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PROPERLY COLOURED HAMILTONIAN CYCLES IN
EDGE-COLOURED COMPLETE GRAPHS

ALLAN LO

School of Mathematics, University of Birmingham,
Birmingham, B15 2TT, UK

ABSTRACT. Let K, be an edge-coloured complete graph on n vertices.
Let Amon(K;) denote the largest number of edges of the same colour
incident with a vertex of K;. A properly coloured cycle is a cycle such
that no two adjacent edges have the same colour. In 1976, Bollobéds and
Erdds [6] conjectured that every K with Anon(Ky) < |n/2] contains a
properly coloured Hamiltonian cycle. In this paper, we show that for any
€ > 0, there exists an integer no such that every K;, with Apon(K;) <
(1/2 — e)n and n > no contains a properly coloured Hamiltonian cycle.
This improves a result of Alon and Gutin [1]. Hence, the conjecture of
Bollobés and Erdés is true asymptotically.

1. INTRODUCTION

An edge-coloured graph is a graph G with an edge-colouring ¢ of G. We
say that G is properly coloured if no two adjacent edges of G have the same
colour. If all edges have the same colour, then G is monochromatic.

Let K¢ be an edge-coloured complete graph on n vertices. Let Apon(KY)
denote the maximum number of edges of the same colour incident with a
vertex of K¢. Equivalently, Apon (Kf) = max A(H) over all monochromatic
subgraphs H in K¢. Daykin [8] asked whether there exists a constant p such
that every K¢ with Apon(KS) < un and n > 3 contains a properly coloured
Hamiltonian cycle. This question was answered independently by Bollobas
and Erdés [6] with ¢ = 1/69, and Chen and Daykin [7] with p = 1/17.
Bollobas and Erdés proposed the following conjecture.

Conjecture 1.1 (Bollobéds and Erdés [6]). If Amon(KS) < |n/2], then K&
contains a properly coloured Hamiltonian cycle.

Later, Shearer [16] showed that Apyen(KS) < n/7 is sufficient. The
best known bound on Anen(KS) was given by Alon and Gutin [1] where

n

Apon(KE) < (1—1/y/2—0(1))n. On the other hand, Li, Wang and Zhou [12]

E-mail address: s.a.lo@bham.ac.uk.
Date: January 31, 2014.
2000 Mathematics Subject Classification. 05C15; 05C38.
Key words and phrases. proper edge-coloring, 2-factor, Hamiltonian cycle, Hamiltonian
path.
The research leading to these results was supported by the European Research Council
under the ERC Grant Agreement no. 258345.
1



2 PROPERLY COLOURED HAMILTONIAN CYCLES IN Kf,

showed that if Apen(KS) < [n/2], then K¢ contains a properly coloured
cycle of length at least (n+2)/3 + 1.

For the existence of a properly coloured Hamiltonian path, Barr [5] proved
that K, containing no monochromatic triangle is a sufficient condition. Note
that there is no assumption on Apen(KS). A 2-factor is a spanning 2-
regular graph. Bang-Jensen, Gutin and Yeo [4] showed that K¢ containing
a properly coloured 2-factor is also a sufficient condition.

Theorem 1.2 (Bang-Jensen, Gutin and Yeo [4]). If K& contains a properly
coloured 2-factor, then K, contains a properly coloured Hamiltonian path.

This result was later improved by Feng, Giesen, Guo, Gutin, Jensen and
Rafiey [9]. A graph G is said to be a 1-path-cycle if G is a vertex-disjoint
union of at most one path P and a number of cycles. Note that a spanning
1-path-cycle without any cycles is a Hamiltonian path, and a spanning 1-
path-cycle without a path is a 2-factor.

Theorem 1.3 (Feng, Giesen, Guo, Gutin, Jensen and Rafiey [9]). Let K
be an edge-coloured K,. Then KS contains a properly coloured Hamiltonian
path if and only if K contains a spanning properly coloured 1-path-cycle.

For a survey regarding properly coloured subgraphs in edge-coloured graphs,
we recommend Chapter 16 of [3]. In this paper, we prove that Conjecture 1.1
is true asymptotically.

Theorem 1.4. For any ¢ > 0, there exists an integer Ny = No(e) such
that every K¢ with n > Ny and Apon(KE) < (1/2 —e)n contains a properly
coloured Hamiltonian cycle.

For an edge-coloured graph G (not necessarily complete), the colour de-
gree d°(v) of a vertex v is the number of different colours of edges incident
to v. The minimum colour degree §°(G) of an edge-coloured graph G is the
minimum d°(v) over all vertices v in G. Li and Wang [11] proved that every
edge-coloured graph G contains a properly coloured path of length 2§¢(G)
or a properly coloured cycle of length at least 20°(G)/3. In [13], the author
improved their result by showing that GG contains a properly coloured path of
length 26°(G) or a properly coloured cycle of length at least §(G) + 1. Fur-
thermore, in [14], the author proved that every edge-coloured graph G on n
vertices with 6°(G) > (2/3+¢)n contains a properly coloured cycle of length ¢
for all 3 < ¢ < n provided € > 0 and n is large enough. Moreover, the bound
on §°(G) is asymptotically best possible; that is, there exist edge-coloured
graphs G on n vertices with 6°(G) = [2n/3] — 1, which does not contain a
properly coloured Hamiltonian cycle. Note that 6°(KS) + Apmon(KS) < n.
Hence, Theorem 1.4 implies the following corollary.

Corollary 1.5. For any e > 0, there exists an integer No = Ny(e) such that
every K withn > Ny and 6°(K§) > (1/24¢)n contains a properly coloured
Hamiltonian cycle.

Now we outline the proof of Theorem 1.4, which involves two main steps.
In the first step, we find (by Lemma 3.1) a small ‘absorbing cycle’ C such that
for any properly coloured path P with V(C)NV(P) = 0 and |P| > 4, there
exists a properly coloured cycle C” with V(C”) = V(P)UV(C'). This step can
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be viewed as a properly edge-coloured version of the absorption technique
introduced by Rédl, Ruciriski and Szemerédi [15]. Since the original absorp-
tion technique did not consider edge-coloured graphs, several new ideas are
needed for this generalisation. We believe that there is further potential for
this adaptation of the absorption technique. For instance, a similar argu-
ment was also used in [14]. In the second step, we remove the vertices of the
small absorbing cycle C from K, and let K, be the resulting graph. Since C
is small, we may assume that Apon(KS) < (1 —¢')n’ for some small &' > 0.
Next, we find a properly coloured 2-factor in K, using Lemma 4.1. Hence,
Theorem 1.2 implies that there exists a properly coloured Hamiltonian path
P in K¢,. Finally, by the ‘absorbing’ property of C', G contains a properly
coloured cycle C" with V(C") = V(P)UV(C) = V(KE). Therefore, C’ is a
properly coloured Hamiltonian cycle as required.

