, H-J) SEM micrographs; (D-G) volume renderings. Anterior towards the right in (B), towards
the bottom in (C, H) towards the top in (D, I, J); arrow indicates a neck canal opening. Scale bars represent
200 ym. (whole page width)

Fig. 6
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FIGURE 7. Scales of Deltalepis parva gen. et sp. nov. from the Chargat Formation of north-western
Mongolia. Holotype (BU5275) in A, crown and B, anterior-crown view. Scale (BU5280) with a gracile neck in
C, anterior and D, posterior view. Scale (BU5277) in E, anterior and F, crown view. G, scale (BU5278) with a
gracile neck in basal view, exposing the rami of the pulp canal system. Scale (BU5279) with formed pedicle

support in H, basal and I, postero-basal view. (A, B, E-I) SEM micrographs; (C, D) volume renderings.
Anterior towards the bottom in (A, F) towards the top in (G-I); arrows indicate neck canal openings,
arrowhead indicates the basal opening of the main pulp canal. Scale bars represent 200 um in (A-D, G) and
100 um in (E, F, H, I). [whole page width]

Fig. 7
204x229mm (300 x 300 DPI)

Society of Vertebrate Paleontology

Page 56 of 59



Page 57 of 59 Journal of Vertebrate Paleontology: For Review Only

=
a4 ghmbeiats Y b

T T
ca .
o ———
—

©CoO~NOUTA,WNPE

FIGURE 8. Hard tissue structure of Deltalepis gen. nov. A, longitudinal tomographic slice of a Deltalepis
magna scale (BU5273); B, detail of the dentine tissue at the upper anterior margin of the crown of a
longitudinally sectioned Deltalepis magna scale (BU5274); C, longitudinal tomographic slice of a Deltalepis
18 parva scale (BU5280); D, view of the posterior portion of a Deltalepis parva scale (BU5282) crown immersed
19 in clove oil. (B, D) Nomarski interference contrast micrographs; (A, C) volume renderings. Anterior towards
20 the right in (A) and towards the left in (C). Scale bars represent 100 um in (A, C, D) and 50 pym in (B).
21 [whole page width]

23 Fig. 8
42x9mm (300 x 300 DPI)
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FIGURE 9. Volume renderings of the scale canal system (in red) of examined elegestolepids. The scales are

made translucent in all renderings, with the exception of (G). A-C, Elegestolepis grossi scale (BU5284) from
the Baital Formation of Tuva (Russian Federation) in A, anterior, B, postero-lateral and C, crown (depicting
the lower portion of the specimen that is transversely sliced through the neck region) view. D-F, Deltalepis
magnus scale (BU5273) from the upper Llandovery-lower Wenlock of north western Mongolia in D, crown

and E, posterior view and a F, crown view of the lower portion of the same specimen sliced through the neck
region. G-J, Deltalepis parvus specimens (BU5280 and BU5281) from the upper Llandovery-lower Wenlock
of north western Mongolia; G, BU5280 sliced transversely through the crown in crown view; H, BU5280 in

anterior view; I, J, BU5281 in I posterior and J, postero-lateral view. Anterior towards the left in (B),
towards the top in (C, F, G) and towards the bottom in (D); arrows indicate neck canal openings,
arrowheads point at the basal opening of the main pulp canal. Scale bars represent 100 um. [whole page
width]
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FIGURE 10. Characteristics of monodontode scales of recognised lower Paleozoic chondrichthyans and their
29 stratigraphic range. Pink rectangle designates elegestolepid taxa. Elegestolepis (Karatajaté-Talimaa, 1973
30 and data from this study), Deltalepis (data from this study), Kannathalepis (Marss and Gagnier, 2001),
31 Ellesmereia (Vieth, 1980), Frigorilepis (Marss et al., 2002, 2006), Polymerolepis Karatajuté-Talimaa, 1998;
32 Hanke et al., 2013), Lupopsyrus and Obtusacanthus (Hanke and Wilson, 2004; Hanke and Davis, 2012).
33 [whole page width]
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