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Abstract 

Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health care 

systems. Improving metabolic control to approach normal glycaemia (where practical) greatly 

benefits long-term prognosis and justifies early, effective, sustained and safety-conscious 

intervention. Greater understanding of the complex pathogenesis of T2DM has underpinned the 

development of a selection of glucose-lowering therapies with different and complementary 

mechanisms of action that have expanded treatment options and facilitated an individualised 

management strategy. Over the last decade several new classes of glucose lowering agents have 

been licensed including glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 

(DPP-4) inhibitors and sodium-glucose transporter-2 (SGLT-2) inhibitors. These can be used 

individually or in combination with previously well-established classes such as biguanides, 

sulfonylureas and thiazolidinediones. Whilst newer agents may offer advantages which include  low 

risk of hypoglycaemia and help with weight control, their long term safety has to be established. In 

this review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including 

cardiovascular safety, of currently available therapies for the management of hyperglycaemia in 

patients with T2DM within the context of disease pathogenesis and natural history. In addition, we 

briefly review treatment algorithms for patients with T2DM and lessons from present therapies to 

inform the development of  future therapies. 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Type 2 diabetes mellitus (T2DM) is a global epidemic with an estimated worldwide prevalence of 415 

million people in 2015,  projected to reach 642 million people by 20401. Given its huge health, social, 

and economic burden1-3T2DM presents a major challenge to healthcare systems around the world. 

T2DM is a complex endocrine and metabolic disorder in which the interaction between genetic and 

environmental factors generates a heterogeneous and progressive pathology with variable degrees 

of insulin resistance, dysfunction of pancreatic β-cells and α-cells and other endocrine disturbances 

(Figure 1)4-14. Insulin resistance is due to deficits in the insulin-receptor-postreceptor signalling 

pathways, and T2DM emerges when β-cells are no longer able to secrete sufficient insulin to 

overcome insulin resistance4, 15-17. Overweight and obesity are major risk factors for the 

development of insulin resistance via several mechanisms5, 16, 18-21. 

Hyperglycaemia is the cardinal biochemical feature of diabetes, causing increased oxidative and 

nitrosative stress and the activation of inflammatory pathways and endothelial dysfunction, 

precipitating microvascular complications and contributing to macrovascular disease, which are 

major causes of morbidity and mortality22. Several randomised controlled trials (RCTs) have shown 

the short and long term benefits of improving glycaemic control, delaying the onset and reducing 

the severity of diabetes-related outcomes particularly retinopathy, nephropathy,  neuropathy, 

cardiovascular disease and mortality23-26. Hence attaining near normal blood glucose levels (where 

practical) is a major aim of treatment. 

Several strategies are available for this purpose: life style changes including dietary prudence, weight 

loss and physical activity remain the cornerstones of management, but because of the progressive 

nature of T2DM and the difficulty in  maintaining life style changes  long-term , most patients require 

treatment with oral and eventually injectable treatments27.  

For more than four decades only two classes of oral glucose-lowering medications were available 

(biguanides and sulfonylureas) but over the last 2 decades there has been significant expansion in 

the treatment options (Table 1)27, 28. In this review, we provide an evaluation of the therapies 

available for the management of hyperglycaemia in patients with T2DM. 

Glycaemic control and targets for patients with T2DM 

The treatment needs of patients with T2DM and the responses to treatments are highly variable, 

reflecting the complexity and variability of the pathogenic process29, 30and posing difficult decisions 

regarding choice of therapy and glycaemic targets.  Relevant factors include patient age, diabetes 



duration, weight, risk of hypoglycaemia, cardiovascular risk, concomitant treatments, presence of 

diabetes complications and concomitant life-limiting illness. Other factors that are more difficult to 

quantify in clinical practice for an individual  patient  include the reserve capacity for  insulin 

secretion, genetic factors that might affect responses to therapies, the risk of developing future 

complications and the rate of disease progression31.   

The benefits of intensive glycaemic control on long-term diabetes-related complications and 

mortality are well described, particularly when started promptly after diagnosis in younger, relatively 

uncomplicated patients23-26. However, intensive glycaemic control is not without risks such as 

hypoglycaemia (dependent on which glucose lowering agents are used), weight gain, and possible 

increases in cardiovascular events and mortality in high risk individuals. These risks might relate, at 

least in part to the chosen glycaemic target and the medications 23, 32-37,  accounting for a preferred 

“individualised” rather than a “one size fits all” management strategy37. The difficulty is how to 

identify the patients in whom the risks of intensive glycaemic control outweigh the benefits. 

Stringent glycaemic control is not advised in older patients or in those with advanced disease, longer 

diabetes duration, or established cardiovascular disease28, 37.  An HbA1c target of 7% is commonly 

quoted in guidelines, a lower target might be appropriate for newly diagnosed younger patients with 

T2DM and no complications; a higher HbA1c might be more realistic for an elderly or frail patient 

with a long duration of disease and established complications. 

Biguanides 

The only biguanide available in clinical practice is metformin (dimethylbiguanide)38. Other  

biguanides (phenformin and buformin) were withdrawn due to risk of lactic acidosis39. Biguanides 

stem from a guanidine-rich herb Galega officinalis (French lilac) that was used in traditional 

medicine in Europe38, 40 . Metformin was introduced in Europe in 1957 and the USA in 1995, and has 

since become the most prescribed anti-diabetes agent worldwide38, 40. 

Mechanism of action 

Metformin enters cells mainly via the organic cation transporter-1 (OCT-1) and exerts multiple 

insulin-dependent and independent actions that vary with the level of drug exposure and the control 

of nutrient metabolism within different tissues (Figure 2)29, 38, 41-43. The gut is exposed to high 

concentrations of metformin43, which interrupt the respiratory chain at complex I and increase 

glucose utilisation, anaerobic glycolysis and lactate production:  the lactate can be partly converted 

back to glucose in the liver44. Increased lactate-glucose turnover contributes to futile cycling and 

increases energy dissipation, which might assist in the weight neutrality observed in metformin 



treated patients29, 43. In the liver, metformin increases insulin signalling, reduces glucagon action, 

and reduces gluconeogenesis and glycogenolysis29. 29Metformin can inhibit the mitochondrial redox 

shuttle enzyme glycerophosphate dehydrogenase, altering hepatocellular redox state.  This is 

associated with a reduced ATP:AMP ratio, activation of AMP kinase (AMPK) and reduced conversion 

of lactate and glycerol to glucose, decreasing hepatic gluconeogenesis45.  .  In addition, metformin 

favours the utilisation of glucose relative to fatty acids as a cellular source of energy in the liver38.  In 

muscle, metformin increases insulin-mediated glucose uptake  via glucose transporter-4 (GLUT4)29. 

Because delayed release formulations of metformin have achieved similar efficacy at lower doses 

than ‘regular’ formulations, it appears  that  the gut is a major site of metformin action at 

therapeutic doses46. Metformin can increase GLP-1 levels, even in the absence of an oral glucose 

load and in patients with and without T2DM47-51. The mechanisms are not fully elucidated but could 

include inhibition of sodium-dependent bile acid transporters which increase the availability of ileal 

bile acids to activate the G-protein-coupled bile acid receptor TGR5 on L-cells. Metformin has also 

been reported to reduce the activity of DPP-4, and increase GLP-1 secretion via muscarinic (M3) and 

gastrin-releasing peptide receptor-dependent pathways47-52. Metformin may also increase the 

expression of GLP-1 receptors on pancreatic β cells, mediated by peroxisome proliferator-activated 

receptor α (PPARα)50. The impact of metformin on GLP-1 might contribute to its weight neutral 

effect and   reduction in hepatic glucose output by inhibiting glucagon secretion47-49.  Metformin  

also appears to alter the circadian control of  liver and muscle glucose metabolism43.Metformin 

induced AMPK-activation results in phosphorylation of casein kinase I which leads to the 

degradation of the circadian clock component, mPer2 which increases the expression of CLOCK and 

BMAL1 (circadian genes) and causes phase advance in the circadian rhythm in rodents and in vitro 

studies53, 54.  A recent study in mice showed that while metformin causes phase advance in the liver, 

it causes phase delay in the muscle54, and the effects of metformin on circadian rhythm are blocked 

in AMPK knock out mice53. 

Pharmacokinetics 

Metformin has an oral bioavailability of 40 to 60%, and a plasma half-life (t1/2) of 4-9 hours. It is 

eliminated unchanged in the urine mostly via tubular secretion rather than glomerular filtration29, 

55.29, 55. 

Pharmacodynamics 

Metformin is widely used as first-line pharmacotherapy in patients with T2DM, because of its 

efficacy, long term safety record, low risk of hypoglycaemia, weight neutrality, and favourable 

impact on vascular disease37. It typically reduces fasting plasma glucose (FPG) by 2-4 mmol/L and 



HbA1c by 1-2% largely independent of age, weight and diabetes duration as long as some residual β-

cell function remains29, 40.  In  the 10 year follow up data from the United Kingdom Prospective 

Diabetes Study (UKPDS), patients who received metformin  had  significant risk reductions for any 

diabetes-related end-point of  21% (P=0.01), diabetes-related death of 30% (P=0.01), and  

myocardial infarction (MI) of 33% (P=0.005) compared with overweight patients in the conventional-

therapy group24.29, 56. Metformin may also be associated with reduced cancer risk in patients with 

T2DM, particularly prostate, pancreas and breast29, 43. 

Due to the progressive nature of T2DM, the addition of other differently acting glucose lowering 

treatments (including insulin) might be required15, 37, 57.Hence, there are many fixed dose 

combinations of drugs that include metformin. 

Safety and adverse events 

The main side effect of metformin treatment is abdominal discomfort and other gastrointestinal 

adverse effects, including diarrhoea38. 38. Symptoms may remit if the dose is reduced, but around 

10% of patients cannot tolerate the drug at any dose38 possibly associated with variants of OCT-1 

leading to an increased metformin concentration in the intestine58. Concomitant use of drugs that 

inhibit OCT-1 activity (such as tricyclic antidepressants, citalopram, proton pump inhibitors, 

verapamil, diltiazem, doxazosin, spironolactone, clopidogrel, rosiglitazone, quinine, tramado, and 

codeine amongst others) (OR=1.63, 95% CI 1.22-2.17, p=0.001) or the presence two reduced-

function OCT-1 alleles compared to carriage of one or no deficient allele (OR=2.41, 95% CI 1.48-3.93, 

p< 0.001) increased the risk of metformin intolerance (defined as patients who stopped metformin 

within the first 6 months of treatment)58. 

Metformin is contraindicated in patients with advanced chronic kidney disease, significant liver 

disease and conditions that might predispose to hypoxia or reduced tissue perfusion. However, 

observational and database  studies indicate that advantage can  be taken of the broad therapeutic 

index with metformin39, 59, 60 and careful attention to dose has enabled its use even  in patients with 

cardiovascular disease (including mild to moderate heart failure39, 61and chronic obstructive 

pulmonary disease62). However it is important to adjust the dose and monitor renal function to 

ensure that it can be adequately eliminated, and it should be stopped if hypoxaemia occurs63, 64. 

The UKPDS noted that compared with sulfonylureas and insulin in obese patients with newly 

diagnosed T2DM, metformin use was associated with significantly reduced MI, coronary deaths, and 

all-cause mortality by 39, 50, and 36%, respectively65, 66.The 10-year follow up of the UKPDS showed 

that the reduction in MI and death persisted24. Database analyses have consistently provided  

corroborating evidence66.  However, increased use of statins and renal protective medications in 



recent years makes it difficult to assess the current impact of metformin on cardiovascular disease66; 

several RCTs are ongoing to assess this66. 

Sulfonylureas 

Sulfonylureas were developed as variants of sulfonamides after the latter were reported to cause 

hypoglycaemia38, 67. They are classified into first generation (eg tolbutamide, chlorpropamide) and 

second generation ( eg glibenclamide (glyburide), gliclazide, glipizide and glimepiride)38, the latter 

having greater potency enabling use at lower doses. 

Mechanism of action 

Sulfonylureas act directly on the pancreatic β-cells by binding to the cytosolic face of the 

sulfonylurea receptor SUR1 which is part of the Kir6.2 (K-ATP) potassium efflux channel ,(Figure 3)38, 

68. In vitro studies show that persistent exposure to sulfonylureas for several days can desensitise the 

β-cells and reduce the insulin secretory response. However,  studies in patients with T2DM have 

shown that a 25% increase in 24 hour insulin secretion with glibeclamide is maintained for 6-10 

weeks,  but efficacy usually declines after 6-12 months of sulfonylurea therapy during clinical trials69.  

 

Pharmacokinetics 

Sulfonylureas vary considerably in their pharmacokinetic properties (Table 2)38, 69-71. They have high 

bioavailability and reach peak plasma concentrations  within 1.5-4 hours69. They are metabolized in 

the liver to varying extents to a range of active and inactive metabolites that are eliminated along 

with unchanged drug via the bile and urine (Table 2); hence caution is needed in patients with 

hepatic and / or renal impairment38. Half-lives are <10h for most members of the class, but extend to 

>24h with chlorpropamide. Therapeutic  effects are much longer than the half-lives where active 

metabolites are formed 69.. In general first generation sulphonylureas should be avoided in patients 

with chronic kidney disease (CKD) stages 3, 4 and dialysis. Gliclazide and glipizide can be used in 

patients with CKD and/or dialysis without extensive dose adjustment72-74. Glimepiride can be used in 

patients with CKD but not dialysis but with low dose initiation and careful titration72, 74. 

Sulphonylureas are highly bound to plasma proteins (>90%) which can lead to interactions with 

other protein-bound drugs such as salicylates, sulfonamides and warfarin38, 69.  

Some medications potentiate the glucose lowering effects of sulfonylureas  by either reducing  their 

hepatic metabolism (e.g. some antifungals and MAOIs), displacing sulfonylureas from plasma protein 

binding (e.g. coumarins, NSAIDs, sulfonamides), decreasing excretion (e.g. probenecid) or by 



antagonising their mechanism of action (e.g. diazoxide and other K-ATP channel openers)38.  Drugs 

that induce sulfonylurea metabolism (e.g. rifampicin) reduce the glucose lowering effects38. 

Altered formulations of some sulfonylureas enable quicker onset of action (e.g. micronized 

glibenclamide in the USA) or a longer action (e.g. extended release glipizide and gliclazide modified 

release) but maintain similar glucose lowering efficacy38, 75-77.  

Pharmacodynamics 

As monotherapy, sulfonylureas lower FPG by 2–4 mmol/L and HbA1c by 1–2%29, 38, 69, 71. However, the 

failure rates of sulfonylureas as monotherapy are greater than those of metformin or 

rosiglitazone15.. Sulfonylureas can be used as first-line treatment in patients intolerant to metformin 

or can be used in combination with most other glucose lowering medications except meglitinides 

which have a similar mechanism of action29, 38. In patients with a greater reserve of β-cell function 

sulfonylureas can produce a greater and longer response38. 

Safety and adverse events 

Hypoglycaemia and weight gain are the main side effects of sulfonylureas. Weight gain of 1–4 kg 

that stabilizes after about 6 months is common following drug initiation29. Weight gain is most likely 

related to the anabolic effect of increased insulin and reduced glycosuria28, 29, 78.  

Hypoglycaemia has been reported in 20-40% of patients receiving sulfonylureas and severe 

hypoglycaemia (requiring third party assistance) occurs in 1-7% of patients29, 38, 79 but this varies 

between studies depending on the population examined , the definition of hypoglycaemia and the 

type and pharmacokinetics of the sulphonylurea75. In a study from six UK secondary care centres, 

self-reported hypoglycaemia prevalence was 39%(95% CI 30 to 49%) which was similar to the 

prevalence of self-reported hypoglycaemia in patients withT2DM who were insulin treated for less 

than 2 years79. The prevalence of self-reported severe hypoglycaemia was 7% (3 to 13%)79. 