The paper is organised as follows. In the next section, we set up some basic
notation and give some extremal examples to show that Conjecture 1.1 is
sharp. Section 3 and Section 4 are devoted to finding a small absorbing cycle
and a properly coloured 2-factor respectively. Finally, we prove Theorem 1.4
in Section 5.

2. NOTATION AND EXTREMAL EXAMPLES

Throughout this paper, unless stated otherwise, ¢ is assumed to be an
edge-colouring. Hence, ¢(zy) is the colour of the edge xy. For v € V(G), we
denote by Ng(v) the neighbourhood of v in G. If the graph G is clear from
the context, we omit the subscript.

Given a vertex set U C V(G), write G[U] for the (edge-coloured) subgraph
of G induced by U. We write G\U for the graph obtained from G by deleting
all vertices in U. For a vertex u, we sometime write u to mean the set {u}.
Given a subgraph H in G, we write G — H for the graph obtained from G
by deleting all edges in H. For edge-disjoint graphs G and H’, we denote by
G+ H' the union of G and H'. We write G— H + H' to mean (G— H)+ H'.

Let U, W C V(G) not necessarily disjoint. Whenever we define an auxil-
iary bipartite graph H with vertex classes U and W, we mean that H has
vertex classes U’ and W', where U’ is a copy of U and W’ is a copy of W.
Hence, U and W are considered to be disjoint in H. Given an edge uw in H,
we say that u € U and w € W to mean that v € U’ and w € W'.

Every path P is assumed to be directed. Hence, the paths vivs ... v, and
vpvg—1 ... vy are considered different for ¢ > 2. Note that |P| denotes the
order of P. Given a path P = v1vs... v and a vertex z € N(v1) \ V(P), we
define x P to be the path zvivs...v,. Similarly, given vertex-disjoint paths
Py, ..., P, we define the path P, ... P to be the concatenation of Py, ..., Py
(if it exists).

2.1. Extremal examples. We now present some edge-colourings on K, to
show that Conjecture 1.1 is sharp. The first example was given by Bollobas
and Erdés [6] for n =1 (mod 4).

Example 2.1. Consider n = 4k + 1. Let G be a 2k-regular graph on n
vertices. Note that the compliment G of G is also a 2k-regular graph. Let
K¢ be obtained by colouring all edges of G' red and all edges of G blue. Note
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that Amon(KS) = 2k = |n/2]. However, Kt does not contain any properly
coloured Hamiltonian cycle Cy,, since the edge-chromatic number of C,, is 3.

For even n, Fujita and Magnant [10] showed that there exists a K¢ with
d¢(KE) = n/2 with no properly coloured Hamiltonian cycle. In fact, their
example also satisfies Apon(KS) = n/2. Hence, Conjecture 1.1 is also sharp
for even n. The example given by Fujita and Magnant is derived from
a tournament on n vertices, that is, an oriented complete graph. In the
proposition below, we present a simple generalization of their construction
for general oriented graphs. Given an oriented graph 8, let dé(v) and

d%(v) be the in- and outdegree of a vertex v € V(é) Also, define the

mazximum indegree A*(a) of @ to be the maximum dé (v) over all vertices
vE V(a)

Proposition 2.2. Let G be a graph. Suppose that 8 is an oriented graph
obtained by orienting each edge of G. Then there exists an edge-coloured
graph G¢ obtained by colouring each edge of G such that

(1) Amen(G¥) = A(G);
(i) dge(v) = d%(v) + min {1, dé(v)} for allv e V(G);
(iii) C is a properly coloured cycle in G if and only if C is a directed
cycle in G'.

Proof. Let {c; : x € V(G)} be a set of distinct colours. Define an edge-
colouring c of G such that for every edge zy € E(G), c(zy) = ¢, if and only

if ﬁ/ isin 8 Let G¢ be the graph G with edge-colouring c¢. The proposition
follows. (]

Let T5,, be a tournament on 2m vertices obtained from a regular tourna-
ment 1" on 2m — 1 vertices by adding a directed edge from a new vertex x to
every y € V(T'). Note that A™(T%,,,) = m and T5,, does not contain any di-
rected Hamiltonian cycle. Therefore, by Proposition 2.2, there exists a K5, ,
(corresponding to Thy,) with A(KS, ) = A7 (Tay) = m and §°(KS,,) = m
that does not contain any properly coloured Hamiltonian cycle.

In the proposition below, we present yet another K, which also shows
that Conjecture 1.1 is sharp for even n. Moreover, this construction of
K¢ can be generalized to forbid any properly coloured paths and cycles of
arbitrary length. We would like to point out that, by a suitable choice of
tournament, Proposition 2.2 also yields the same result for properly coloured
cycles but not for properly coloured paths. An edge-coloured graph G is
rainbow if all edges have distinct colours.

Proposition 2.3. Let ¢ and n be integers with 1 < ¢ < n/2. Then there
exists an edge-coloured graph K¢ on n vertices with Apon(KS) =n — £ and
d(KE) = € such that all properly coloured cycles in K¢ have length less than
20 and all properly coloured paths in K{ have length less than 2¢ + 1.

Proof. Let the vertices of K, be x1,...,2¢, Y1, .., Yn—r. Set X = {x1,..., 20}
and Y = {y1,...,yn—¢}. Let ¢ : E(K,) — N be an edge-colouring of K,
such that:
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(a) c(xjyj) =iforalll <i<landalll<j<n-—{

(b) c(yiyj) =1forall 1 <i<j<n-—4¢

(¢) K,[X]israinbow under ¢ and does not contain any colour in {1, ..., ¢}.
Note that Apen(KS) = Y| =n— ¢ and 6°(K) = | X| = ¢.

Suppose C'is a properly coloured cycle in K. Let Pp, P, ..., P, be the
paths of C' induced on the vertex set Y (where P; may consist of one vertex).
Since each P; is properly coloured, (b) implies that 1 < |P;| < 2. Note that
after seeing one P; we must immediately see at least two consecutive vertices
in X, so

|1 X| > | XNV(C)| >2r>2[lY NV(C)|/2] = |Y NV (C). (2.1)
Therefore
IC)=|XNV(CO)|+ Y NV(C)| <2|X]| = 2¢.

If |C| = 2¢, then we must have equality in (2.1) and so | X| = 2r = |[YNV(C)].
Hence, we must have |P;| = 2 for all # < r. Thus, each P; is an edge of
colour 1 by (b). Therefore, after seeing one P; we must see at least two
vertices z; with j # 1 by (a) and (b) before seeing another Py. This implies
that | X \ 1| > 2r = |X]|, a contradiction. Hence, all properly coloured
cycles in K¢ have length less than 2¢. A similar argument shows that all
properly coloured paths in K have length less than 2¢ + 1. O

3. ABSORBING CYCLE

The aim of this section is to show that there exists a small cycle C' in
K¢ such that, for any properly coloured path P with V(C)NV(P) = () and
|P| > 4, there exists a properly coloured cycle C’ with V(C") = V(P)UV (C).

