Towards the ultimate radiotherapy goal—“freezing” the tumour in a known position during radiotherapy


1School of Sport, Exercise & Rehabilitation Sciences,
2National Institute for Health Research (NIHR)/Wellcome Trust Birmingham Clinical Research Facility,
3Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust
4Department Anaesthesia and Intensive Care Medicine, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust
5Department of Radiation Oncology, Academic Medical Centre/University of Amsterdam, the Netherlands
6Struttura Complessa di Radioterapia, Dipartimento die Oncologia, Az.Ospedaliero-Universitaria di Modena, Via del Pozzo 71, 41110 Modena
7Department of Radiation Oncology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.

*author and address for correspondence

Dr M.J. Parkes
School of Sport, Exercise & Rehabilitation Sciences
University of Birmingham
Edgbaston
Birmingham B15 2TT

email:- M.J.Parkes@Bham.AC.UK
telephone:- +44 (0) 121 414 6977
fax:- +44 (0) 121 414 4121

The views expressed are those of the authors and not necessarily those of the National Health Service, the National Institute for Health Research or the Department of Health (UK).
Dr Boda-Hegemann and Dr Lohr have received personal fees from Elekta AB, Sweden.
Dr Lohr received grants and personal fees from IBA, personal fees from C-RAD and has been a board member of C-RAD.
The other authors report no conflict of interest.
Towards the ultimate radiotherapy goal- “freezing” the tumour in a known position during radiotherapy

It was always hoped that if patients held their breath, tumours would stay still. The introduction of multiple short (roughly 20 second) breath-holds in air, to reduce the movement of target organs, is improving radiotherapy delivery for breast cancer [1] and ought to improve the delivery for other thoracic and abdominal tumours. It is important however to be aware that tumours do not stay completely still during breath-holding [2-4]. First, there is settlement of the chest, diaphragm and abdominal organs when the breath-hold is first established [3,5,6]. Secondly, there is shrinkage of the chest volume throughout breath-holding because oxygen continues to be extracted from alveolar gas and is not replaced by an equal volume of carbon dioxide [7]. These physiological changes are in addition to the issues of reproducibility of organ position between each breath-hold.

Colleagues should also be aware that patients with cancer can already breath-hold for more than 10 times longer than in these multiple short breath-holds using air [1]. Parkes et al., have just achieved single prolonged breath-holds [3] for more than 5 minutes using a non-invasive mechanical ventilation technique with 60% oxygen. Here, the initial settlement movement over the first 10-15 seconds of the breath-hold was typically 3 mm and in 15 patients the chest deflated by about 2 mm/minute in the inferior-superior direction (the direction of largest motion in this study). Peguret et al., have achieved single “apnea-like breath-holds” for more than 11 minutes using a high frequency percussive ventilation technique with 100% oxygen [2]. Movements during “breath-holding” were measured with CT and evaluated in detail in 2 patients revealing movement from the start to the end of the breathing that was typically 2-4mm and occasionally larger.

While such prolonged breath-holding techniques have further clinical potential to optimise both imaging and delivery of x-ray and particle beam therapy in a single breath-hold, they also emphasise the urgent need for more research on the position changes of both tumours and healthy tissue throughout breath-holding.

Reference List