Continuous glucose monitoring (CGM) showed that 22% (95%CI 15 to 31%) had at least one episode 

of interstitial glucose< 2.2 mmol/L which was also similar to patients with T2DM using insulin for < 2 

years79.  The study confirmed that longer acting sulfonylureas with active metabolites are more likely 

to cause hypoglycaemia29, 38, and that older people, those living alone and those with renal or liver 

impairment require extreme caution with sulfonylureas as do car drivers29, 38. Education and glucose 

self-monitoring are essential in patients receiving sulfonylureas; an RCT in patients receiving 

gliclazide modified release showed that self-monitoring of blood glucose reduced the risk of 

symptomatic hypoglycaemia and increased HbA1c reductions compared to no monitoring80.  

.  



The cardiovascular safety of sulfonylureas is still controversial. In the 1970s the University Group 

Diabetes Program raised concerns regarding increased cardiovascular disease risk with tolbutamide81 

and since then many database studies, mostly retrospective, have suggested that sulfonylureas 

(particularly glibenclamide) are associated with less benefit than metformin against cardiovascular 

disease in patients with T2DM66. However, RCTs such as UKPDS, ADVANCE and ACCORD did not 

show an increase in CVD mortality or morbidity in sulfonylurea-treated patients66. The ongoing 

CAROLINA study comparing linaglitpin to glimepiride might help address some of the cardiovascular 

safety issues. 

Meglitinides 

The two main meglitinides (or glinides) are nateglinide and repaglinide.  The class takes its name 

from the meglitinide moiety of glibenclamide which exerts an insulin releasing effect independently 

of the sulfonyl moiety27, 29, 82.  

Mechanism of action 

Meglitinides bind to the benzamido site on the SUR1 on β-cells, which is separate from the sulfonyl 

binding site but results in a similar effect on the Kir6.2 channels (Figure 3)38. However, the more 

rapid and shorter duration of action of meglitinides suits use as prandial glucose lowering agents 38. 

Pharmacokinetics 

Repaglinide is almost completely absorbed with peak plasma concentrations after about 1 hour.  It is 

highly protein bound, quickly metabolized in the liver, mostly by CYP3A4 to inactive metabolites, 

which are mostly excreted in the bile.  The plasma half-life of ~1h 38, 83, 84 making it suitable for use in 

patients with poor renal function.  Taken about 15 minutes before a meal, repaglinide produces a 

prompt insulin response which lasts about 4-6 hours38. Bioavailability is unaffected by food.   Drugs 

that inhibit CYP3A4 (eg ketoconazole, anti-bacterial agents, steroids and cyclosporine) may increase 

repaglinide concentrations, while drugs that induce CYP3A4 (eg rifampicin, carbamazepine, and 

barbiturates) may accelerate its metabolism84, 85. 

Nateglinide has a slightly faster onset and shorter duration of action (3-5 hours), is highly protein 

bound, metabolised in liver by CYP3A4 (same interactions as repaglinide) and mostly excreted in the 

urine38, 84. 

Pharmacodynamics 

Repaglinide (0.5–4 mg) or nateglinide (60–180 mg) taken before meals produce dose-dependent 

increases in insulin concentrations and reduce post-prandial and fasting hyperglycemia38. 



Meglitinides are usually used in combination with metformin, a thiazolidinedione or insulin, 

although they can be used as monotherapy.  RCTs have shown that HbA1c reductions are similar or 

slightly less than observed with sulfonylureas when used as monotherapy or as add-on to metformin 

(an additional 0.5–1.5%)38, 84. Repaglinide can be used effectively in conjunction with basal and 

biphasic insulins86, 87.  In a 12-month RCT, non-obese patients with T2D for 10 years were 

randomised (n=102) to either repaglinide or metformin added to biphasic insulin aspart 30/70 which 

was titrated to achieve HbA1c < 6.5%. At the end of treatment, HbA1c reductions were similar in 

both treatment groups (baseline vs. study-end HbA1c: 8.15±1.32 vs. 6.72±0.66% and 8.07±1.49% vs. 

6.90±0.68% for the metformin and repaglinide respectively; P=0.2 for between groups difference)87. 

In a head-to-head RCT, in which 150 drug-naïve patients were randomised to either  repaglinide (0.5 

mg/meal, maximum dose 4 mg/meal) or nateglinide (60 mg/meal, maximum dose 120 mg/meal) for 

16 weeks, HbA1c reductions from an average 8.9% at baseline were greater for repaglinide than 

nateglinide (-1.57 vs. -1.04%; P = 0.002)88.FPG reductions were also greater with repaglinide vs. 

nateglinide (-57 vs. -18 mg/dL; P < 0.001)88. 

Meglitinides are suited to patients with irregular meal patterns or older patients at increased risk of 

hypoglycaemia38. 

Safety and adverse events 

Studies with repaglinide and nateglinide report variable rates of hypoglycaemia – similar to   

sulphonylureas – and generally less weight gain84, 90-94. In the  head-to-head RCT described above 

hypoglycaemia (blood glucose <50 mg/dl) was more common in repaglindide treated patients 

compared to nateglinide (7% vs. 0%)88. The weight gain was also slightly greater in the repaglinide 

group (1.8 vs. 0.7 kg)88. When added to biphasic insulin and compared to metformin repaglinide 

resulted in similar hypoglycaemia but the weight gain was less with metformin (difference in mean 

body weight -2.51 kg, 95% CI -4.07 to -0.95)87. 

Meglitinides can bind to SUR2a/b which are expressed by cardiovascular tissues84, 95.. In the large 

RCT , NAVIGATOR, nateglinide did not alter  cardiovascular outcomes in people with  impaired 

glucose tolerance with either cardiovascular disease (CVD) or at increased risk of CVD96. Repaglinide 

was not associated with increased CVD or an adverse cardiovascular risk profile in the small studies 

to date66, 84, 97. 



α-Glucosidase inhibitors (AGIs) 

Acarbose was the first AGI to be introduced in early 1990s; subsequently, miglitol and voglibose 

were introduced in some countries.  The class is widely used amongst Asian populations with a diet 

in which complex carbohydrate predominates38.  

Mechanism of action 

AGIs competitively inhibit α-glucosidase enzymes in the brush border of enterocytes lining the 

intestinal villi, preventing the enzymes from cleaving disaccharides and oligosaccharides into 

monosaccharides38, 98. This delays carbohydrate digestion and defers absorption distally along the 

intestinal tract, which reduces blood glucose excursions and lowers prandial insulin levels38.  Passing  

more glucose further along the ileum can  increase GLP-1  and reduce GIP secretion99.  100. Different 

AGIs have different affinities for the various α-glucosidase enzymes which result in different activity 

profiles (e.g. acarbose has greatest affinity for glycoamylase whereas miglitol is a stronger inhibitor 

of sucrase)38.  

Pharmacokinetics 

Acarbose is degraded by amylases and bacteria in the small intestine; less than 2% of the unchanged 

drug is absorbed along with some of the intestinal degradation products. Absorbed material is 

mostly eliminated in the urine within 24 hours38. Miglitol is almost completely absorbed and 

eliminated unchanged in the urine38. 

Pharmacodynamics 

Typical HbA1c reductions are about 0.5%, mostly through reductions in postprandial glycaemia, and 

depend upon the amount of complex carbohydrate in the diet29. In a non-inferiority RCT of Chinese 

patients (n=784) with newly diagnosed T2DM and mean HbA1c of 7.5%, acarbose resulted in HbA1c 

reductions similar to metformin (-1.1%, within groups difference 0·01%, 95% CI -0·12 to 0·14%)101. 

However, tolbutamide resulted in greater HbA1c reductions compared to acarbose in newly 

diagnosed drug-naïve patients with T2DM (n=96, mean baseline HbA1c approximately 8%) (-1.1% vs. 

1.8%;mean difference 0.6%, 95% CI 0.2 to 1.0)102. Tolbutamide had a greater effect on FPG than 

acarbose while the impact on PPG was similar102. 

Safety and adverse events 

Gastrointestinal side effects of AGIs (flatulence, abdominal discomfort, diarrhoea) are commonly 

encountered and these can lead to treatment withdrawal. Hypoglycaemia is uncommon: AGIs do not 

cause weight gain and there are no clinically significant drug interactions. 



The  STOP-NIDDM RCT noted that acarbose reduced the risk of developing T2DM, delayed the onset 

of hypertension and reduced macrovascular events by 49% compared to placebo; but the total 

number of events was too small (n=47) to draw firm conclusions66, 103, 104.  A large RCT assessing the 

impact of acarbose on cardiovascular outcomes is ongoing105.  

Thiazolidinediones (TZDs) 

Two thiazolidinediones, pioglitazone and rosiglitazone, have varying availability: troglitazone, 

introduced in 1997, was withdrawn soon after due to idiosyncratic hepatotoxicity 29.  Rosiglitazone 

and pioglitazone were introduced in 1999: rosiglitazone was discontinued in Europe and its use was 

restricted in the USA in 2008 after reports of increased cardiovascular risk, and pioglitazone was 

discontinued in 2011 in some European countries pending enquires into a possible increased risk of 

bladder cancer.  

Mode of action 

TZDs are agonists of the peroxisome proliferator-activated receptor-gamma (PPAR-γ) which is a 

nuclear receptor highly expressed in adipose tissue, and to a lesser extent in muscle, liver, β-cells, 

vascular endothelium, and macrophages38, 106. PPAR-γ activation alters gene expression to promote  

adipogenesis, insulin sensitivity and tissue glucose uptake, reduce inflammation and alter energy 

balance (Figure 4)106, 107in a tissue-specific manner (Table 3).  PPAR-γ activation  reduces hepatic 

gluconeogenesis, modifies the blood lipid profile and possibly improves β-cell viability106, 107. 

Differentiation of pre-adipocytes into new small insulin sensitive adipocytes by PPAR-γ activation 

reduces circulating FFA which reduces ectopic lipid accumulation in skeletal muscle and liver and 

rebalances the Randle (glucose-fatty acid) cycle in favour of glucose utilization by restricting FFA 

availability as an energy source for hepatic gluconeogenesis29. 

. 

Pharmacokinetics 

TZDs reach peak plasma levels within 1-2 hours  38. They are almost completely bound to plasma 

proteins, but their concentrations are not sufficient to interfere with other protein-bound drugs38. 

Pioglitazone is metabolised by CYP2C8 and CYP3A4 to weakly active metabolites that are eliminated 

via the bile whereas rosiglitazone is metabolised by CYP2C9 and CYP2C8 to inactive metabolites and 

excreted via the urine38, 108. Rifampicin significantly decreases while gemfibrozil increases 

concentrations of rosiglitazone and pioglitazone 108.   



Pharmacodynamics 

Maximal doses of TZDs have reduced HbA1c by 0.7-1.6% in RCTs when used as monotherapy or as 

add-on to metformin, sulfonylureas or insulin 106, 109. 106.In a RCT, patients with T2DM receiving 

metformin (n=630, mean age approximately 56 years, mean diabetes duration about 5.5 years, 

baseline mean HbA1c 8.5-8.7%) were randomised to either pioglitazone or gliclazide as add-on 

treatment. After 2 years the changes in HbA1c were similar in the pioglitazone and gliclazide arms 

(0.89% and 0.77% with pioglitazone and gliclazide, respectively, p= 0.2 for between groups 

difference); while pioglitazone resulted in greater reductions in FPG (1.8 vs. 1.1 mmol/l, p <0.001)110. 

In another RCT, patients with T2DM receiving a sluphonylurea (n=639, mean age approximately 60 

years, mean diabetes duration about 7 years, baseline mean HbA1c 8.8%) were randomised to either 

pioglitazone or metformin as add-on treatment.  After 2  years the changes in HbA1c were similar in 

the pioglitazone and metformin arms (1.03% vs. 1.16%with pioglitazone and gliclazide, respectively, 

p= 0.17 for between groups difference); the reductions in FPG (around 2 mmol/l) were also similar in 

pioglitazone and metformin treated patients110.  Onset of the glucose lowering effect of TZDs is 

gradual taking 2-3 months to reach maximum effect38. The ADOPT trial, in which 4360 patients with 

T2DM (mean age 56-58 years, baseline HbA1c 7.4%, mostly under 2 years duration) were 

randomised to glyburide, metformin or rosiglitazone, showed that rosiglitazone has a more 

prolonged impact on glycaemic control (HbA1c and FPG) as monotherapy compared to metformin or 

glyburide over 5 years 15. The glucose lowering efficacy of TZDs seems to vary considerably amongst 

individuals and there are no definite predictors to identify responders versus non-responders30. 

 

 

Safety and adverse events 

TZDs do not increase the risk of hypoglycaemia when used as monotherapy or in combination with 

metformin. Oedema (often identified through rapid weight gain) has been reported in 4-6% of 

patients receiving TZDs106  : increased fluid retention is due to increased renal sodium reabsorption 

through increased expression of sodium channel transporters by collecting duct epithelium29. TZDs 

are associated with weight gain of 2-3 kg for each 1% drop in HbA1c whether used as monotherapy 

or in combination with metformin or insulin 106. The weight gain is usually due to increased 

subcutaneous adipose tissue while visceral fat is either reduced or unaltered106, 111.  In the ADOPT 

trial the weight gain with rosiglitazone over 5 years was greater than with glibenclamide (glyburide) 

(treatment difference 2.5 , 95%CI 2-3.1 kg, p<0.001), while the increase in waist circumference was 

similar  (0.77, -0.21 to 1.76 cm, p=0.12)15. 



RCTs and observational studies  show that long term treatment with TZDs lowers bone density and 

doubles the risk of fractures in patients with T2DM, particularly in women112.  Similarly, in the 

ACCORD trial women who received TZDs had double the risk of non-spinal fracture compared to 

those not using TZDs; this risk was reduced after discontinuation of TZDs113. A recent meta-analysis 

of RCTs showed that TZDs reduced bone mass density at the lumbar spine (difference -1.1% (95% CI -

1.6, -0.7); p < 0.0001), total hip (-1.0% (-1.4, -0.6); p < 0.0001), forearm (-0.9% (-1.6, -0.3); p = 0.007) 

and femoral neck (-0.7% (-1.4, 0.0); p = 0.06) which was  not reversible after 1 year of stopping 

treatment in some studies114.  

The cardiovascular safety of TZDs was questioned by a controversial meta-analysis showing that 

rosiglitazone increased adverse cardiovascular outcomes, and this prompted withdrawal in Europe 

and restricted use in the USA66, 115. However, when the FDA re-examined the data from the RECORD 

study no significant increase in cardiovascular risk was found66, 116.   

Pioglitazone is a ligand for PPARα through which it appears to reduce several  lipid cardiovascular 

risk factors such as increasing plasma HDL-cholesterol  reducing plasma triglyceride reducing small 

dense LDL-cholesterol particles and increasing larger, more buoyant particles.  TZDs can also reduce 

BP and improve endothelial function ,66 but rosiglitazone increases plasma LDL-cholesterol and 

triglyceride 66.   

 

In the PROACTIVE trial, pioglitazone was associated with  a numerical but non-significant reduction 

of  the composite outcome of all-cause mortality, non-fatal MI, stroke, acute coronary syndrome, 

endovascular or surgical intervention in the coronary or leg arteries, and amputation above the 

ankle (HR 0·90, 95% CI: 0·80–1·02, p=0·095).  However, pioglitazone significantly lowered the 

secondary end-point of composite of all-cause mortality, non-fatal MI, and stroke (HR 0·84, 95%CI: 

0·72–0·98, p=0·027)33. In addition, pioglitazone reduced the risk of subsequent MI and recurrent 

stroke by 16% and 47% respectively66, 117, 118. Nonetheless, the risk of heart failure was higher in the 

pioglitazone group in the PROACTIVE trial, although this was not associated with increased 

mortality66. 