Lemma 3.1 (Absorbing cycle lemma). Let 0 < ¢ < 1/2. There exists an
integer ng such that the following holds whenever n > ngy. Suppose that K
is an edge-coloured K, with Apon(KS) < (1/2 — e)n. Then there exists a
properly coloured cycle C with |C| < 252457242 gych that, for any properly
coloured path P in KS\V(C) with |P| > 4, K& contains a properly coloured
cycle C" with V(C") =V (C)UV(P).

We will need the following definition.

Definition 3.2. Let x1, x2, y1, y2 be distinct vertices in V(K). A path P
is an absorbing path for (z1,x9;y1,y2) if the following conditions hold:

(i) P = 21292324 is a properly coloured path of order 4;
(i) V(P) N {z1, 22, y1,12} = 0;
(iii) both z1zem129 and y1y22324 are properly coloured paths.

Note that the ordering of (z1,z2;y1,y2) is important. Given distinct
vertices x1, T2, Y1, Y2, let L(x1,x2;y1,y2) be the set of absorbing paths P for
(z1,22;y1,y2). By the definition of an absorbing path, we have the following
proposition.

Proposition 3.3. Let P = xyx9...24_174 be a properly coloured path with
¢ > 4. Let P = z1292324 be an absorbing path for (x1,xe;xi—1,x) with
V(P)NV(P") = 0. Then z129P" 2324 = z129m19 . .. Ty_1T¢2324 1S a properly
coloured path.
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Lemma 3.1 will be proved as follows. Suppose that Apon(KS) < (1/2 —
g)n. In the next lemma, Lemma 3.4, we show that L(z1,x2;y1,y2) is large
for any distinct 1, x2,y1,y2 € V(KY). By a simple probabilistic argument,
Lemma 3.6 shows that there exists a small family F’ of vertex-disjoint prop-
erly coloured paths (of order 4) such that, for any distinct x1,z2,y1,y2 €
V(K¢), F' contains at least one absorbing path for (x1,z2;y1,92). Fi-
nally, we join all paths in F’ into one short properly coloured cycle C' using
Lemma 3.7. Moreover, C' satisfies the desired property in Lemma 3.1.

Lemma 3.4. Let 0 < ¢ < 1/8 and let n > 5¢~! be an integer. Sup-
pose that K¢ is an edge-coloured K, with Ayon(KS) < (1/2 —e)n. Then
|L(z1, 225 y1,y2)| > e2nt/4 for all distinct vertices x1,2,vy1,y2 € V(KS).

Proof. Fix distinct vertices x1,29,y1,y2 € V(KE). Set V! = V(KE) \
{z1,22,y1,9y2} and A = Apon(KS). We can find two distinct vertices z1, 22
in V'’ such that 21292129 is a properly coloured path. Note that there are
(V'|—(A=1))(|V'|—(A—1)—1) > n?/4 choices for z1 and z5. The number of
vertices z3 € V' \ {21, 22} such that ¢(2322) # c(2221) and ¢(z3y2) # c(y1y2)
is at least

(’V/‘ -2)-2(A-1)= \V’\ —2A > 2en —4 > en.

Pick one such z3. By a similar argument, the number of vertices z4 €
V' \ {21, 22, 23} such that c(z3z4) # c(z3y2) and c(z324) # c(z322) is at
least en. Pick one such z4. Notice that zyz92324 is an absorbing path for
(w1, 22;y1,y2). Furthermore, there are at least n?/4 x en x en = £2n*/4
many choices of z1, 29, z3 and z4. Therefore, the proof is completed. O

The next lemma is proved by a simple probabilistic argument since each
L(x1,x2;y1,y2) is large. We will need the following Chernoff bound for the
binomial distribution (see e.g. [2]). Recall that the binomial random variable
with parameters (n,p) is the sum of n independent Bernoulli variables, each
taking value 1 with probability p, or 0 with probability 1 — p.

Proposition 3.5. Suppose that X has the binomial distribution and 0 <
a<3/2. Then P(|1X —EX| > aEX) < 9e—a?EX/3

Lemma 3.6. Let 0 < & < 1/2. Then there exists an integer ng such that
whenever n > ng the following holds. Suppose that K is an edge-coloured
K, with Apmon(KE) < (1/2 — e)n. Then there exists a family F' of vertex-
disjoint properly coloured paths of order 4 such that |F'| < 277?n and, for
all distinct vertices x1,x2,y1,y2 € V(KE), |L(x1,x2;y1,y2) N F'| > 1.

Proof. Fix 0 < e < 1/2 and let ng be a sufficiently large integer. Let K¢ be
an edge-coloured K, with Apyon(KS) < (1/2 —¢)n and n > ng. Recall that
each path is assumed to be directed. A path 21292324 will be considered
as a 4-tuple (z1, 22, 23,24). Choose a family F of 4-tuples in V(K}) by
selecting each of the n!/(n — 4)! possible 4-tuples independently at random
with probability

n —4)! _ _
s 97823,
n !
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Then by Proposition 3.5
n!
F| < 2B|F|=2p— =277 3.1
7| < 2B\ = 2p sy = 2 (3.1)
with probability at least 1 — 2 FF1/3 = 1 — 2e—en/(3x2%) > 5/6 since n
is large. By Lemma 3.4, for every distinct vertices x1,xo,¥y1,y2, we have

|L(z1, 225 y1,92)| > €2n*/4. Hence, given distinct vertices x1, 2o, 1, y2, by
Proposition 3.5 we have

|L(z1, 22591, y2) N F| > E|L(x1, 22;y1,92) N F|/2
= plL(z1, 22591, 92)]/2 > 27 e (3.2)

with probability at least 1 — 2eEI£@1r2y1,82)0F1/12 1 _ 9e=con  where
co = €*/(3 x 2'2). By the union bound, F satisfies (3.2) for all distinct
vertices x1, T2, Y1, y2 with probability at least 1 — 2n*e=%" > 5/6 since n is
large.

We say that two 4-tuples (a1, az, as,aq) and (by, by, bs, by) are intersecting
if a; = b; for some 1 < 4,5 < 4. Furthermore, we can bound the expected
number of intersecting pairs of 4-tuples in F from above by

n! o (n—=1)! 2 —12_4
—— X4 X ——L X p° =2 .
(n— 4)] (n—ap P "
Thus, using Markov’s inequality, we derive that with probability at least 1/2

4

F contains at most 27 e?n intersecting pairs of 4-tuples. (3.3)

Hence, with positive probability, the family F satisfies (3.1), (3.2) for all
distinct vertices x1,x2,y1,y2, and (3.3). Pick one such F. We delete one
4-tuple in each intersecting pair in F. We further remove those 4-tuples
that are not absorbing paths. We call the resulting family F’. Note that F’
satisfies

|L(x1, 12591, 92) N F| >0 Hedy o1, —

for all distinct vertices x1,z2,y1,y2 € V(KE). Since F’ consists of pairwise
disjoint 4-tuples and each 4-tuple in F’ is an absorbing path, F’ is a set of
vertex-disjoint properly coloured paths of order 4. O

As mentioned earlier, in order to prove Lemma 3.1, we join the paths in
F' given by Lemma 3.6 into a short properly coloured cycle. The lemma
below shows that we join any two disjoint edges by a properly coloured path
of constant length.

Lemma 3.7. Let 0 < € < 1/100. Then there exists an integer ng such that
whenever n > ng the following holds. Suppose that K, is edge-coloured with
Apon(KE) < (1/2 —e)n. Let vy, va, v}, v be distinct vertices. Then there
exists an integer 2 < ig < 2¢72 such that there are at least (€2n)10 paths P
with |P| = iy and viva Pujvh is a properly coloured path.

To illustrate the idea of the proof, we consider the following simpler prob-
lem. Suppose that K¢ with Apoen(KS) <n/3 — 3 and let x1,x9,y € V(K)
be distinct. We claim that there exist distinct vertices w and v such that
x1zowovy is a properly coloured path. (In other words, we can join an
edge r1x9 and a vertex y into a properly coloured path of order 5.) Let
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V' = V(KS) \ {x1,z2,y} and let W be the set of vertices w € V' such that
c(x1x9) # c(zow). Hence, [W| =n —1— Apon(KS) — 1 > 2n/3. Define an
auxiliary bipartite graph H with vertex classes W and V' and edge set E(H)
such that for w € W and v € V', wv € E(H) if and only if c(wv) # c(wxs)
in K¢. (Recall Section 2 that we consider W and V' to be disjoint in H.)
Hence, if wv € F(H), then zjxowv is a properly coloured path. Also, ev-
ery w € W has degree at least 2n/3 in H. By an averaging argument,
there exists a vertex v € V’ with degree at least 4n/9 in H. Recall that
Apon(KE) <n/3 —3 < 4n/9. There exist distinct w,w’ € Ny (v) such that
c(wv) # c(w'v). Therefore, z1z2wvY or rixow'vy is a properly coloured
path as claimed.

Proof of Lemma 3.7. Fix € and let ng be a sufficiently large integer. Let K¢
be an edge-coloured complete graph with Apen(KS) < (1/2 —e)n and n >
no. Set A = Apon(KE), VI = V(KE) \ {v1,v2, 0], 05} and n' = |[V'| =n — 4.
We omit floors and ceilings for clarity of presentation.

For integers i > 0, we say that a vertex = € V' is i-far from (vy,v9) if
there exist at least (¢2n) paths P with V(P) C V' \ x and |P| = i such
that vive Pz is a properly coloured path. Note that any vertex = € V’ with
c(xvg) # c(vivy) is O-far. A vertex z is strongly i-far if for any colour ¢,
after removing all edges zy with c(zy) = ¢’ there still exist at least (¢2n)?/2
paths P with V(P) C V' \ z and |P| = i such that vjuyPx is a properly
coloured path. Hence, if x is i-far but not strongly i-far, then there exists a
unique colour ¢;(z) such that x is no longer i-far after removing all edges xy
with c¢(zy) = c;(z). Moreover, there are at least (¢2n)?/2 paths P with
V(P) C V' \ z and |P| = i such that vjuaPx is a properly coloured path
and the edge (in P) incident with x is of colour ¢;(z). Note that no vertex
is strongly O-far.

For integers 7 > 0, let X; be the set of vertices in V' that are i-far but not
strongly i-far. Also, let Y; be the set of vertices in V' that are strongly i-far.
Note that Yy = (). Let N' = {w € V' : c(wv)) # c(vivh)}. Ify € N'NY;, then
there exist at least (¢2n)?/2 paths P such that V(P) C V' \ y, |P| =i and
moreover vjvy Pyv|v is a properly coloured path. Hence, if [N'NY;| > 2¢2n
for some i < 2¢72 — 1, then the lemma holds by setting iy = i + 1. Recall
that Apon (KS) = A, so |[N'| > n’ — A. Therefore, to prove the lemma, it is
enough to show that |Y;| > A 4 2¢2n for some integer 1 < i <272 — 1.

Recall that if z € X, then there is a unique colour ¢;(z) such that x is no
longer i-far after removing all edges xy with c¢(xy) = ¢;(z). For each integer
0 < i <272 — 1, define an auxiliary bipartite graph H; with vertex classes
X;UY; and V' and edge set F(H;) such that

(a) every vertex y in Y; is adjacent to every vertex in V' \ y, and
(b) for z € X; and v € V' \ x, zv is an edge in H; if and only if

c(xv) # ¢i(x).

Since Apon(KS) = A < (1/2 — €)n, each vertex = € X; has degree at least
n'—1—A>(2+3e)n/4in H;. Thus,

e(H;) > (2 + 3¢)n| Xi| /4 + (0 — 1|V (3.4)
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Since Yy = () and X is the set of vertices 2 € V' such that c(vex) # c(viv2),
we have | Xo| > n' — A > n/2. Thus,

e(Hp) > (2 + 3¢)| Xo|n/4 > nn' /4. (3.5)

Suppose that zv is an edge in H; with z € X; and v € V'. Note that v
is in at most in’~! < (2n)'/4 paths P with |P| = 4. Since z is i-far and
c(zv) # ci(z), there exist at least (2n)?/4 paths P such that V(P) C V' \ v,
|P| =i and vyve Pxv is a properly coloured path. A similar statement also
holds for edges yv in H; with y € ¥; and v € V'. Therefore, if a vertex
v € V' has degree at least 4e%n in H;, then v is (i + 1)-far. Similarly, we
conclude that if v has degree at least A 4 4e?n in H;, then v is strongly
(i + 1)-far. By counting the degrees of v € V' in H;, we deduce that
e(H;) < 4€*n|V/\ (Xit1 U Yip1)| + (A +4e20)[ X | + (1X] + [Yi])|Yisa |
<4e’n'n + Al X | + (0 — 1)|Yig| (3.6)
< e(Hit1) — en(7|Xia1]/4 — den),

where the last inequality is due to (3.4). Thus,
if | X;41| > 20en’/7, then e(H;i ) > e(H;) + (en')?. (3.7)

Since e(H;) is at most n'2, there exists an integer i’ < ¢~2 such that | Xy 1| <
20en’/7. Let ¢ be the smallest integer such that | X, 1| < 20en’/7. Hence,
e(H;) > e(Hp) > nn'/4 by (3.7) and (3.5). By (3.6),
nn' /4 < e(Hy) < 4e’n'n 4+ A| Xy | + 0|V
< 2en'n +n'|Yiy].