However, both rosiglitazone and pioglitazone can cause congestive heart failure in patients who 

already have diastolic dysfunction due to the propensity for  oedema66:    Effects of rosiglitazone on 

coronary artery disease are uncertain, but pioglitazone may reduce coronary disease66, 119-123.  



Dipeptidyl peptidase-4 (DPP-4) inhibitors 

First introduced  in 2007 the currently available DPP-4 inhibitors (sitagliptin, vildagliptin, saxagliptin, 

linagliptin and alogliptin)124are licensed as monotherapy, dual therapy, triple therapy and in 

combination with insulin but there are some minor variations in licensing between agents. In 

addition, once weekly DPP-4 inhibitors (omarigliptin and trelagliptin) are licensed in Japan125, 126. 

Mechanism of action 

By inhibiting the enzyme DPP4, DPP-4 inhibitors increase circulating incretin hormones, notably 

glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The incretin 

effect refers to an ability of intestinal factors to enhance nutrient-induced insulin responses during 

feeding by 50–70% in healthy individuals127, 128, but this effect is much diminished in T2DM.  GIP is 

secreted by K-cells in the duodenum and jejunum in response to ingestion of carbohydrates and 

lipids129-131. It also reduces gastric acid secretion, plays a role in adipogenesis and possibly β-cell 

proliferation129, 131-134. GLP-1 is secreted from L-cells in the distal ileum and colon129, 131 and accounts 

for most of the incretin effect 129, 135 including increased insulin biosynthesis136, 137.  Additionally GLP-

1 reduces glucagon secretion and has several extra-pancreatic actions that enhance satiety and 

delay gastric emptying (Figure 5)128, 135, 138-140. 

GIP and GLP-1 are rapidly degraded by DPP-4129 which cleaves the N-terminal dipeptide when there 

is an alanine (as with the incretins) or proline at position N2 131. DPP-4 is free in the circulation and 

also attached to endothelial cells131, 141 and is widely expressed in human tissues including in the  

intestine and portal system131. The majority of GLP-1 and GIP is therefore inactivated almost 

immediately following secretion which accounts for a half-life of < 2 min and 5-7 minutes 

respectively129, 131, 142, 143.  DPP-4 inhibition results in a 2-3 fold increase in post meal active GLP-1 

levels144, 145.  Unlike GLP-1 receptor agonists (GLP-1 RAs), which are equivalent to a >10 fold increase 

in GLP-1,  DPP-4 inhibitors do not delay gastric emptying or increase satiety and weight loss but 

avoid initial nausea/vomiting146, 147. 

Pharmacokinetics 

The pharmacokinetics of currently available DPP-4 inhibitors are summarised in Table 4124, 148-152. 

They  produce 77-99% inhibition of DPP-4 activity and are appropriate for once daily dosing except 

vildagliptin (twice daily), and omarigliptin and trelagliptin (once weekly).  They are all predominantly 

excreted in the urine except linagliptin; hence linagliptin does not require dose adjustment in 

patients with chronic kidney disease.  



DPP-4 inhibitors show little or no interactions with other glucose-lowering agents or other drugs 

commonly used in patients with T2DM124, 153,  possibly because DPP-4 inhibitors are neither inducers 

nor inhibitors of CYP isoforms and are not significantly bound to plasma proteins 153.  However 

saxagliptin, is metabolized to an active metabolite by CYP3A4/5124, 153. 

Pharmacodynamics 

On average DPP-4 inhibitors reduce postprandial glucose (PPG) excursions by about 3 mmol/L and 

FPG by about 1–1.5 mmol/L29, 124.  A recent meta-analysis assessed the efficacy of DPP-4 inhibitors as 

monotherapy or as add-on therapy to other oral agents154. The meta-analysis included placebo- or 

active- controlled RCTs of DPP-4 inhibitors (n=98 trials, 24163 patients) of 12-54 weeks duration, and 

with at least 30 patients in each treatment arm. The mean ages of the participants in the studies 

included in the meta-analysis were 5-62 years (except two studies with a mean age 72-75 years)154. 

88 trials of the 98 included were double blinded while the remaining 10 were open label design. The 

results showed that DPP-4 inhibitors reduce HbA1c by −0.77% (95% CI −0.82 to −0.72%) from an 

average baseline of 8.05%154. In RCTs with a duration of 52-54 weeks (n=18) DPP-4 inhibitors 

resulted in HbA1c reductions of −0.84%(95%CI −0.99 to −0.68, p=<0.0001); while in RCTs of 12-18 

weeks (n-26) the HbA1c reduction was −0.68 (95%CI −0.75 −0.61, p<0.0001)154.The HbA1c reductions 

were largely similar across the class but direct head-to-head trials are limited.  In this meta-analysis 

the HbA1c reductions based on the DPP-4 inhibitor used were as follows: vildagliptin 50 mg (n=26, 

age 56.3 years, baseline HbA1c 8.06%) −0.88%(95%CI −1.00 to −0.75, p=<0.0001); Sitagliptin 100 mg 

(n=37, age 55.2 years, baseline HbA1c 8.05%) −0.79%(95%CI −0.87 to −0.71, p<0.0001); Saxagliptin 5 

mg (n=13, age 55.4 years, baseline HbA1c 8.01%) −0.70%(95%CI −0.79 to −0.62, p<0.0001); 

Linagliptin 5 mg (n=13, age 59.0 years, baseline HbA1c 8.05%) −0.55% (95%CI −0.65 to −0.45, 

p<0.0001);Alogliptin 25 mg (n=11, age 55.2 years,baseline HbA1c 8.14%) −0.76% (95%CI −0.86 to 

−0.66, p<0.0001)154..The reductions in HbA1c were greater amongst patients with higher baseline 

HbA1c (> 9.0%)154.For RCTs with basal HbA1c <7.5% (n=8, age= 57.4 years, baseline HbA1c 7.32%) 

HbA1c reduction was −0.63% (95%CI −0.78 to −0.48, p<0.0001); for basal HbA1c 7.5–8.0% (n=28, age 

57.6 years, baseline HbA1c 7.82%) −0.70%(95%CI −0.76 to −0.63, p<0.0001); basal HbA1c 8.0–8.5% 

(n=34, age 55.9 years, baseline HbA1c 8.15%) −0.72% (95% CI −0.79 to −0.64, p<0.0001); basal 

HbA1c >9.0% (n=30, age 54.2 years, baseline HbA1c 8.63%) −0.93% (95%CI −1.02 to −0.84, 

p<0.0001)154.. 

Another meta-analysis (27 reports of 19 studies including 7136 patients) showed that DPP-4 

inhibitors were associated with a smaller decline in HbA1c compared with  metformin when used as 

monotherapy (weighted mean difference 0.20%, 95% CI 0.08 to 0.32) and GLP-1 agonists (weighted 

mean difference 1.82%, 95% CI 1.50 to 2.21) and sulphonylureas (weighted mean difference 0.07%, 



95% CI 0.03 to 0.11) when used as add-on to metformin155. In addition, DPP-4 inhibitors were similar 

to pioglitazone in reducing HbA1c when used as add-on to metformin (weighted mean difference 

0.09%, 95%CI −0.07 to 0.24 )155. This meta-analysis included RCTs in which four DPP-4 inhibitors 

(vildagliptin, sitagliptin, saxagliptin, linagliptin) were compared to metformin monotherapy or to 

sulphonylurea, pioglitazone, GLP-1 receptor agonist or basal insulin as add-on to metformin155. For 

studies comparing DPP-4 inhibitors to metformin monotherapy the trials duration was 24-206 

weeks, and the participants had a mean diabetes duration of 1-4.4 years and mean HbA1c of 7.2-

9.6%. For add-on to trials the mean diabetes duration for study participants was 5-7.3 years and 

mean HbA1c of 7.3-8.5%155. 

The comparison of the efficacy of DPP-4 inhibitors to sulphonylureas is complicated by multiple 

factors including the study-duration, renal function, and the sulphonylurea used as the active 

comparator156. In a meta-analysis of 12 RCTs of at least 18 weeks duration that compared 

sulphonylureas to DPP-4 inhibitors head-to-head, the mean changes from baseline in HbA1c were 

modestly but significantly smaller with DPP-4 inhibitors compared with sulfonylureas (difference of 

mean changes in HbA1c for sulfonylureas-DPP-4 inhibitors: of 0.105 and 95% CI 0.103 to 0.107, 

p < 0.0001)156. However, several RCTs of 1-3 years duration showed that DPP-4 inhibitors and 

sulphonylureas resulted in similar HbA1c reductions151, 156-165. 

The glucose-lowering efficacy of DPP-4 inhibitors is greater in Asian patients with T2DM compared to 

other ethnic groups (between-group HbA1c difference was -0.26% (95% CI -0.36, -0.17, p < 0.001) 

and might be affected by genetic factors such as the TCF7L2 gene variant166, 167. A meta-analysis of 

RCTs of at least 76-weeks duration suggest that the impact of DPP-4 inhibitors was not durable and 

lessened during the second year of treatment168. 

Head to head comparisons of DPP-4 inhibitors 
Head-to-head trials comparing DPP-4 inhibitors are limited. One RCT that compared saxagliptin to 

sitagliptin as add-on treatment to metformin in 810 patients (age 58.4 years, diabetes duration 6.3 

years, baseline hbA1c 7.7%) showed that HbA1c reductions over 18 weeks were similar between 

both treatments (adjusted mean changes in HbA1c:  - 0.52 and - 0.62%; between-group difference 

0.09% (95% CI - 0.01 to 0.20%)169. However, sitagliptin resulted in a slightly greater reduction in FPG 

(− 0.60 mmol/L vs. − 0.90 mmol/L for saxagliptin vs. sitagliptin respectively; treatment difference 

0.30 mmol/L (95% CI, 0.08–0.53 mmol/L))169. 

In another RCT 148 patients with T2DM and eGFR < 30 ml/min/1,73m2 who were either drug naive 

or treated with any glucose-lowering agents were randomised to vildagliptin 50 mg or sitagliptin 

25 mg once daily170.Both treatments resulted in similar reductions in HbA1c over 24 weeks (adjusted 



mean change in HbA1c was −0.54% from a baseline of 7.52% with vildaglipƟn vs. −0.56% from a 

baseline of 7.80% with sitagliptin, p = 0.874). Vildagliptin lowered FPG by 0.47 ± 0.37 mmol/l while 

FPG increased in the sitagliptin group by 0.16 ± 0.43 mmol/l but the difference between groups was 

not statistically significant (p= 0.185)170. 

In a phase 3 non-inferiority RCT 243 T2DM patients inadequately controlled by diet and exercise 

were randomly assigned to receive trelagliptin (100 mg once weekly), alogliptin (25 mg daily), or 

placebo for 24 weeks171. Trelagliptin was non-inferior to alogliptin and resulted in similar reductions 

in HbA1c (-0·33% vs. -0.45% for trelagliptin and alogliptin respectively; least squares mean difference 

0·11% (95% CI -0·054 to 0·281)). Both trelagliptin and alogliptin significantly reduced mean HbA1c 

compared with placebo (p<0·0001)171. 

In another RCT, 412 patients with T2DM, drug naïve or on oral glucose lowering treatments, were 

randomised to omarigliptin 25mg weekly, sitagliptin 50mg daily and or placebo for 24 weeks172. At 

baseline, randomized patients had a mean HbA1c of 7.9, 8.0 and 8.1% in omariglitpin, sitagliptin and 

placebo respectively172. Omarigliptin resulted in HbA1c reductions of -0.66% (-0.76 to -0.57) which 

was singficantly greater than placebo (p< 0.001) and similar to sitagliptin (least squares mean change 

-0.02%, 95% CI -0.15 to 0.12) and met the pre-specified non-inferiority criterion172. 

Safety and adverse events 

DPP-4 inhibitors are generally well tolerated and the incidence of adverse events is similar to 

placebo and lower than other glucose lowering agents155, 173. The incidence of gastrointestinal 

symptoms is lower with DPP-4 inhibitors than metformin or a GLP-1 receptor agonist155. The risk of 

hypoglycaemia in DPP-4 treated patients is very low except when combined with sulfonylureas or 

insulin124, 155, 173.  

DPP-4 has many substrates other than incretins including bradykinin, enkephalins, neuropeptide Y, 

peptide YY1–36, gastrin releasing polypeptide, substance P, insulin-like growth factor I, vasostatin 1, 

the α chains of thyrotropin, luteinizing hormone, chorionic gonadotropin and several chemokines 

such as monocyte chemotactic protein 1 (MCP-1)174; however no adverse impacts have been 

observed in clinical trials29, 124, 149. In addition, DPP-4 is the CD26 T-cell activation antigen, but neither 

CD26 knockout mice nor the DPP-4-specific inhibitors used in animals or humans have shown any 

significant untoward immune-related effects29.  

Several meta-analyses and pooled analyses have shown  that DPP-4 inhibitors (individually and as a 

class) were associated with reductions in cardiovascular events66, 175. However, these studies  were 

retrospective and not specifically designed to examine the effect of DPP4 inhibitors on CVD 



incidence66. Three recent RCTs, SAVOR-TIMI, EXAMINE and TECOS confirmed that saxagliptin, 

alogliptin and sitagliptin respectively were not associated with increased risk of adverse 

cardiovascular outcomes66, 176-179. The populations studied in these trials were each slightly different.  

The SAVOR-TIMI study included patients with T2DM with a previous cardiovascular event or at 

increased risk of cardiovascular disease. EXAMINE included patients with T2DM and an acute MI or 

hospitalization for unstable angina in the prior 15–90 days. TECOS included patients with T2DM who 

were above 50 years old and had established cardiovascular disease. 

These studies were designed to look specifically at the effect of the DPP-4 inhibitors on 

cardiovascular safety so that patients in the placebo arm received other glucose-lowering therapies 

to minimise any differences in HbA1c between the two arms. In the SAVOR-TIMI study saxagliptin 

treatment was associated with a 3.5% incidence of hospitalization for heart failure vs. 2.8% in the 

placebo arm (P = 0.007), without an increase in mortality, and this increase was independent of 

baseline renal function although saxagliptin reduced microalbminuria66, 176, 177.  The heart failure 

effect was not observed in EXAMINE or TECOS and the reason for that finding in patients treated 

with saxagliptin remains unclear. An ongoing study (CAROLINA) is examining the impact of linagliptin 

vs. active comparator (glimepiride) rather than placebo on cardiovascular outcomes. 

The SAVOR-TIMI, EXAMINE and TECOS trials did not show statistically significant increased risk of 

pancreatitis or pancreatic cancer in patients using DPP-4 inhibitors 176-180; however, a meta-analysis 

of these three RCTs showed a statistically significant increased risk of acute pancreatitis in patients 

using DPP-4 inhibitors (OR 1.82, 95%CI 1.17, 2.82, p=0.008)181 

GLP-1 receptor agonists (GLP-1 RAs) 

Exenatide (twice-daily) was the first GLP-1 RA,  introduced in 2005. Since then two once-daily 

(liraglutide and lixisenatide) and three once-weekly (exenatide QW, albiglutide and dulaglutide) have 

become available to use in combination with oral glucose lowering agents and basal insulin (except 

Exenatide QW is not licenced to be used with basal insulin). Dulaglutide and albiglutide are also 

licenced as monotherapy in patients who are intolerant to metformin. 