Hence, |Yy 11| > (1/4 — 2¢)n. Therefore, in Hy 1, each vertex in V' has
degree at least |Yiy1| — 1 > (1/4 — 2e)n — 1 > 4e?n. This implies that
Xiryo UY0 =V and so

8(H¢/+2) > (2 + 35)71/77,/4 (38)

by (3.4). Let i be the smallest integer i > ¢’ +2 such that | X;;1| < 20en’/7.
Since e(H;) < n'?, i" exists by (3.7). Moreover, i < i’ + 2+ 1/(2¢%) <
2e 2 -3 as e(Hy o) > (n')?/2. Note that e(H;n) > e(Hyy o) > (2+3¢)n'n/4
by (3.8). By (3.6), we have
(2 +3e)n'n/4 < e(Hp) < 4e’n/n+ Al Xpqq| + (' — 1)|Yin 4|
< (4% 4+ 10e/T)n'n + 0/ |Yin 41,
’}/i”+1| > (1/2 — e+ 252)71 > A + 25271.
This completes the proof of the lemma. U

We are ready to prove Lemma 3.1.
Proof of Lemma 3.1. Since g4 2 ig an increasing function of € (as 0 < & <
1/2), it suffices to prove the lemma for ¢ < 1/100. Let ng be a sufficiently
large integer. Let K¢ be an edge-coloured complete graph with Apon (KS) <
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(1/2 — &)n with n > ng. Set v = €27+2 Let F' be the set of properly
coloured paths obtained by Lemma 3.6. Therefore,

‘f” < 2—7,}/2n _ 2—7645*2+4n’ (3'9)
|L(x1, 22591, y2) NF'| > 1

for all distinct vertices z1,x2,y1,y2 € V(KE).

We join the paths in F’ into a properly coloured cycle C' as follows. Let
Py, ..., Pz be the properly coloured paths in 7. For each 1 < j < |F'|, we
are going to find a path Q; with |Q;| < 2e72 and V(Q,) C V(KH)\V(UF)
such that P;Q;P;j11 is a properly coloured path, where we take Pz, =
P, and such that V(Q;) N V(Qj) = 0 for all j # j'. Assume that we
have already constructed Q1,...,Qj—1. Let P; = vivovgvy and Pjy1 =
vjvhv5vy. By Lemma 3.7 (with v; = v3 and vy = vy), there exists an integer
2 < ig < 2¢72 such that there are at least (¢2n)® paths Q with |Q| = i
such that vsv4Quiv} is a properly coloured path. Set |JF' = pcr F and
W, = VUF)UU, o, V(Qy), so by (3.9)

Wil = V(U PN+ D Q] < 41F'[+2:72(j - 1)

J'<j
-2
< (4427 F| <2701 T,
Moreover, W; intersects with at most
o e 2 o a2 ,
[W;| x ign'o™t < 2794 "2 x 267 2pl0~ 1 = 27445 T pio < (e2p)

paths of order ip as iy < 2e~2. Therefore, there exists a path Q; with
V(Q;) C V(KE)\Wj such that v3vsQ;v] v} is a properly coloured path, which
implies that P;Q;Pj41 is a properly coloured path. Hence, we find properly
coloured paths Q1, .. ., Q|5 as desired. This means that K7 contains a prop-
erly coloured cycle C' obtained by concatenating P, Q1, P2, Q2,...,Q F|.
Note that |C| < (4 + 2e72)|F/| < 275 *+2p, by (3.9).

We now show that C has the desired ‘absorbing’ property. Let P =
1% ... 24 be a properly coloured path with ¢ > 4 and V(P) NV (C) = 0.
Pick P’ = 21292324 € L(x1,22;2¢_1,2¢) N F'. Since P’ is an absorbing path
for (x1,x9;xp_1,2¢), Proposition 3.3 implies that z;z9Pz3z4 is a properly
coloured path. Note that the endedges are the same as in P’. Therefore,
there exists a properly coloured cycle C" with V(C") = V(C) U V(P). This
completes the proof of Lemma 3.1. O

4. PROPERLY COLOURED 2-FACTORS

In this section, we prove the following lemma, which finds a properly
coloured 2-factor in K¢ with Apon(KS) < (1/2 —¢)n.

Lemma 4.1. Let 0 < e < 1/2. Then there exists an integer ny = ny(g) such
that every K& with n > ny and Apon(KE) < (1/2 — €)n contains a properly
coloured 2-factor.

Before proving the lemma, we need the following notation. Let C be a
directed cycle. For a vertex v € V(C), let v; and v_ be the successor and
ancestor of v in C respectively. Further, let c_(v) and cy(v) be the colours
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c(vv_) and c(vvy) respectively. For distinct vertices u,v € V(C), define
vCTu to be the path vvy ... u_u on C, and similarly define vC~u to be the
path vo_ ... uqu on C.

Given an edge-coloured graph G, we denote by Cq(v) the set of colours
incident at v in G. Equivalently, Cq(v) = {c(vu) : v € Ng(v)}. Given
z,y € V(Q), the distance distg(x,y) in G between x and y is the minimum
integer ¢ such that G contains a path (not necessarily properly coloured) of
length ¢ from x to y. Note that distg(z,x) =0 for all z € V(G). If x and y
are not connected in G, then we say distg(z,y) = 0.

Recall that a graph G is said to be a 1-path-cycle if G is a vertex-disjoint
union of at most one path P and a number of cycles. We say that G is a
1-path-cycle with parameters (x,cz;y,cy) if G satisfies the following three
properties:

(a) G is a properly coloured 1-path-cycle;

(b) the path P = vy ...v, in G has length at least 1 with v; = = and

Ve = Y;

(c) ¢z = c(v1v2) and ¢y = c(vevp—1).
Note that = and y are the endvertices of P. Also, ¢, and ¢, are precisely
the colours of the edges in P (and G) incident to = and y respectively. The
ordering of (z, ¢;; y, ¢y) is important. Recall that all paths are assumed to be
directed. So ‘a 1-path-cycle with parameters (z, c,;y, ¢,)’ is considered to be
different from ‘a 1-path-cycle with parameters (y, ¢,; x, ¢;)’, even though the
underlying graphs maybe the same. Let G be a 1-path-cycle with parameters
(x, 3y, ¢y) in K. For a vertex v € V(G) \ z, the edge xv is a left chord for
G if ¢(xv) # ¢,. Similarly, the edge yv is a right chord for G if v € V(G) \ y
and c(yv) # ¢y. A chord is a left or right chord.