Exenatide (synthetic exendin-4), a peptide originally isolated from saliva of the lizard Heloderma 

suspectum (Gila monster)129, 182,shares 53% homology with human GLP-1 and contains an Ala 8 – Gly 

substitution for resistance to degradation by DPP-4129, 183. Exenatide QW sustained release has 

embedded exenatide within biodegradable polymeric microspheres of poly D L lactic-co-glycolic 

acid184. Liraglutide is a true analogue of GLP-1 with a 16 carbon fatty acid chain attaching Lys 26 to 

albumin to mask the DPP-4 cleavage site185.  Albiglutide has two copies of GLP-1 in series, each with 



an Ala 8-Gly substitution and fused to albumin186. Lixisenatide is an exendin-4 analogue with six Lys 

residues added at the C-terminus to confer resistance to DPP-4187.  Dulaglutide has two copies of  a 

GLP-1 analogue (Gly8, Glu22, Gly36) covalently linked to an Fc fragment of human IgG4188. 

Mechanism of action 

GLP-1 RAs activate the GLP-1 receptor and hence mimic GLP-1 (Figure 3&5) contributing to 

reductions in fasting and post-prandial glycaemia and weight loss 189. However, the therapeutic 

concentrations  of the GLP-1 RAs are far higher than physiological GLP-1 levels, and while GLP-1 

deficiency has been described in  patients with T2DM this is not  a universal characteristic of the 

disease189.  

Pharmacokinetics 

The pharmacokinetics of GLP-1 RAs are summarised in Table 5. GLP-1 RAs are delivered by 

subcutaneous injection. Exenatide twice daily is rapidly absorbed190. T-max is about 2 h, half-life is 3-

4 h190 and elimination is mostly renal by glomerular filtration and proteolytic degradation191-193. 

Exenatide clearance is decreased by 36 and 84 % in patients with moderate and severe renal 

disease, requiring caution and discontinuation in moderate and severe renal disease respectively194.  

The once-weekly formulation reaches therapeutic levels within 2 weeks and maximum 

concentrations by 6 weeks195. Liraglutide half-life is 10-15 hours with maximum plasma 

concentrations at 9–12 h196-198. Lixisenatide has a half-life of 2–4 hours and peak concentrations at 1-

2 hours199and exerts its main effect on the meal immediately after injection. Albiglutide reaches 

peak concentrations by 3–5 days and the half-life is 6-7 days200. Dulaglutide achieves maximal 

plasma concentration by 12-72 h and steady-state by 2 weeks 201. The mean plasma half-life is ~ 4 

days201. GLP-1 RAs are not recommended in severe renal disease; they have limited drug interactions 

but can affect the rate and extent of availability of other medicines such as  acetaminophen 

(paracetamol) and statins due to the delay in gastric emptying (except exenatide QW in which 

delayed gastric emptying is minor)28, 202. 

Pharmacodynamics 

The efficacy of GLP-1 RAs was explored in large programmes of placebo-controlled and active 

comparator RCTs summarised in Tables6 and 7; including AMIGO (exenatide) Diabetes Management 

for Improving Glucose Outcomes); LEAD (Liraglutide Effect and Action in Diabetes);  DURATION 

(Diabetes therapy Utilisation: Researching changes in HbA1c weight and other factors Through 

Intervention with exenatide ONce-weekly); AWARD (Assessment of Weekly AdministRation of 

LY2189265 (dulaglutide) in Diabetes), GETGOAL for lixisenatide and HARMONY for albiglutide203-240. 



Impact on glycaemic measures 
Exenatide significantly reduced measures of glycaemic control when used as mono- or add-on 

therapy (Table 6)241-245. A meta-analysis of RCTs in which exenatide BD was used as add-on to 

existing metformin therapy for 16–30 weeks showed that exenatide BD lowered HbA1c by 0.8% 

from an average baseline of 8.1±0.6%246.The impact of exenatide BD on HbA1c reductions was 

greater in patients with baseline HbA1c > 9%241 and was maintained at 3 years242 and only 

deteriorated modestly through 6 years (http://www.glycosmedia.com/library/Bydureon.pdf)247, 248.  

Liraglutide improved glycaemic control in RCTs when used as monotherapy or add-on therapy (Table 

6)241, 243, 249, 250.  Compared to glimepiride 8 mg/daily, liraglutide 1.2-1.8 mg/d monotherapy resulted 

in greater reductions in HbA1c (baseline HbA1c average 8.3%)(-0.6%, -0.9% and -1.1% for 

glimepiride, liraglutide 1.2 and liraglutide 1.8 respectively; treatment difference: -0.31, 95% CI: -0.54 

to -0.08; p = 0.008 and -0.60, 95% CI: -0.83 to -0.38; p < 0.0001 for liraglutide 1.2 and 1.8mg 

respectively); and FPG (treatment difference −0.63, 95%CI : −1.17 to −0.09, p=0.02 and−0.99; 95% CI: 

−1.53 to −0.45, p < 0.001 for liraglutide 1.2 and 1.8 respectively) and PPG over 104 weeks249. In 

pooled patient data from 7 phase 3 RCTs from the liraglutide programme, 26 weeks of liraglutide 1.8 

mg HbA1c reductions were lower in patients with baseline HbA1c ≤7.5% (0.7%) vs. baseline HbA1c 

>9.0% (1.8%)251. 

Lixisenatide  significantly decreased HbA1c and PPG when used as mono- or add-on therapy211-216, 252-

259.  In a meta-analysis of RCTs Lixisenatide significantly reduced 2-h PPG from baseline (least square 

mean difference vs. placebo: -4.9 mmol/l, p < 0.001), glucose excursion (-4.5 mmol/l, p < 0.001) 

and postprandial glucagon (-19.0 ng/l, p < 0.001)258. Lixisenatide also reduced HbA1c and PPG but 

not FPG compared to placebo when added to basal insulin 259 

Exenatide QW (once-weekly) reduced HbA1c, FPG and PPG when used as mono- or add-on 

treatment 241, 243, 260, 261. Exenatide once-weekly monotherapy was non inferior to metformin, 

superior to sitagliptin and  similar to pioglitazone 241, 260. When added to metformin, exenatide QW 

was more effective than adding either sitagliptin or pioglitazone241, 261. When added to metformin +/- 

sulfonylurea, exenatide QW resulted in similar HbA1c reductions to insulin glargine which were 

maintained at 3 years223, 238, 241. Similarly, when compared to once-daily or twice-daily insulin detemir 

exenatideQW resulted in greater HbA1c reductions over 26 weeks241, 262.Extension of the DURATION-

1 trial with patients converted to exenatide QW noted HbA1c and FPG were maintained over 5 years 

follow-up263. However, it must be noted that in this study 40% (105/258) did not complete the study 

which is a potential source of bias.  Most of the loss of follow-up was due to withdrawal of consent 

and only 8 patients lost follow up because of “loss of glucose control”. The authors indicated that 

there were no differences in baseline characteristics between those who completed and did not 



complete the study and the HbA1c reductions by 5 years were evident in the intent-to-treat analysis 

(-1.2%±0.1%) or the completers analysis (-1.6%±0.1%; baseline HbA1c 8.1%±0.9%). 

Albiglutide  improved glycaemic control when used as monotherapy or add-on therapy in phase 3 

studies 252, 264, 265. In a 104-week RCT, albiglutide provided a significantly greater reduction in HbA1c 

than placebo, sitagliptin and glimepiride when added to metformin, with similar results for FPG 

reductions228. When added to metformin and sulfonylurea, albiglutide did not meet the pre-

specified non-inferiority margin of 0.3% when compared to pioglitazone over 52 weeks225. 

When added to metformin (with or without sulfonylurea), albiglutide resulted in similar HbA1c 

reductions compared to insulin glargine over 52 weeks 226.  As an add on to insulin glargine, 

albiglutide was non-inferior to insulin lispro at 26 weeks but did not meet the non-inferiority margins 

at 52 weeks252, 266. 

Dulaglutide  0.75mg and 1.5mg weekly were more effective than  metformin and sitagliptin when 

used as mono- or as an add-on therapy to other oral glucose lowering treatments over 52 weeks234, 

236, 252.Dulaglutide  1.5 mg weekly was more effective and 0.75mg was non-inferior to insulin glargine 

when added to metformin and sulfonylureas over 52 weeks239. 

A meta-analysis of placebo controlled RCTs of at least 12 weeks in which information about ethnicity 

was available showed that the weighted mean difference of HbA1c with GLP-1 analogues was -1.16% 

(95% CI -1.48, -0.85 in the Asian-dominant studies (≥ 50% of study participants were Asian) and -

0.83% (95% CI -0.97, -0.70) in the non-Asian-dominant studies (between-group difference -0.32% 

(95% CI -0.64, -0.01; p = 0.04))267. 

Impact on weight 

GLP-1 RAs are associated with significant weight loss and reduction in waist circumstance but with 

much variation in individual responses and within-class differences (see the head-to-head section 

below) (Table 7)252, 268-271. When added to insulin, GLP-1 RAs resulted in significant mean weight loss 

of -3·22 kg (95%CI -4·90 to -1·54)269.  

Impact on BP 

Several meta-analyses and RCTs showed that GLP-1 RAs resulted in a  modest but significant systolic 

BP lowering effect (Table 7) 272-274. This impact on BP was independent of baseline BP and the impact 

of GLP-1 RA on HbA1c or weight272. Reductions in diastolic BP were also observed with exenatide 

twice-daily (-1.08mmHg, 95% CI: -1.78 to -0.33)273. 



Others effects 
GLP-1 RAs have modestly reduced  total cholesterol, LDL and triglycerides with no improvements in 

HDL levels when compared to placebo or active comparators275.  

Safety and adverse events 

GLP-1 RAs are generally well tolerated with nausea being the most common adverse event, which is 

usually transient resolving over 4-8 weeks and can be minimised by starting on a low dose followed 

by dose up-titration28, 29, 241, 252. The risk of hypoglycaemia in patients receiving GLP-1 RAs is low 

unless combined with insulin or sulfonylureas28, 29, 241, 252. Injection site reactions are common with 

some GLP-1 RAs such as exenatide QW and albiglutide (up to 17.6% for exenatide QW, up to 22% for 

albiglutide)252. The occurrence of antibodies is also common with GLP-1 RAs but these appear to be 

of little clinical significance and generally do not influence glycaemic control except very occasionally 

in patients with high titres who were receiving exenatide QW29, 195, 241, 252. 

The risk of pancreatitis and pancreatic cancer has attracted much attention but to date there is no 

definite causal link between GLP-1 RAs treatment and pancreatitis or indeed pancreatic cancer276. 

Several meta-analyses of randomised and non-randomised clinical trials and observational studies 

have shown no statistically significant increase of acute pancreatitis with GLP-1 RAs treatment in 

patients with T2DM277-279.  In addition, the latest published cardiovascular safety trials did not show a 

significant increase in pancreatitis with GLP-1 RAs.  The recommendation to avoid GLP-1 RA therapy 

in patients with a history of pancreatitis and discontinuation if pancreatitis develops is considered 

appropriate. Thyroid C- cell hyperplasia and medullary cell carcinoma were also raised as possible 

concerns in pre-clinical (rodent) studies; however clinical studies have not identified any significant 

problems 29, 241, 252. 

Pre-clinical studies showed that GLP1 RAs have cardioprotective effects in heart failure and following 

myocardial ischaemia. GLP-1 RAs can have a favourable impact on many cardiovascular risk factors 

such as weight loss, lowering BP, improving endothelial function, reducing inflammation, lowering 

PAI-1, reducing postprandial lipaemia and modest reductions in LDL66. Several small studies in 

patients with and without diabetes showed a beneficial impact of GLP-1 RAs on left ventricular 

function in patients with heart failure and on myocardial function and the myocardial salvage index 

following ischaemia66, 280. However, GLP-1 RAs often increase resting heart rate (approx. 3 

beats/minute), most likely by activating the GLP-1 receptor in the sinoatrial node 66. RCTs using 24-

hour ambulatory heart rate monitoring showed that dulaglutide 1.5 mg was associated with 

increased heart rate compared to placebo (least squares mean difference 2.8 bpm, 95%CI 1.5-4.2)281, 

while dulaglutide 0.75mg and exenatide were not associated with increased heart rate compared to 



placebo281, 282. Several large RCTs assessing the cardiovascular safety of liraglutide (LEADER), 

semaglutide (SUSTAIN 6), exenatide QW (EXSCEL) and dulaglutide (REWIND) are currently ongoing 66. 

The lixisenatide (ELIXA) trial reported in 2015 showing no adverse cardiovascular outcomes in 

patients with T2DM and established CVD who were treated with lixisenatide, and no increase in 

heart rate283. 

Head-to-Head comparisons of GLP-1 RAs: 

As several GLP-1 RAs are available with different chemical structures and formulations, the different 

pharmacokinetic and pharmacodynamic profiles seen in head-to-head trials may influence clinical 

decision making.  A summary of the designs and results of the head-to-head trials can be found in 

Tables 8 & 9206, 217, 220, 222, 232, 233, 240, 284-286. Overall liraglutide 1.8mg and dulaglutide 1.5mg appear to 

have the greatest impact on HbA1c and liraglutide 1.8mg and exenatide QW the largest impact on 

weight reduction. Albiglutide seems to have less impact on HbA1c and weight reductions but was 

associated with less gastrointestinal side effects. Once-weekly preparations are more associated 

with injection site reactions than once or twice daily agents.  

In general, longer-acting GLP-1 RAs show greater reductions in FPG but lesser impacts on PPG 

excursions than shorter-acting GLP-1 RAs287, 288. The differential impact on PPG is at least partly 

mediated by delayed gastric emptying, which is not subject to the tachyphylaxis with short-acting 

GLP-1 RAs, but can occur after treatment with long-acting GLP-1 RAs287. In addition, lixisenatide , in 

contrast to liraglutide, strongly suppresses post-prandial glucagon secretion287. Patient satisfaction 

was greater amongst those receiving exenatide QW or liraglutide than exenatide twice-daily284.   

GLP-1 RAs vs. Insulin 
In a meta-analysis of RCTs that compared GLP-1 RAs vs. basal insulin progressively titrated to achieve 

FPG targets in patients with T2DM, GLP-1 RAs resulted in greater reductions in HbA1c  (mean net 

change-0.14%, 95%CI -0.27, -0.02%; p = 0.03)  and weight (-4.40 kg, -5.23, -3.56 kg; p < 0.01) while 

insulin caused  greater reductions in FPG (1.18 mmol/l, 0.43, 1.93 mmol/l; p < 0.01)289. GLP-1 RAs 

were also associated with greater reductions in PPG compared to insulin289. Hypoglycaemia was 

reported less in the GLP-1 RA group (HR 0.45; 0.27, 0.76; p < 0.01) and GLP-1 RAs resulted in greater 

weight loss (−4.40 kg,95% CI−5.23, −3.56 kg; p < 0.01)289. Dulaglutide also resulted in greater 

reductions in HbA1c compared to insulin glargine when added to insulin lispro290  

Insulin-GLP-1 RA combination 

To simplify the co-administration of basal insulin and GLP-1 RAs, these two agents have been 

combined into a single injection, a fixed-ratio combination (IDegLira), which was launched in the UK 



in 2014 148. IDegLira combines 50 units of insulin degludec with 1.8 mg of liraglutide148. The 

combination is titrated  in the same way as insulin alone; thus, for every 1 unit of insulin injected, 

the individual also receives 0.036 mg liraglutide148. 