Now we sketch the proof of Lemma 4.1. Suppose that G is a properly
coloured 1-path-cycle in K¢ with |G| maximal. Further assume that G
has parameters (z,c;;y,cy). By chord rotations (defined later), we find a
properly coloured 1-path-cycle Gy with parameters (2, ¢34/, ¢,r) such that
cp # c(2'y) # ¢y and V(Go) = V(G). So 'y’ is both a left and right
chord for Go. Hence, Py + x'y/ is a properly coloured cycle, where Py is the
path in G. This implies that Gy + x'y’ is a set of properly coloured vertex-
disjoint cycles. If V(K¢) = V(G) = V(Gyp), then Gy + 2’y is a properly
coloured 2-factor . If V(K) # V(G), then Gy + 2’y together with a vertex
z € V(KS)\ V(G) is a larger properly coloured 1-path-cycle, contradicting
the maximality of |G|. This proves Lemma 4.1.

In the lemma below, we show why chords are useful.

Lemma 4.2. Let G be a 1-path-cycle with parameters (x, cy;y, ¢y). Suppose
that yw is a right chord for G with w ¢ {x} U Ng(z). Then there exists a
properly coloured 1-path-cycle G' such that the following statements hold:
(i) G’ is a spanning subgraph of G + yw containing the edge yw.
(i) G’ has parameters (x,cy;y’, ¢y) such that y' € Ng(w), Na(y') =
{w,w'} and ¢y = c(y'w') € Ca(y).
(i) Let Ng(w) = {z1,22}. Then G’ has parameters (z,c.; z1,¢) only if
c(yw) # c(wzs).
(iv) Forv € V(G), if distg(v,z) > 2 for all z € {x,y,w}, then Ng(v) =
NGV(’U).
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R N

vy Vi1 v Vi1 vy

FIGURE 1. c(vevj) # c(vjvj—1)

N

[ Vi1 vj Vi1 [

FIGURE 2. c(vpvj) # c(vjvjt1)

Moreover, similar statements hold if wz is a left chord with w ¢ {y}UNg(y).

Proof. Let yw be a right chord for G and let P = v;...v; be the path
in G, so y = vp. First suppose that w ¢ V(P), so w € V(C) for some
properly coloured cycle C' in G. Orient C into a directed cycle so that
c(yw) # c_(w). Observe that P’ = v;...vwC w4 is a properly coloured
path. Hence, G’ = G — C — P + P’ is a properly coloured 1-path-cycle
containing yw with parameters (z, c;; wy, ¢y (w4 )). Hence (i) and (ii) hold
for this case. It is also easy to verify (iii) and (iv).

Next, suppose that w € V(P) and so w = v; for some 3 < j < /—2. Recall
that y = vp. Note that c(yw) = c(vevj) # c(vjvj_1) or c(yw) = c(vpvj) #
c(vjvjyr). If c(vevj) # c(vjvj—1), then P” = vy ... vju.... 041 is a properly
coloured path, see Figure 1. So G’ = G — P + P” is a properly coloured 1-
path-cycle with parameters (x, cz; vj11, c(vVj41v42)). If c(vev;) # c(vjvjpr),
then C' = vj...vw; is a properly coloured cycle, see Figure 2. Hence, G’ =
G — P+ C+wy...vj_1 is a properly coloured 1-path-cycle with parameters
(x,cz;vj—1,c(vj_1vj—2)). Hence (i)—(iv) follow. O

Let G, yw and G’ be as defined in Lemma 4.2. We say that G’ is obtained
from G by a chord rotation using the chord yw, or a rotation using yw for
short. Since this rotation changes the two parameters on the right and uses
a right chord, we call this a right rotation. Similarly, we define a left rotation
for a left chord xw.

For the rest of this section, a chord uw is either a left or right chord (but
not both) unless stated otherwise. Suppose that G’ is obtained from G by
a rotation using uw. Since [{u,w} N{z,y}| = 1, we can determine whether
the chord (and rotation) is left or right by considering {u,w}. Hence, we
can write the chord uw as an ordered pair (u,w) with u € {x,y}. We simply
write uw for (u,w) if the order is clear from the context.

Given a 1-path-cycle G with parameters (x, ¢;; y, ¢y ), we say that a 1-path-
cycle Gy is obtained from G by ¢ rotations using a chord sequence e1,. .., ey
if there exist properly coloured 1-path-cycles Gy, ...Gy_1 such that for each
1 <4 < ¢ the following statements hold (by taking Gy = G)

(a) e; is a chord for G;_1, and
(b) G; can be obtained from G;_; by a rotation using e;.
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The (chord) sequence ey, ..., e, with e; = (u;,w;) is said to be spread out
in G if the distance in G between any two elements in {z,y,w; : 1 <1i < /{}is
greater than 5. Equivalently, e, ..., e, is spread out in G if distg(v,v') > 5
for all distinct v, v’ € {z,y,w; : 1 <14 < £}. The following corollary is proved
by induction on £ together with Lemma 4.2.

Corollary 4.3. Let G be a 1-path-cycle with parameters (x,cz;y,cy). Let
Gy be a 1-path-cycle obtained from G by ¢ rotations using a chord sequence
e1,...,ep. Suppose that the sequence eq,...,ep is spread out in G and e; =
uyw; for all 1 < i < €. Then the following statements hold:
(i) Gy has parameters (', cyr5 ', cy) with V(Gy) = V(G), o',y € {z,y}U
Ulgigg Ng(w;), ez € Ca(a') and ¢y € Ca(y').
(ii) Forv € V(G), if distg(v,u) > 5 for all uw € {z,y,w; : 1 < i < {},
then v ¢ Ng,(2') U Ng,(y') U{z',y'} and Ng(v) = Ng,(v)
(iii) If e1,...,ep are all right chords, then ©’ = x and y' € Ng(wy).
(iv) If e1,...,eq are all left chords, then ' € Ng(wy) and y' = y.

Proof. We proceed by induction on ¢. The corollary is trivially true for
¢ = 0 and so we may assume that £ > 1. Let Gy_1 be the 1-path-cycle
with parameters (z”,cy7;y", ¢,yr) obtained from G by ¢ — 1 rotations using
the chord sequence eq,...,es_1. Moreover, GGy can be obtained from G,_1
by a rotation using the chord ey;. By the induction hypothesis, we have
" y" e {z,y} UlUj<jcp_1 Na(w;i), ¢ € Cq(2”) and ¢, € Cq(y”). Since
G/ can be obtained from Gy_; by using ey, Lemma 4.2(ii) implies (i) holds.
Similar arguments show that both (iii) and (iv) hold.

Let v € V(G) with distg(v,u) > 5 for all u € {z,y,w; : 1 <i < {}. Note
that Ng(v) = Ng,_,(v) by the induction hypothesis. Since e; = uywy is a
chord for Gy_1, up € {2",y"} C {z,y} UUj<;<p_1 Na(w;) by (i). Hence,
distg(v,u) > 5 for all u € {z”,y", w;}. By (i) and Lemma 4.2(iv), we have
v ¢ Ng,(2') UNg,(y)U{z',y'} and Ng,(v) = Ng,_,(v) = Ng(v). Hence
(ii) holds. O

The next lemma shows how to combine two chord sequences.