In a 26 week RCT of insulin-naïve patients HbA1c decreased by 1·9% ± 1·1% with IDegLira, compared 

with 1·4% ± 1·0% with insulin degludec, and 1·3% ± 1·1% with liraglutide291. The IDegLira group 

reported less nausea than the liraglutide group and less hypoglycaemia than the insulin degludec 

group291. These benefits were maintained at 52 weeks with HbA1c reductions of 1.84%, 1.40%, 

1.21% for IDegLira, insulin degludec and liraglutide respectively292. IDegLira (5.7 mmol/l) and 

degludec (6.0 mmol/l) had similar FPG by study-end but liraglutide had higher FPG (7.3 mmol/l)292. 

The improvements in glycaemic control were achieved with 37% less daily insulin dose of 

IDegLira than insulin degludec292. IDegLira was associated with a significantly greater decrease in 

body weight (estimated treatment difference, -2.80 kg, p < 0.0001) and a 37% lower rate of 

hypoglycaemia compared with insulin degludec292. When used in patients who were already on basal 

insulin, HbA1C decreased by 1.9% with IDegLira vs. 0.9% in the insulin degludec group (treatment 

difference -1.1%; 95% CI -1.3, -0.8; P < 0.0001). Mean weight reduction with IDegLira was 2.7 kg vs. 

no weight change with degludec, and hypoglycemia incidence was comparable (24% for IDegLira vs. 

25% for insulin degludec)293. 

Another fixed-ratio combination of lixisenatide and insulin glargine has completed phase 3 trials and 

has been submitted to the FDA 

(http://en.sanofi.com/NasdaQ_OMX/local/press_releases/sanofi_reports_positive_toplin_1951405_

14-09-2015!07_00_00.aspx)294 

SGLT-2 inhibitors 

Currently available sodium-glucose co-transporter-2 (SGLT-2) inhibitors in Europe and North America 

are dapagliflozin, canagliflozin and empagliflozin. They can be used as monotherapy when diet and 

exercise are inadequate, and when metformin is not tolerated: they can also be used an add-on to 

other glucose-lowering agents including insulin295.  Because their efficacy is dependent on the renal 

filtration of glucose, SGLT-2 inhibitors should not be initiated in patients with eGFR< 60 ml/min/1.73 

m2; however, in patients who are already on and tolerant of canagliflozin or empagliflozin these  can 

be continued in patients with eGFR down to 45 ml/min/1.73 m2296. 

Mechanism of action 

SGLTs are secondary active membrane symporters that transfer sodium down its concentration 

gradient, usually into the cell, in conjunction with the inward transfer of specific hexose sugars or 



other specific molecules against their concentration gradient297.  SGLTs in the intestine and kidneys 

transfer glucose across the luminal membrane into the enterocytes or ductal epithelial cells and 

glucose transporters (GLUTs) mediate passive transfer of glucose across basolateral membranes 

down its concentration gradient (Figure 6)295, 298, 299. 

The main SGLTs are SGLT-1 and SGLT-2 which are respectively responsible for intestinal glucose 

absorption and renal reabsorption of most of the filtered glucose297, 300.  SGLT-2 is a low affinity high 

capacity glucose transporter in the S1 segment of the proximal tubules which is suited to 

reabsorption of a high concentration of filtered glucose entering the tubules, whereas SGLT-1 (high 

affinity low capacity glucose transporter) is suited to reabsorption of the remaining lower glucose 

concentration in subsequent segments300-302.  

Competitively inhibiting SGLT-2 can eliminate 60-90 g glucose/ day303, but this amount can vary 

considerably according to renal function and the degree of hyperglycaemia295. The effects of SGLT-2 

inhibition are self-limiting as the efficacy decreases as the hyperglycaemia lessens (and less glucose 

is filtered). The effects of SGLT-2 inhibition are insulin-independent and hence the efficacy is not 

altered by declining β-cell function or insulin resistance29, 295. However, the presence of insulin is still 

needed to service other physiological requirements as SGLT-2 inhibition does not treat the 

underlying endocrinopathies that contribute to the pathogenesis of T2DM, except by reducing the 

effects of glucotoxicity29, 295.  SGLT-2 inhibition and the associated glucosuria result in mild diuresis 

and calorie loss enabling modest reductions in BP and weight29, 295.However, the weight loss caused 

by SGLT-2 inhibitors is less than expected from the degree of glucosuria, with patients typically 

losing one quarter to one third of the weight loss predicted by their glycosuria.  This is in part 

accounted for by an increase in calorie intake which correlated negatively with baseline BMI and 

positively with baseline eGFR 304. Hence, The calorie reduction anticipated with a combination of an 

SGLT-2 inhibitor and a GLP-1 RA (which should counter increased calorie intake) would be expected 

to achieve significant weight loss; indeed in the 95 patients who were taking a GLP-1 RA in the 

CANVAS trial, addition of canagliflozin 300mg resulted in significant weight loss compared to placebo 

(least squares mean % change in weight difference -3.2%, 95% -4.5 to -2.0) over 18 weeks305. 

Pharmacokinetics 

The pharmacokinetics of SGLT-2 inhibitors are summarised in Table 10295, 306-310. Empagliflozin is the 

most specific amongst the currently available SGLT-2 inhibitors. SGLT-2 inhibition by dapagliflozin 

(10 mg/d), canagliflozin (300mg/d) or empagliflozin (25mg/d) increases urinary glucose excretion 

similarly by 60-90 g/day295, 311, 312.  Available SGLT-2 inhibitors are metabolised by uridine 



diphosphate glucuronosyl transferases, thus avoiding interactions with drug metabolism through the 

P450 CYP pathways, and  no significant drug interactions are reported295, 313, 314. 

Pharmacodynamics 

Dapagliflozin: Compared to placebo, dapagliflozin 5-10mg / day in drug naive patients with T2DM 

reduced HbA1c by 0.8-0.9% with weight loss of 2.8-3.2 kg315.  A meta-analysis of RCTs of 12-104 

weeks duration showed that dapagliflozin (2.5-10 mg/d)  improved HbA1c, FPG and weight 

compared to placebo when used as an add on therapy to metformin, insulin, TZDs, sulfonylureas or 

metformin±sitagliptin by (mean difference between groups (95%CI))−0.52% (−0.60, to −0.45), 

−1.52mmol/l (−1.75 to −1.29) and −1.61 kg (−1.97 to −1.26) respecƟvely316.   However, the usual 

clinical dose of 10mg dose showed somewhat greater efficacy317. 

The reductions in HbA1c and FPG were largely similar across different background treatments but 

largest when dapagliflozin was added to a sulfonylurea -0.96% (-0.86 to -0.52) and -1.47 mmol/l (-

1.86 to -1.08)316. Changes in weight were similar regardless of the background treatment with the 

largest between group difference seen  when dapagliflozin was added to insulin -2.45 kg (-2.99 to -

1.92)316. Similar results were found when dapagliflozin was added to metformin and 

sulfonylureas318.When compared to glipizide in a 52 weeks RCT with 156 weeks extension, 

dapagliflozin resulted in lesser HbA1c reductions in the initial 18 weeks of the trial but the coefficient 

of failure over 104 weeks was lower with dapagliflozin (0.13%/year) than with glipizide (0.59%/year) 

(differences of -0.46%/year, 95% CI -0.60,-0.33; p = 0.0001)319. HbA1c reductions were also greater in 

dapagliflozin by week-104 (-0.18%, 95% CI -0.33, -0.03; p = 0.021)319. Dapagliflozin also resulted in 

sustained weight loss (difference -5.1 kg, 95% CI: -5.7,-4.4) and a drop in systolic BP (difference -3.9 

mmHg, 95% CI: -6.1,-1.7)319.  

Although the weight loss was modest, it was associated with  significant improvements in health-

related quality of life  over 102 weeks320. Dapagliflozin also resulted in increased glucagon secretion 

from as early as 1 hour after administration, reaching a peak after 240 minutes321.After 3 days of 

dapagliflozin treatment, the fasting plasma glucagon concentration was 32% higher than on day 1 

while there was no change in the placebo group321. How this apparent compensatory mechanism 

operates is unestablished but SGLT-2 expression has recently been noted in pancreatic α-cells322. 

Canagliflozin: In a meta-analysis of RCTs, canagliflozin reduced HbA1c  when used as monotherapy 

(weighted mean difference (WMD) -1.08%, 95% CI -1.25 to -0.90, p < 0.00001) or add-on treatment 

(-0.73%, 95%CI -0.84 to -0.61, p < 0.00001) compared to placebo323. When compared with active 

comparators, it reduced HbA1c by -0.21% (95%CI -0.33 to -0.08, p = 0.001)323.HbA1c was also 

reduced with canagliflozin compared with sitagliptin (−0.24 %, 95 %CI −0.40 to −0.09, p = 0.002) and 



glimepiride (−0.12 %, 0.95 %CI −0.23 to −0.01, p = 0.03)323, FPG was reduced compared to placebo 

(−33.50 mg/dl, 95 %CI −39.22 to −27.78, p < 0.00001) and active comparators (−15.86 mg/dl, 95 %CI 

−23.17 to −8.56, p < 0.00001)323. Canagliflozin resulted in greater weight loss compared to placebo (-

2.81 kg, 95%CI -3.26 to -2.37) and active comparators (-3.49 kg, 95%CI -4.86 to -2.12)323, particularly 

when compared to glimepiride (−5.40 kg, 95 %CI −5.95 to −4.85, p < 0.00001)323. 

When added to insulin treatment (mostly basal-bolus regimen) canagliflozin 100 and 300 mg 

resulted in significant reductions in HbA1c compared to placebo from a baseline of 8.3% (-0.62% 

(95% CI -0.69 to -0.54; p < 0.001) and -0.73% (95% CI -0.81 to -0.65); p < 0.001 for 100mg and 300mg 

respectively) at 18 weeks which were sustained up to 52 weeks324. Reductions in FPG and weight 

were as expected and with greater incidence of hypoglycaemia, genital infections and 

hypovolaemia324. Canagliflozin 300mg administered immediately before a mixed meal tolerance test 

reduced PPG in a small RCT without causing any further increases in urinary glucose excretion which 

might suggest other mechanisms such as SGLT-1 inhibition in the gut325. Similar to dapagliflozin, the 

glycaemic lowering and weight loss effects of canagliflozin were more durable than those achieved 

with sulfonylureas up to 104 weeks326.  

Canagliflozin caused reductions in systolic and diastolic BP when compared to placebo or active 

comparators (vs. placebo: systolic BP (−5.05mm Hg, 95 %CI −6.81 to −3.28, p < 0.00001), diastolic BP 

(−2.43, 95 %CI −3.29 to −1.57, p < 0.0001); vs. active comparator: systolic BP (−4.34 mmHg, 95 %CI 

−5.31 to −3.36, p < 0.00001); diastolic BP(−2.17, 95 %CI −2.79 to −1.54, p < 0.00001)323. 

Empagliflozin:  In 24-week randomised placebo controlled trials, empagliflozin resulted in HbA1c, 

weight and systolic BP reductions of 0.7%-0.8%, 1.5-2.5kg and 2.9-4.1 mmHg respectively, which 

were significant compared to placebo when used as monotherapy or when added to metformin, 

metformin+sulfonylurea or pioglitazone ± metformin327-330. The reductions in HbA1c and weight 

were maintained in trial extensions up to 76 weeks331-334. 

When compared to sitagliptin as monotherapy, empagliflozin resulted in similar HbA1c reductions to 

sitagliptin but greater reductions in FPG, weight and systolic blood pressure327.  Over 104 weeks, 

empagliflozin was non-inferior to glimepiride when added to metformin treatment with much less 

hypoglycaemia in the empagliflozin group335. 

When added to basal insulin, with or without metformin ± sulfonylurea, empagliflozin resulted in an 

HbA1c reduction of 2.0-2.5% compared to placebo over 78 weeks. In addition, there was 2.4-4.1kg 

weight loss336.  When added to a multiple daily injection (MDI) insulin regimen HbA1c dropped by -

0.81 ± 0.08%, -1.18 ± 0.08% and -1.27 ± 0.08% with placebo, empagliflozin 10 mg, 



and empagliflozin 25 mg, respectively after 52 weeks treatment337. Empagliflozin treatment also 

reduced insulin doses (-9 to -11 international units/day) and weight (-2.4 to -2.5 kg) without 

increasing the risk of hypoglycaemia compared to placebo337. 

In a 12-week RCT of patients with T2DM and systolic and diastolic BP of 130-159  and 80-99 mmHg 

respectively, the adjusted mean differences vs. placebo in change from baseline in mean 24-h 

systolic BP was -4.16 mmHg (-5.50, -2.83) and diastolic BP with 25 mg of empagliflozin. -1.72 mmHg 

(95% CI -2.51, -0.93) with 25 mg empagliflozin (both P < 0.001)338.  

Compared to placebo, empagliflozin resulted in adjusted mean HbA1c difference of −0·68% (–0·88 to 

−0·49) in paƟents with eGFR 60-90 and −0·42% (–0·56 to −0·28) in paƟents with eGFR 30-60 over 24 

weeks and the treatment was well tolerated339.     

Single and chronic administration of empagliflozin resulted in an  increased glucagon response to a 

mixed meal340. 

Safety and adverse events 

SGLT-2 inhibitors are associated with low risk of hypoglycaemia except when used in combination 

with insulin or sulfonylureas295.The low risk of hypoglycaemia reflects the ability of remaining SGLT-2 

(and SGLT-1) to reabsorb all of a lesser filtered glucose load as the blood glucose level  declines, 

emphasising the self-limiting nature of this mode of action295. Compared to glipizide, dapagliflozin 

resulted in significantly lower risk of hypoglycaemia (4.2 vs. 45.8%)319. Canagliflozin treatment was 

associated with similar rates of hypoglycaemia compared to placebo when used as monotherapy or 

as an add-on therapy except when added to sulfonylurea (RR 1.49, 95 %CI 1.14 to 

1.95, p = 0.004)323. The percentage of patients having confirmed hypoglycaemic events with 

empagliflozin treatment was< 1% when used as monotherapy, and 1.4-2.4% when used as add-on to 

metformin or pioglitazone, but increased to 11.5-16.1% when combined with sulfonylureas and the 

percentage increased to 35-58% when added to insulin29, 241, 313 

SGLT-2 inhibitors are associated with increased risk of genital infections but an increase in urinary 

tract infection (UTI) has not been consistently reported295. Compared to sulfonylureas,  dapagliflozin 

was associated with increased risk of genital and urinary tract infections (dapagliflozin: 14.8 and 

13.5%, respectively; glipizide: 2.9 and 9.1%, respectively)319. There was no increased risk of UTIs in 

canagliflozin treated patients but there was increased risk of genital tract infections (vs. placebo, RR 

3.76, 95 %CI 2.23 to 6.35, p < 0.00001; vs. active comparators, RR 4.95, 95 %CI 3.25 to 

7.52, p < 0.00001) more in women than men but none of the reported infections was severe and all 

were resolved with simple treatment323. In a pooled analysis of RCTs, genital mycotic infection 

occurred more commonly with canagliflozin 100 and 300 mg compared to placebo in women (10.4%, 



11.4%, 3.2%) and men (4.2%, 3.7%, 0.6%). Similar results were found when canagliflozin was 

compared to active control (females: 14.7%, 13.9%, 3.1%; males: 7.3%, 9.3%, 1.6%)341. The infections 

were generally mild and easy to treat but there was lack of laboratory confirmation for most 

events341.  Similarly, empagliflozin was associated with UTI in some trials but not others while all 

trials showed increased risk of genital infections313. 