Lemma 4.4. Let G be a properly coloured 1-path-cycle with parameters
(%, ca3y,cy). Suppose that Gg is a 1-path-cycle with parameters (x, cz; 2, c.)
obtained from G by £ right rotations using a chord sequence eq, ..., ep. Sup-
pose that G, is a 1-path-cycle with parameters (w, cy;y, ¢y) obtained from G
by ¢ left rotations using a chord sequence f1,..., fpr. Further suppose that
the sequence ei,...,eqg, f1,..., for is spread out in G. Then there exists a
1-path-cycle Gy with parameters (w, cy; z,¢,) obtained from G by rotations
using el,... e, fi,..., f4. Moreover, V(Go) = V(G).

Proof. We fix £ and proceed by induction on ¢'. The statement is trivially
true for #/ = 0 so we may assume that ¢ > 0. Let f; = u;w; for 1 <1 < /.
By Corollary 4.3(i) (with Gy = Gr), we know that w € Ng(wy). Since
wy ¢ {x,y} and G is a 1-path-cycle, we have dg(wp) = 2. Let

Ng(wy) = {w,w’}. (4.1)

There exists a 1-path-cycle G’ with parameters (up,cy,;y,c,) obtained
from G by ¢ — 1 rotations using the chord sequence fi, ..., fy—1. Moreover,
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G, can be obtained from G, by a rotation using fp. Since fi,..., fp is
spread out in G, distg(we,v) > 5 for all v € {x,y,w; : 1 <i < ¢'}. Hence,
Corollary 4.3(ii) and (4.1) imply that

Ngr (we) = Ne(wp) = {w,w'}.

Furthermore, since G, can be obtained from G’; by a left rotation using the
chord fy = upwy, Lemma 4.2(iii) (with G = G, G’ = G, and left chord
xw = fp) implies that

c(uwg) # c(wpw”). (4.2)

On the other hand, recall that G’ has parameters (ugr,cug,;y, cy). By
the induction hypothesis, there exists a 1-path-cycle G’ with parameters
(ugr, Cu, s 2, ;) obtained from G' by rotations using eq,...,ep fi,..., for—1.
Let e; = ujw} for 1 <+ < (. Since ey,..., e, f1,..., fr is spread out in G,
we have wy ¢ Ngr(up)UNg (2)U{ugp, 2z} and Ng(wp) = Ng(wp) = {w, w’}
by Corollary 4.3(ii) and (4.1). Hence fy is also a left chord for G'. By (4.2)
and Lemma 4.2(iii) (with G = G’ and left chord xw = fy), there exists a 1-
path-cycle Gy with parameters (w, ¢y; 2, ¢;) obtained from G’ by a rotation
using fyr. This completes the proof of the lemma. O

Let G be a 1-path-cycle in K¢ with |G| maximal. Further suppose that G
has parameters (x,c;;y,¢y). In the next lemma, we show that there exists
a vertex z € V(G) and two distinct colours ¢! and ¢? such that for i = 1,2
there exists 1-path-cycle G* with parameters (z,c;; 2, ¢') obtained from G
by right rotations only.

Lemma 4.5. Let 0 < ¢ < 1/2. Then there exists an integer ng such that
whenever n > ng the following holds. Suppose that K is an edge-coloured
Ky, with Apmon(KS) < (1/2 —€)n. Let G be a properly coloured 1-path-cycle
in K¢ with |G| mazimal. Suppose that G has parameters (x,cy;y,cy). Let
U be a subset of V(KS) \ {z,y} of size at most en/8. Then there exist an
integer 1 < £ < [1/logy(1+¢)] + 1 and a vertex z € V(G) \ U such that

(a) for each i = 1,2, there exists a 1-path-cycle G' with parameters
(x,cq; 2, c ') obtained from G by { right rotations using a chord se-
quence €, ... e, and V(G') = V(G);
(b) fori=1,2, the chord sequence €',. .., ¢, is spread out in G;
(c) ez # s
(d) V(eé) CV(G)\U foralli <2 and all j <.
Moreover, the similar statements hold for left rotations.

Note that the two chord sequences e%, .. ,e} and e%, e ef obtained from

the lemma above are not necessarily vertex-disjoint from each other. The
key ingredient of the proof is the set Z; of pairs (z,¢;) for z € V(G)\ U and
colours ¢, such that

(z,¢2)

(i) there exists a 1-path-cycle G|, obtained from G by ¢ right rota-
tions using a chord sequence eq,...,ey;
(ii) G(Z ¢=) has parameter (x,c0;2,¢2);
(iii) the chord sequence eq, ..., ey is spread out in G;
(iv) V(ej) C V(G )\Uforalljgﬁ.
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If there exist (z,¢.),(z,c,) € Zy with ¢, # ¢, for some z € V(G) \ U
and some ¢, then the lemma holds. Otherwise, we may assume that each
z € V(G)\ U ‘appears’ at most once in each Zy. We then show that |Z,| >
(1 +¢)'n/2 for £ > 1. Since |Z, 1| is bounded above by n, we obtain a
contradiction provided ¢ is large enough.

Proof of Lemma 4.5. Let ng = [11e™* ([1/logy(1 +¢€)] +3)]. Let K¢, G
and U be as defined in the lemma. For integers ¢ > 0, define Z, as above.
Thus, Zy = {(y,c¢y)}. To prove the lemma, it is enough to show that
there exist z € V(G) \ U and an integer ¢ < [1/logy(1 4+ €)] + 1 such
that (z,¢.), (2,¢,) € Z; with ¢, # ..

Suppose the lemma is false. Hence, for each integer 1 < ¢ < [1/log,(1 +
e)] +1,if (z,¢,) € Zy, then ¢, is uniquely determined by z and ¢ (or else we
are done). We simply write z € Z; for (z,c,) € Z;. Note that

|Ze] <mforall0<¢<[1/logy(1+¢)]+1. (4.3)
For each z € Z;, we fix a 1-path-cycle G} and a chord sequence €7, ..., e}
such that
(i") G7 is obtained from G by ¢ right rotations using the chord sequence
ef,...,ep;
(ii") G7 has parameter (z,cy; 2, ¢z);
(iii") the chord sequence €%,..., €7 is spread out in G;

(iv)) V(e2) CV(G)\U for all j <.
We denote by P7 the path in G7. Recall that V(G%) = V(G) by Corol-
lary 4.3(i). For every v € V(KS)\ V(G), we have c¢(vz) = ¢,. Otherwise, we
can extend P enlarging the 1-path-cycle G%, which contradicts the maxi-
mality of |G|. Since Apon(KE) < (1/2 — &)n, for each z = (2,¢,) € Z;, we
have

Hv e V(G)\ z:c(vz) # e} = {v e V(K;) \ z: c(vz) # c.}
>n—1—Apon > (1/24+e)n—1. (4.4)