SGLT-2 inhibitors are also associated with small increases in LDL but also corresponding increases in 

HDL: these effects may be slightly greater with canagliflozin 323, 342.There is inconsistency regarding 

the risk of osmotic diuresis and hypovolaemia295, 343. The risks of osmotic diuresis-related adverse 

events (AEs) were higher with canagliflozin compared to placebo(RR 3.93, 95% CI 2.25 to 

6.86, p < 0.00001) or active comparators (RR 2.57, 95 %CI 1.26 to 5.25, p = 0.009), while volume-

related AEs were similar compared to placebo or active comparators323. In a 12-week RCT 

canagliflozin 300mg vs. placebo resulted in increased urinary volume and decreased plasma volume 

at week 1 (-5.4% vs.4.3%, p=0.02) both of which were attenuated  by week 12344. In a pooled analysis 

of data from >11,000 patients with T2DM, empagliflozin was not associated with an increased 

frequency of volume depletion-related events, but there was a higher frequency of such events in 

patients ≥75 years of age receiving empagliflozin 25 mg and in patients taking loop diuretics 

receiving empagliflozin 10 mg345. 

There is possibly an increased risk of fractures with SGLT-2 inhibitors, particularly with canagliflozin. 

A RCT with dapagliflozin had no effect on markers of bone formation or resorption or bone mineral 

density after 50 weeks of treatment in men and post-menopausal women with T2DM inadequately 

controlled on metformin343, 346. However, canagliflozin was associated with increased urinary calcium 

and is associated with modest increases in phosphate, possibly secondary to tubular re-absorption, 

and parathyroid hormone and reductions in 1,25 dihydroxy-vitamin D347;  The FDA required  a 

follow-up of upper limb fractures of patients on canagliflozin after an adverse imbalance in cases 

was reported in short-term trials37. In a RCT, consisting of a 26-week, double-blind, placebo-

controlled period and a 78-week, double-blind, placebo-controlled extension that included 716 

patients with T2DM aged 55-80 years, canagliflozin treatment was associated  with a decrease in 

total hip bone mass density (measured using DEXA) over 104 weeks, (placebo-subtracted changes: -

0.9% and -1.2%, for 100mg and 300mg respectively), but not at other sites measured348.In addition, 

in a pooled analysis from 9 placebo- and active-controlled studies (N = 10,194) of canagliflozin  the 

incidence of fractures was similar with canagliflozin (1.7%) vs. non-canagliflozin (1.5%) in the pooled 

analysis that excluded the CANVAS study (HR 1.09, 95%CI 0.71–1.66 for all canagliflozin)349. 

However, in CANVAS, there was a significant increase in fractures with canagliflozin (4.0%) vs 

placebo (2.6%) (HR 1.51, 95%CI 1.04–2.19 for all canagliflozin patients) as well as increased fall-



related adverse events in the canagliflozin group. But CANVAS patients, were older, with a high risk 

of cardiovascular disease, and with lower baseline eGFR and higher diuretic use349. 

Several cases of euglycaemic and hyperglycaemic diabetic ketoacidosis (DKA) have been reported in 

patients who received SGLT-2 inhibitors350-353. More recently it was reported that the DKA 

prevalence in 17,596 patients from randomized studies of canagliflozin was 0.07% (n=12)353. 

Causality has not been proven, but many of these cases were in insulin-treated T2DM patients who 

had reduced or stopped insulin or experienced an intercurrent illness that would increase the 

demand for glucose or during starvation354.  A lack of insulin allows increased lipolysis and 

conversion of excess fatty acids to ketones, but the hyperglycaemia is typically mild, presumably 

because the SGLT-2 inhibitors are reducing the blood glucose350, 351, 354. In addition, many cases 

turned out to have Latent Autoimmune Diabetes of Adults (LADA):  essentially the reduction of 

insulin dose by the patient had revealed a Type 1 Diabetes,   Other cases resulted from off-label use 

of SGLT-2 inhibitors in patients with Type 1 Diabetes350, 351, 354.  Thus it is important that insulin-

treated patients undertaking self-monitoring of blood glucose should not discontinue insulin when 

they observe a reduction in blood glucose after introduction of an SGLT-2 inhibitor. The SGLT-2 

therapy is to improve glycaemic control but not to obviate the need for insulin. 

Pooled analysis of dapagliflozin phase 2/3 trials suggests a possible beneficial impact of dapagliflozin 

on cardiovascular disease66. Several RCTs are assessing the cardiovascular outcomes in patients 

treated with SGLT-2 inhibitors including: EMPA-REG (Empagliflozin),  CANVAS (Canagliflozin), 

DECLARE (Dapagliflozin) and NCT01986881 (Ertugliflozin). The EMPA-REG OUTCOME study recently 

showed that in patients with T2DM and  cardiovascular disease empagliflozin lowered a composite 

end-point of non-fatal myocardial infarction, non-fatal stroke and death from cardiovascular causes 

when added to standard therapy in comparison to placebo (HR0.86; 95.02% CI, 0.74 to 0.99; P=0.04 

for superiority)355. Empagliflozin treatment also lowered the risk of cardiovascular death (HR 0.62; 

95% CI, 0.49 to 0.77; P<0.001), death from any cause (0.68; 95% CI, 0.57 to 0.82, P<0.001) and 

hospitalisation from heart failure (0.65; 95% CI, 0.50 to 0.85; P=0.002) 355. Subgroup analyses 

showed that there was heterogeneity for the primary outcome; the benefits of empagliflozin were 

more evident in Asians, patients with BMI < 30 kg/m2, HbA1c <8.5%, those not on insulin treatment, 

and those with nephropathy355. The impact of empagliflozin on death from cardiovascular causes was  

consistent across all subgroups355. Results of other cardiovascular outcome trials with dapagliflozin 

and canagliflozin are awaited with interest. 

. . .  



Other agents 

Dopamine D2 receptor agonists 

Bromocriptine quick release (QR) (Cycloset) is an ergot alkaloid dopamine D2 receptor agonist that is 

licensed in some countries outside of Europe for the treatment of T2DM as an adjunct to lifestyle 

changes356, 357. The impact of bromocriptine on glycaemic parameters has been noted since 1980 358. 

The drug provides a morning boost to hypothalamic dopamine, consistent with normal diurnal 

glucoregulation.  This assists a reduction of sympathetic tone, neural suppression of hepatic glucose 

production, and improved peripheral glucose disposal without affecting insulin levels29, 356, 358, 359. In a 

recent meta-analysis bromocriptine-QR add-on therapy lowered HbA1c compared with placebo (-

 6.52 mmol/mol; 95% CI, - 8.07 to - 4.97 mmol/mol) and FPG(-1.04 mmol/l; 95% CI-1.49 to-

0.59 mmol/l) but had no effect on PPG 360.Bromocriptine QR was weight neutral and had no 

increased risk of hypoglycaemia, hypotension, or cardiovascular effects360. However, Bromocriptine-

QR had more gastro-intestinal side effects of nausea and vomiting360. In a large RCT (3,095 patients) 

bromocriptine QR (as monotherapy or add on to glucose lowering agents including insulin) was 

shown to reduce the risk of cardiovascular disease compared to placebo (HR 0.60 (95% CI 0.35–

0.96)) by 52 weeks361.  

Bile acid sequestrants 

Bile acid sequestrants are established treatments for  dyslipidaemia and reduce the risk of 

cardiovascular disease 362. In 2008, the FDA licensed colesevelam as an adjunct to lifestyle to 

improve glycaemic control in T2DM 363.  The mechanism may involve the passage of bile acids more 

distally along the intestine, possibly activating bile acid receptors on L-cells and increasing GLP-1 

secretion.  Reduced return of bile acids to the liver may also affect glucose metabolism via reduced 

activation of hepatic farnesoid receptors29. Colesevelam reduced HbA1c by 0.30-0.54% when used in 

combination with metformin, sulfonylureas, pioglitazone or insulin, with no increased risk of 

hypoglycaemia or weight gain362, 364. Despite its favourable impact on LDL and HDL cholesterol levels, 

colesevelam increased triglycerides by 11-22%362.  

Pramlintide 

Pramlintide is a soluble analogue of islet amyloid polypeptide (IAPP), introduced in 2005 as an 

injectable meal-time adjunct to a basal-bolus insulin regimen365.  It assists glycaemic control and 

weight control through a centrally-mediated effect via the area postrema which activates neural 

pathways that enhance satiety, suppress pancreatic glucagon secretion and slow gastric emptying365.  

Modest reductions in HbA1c, typically 0.3-0.6% have been reported in trials, alongside body weight 



reductions of 1-2 kg and reductions of the bolus insulin requirement365. Use of pramlintide adds to 

the burden of mealtime injections and requires care with dose adjustments to minimise risk of 

nausea and hypoglycaemia365. 

Treatment algorithm 

The treatment options for patients with T2DM now extend to a variety of drug classes with different 

mechanisms of actions, lower risk of hypoglycaemia and favourable impact on weight. Also, the 

availability of several agents within most classes offers choice with regard to pharmacokinetics, 

pharmacodynamics and the timing and mode of delivery. However, it is often difficult to make direct 

comparisons when long-term head-to-head studies are not available, and it is difficult to determine 

suitability on an individualised patient basis without studies in particular patient sub-groups. Overall, 

the choice of any treatment must balance efficacy with safety, tolerability with adherence, budgets 

with resources, and practical issues around realistic targets, monitoring, and life situations37.  

Metformin is  firmly established as  preferred first line pharmacotherapy in patients with T2DM37; 

The results of the EMPA-REG OUTCOME study  raise expectations for the SGLT-2 inhibitors and 

results of similar trials with other members of the class will help to determine the positioning of this 

class in the treatment algorithm.  It must be noted that the choice of metformin as first-line therapy 

is mainly based on the UKPDS which included 342 patients assigned to metformin while the EMPA-

REG included 4,687 empagliflozin-treated patients. On the other hand, the study population of 

EMPA-REG included patients with advanced disease and high cardiovascular disease risk while the 

UKPDS population was that of newly diagnosed T2DM. If HbA1c targets are not met with metformin 

treatment within 3 months it is recommended to add another differently-acting agent37. Whilst the 

various oral agents will often have similar efficacy, the injectables (GLP-1 RAs and insulin) may offer 

greater HbA1c lowering243. It is important, however, to appreciate that efficacy is not just about 

HbA1c but must always take into account a “package” of effects that includes risk of hypoglycaemia, 

weight gain, general tolerability and long-term safety.  For example, the risk of weight gain and 

hypoglycaemia is higher with sulfonylureas and insulin, while DPP-4 inhibitors and SGLT-2 inhibitors 

have a more favourable impact on weight and low risk of hypoglycaemia37. TZDs have a low risk for 

hypoglycaemia but increase weight and risk for heart failure and bone fractures37. The importance of 

an individualised approach to treatment, based on patients’ circumstances and needs is emphasised 

with regard to the selection of agents for people who drive, the elderly, frail and those with renal, 

neural and other co-morbidities that restrict therapeutic choice.  

If adding a second agent fails to achieve or maintain acceptable control , then adding a third 

differently-acting agent may be  indicated37. Most classes of agents can be combined with additive 



efficacy, although addition of DPP-4 inhibitors is unlikely to offer meaningful extra control in 

combination with GLP-1 RAs. If triple combinations are inadequate then introduction of 

insulin(usually basal initially with continued metformin) is needed; if this is insufficient then the 

addition of meal time insulin or a GLP-1 RA may be considered, or possibly an SGLT-2 inhibitor37. The 

addition of a GLP-1 RA in this context might be a useful treatment strategy as this carries less risk of 

hypoglycaemia compared to adding meal time insulin and has a better impact on weight.  

The availability of increasing numbers of agents that are given less than daily might be attractive for 

many patients and might enhance compliance.  The outcomes of ongoing cardiovascular safety 

studies may clarify the T2DM treatment algorithm further.  Indeed further long-acting GLP-1 RAs, 

DPP-4 inhibitors and SGLT-2 inhibitors are in development366-370 as reviewed previously19, 27. 

Lessons for future therapies 
Better understanding of the pathogenesis of T2DMhas informed the development of newer classes 

of treatments and novel compounds in development371.  However, treatments that have longer 

lasting metabolic impacts and that are able to improve or prevent the continuing decline in β-cell 

function are needed. Clearly, safety is of paramount importance. The adverse effects that emerged 

during the use of several agents that have been discontinued have highlighted the importance of 

maintaining pharmacovigilance while improving the metabolic deficits. Minimising hypoglycaemia, 

weight gain, and cardiovascular events while avoiding any increased risk of cancer are crucial for any 

new treatments particularly since such treatments may need to be taken for many years. In addition, 

in real life the trial medications will be used in a more varied population and the drugs might be 

prescribed by less specialised professionals to patients who will not receive the intensive follow up 

and monitoring of RCTs372. This is highlighted by the protracted usage required for some safety 

signals (e.g. CV events) to emerge372. 

When considering safety it can be extremely difficult to interpret signals from pre-clinical studies or 

indeed have available the most appropriate models to decide which treatments should be 

developed further.  Another challenge is to identify and interpret adverse signals in clinical trials and 

then  extrapolate these to  real-life372. Faint signals from pre-registration trials can take a decade or 

more to reveal their clinical importance and are often confounded by several biases including 

treatment allocation and detection of complications. While there is increasing  pressure to ensure 

safety, the regulatory agencies have a difficult task to strike a balance between being over cautious 

and making sure that newer beneficial treatments are made available in a safe but timely manner372. 



In addition, better understanding of the factors that might be responsible for the variations in 

responses of individuals to a particular treatment and the impact of pharmacogenetics on 

pharmacokinetics and efficacy will allow more personalised and patient-centred future therapies30. 

Summary and conclusion 

Many different glucose-lowering therapies are now available to address different aspects of the 

pathogenesis of T2DM through a range of actions that vary in efficacy, convenience, adverse events 

profile and cost. The potential “value” of a therapy is much more than cost-benefit, as it is based on 

a “package” of attributes that takes account of long-term safety, tolerability, risk of hypoglycaemia 

and weight gain, and suitability in the face of comorbidities and other medications. Individualised 

therapy also requires tailoring to patient needs and preferences based on an adequate appreciation 

of the patient’s circumstances, understanding and commitment. 

Newer agents (such as DPP-4 inhibitors, GLP-1 RAs and SGLT-2 inhibitors) have low risk of 

hypoglycaemia (except when combined with insulin or sulfonylurea) and are associated with either 

weight loss or weight neutrality, but they are more expensive than older agents (such as 

sulfonylureas or meglitinides). Recent studies have provided encouraging information about the 

safety profiles of many of these newer agents and supported their value in the challenge to provide 

early, effective and sustained glycaemic control in T2DM.    While metformin remains the preferred 

initial pharmacotherapy (albeit that some patients do not tolerate it), an individualised approach is 

required to assess treatment targets and to achieve these in the safest possible manner.  
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 Table 1. Summary of currently available glucose lowering treatments in patients with T2DM. Adapted from Bailey 2015, and ADA-

EASD guidelines References 29 and 37 

Class 
(Year 
Introduced) 
Examples 

Dosing MOA Physiological 
impact 

Glucose 
lowering 
efficacy 

Advantages / Disadvantages CV Safety Cost 

Sulfonylureas 
(1956)  
Gliclazide* 
Glipizide 
Glimepiride 
Glyburide 
(glibenclamide) 

OD,  
BD 

− Increases insulin 
secretion by binding 
to SUR-1 on β-cells, 
resulting in closure 
of the K+ATP 
channels and calcium 
influx and 
depolarization  

Increase insulin 
secretion 

High Advantages 
− Oral 
− Long-term safety 

Disadvantages 
− Hypoglycaemia 
− Weight gain 
− Need for SMBG 
− Dose titration 

Conflicting results from 
database studies, but no 
adverse outcomes from 
more recent 
interventional studies 

Low 

Biguanide  
(1957)  
Metformin 
Metformin SR 
 

OD, 
BD 

− AMPK activation 
− Improve cellular 

insulin signaling 
− Reduce respiratory 

chain activity 
− Alters gut glucose/ 

lactate metabolism  
 

Reduce hepatic 
glucose output 

Improve insulin 
sensitivity 

Increase GLP-1 
levels 

High Advantages 
− Long-term safety 
− Weight neutral 
− Low risk of hypoglycaemia 

Disadvantages 
− GI side effects 
− Multiple possible 

contraindictions especially renal 
impairment 

Reduction in CV 
disease 

Low 

AGI  
(1995) 
Acarbose 
Miglitol 
Voglibose 

Up to 
TDS 
with 
meals 

− Inhibit α- 
glucosidase in the 
gut 

Slow intestinal 
carbohydrate 

digestion, which 
delays  absorption 

Modest Advantages 
− Weight neutral 

Disadvantages 
− GI side effects 

Unknown, preliminary 
evidence of benefits 

Moderate 

Meglitinides  
(1997)  
Nateglinide 
Repaglinide 
 

With 
meals 

− Binds to SUR-1 on 
β-cells, but at a 
different site to SU, 
resulting in a more 
rapid and shorter 
action than SUs 

Increase insulin 
secretion 

Intermediate 
to high 

Advantages 
− Rapid short-acting 
− Suitable for prandial use 

Disadvantages 
− Weight gain 
− Hypoglycaemia 
− Need for SMBG (but less than 

SU) 

CVD not adversely 
affected in the 
NAVIGATOR trial  

Moderate 
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Class 
(Year 
Introduced) 
Examples 

Dosing MOA Physiological 
impact 

Glucose 
lowering 
efficacy 

Advantages / Disadvantages CV Safety Cost 

TZDs  
(1997) 
 Pioglitazone 
Rosiglitazone** 

OD − PPAR-γ agonists  
 

Increase insulin 
sensitivity 

Reduce FFA 
release 

High Advantages 
− Low risk of hypoglycaemia 
− May reduce blood pressure 
− Possible effect on NASH 

Disadvantages 
− Unresolved long-term safety 
− Fractures 
− Weight gain 
− Oedema and heart failure 

− Oedema and 
increased risk of 
heart failure 

− Debated impact on 
CVD 

− Pioglitazone reduced 
composite endpoint 
of all-cause 
mortality, nonfatal 
myocardial 
infarction, and 
stroke in the 
PROactive trial 

Low 

DPP-4 
inhibitors 
(2006) 
Sitagliptin 
Vildagliptin* 
Saxaglitpin 
Linagliptin 
Alogliptin 

OD, 
BD 

− Inhibit DPP-4 
activity which 
increases 
endogenous incretin 
levels 

Glucose-dependent 
increase in insulin 

secretion 
Glucose dependent 

inhibition of 
glucagon secretion 

Intermediate Advantages 
− Weight neutral 
− Low risk of hypoglycaemia 

(unless combined with SU) 
− Possible benefit on β-cell 

survival 
Disadvantages 

− Unknown long-term safety 
− Increased risk of  pancreatitis 
− Possible increased risk of liver 

dysfunction with vildagliptin 

− No increase CVD 
risk in RCTs except 
increased 
hospitalization with 
heart failure with 
saxagliptin. More 
RCTs to report in 
near future 

High 



 4

Class 
(Year 
Introduced) 
Examples 

Dosing MOA Physiological 
impact 

Glucose 
lowering 
efficacy 

Advantages / Disadvantages CV Safety Cost 

SGLT2 
inhibitors 
(2012) 
Canagliflozin 
Dapagliflozin 
Empagliflozin 
 

OD − Inhibit SGLT-2 
transporters in 
proximal renal 
tubules 

Increase urinary 
glucose excretion 

Intermediate 
to high 

Advantages 
− Weight loss 
− Blood pressure reduction 
− Low risk of hypoglycaemia (unless 

combined with insulin or SU)  
− Possible sustained HbA1c 

reductions 
Disadvantages 
− Unknown long-term safety 
− Association with genital and 

possibly urinary tract infections 
− Osmotic diuresis, possible risk of 

hypotension and falls 
− Possible increased risk of fractures 
− Small increased risk of DKA  

− Empagliflozin 
reduced CVD in 
RCT 

− More RCTs will 
report in near future.  

High 

Dopamine-2 
agonist 
(2009) 
Bromocriptine 
QR 
 

OD − Activate 
hypothalamic 
dopamine receptors 

Modulates 
hypothalamic 
regulation of 

metabolism via 
neural hepatic 
glucose output 

Increase glucose 
disposal 

Modest Advantages 
− Weight neutral 
− Low risk of hypoglycemia  
Disadvantages 
− Dizziness 
− Nausea 
− Fatigue 

− Reduce CVD risk High 

Bile acid 
sequestrant 
(2008) 
Colesevelam 

OD, 
BD 

− Increase hepatic bile 
salts production 

− Increased GLP-1 
secretion 

− Activation of liver 
farnesoid receptors  

? Reduce hepatic 
glucose output 

? Increase incretin 
secretion 

Modest Advantages: 
− Low risk of hypoglycaemia 
− Lower LDL 
− Weight neutral 
− Increase HDL 
Disadvantages 
− Constipation 
− Increase triglycerides 
− Could affect absorption of some 

drugs 

− Reduce the risk of 
CVD (licensed as 
cholesterol lowering 
treatment) 

High 
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Class 
(Year 
Introduced) 
Examples 

Dosing MOA Physiological 
impact 

Glucose 
lowering 
efficacy 

Advantages / Disadvantages CV Safety Cost 

Insulin 
(1920s) 
Rapid-acting  
Aspart 
Lispro 
Glulisine  
Short-acting  
Humulin-S 
Insuman rapid 
Intermediate-
acting 
Insulatard 
Humulin-I 
Insuman basal 
Long-acting  
Glargine 
Detemir 
Degludec 
Biphasic pre-

mixed 
 

OD to 
QDS 

− Directly activates the 
insulin receptor 
 

Increase glucose 
disposal 

Reduce hepatic 
glucose output 

Decrease lipolysis 

High Advantages 
− Injectable 
− More sustained glycemic 

improvements compared with 
other agents 

Disadvantages 
− Weight gain 
− Hypoglycemia 
− Need for SMBG 
− Fluid retention 

− Ongoing debate, but 
RCTs have not 
shown increased risk 

Variable 

GLP-1 RAs 
(2005)  
Exenatide  
Liraglutide 
Lixisenatide 
Albiglutide 
Dulaglutide 

OD,  
BD, 
QW 

− Activate the GLP-1 
receptor  

Glucose-dependent 
increase in insulin 

secretion 
Glucose dependent 

inhibition of 
glucagon secretion 

Reduce post-
prandial glucose 

excretion 
Increase satiety 

Weight loss 

High Advantages 
− Weight loss 
− Low risk of hypoglycemia 

(unless  combined with SU) 
− Possible impact on β-cell 

survival/sustained HbA1c 
reductions 

Disadvantages 
− injectable 
− GI side effects 
− Unknown long-term safety 
− Unconfirmed increased risk of  

pancreatitis  

− Possible beneficial 
impact from non-
randomised studies 

− Lixisenatide did not 
alter CV disease in 
RCT 

− More RCTs will 
report soon 

High 
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Class 
(Year 
Introduced) 
Examples 

Dosing MOA Physiological 
impact 

Glucose 
lowering 
efficacy 

Advantages / Disadvantages CV Safety Cost 

Amylin 
analogue 

(2005)  
Pramlintide * 

TDS − Synthetic soluble 
analogue of human 
amylin 
 

Reduce glucagon 
secretion 

Increase satiety 
Slow gastric 

emptying 
 

Modest Advantages 
− Weight loss 
− Reduced insulin dose 

Disadvantages 
− Injectable 
− Unknown long-term safety 
− Increased risk of hypoglycaemia, 

(careful patient selection and 
instruction, and insulin dose 
adjustments required) 

− Only used with mealtime insulin 

− Unknown High 

AGI: α- glucosidase inhibitors; AMPK: adenosine 5′-monophosphate activated protein kinase; CV, cardiovascular; DKA: Diabetic Ketoacidosis; DPP-4, dipeptidyl peptidase-4; 
FFA, free fatty acid; GI, gastrointestinal; GLP-1, glucagon-like peptide-1; IGT, impaired glucose tolerance; MOA, mechanism of action; NASH: non-alcoholic steatohepatitis; 
PPAR-γ, peroxisome proliferator-activated receptor-γ; RCT, randomized control trial; SGLT2, sodium-glucose co-transporter 2; SMBG, self-monitored blood glucose; SU, 
sulfonylurea; SUR-1, sulfonylurea receptor-1; TZD, thiazolidinedione. Not all agents have an indication for the treatment of type 2 diabetes in all regions.  * not available in all 
regions;  ** Discontinued in Europe. 
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Table 2:  Sulfonylurea pharmacokinetics. Adapted from Bailey and Krentz, in Textbook of Diabetes 
6th edition in press, 2016. Wiley.  *Chlorpropamide is no longer used in many regions 

Agent Dose range 
(mg/day) 

Duration of 
action (h) 

Metabolites Elimination 

Tolbutamide 500–2000 6–10 Inactive Urine 100% 

Glipizide 2.5–20 6–16 Inactive Urine ~70% 

Gliclazide 40–320 12–20 Inactive Urine ~65% 

Gliclazide MR 30–120 18–24 Inactive Urine ~65% 

Glimepiride 1.0–6.0 12–>24 Active Urine ~60% 

Glibenclamide 
(glyburide) 

1.25–15 12–>24 Active Bile >50% 

Chlorpropamide* 100–500 24–50 Active Urine >90% 

 

Table 3: Tissue specific effects of PPAR-γ activation.   CPT, carnitine palmitoyl transferase;  CRP, C-
reactive protein; FATP1, fatty acid transport protein-1; GLUT-4, insulin-sensitive glucose transporter 
-4, HSD-1, hydroxysteroid dehydrogenase type 1; LPL: lipoprotein lipase; IRS, insulin-receptor 
substrate, ABCA1, ATP-binding cassette A1; SR, scavenger receptor; iNOS, inducible nitric oxide 
synthase; MMP-9, matrix metalloproteinase 9; MCP-1, monocyte chemoattractant protein 1; PDK-4, 
pyruvate dehydrogenase kinase 4; PI3K, phosphatidyl inositol 3-kinase 

Adipose tissue Skeletal muscle Liver Vascular endothelium 
Adipocyte differentiation Glucose uptake 

(increased GLUT4, 
increased PI3K,  
decreased PDK-4)  

Decreased 
inflammation 
(decreased CRP) 

Decreased 
intercellular adhesion 
molecules  

Fatty acid uptake and 
storage (increased FATP1, 
increased acyl-CoA 
synthase) 

 Decreased endothelin

Increased adiponectin   Cholesterol efflux 
(increased ABCA-1 and 
SR-B1) 

Decreased 11βHSD-1   Decreased iNOS 
Lipolysis (Increased 
lipoprotein lipase)  

  Decreased interleukin-
6, MMP-9 and MCP-1 

Glucose uptake 
(increased IRS-1, IRS-2, 
PI3K, GLUT-4, Cbl–
associated protein, and 
glycerol kinase) 

   

 

 



 DELETE 

 

Table 4: Summary of the pharmacokinetic properties of currently available DPP-4 inhibitors. 

Agent 
 

t1/2  
(hours) 

Elimination 
 

Metabolite % inhibition of 
DPP-4 activity 

DPP-4 selectivity*
 

Sitagliptin 
 

~12.4 
 

~87% renal 
~13% faeces 

 

Almost all 
eliminated 
unchanged 

 

Doses > 50 
mg/d >80% 
inhibition  

>2600 vs DPP-8;  
>5500 vs DPP-9  

Vildagliptin 
 

~3 
 

~85% renal
~15% faeces 

 

Inactive
metabolites 

 

50 mg dose, 
 > 90% 

inhibition per 12 
hours  

~270 vs DPP-8;
~32 vs DPP-9 

 

Saxagliptin 
 

~2.5  
(~3.1 for 

metabolites) 
 

~75% renal 
(includes 

metabolites) 
~22% faeces 

 

Active main 
metabolite 

Single dose > 
2.5 mg  
50-79% 

inhibition  

~390 vs DPP-8;  
~77 vs DPP-9 

 

Linagliptin 
 

~12 
 

~5% renal 
>80% faeces 

 

Minimal 
metabolism 

Single dose 5 
mg >70% 
inhibition  

~40,000 vs DPP-8; 
>10,000 vs DPP-9 

 
Alogliptin 
 

~21 
 

~76% renal 
~13% faeces 

 

mostly 
excreted 

unchanged 
 

Single dose 25 
mg >75% 
inhibition  

>14,000 vs DPP-8; 
>14,000 vs DPP-9 

 

Omariglitpin ∼63  (steady-
state after 2–

3 weeks) 

Mainly renal Minimal
metabolism 

24 hour post-
dose > 95% 

>41,000 vs DPP-8;
>41,000 vs DPP-9 

 
Trelagliptin 54 Mainly renal Minimal 

(hepatic, via 
CYP 2D6) 

77% ? 

* Fold difference in affinity for DPP-4 vs other dipeptidyl peptidases based on data presented by 
Deacon (Diabetes, Obesity and Metabolism 13: 7–18, 2011) 

 

Table 5: Summary of the pharmacokinetic properties of available GLP-1 RAs. 

 

Drug Structure 
Sequence 
homology 

IC
50 

nM 

Dose Admin Cmax  Tmax  T1/2 Elimination 

Exenatide 
twice-daily 

Exendin-4    
53% 

0.55 5,10 
ug 

BD ~160-
250 
pg/ml 

2-3h ~3.5h Renal 

Liraglutide GLP-1 
 97% 

0.11 0.6, 
1.2, 
1.8 

OD Steady 
state 
~34 

10-
14h 

11.6-13h Peptidases 
in blood 



mg nmol/L 
(1.8 
mg 
dose) 

Exenatide 
once 
weekly 

Exendin-4    
53% 

0.55 2mg QW Steady 
state 
~300 
pg/mL 

2-6 
wks at 
steady 
state 

Unspecified Renal (~10 
wks to fully 
clear) 

Lixisenatide Exendin-4 
plus extra 
Lys 
residues 

1.4 20ug OD ~190 1.2-
2.5h 

2-4h Renal 

Albiglutide GLP-1  
97% 

? 30, 
50 
ug 

QW 4.4 
ug/mL 
(50ug 
dose) 

3-5 
days 

~5 days Peptidases 

Dulaglutide GLP-1  
91% 

? 0.75. 
1.5 
mg 

QW 114 
ng/mL 
(1.5mg 
dose) 

2-4 
wks at 
steady 
state 

~4.7 days Peptidases  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 6: Summary of the impact of GLP-1 RAs on glycaemic parameters. HbA1c change is in % and 
plasma or blood glucose levels in mmol/l unless stated otherwise. Data presented as averages or 
mean (95% CI) from multiple studies when available. FPG: Fasting plasma glucose; FBG: Fasting 
Blood Glucose; PPG: Post-Prandial Glucose; A1c: HbA1c.  ↓, decrease. Based on Refs  203-267 

 Monotherapy Add-on to oral 
agents 

Add-on to basal 
insulin 

Meta-analysis 

Exenatide 
twice-daily 

  ↓A1c 0.7–0.9 
↓FBG 0.97-1.03 
↓PPG 1.18-1.37 

↓A1c  0.4–0.9 
↓FBG 0.3–1.6 

 

↓A1c  1-2 
↓FBG 1.6 

 

↓A1c  1.1 (-1.22 
to -0.99) 

↓FPG 1.16 (-1.35 
to -0.97) 

Liraglutide 1.2-
1.8mg 

↓A1c 0.6-0.90 
↓FPG 0.52-2.5 
↓PPG 1.7−2.1 

↓A1c  1.0-1.5 
↓FPG 1.6-2.4 

↓HbA1c* 1.3 
↓FPG*1.3 

↓A1c*  1.27 (1.41 
to 1.13) 

↓FPG* 1.82 (2.07 
to 1.57) 

Lixisenatide ↓A1c 0.8-0.9 
    ↓FPG −1.1 

  ↓PPG −3.7  

↓A1c 0.7-1.0
↓FPG 0.6 to 0.9 

↓PPG 5.9 

↓A1c 0.6-0.9
FPG -4.0 to +2.1 

mg/dl 

↓A1c 0.52 (0.64 
to 0.39), 

↓FPG 13.6 (16.71, 
10.60) mg/dl 

Exenatide once 
weekly 

↓A1c  ~ 1.5 
↓FPG 2.3 

↓A1c 1.3 
↓FPG 28.8 mg/dL 

↓A1c 1.01 
 

↓A1c 1.59 (1.70 
to 1.48) 

↓FPG 2.12 (2.28 
to 1.96) 

Albiglutide ↓A1c 0.3-1.0 
↓FPG 1.2-1.4 

↓A1c 0.36-0.63 
↓FPG 1.5 

↓A1c 0.82 
↓FPG 0.5-1.0 

↓A1c -0.66% 
(1.14 to 0.19) 

↓FPG 1.54 (1.86 
to 1.22) 

Dulaglutide ↓A1c 0.8-1.5 
↓FPG 26 to 29 

mg/dl 
↓PPG 28.6 to 30 

mg/dl 

↓A1c 0.8-1.5 
↓FPG 30-40 

mg/dl 

↓A1c 1.08 
 

↓A1c 1.18 (1.34 
to 1.02) 

↓FPG 1.93 (2.12 
to 1.74) 

*Liraglutide 1.8mg 

 

 

 

 

 



 

 

 

 

 

Table 7: Summary of the impact of GLP-1 RAs on weight (kg), waist circumference (cm) and systolic 
BP (mmHg). Data presented as mean difference and 95%CI or ranges reported from different 
studies. Most of the data are derived from published meta-analyses cited in the text.  NS: non-
significant.  203-273 

 Weight change (kg) Waist circumference 
change (cm) 

Systolic BP change 
(mmHg) 

Exenatide twice-
daily 

Meta-analysis: -2.8;
-2.9 to -2.7 

Meta-analysis: -1.37; 
-2.22, -0.52 

Meta-analysis: 
vs. placebo: -1.34; 

 -2.00 to -0.75 
vs. TZDs: -2.86; -4.35 to 

-1.60  
vs. insulin: -4.02; -5.75 

to -2.47 

Meta-analysis: 
vs. placebo: -2.27; 

 -3.27 to -1.28 
vs. TZDs: NS 

vs. sitagliptin: NS  
vs. insulin: -4.23; -5.16 

to -3.19 
Liraglutide Meta-analysis: -2.2; 

-3.5 to -0.9 
Meta-analysis*: -1.51; 

-2.67 to -0.37 
Meta-analysis$: -1.01; 

-2.41 to 0.38 

Meta-analysis: 
vs. placebo: -5.24;  

-7.68 to -2.93*, and  
-4.73; -6.68 to -2.65$ 
vs. sitagliptin -1.73;  

-3.04 to -0.55* 
vs. TZD: -6.99;  
-9.47 to -4.01  

vs. insulin: -8.03;  
-6.41 to -9.81* 

Meta-analysis: 
vs. placebo: -2.29;  

-3.55 to -1.08* 
vs. sitagliptin: NS 

vs. TZD: NS 
vs. insulin: -4.24;  
-3.09 to -5.37* 

Lixisenatide 0 to 2.7 Not available  
Exenatide once 
weekly 

Meta-analysis: -2.8; 
-5.2 to -0.3 

Meta-analysis: -1.62; 
-2.95 to -0.30 

Meta-analysis: 
vs. TZD -2.69;  
-4.75 to -0.05 

vs. insulin: -3.72;  
-4.60 to -2.83 

Meta-analysis: 
vs. placebo -1.90;  

-3.47 to -0.45  
vs. TZD: NS 

vs. sitagliptin: NS 
vs. insulin: -3.86;  

-5.21 to -2.53 
Albiglutide No significant weight 

loss vs. placebo 
-1.4 to -4.9 when 

compared to insulin or 
TZDs 

Not available Meta-analysis
vs. placebo: -2.65;  

-5.19 to -0.24  
vs. TZD: NS 

vs. sitagliptin: NS 
vs. insulin: -4.60;  

-7.18 to -2.03 
Dulaglutide 1.5mg -1.3 to -3.03 Not available vs. placebo -2.8; 

 -4.6 to -1.0 
*Liraglutide 1.8 mg; $Liraglutide 1.2mg 



 

 

 

 

 

 

Table 8: Summary of the head-to-head GLP-1 RA trials. Refs 168, 179, 182, 184, 196, 197, 239-241. 
Copied from 284. Permissions to be obtained 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 9: Summary of GLP-1 RAs head-to-head trials: changes in HbA1c and body weight.  Refs 206, 
217, 220, 222, 232, 233, 240, 284-286. 

 HbA1c change from 
baseline (%) 

Weight change from 
baseline (kg) 

Comments on Adverse 
events 

DURATION-1 
Exenatide QW 
vs. Exenatide 
BD 

–1.9 vs. –1.5  
95% CI  –0.54, –0.12,  

p = 0.0023 

–3.7 kg vs. –3.6 kg 
p=0.89 

Exenatide BD: Higher 
incidence of nausea and 
vomiting  
Exenatide QW: more 
injection-site reactions  

LEAD-6 
Liraglutide vs.  
exenatide BD 

–1.12 vs. –0.79 
95% CI –0.47, –0.18 

p < 0.0001 

–3.24 kg vs. 2.87 kg, 
p = 0.22 

More adverse events 
with exenatide but more 
serious adverse events 
with liraglutide 

DURATION-5 
Exenatide QW 
vs. Exenatide 
BD 

–1.6 vs –0.9 
95%CI −0.9, −0.4 

 p < 0.0001 

-2.3 vs. -1.4  
p non-significant 

Similar to DURATION-1 

DURATION-6 
Liraglutide vs. 
Exenatide QW 

–1.48 vs. –1.28 
95% CI 0.08, 0.33 

p = 0.02 
(predefined non-

inferiority criteria were 
not met) 

–3.57 vs. –2.68 
 p = 0.0005 

Liraglutide: higher rates 
of nausea, vomiting, and 
diarrhoea  
Exenatide QW: more 
injection site reactions 

GetGOAL X 
Lixisenatide 
vs. Exenatide 
BD 

–0.79 vs. –0.96% 
95% CI 0.033–0.297 

Pre-defined non-
inferiority criteria were 

met 

–2.96 vs.–3.98 
95% CI, 0.456–1.581 

In favour of exenatide 

Less nausea and less 
hypoglycaemia with 
lixisenatide treatment 

HARMONY-7 
Liraglutide vs. 
Albiglutide 

0.99 vs. 0.78 
95% CI 0.08, 0.34 

p = 0.0846 
Pre-defined non-

inferiority criteria were 
not met 

–2.16 and –0.64  
p < 0.0001 

Liraglutide: slightly more 
nausea and vomiting 
Albiglutide: more 
injection site reactions 

AWARD-1 
Dulaglutide 
1.5mg vs. 
Dulaglutide 
0.75mg vs. 
Exenatide BD 

–1.51% vs. –1.30% vs. –
0.99% vs. –0.46% 

(p < 0.001 for both 
dulaglutide doses vs. 

exenatide) 

–1.30 vs. +0.2 vs. –1.07 
vs.  +1.24 

(p=0.47 for dulaglutide 
1.5mg vs. exenatide) 

No differences between 
dulaglutide and 
exenatide 



vs. placebo 
AWARD-6 
Dulaglutide vs. 
Liraglutide 

–1.42 vs. –1.36  
95% CI –0.19, 0.07 ,  

predefined 
non-inferiority criteria 

was met 

–2.90 vs. –3.61   
p = 0.011 

No differences between 
groups 

 

 

 

Table 10: Pharmacokinetics of SGLT-2 inhibitors. Adapted from Tahrani et al 2013 (Ref 295 

 Dose 
(mg) 

IC50 

SGLT1 vs. 2 

Tmax 

(h) 

Cmax  t1/2       
(h) 

Comments 

Dapagliflozin   10 1390 vs. 1.1 nM 

Ratio ~1300:1 

1.5-2.0  ~160 ng/ml ~13 

 

Steady state, 
healthy subjects 

Canagliflozin  100 

 

300 

684 vs. 2.2 nM 

Ratio ~300:1 

 

~1.5 

 

~1.9 

~1.0 ug/ml 

 

2.7 ug/ml 

10.6  

 

13.1 

Single dose, type 
2 diabetes  

Empagliflozin  10 

25 

8300 vs. 3.1 nM 

Ratio ~2700:1 

1.5      

1.5      

259 nmol/l  

687 nmol/l 

13.2  

13.3  

After 28 days,  
type 2 diabetes 

 

 

 



Figure 1: This figure  illustrates key  organs involved in the pathogenesis of type 2 diabetes  and indicates 
important sites of action of blood glucose-lowering agents, underpinned by lifestyle measures.  Agents on a 
pink background are prone to cause weight gain, a yellow background indicates weight neutral and a green 
background indicates weight loss.  A black perimeter indicates greater risk of precipitating hypoglycaemia. 
Multiple genetic and environmental factors give rise to type 2 diabetes  mellitus (T2DM) through insulin 
resistance  with pancreatic β-cell failure . Overweight and obesity contribute to insulin resistance in association 
with increased inflammatory signals and disturbed lipid homeostasis, often  preceding  the onset of 
hyperglycaemia by many years and  enhancing cardiovascular risk. When insulin secretion is no longer sufficient 
to overcome insulin resistance, glucose intolerance progresses to T2DM, usually accompanied by pancreatic α-
cell dysfunction that elevates glucagon secretion, reduced prandial secretion or activity  of incretin hormones 
such as GLP-1,  likely alterations to the gut microbiome and disturbances of neural activities controlling hunger-
satiety and the circadian regulation of glucose homeostasis. This figure was adapted from Tahrani et al Lancet 
2011, 378, 182–197 and DeFronzo Diabetes 2009;58:773–95 with permission.   
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Figure 2. Intracellular actions of metformin.  Metformin alters nutrient metabolism through 
insulin dependent and independent effects which vary with the amount of drug exposure and 
the activity of insulin within different tissues.  For example, the intestine is exposed to very 
high concentrations of metformin which exert insulin independent effects, whereas liver and 
muscle are exposed to lower concentrations of metformin that influence the  metabolic 
effects of insulin. Metformin can improve insulin sensitivity via effects on insulin receptor 
signalling and post-receptor signalling pathways of insulin action. Metformin can alter cellular 
nutrient metabolism and energy production independently of insulin via suppression of the 
mitochondrial respiratory chain and activation of adenosine 5′-monophosphate-activated 
protein kinase (AMPK).    ACC, acetyl CoA carboxylase;  Akt , protein kinase B (PKB); AMPK,  
adenosine monophosphate-activated protein kinase; FBPase, fructose 1,6-bisphosphatase; 
G6Pase, glucose 6-phosphatase; GLUT, glucose transporter isoform; IRS,  insulin receptor 
substrate; MAPK,  mitogen-activated protein kinase; mTOR,  mammalian target of 
rapamycin; PDK,  phosphoinositide-dependent protein kinase; PI3K, phosphatidylinositol 3-
kinase; PIP2, phosphatidylinositol-3,4-bisphosphate; PIP3, phosphatidylinositol-3,4,5-
trisphosphate; Oct1, organic cation transporter 1; LKB1,  LKB1 protein kinase; mGPD2, 
mitochondrial glycerol-3-phoshate dehydrogenase-2. Adapted from Bailey CJ.  Nature Rev 
Endocrinol, 2012, 5, 651-2.  Doi. 10.1038/nrend 2012.106.    
One of the present authors has  recently submitted a similar (not identical) version of this 
illustration for the 5th edition of Textbook of Diabetes  (Wiley) which is due for publication in 
2016 
 



Adapted from Bailey CJ.  Nature  Rev Endocrinol, 2012, 106.  Doi. 10.1038/nrend 2012.106 
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Figure 3: Sulfonylureas  and meglitinides act on pancreatic β-cells to stimulate insulin secretion. 
These agents bind to the cytosolic surface of the sulfonylurea receptor 1 (SUR1) which is part of 
the ATP-sensitive Kir6.2 potassium channel.  Binding of the sulfonylurea or meglitinide closes the 
Kir6.2 channel, preventing potassium efflux and depolarizing the plasma membrane.  This opens 
local voltage-dependent calcium channels, increasing the influx of calcium and activating calcium-
dependent signalling proteins that control insulin exocytosis.  GPR40 agonists in development 
stimulate insulin secretion by raising cytosolic calcium mainly via PLC-IP3-mediated redistribution 
of calcium from the endoplasmic reticulum and PKC-mediated effects on granule exocytosis.  GLP-
1 receptor agonists enhance nutrient-induced insulin release mainly via a cAMP-Epac2-mediated 
potentiation of granule exocytosis. cAMP, cyclic adenosine monophosphate; EPAC2, cAMP-
regulated guanine nucleotide exchange factor-2; GLUT, glucose transporter isoform;  IP3, inositol-
1,4,5-trisphosphate; Piccolo, calcium sensitive cytoskeleton matrix-associated active zone protein; 
Rab3A, a GTP-binding protein; Rap1, a Ras-related GTPase; Rim2, an insulin granule-associated 
protein; PKA, protein kinase A; PLC, phospholipase C.   Adapted from Bailey , Lancet, 2012,  379, p. 
1370-1371.   

Note to editor.  Reviewer 1 asked for detailed information on the effect of sulfonylureas on 
the Epac pathway.  Although we have included information that we feel is verified, a role of 
sulfonylureas on the SUR1 molecules expressed on insulin granule membranes and their 
interaction with the Epac2-Piccolo-Rim complex to drive exocytosis through charge (eg Cl-) 
alterations remain under investigation and we are reluctant to go into more detail on the pros 
and cons for this type of article, as we think it would not be welcomed by the non-specialist 
non-scientist reader. . 
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Figure 4: Cellular  mechanism of action of thiazolidinediones. Most actions of a thiazolidinedione 
(TZD) are mediated via stimulation of the nuclear peroxisome proliferator-activated receptor -
gamma (PPAR-γ), which is highly expressed in adipose tissue. When stimulated, PPAR-γ forms a 
heterodimeric complex with the retinoid X receptor (RXR). The complex binds to the peroxisome 
proliferator response element (PPRE) nucleotide sequence (AGGTCAXAGGTCA) in the promoter 
regions of certain genes, recruits co-activators, and alters the transcriptional activity of these 
genes. This modifies nutrient uptake and metabolism, as well as the other functions of the cell. 
RXR, retinoid X receptor; GLUT4, glucose transporter isoform 4; FATP, fatty acid transport protein; 

LPL, lipoprotein lipase. Adapted from  Tahrani et al, Lancet 2011, 378, 182–197  
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Figure  5:  Pancreatic and extra-pancreatic  effects of glucagon-like peptide-1.  Some actions are 
still controversial in man and are shown with a question mark.  ↑ increase; ↓ decrease. 
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Figure 6.  Glucose handling via sodium glucose co-transporter (SGLT) proteins SGLT-2 and SGLT-1 in 
the kidney; GLUT: Glucose Transporter.  Adapted from Bailey CJ, Day C.  Br J Diabetes Vasc Dis 2010; 
10: 193-9. 
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