Set U' = U U ey Na(u) and V! = V(G)\U'. So |U'| < 3|U| < 3en/8.
For each integer 0 < ¢ < [1/logy(1 + )], define an auxiliary bipartite
graph H, with vertex classes Z;, and V', and the edge set E(Hy) satisfies
for all z = (2,¢,) € Zy and all v € V', zv is an edge in Hy if and only if
zv is a (right) chord for G7 and the chord sequence €%,...,e7, zv is spread
out in G. Given 0 < ¢ < [1/logy(1 +¢)] and z = (z,c.) € Zy, note that
the number of vertices v such that ef,..., €7, zv is not spread out is at most
11(¢ + 2). Recall that zv is a chord for G7 if z # v # x and c(vz) # c,. By
the definition of Hy and (4.4), for each z = (z,¢,) € Zy,

di,(2) > [{v € V(G) : e(vz) # e} — [U] — 11( +2)

Z<;+€>n—1—3€8n—11<[10g2(1+6)w+2>

> (1+e)n/2 (4.5)
as n is large. Hence,
e(He) > > du,(z) > (1+¢)|Zeln/2. (4.6)

VASHA)
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Next we investigate how F(Hy) and Zy,1 are related. Suppose that zv
is an edge in Hy with z € Z, and v € V’. Since zv is a right chord for G?,
by Lemma 4.2 we know that there exists a 1-path-cycle G’ with parameters
(@, cz; 0, ¢,y) obtained from G% by a rotation using zv. This means that
G’ can be obtained from G by rotations using €7, ..., €}, zv. Since zv is an
edge in Hy, the chord sequence ef, ..., €7, zv is spread out in G. Recall that
v & U =UUU,epy Na(u). Corollary 4.3(i) implies that o' € Ng(v) and
so v' ¢ U. Therefore, (v',cy) € Zpy1. So this gives a natural map ¢ from
e(Hy) to Zyi1, namely ¢(zv) = (v/,¢,). Note that Ng(v') = {v,v”} and
¢y = c(v'v") by Lemma 4.2(ii). Recall that if (2/,¢,/) € Zpiq, then ¢, are
be uniquely determined by ¢, and ¢ + 1. Therefore,

if zv,z'v' € e(Hy) with v # v/, then ¢(zv) # ¢(z'0'). (4.7)
So [Zp1| = |Ugez, Nu,(z)|. Since Zo = {(y, ¢y)}, by (4.5) we have
1Z1] = duo ((y, ¢y)) = (1 +2)n/2. (4.8)

Now suppose that 1 < ¢ < [1/logy(1+¢)]. We edge-colour Hy such that
the edge zv in Hy has the colour ¢(zv) (appeared in K£). Let X, be the
set of vertices in V' that see exactly one colour in Hy. Let Y, be the set of
vertices in V' that see at least 2 colours in H,. Given v € Y, there exist
z1,22 € Z; such that z;v,z9v € E(Hy) and c(z1v) # c¢(z2v). Let Ng(v) =
{v1,v2}. Without loss of generality, we may assume that ¢(z1v) # ¢(vve) and
¢(29v) # c¢(vvy). By Lemma 4.2(ii) and (iii), there exists a 1-path cycle G’
with parameters (z, ¢;; v1, c(vvz)) obtained from G7' by rotations using z;v.
Hence, (v1,c(vv2)) € Zpy1 and similarly (vg,c(vv1)) € Zgy1. In summary,
every y € Yy contributes to two distinct members of Zy,1 and every x € Xj
contributes to at least one member of Z;, 1. Moreover, by a similar argument
used to prove (4.7), we deduce that all members of Z,,q derived this way
are distinct. This means that for 1 < ¢ < [1/logy(1 + ¢)], we have

| Zot 1| > | Xe| + 2]Yy]. (4.9)

Since each vertex z € X, meets edges of the same colour in Hy, dy,(x) <
Apon(KS) < n/2. By counting the degrees of w € X, UY; C V' in Hy, we
have

e(H)= Y dm,(w) <|Xeln/2+|Yen < |Zes|n/2,
weX,UYy

where the last inequality is due to (4.9). Together with (4.6), we have
| Zes1| = 2e(Hy) /n = (1+€)|Z4|
for all 1 <2 < [logy(1 + ¢)]. Therefore,
Zey1| > (1 +)Y 21| > (1 4+ ) n/2

for all0 < ¢ < [1/logy(1+¢)], where the last inequality is due to (4.8). This
implies that |Z;| > n when ¢ = [1/logy(1 4 ¢)] + 1, contradicting (4.3). O

We are ready to prove Lemma 4.1 using Lemmas 4.4 and 4.5.
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Proof of Lemma 4.1. Let ng be the integer given by Lemma 4.5 and let

ny = max | ——00 |
b clogy(1+e) | "

Let K¢ be an edge-coloured K, with Apyen(KS) < (1/2 —e)n and n > n;.
Let G be a properly coloured 1-path-cycle in K¢ with |G| maximal. We may
assume that G is not a 2-factor or else we are done. By applying Theorem 1.3
to K¢[V(G)], we may assume that G is a properly coloured path. Hence, G
is a 1-path-cycle with parameter (x, c,;y, ¢y) with = # y. Apply Lemma 4.5
(with U = ) to G and obtain an integer £ < [1/logy(1 +¢)] + 1, a vertex
z € V(G) and two chord sequences ef, ... ,e% and €2, ..., e% such that
(a) fori = 1,2, there exists a 1-path-cycle G% with parameters (z, c; 2, c%)
obtained from G by £ right rotations using e, . .., €j such that V(G%) =
V(G);
(b) for i = 1,2, the chord sequence €i,..., e} is spread out in G;
(c) ci # cZ.
Let U’ be the set of vertices u € V(G) such that distg(u,v) < 5 for some
ve{z,yt Ul V(eé-). Let U = U’ \ {z,y}. Hence |[U| < 11(2+4¢) <en/8
since n is large. By the left rotation version of Lemma 4.5, there exist an
integer ¢/ < [1/logy(1 4+ ¢)] + 1, a vertex w € V(G) \ U and two chord
sequences fi,..., f}, and f2,.. .,fE, such that for i = 1,2
(a') fori = 1,2, there exists a 1-path-cycle G% with parameters (w, ¢!;y, ¢;)
obtained from G by ¢’ left rotations using fi, ..., f}, such that V(G%) =
V(G);
(b’) for i = 1,2, the chord sequence fli, e fé} is spread out in G}
(') cu # s
(d) V(f}) SV(G)\U for all i <2 and all j < /.

By (c) and (¢’), we may assume without loss of generality that ¢! # c(zw) #
cL. Note that the sequence ef,..., e%, i fgl/ is spread out in G by (b),
b'), (d') and the definition of U. Apply Lemma 4.4 (with G, = G} and

r = G}) and obtain a 1-path-cycle Gy with parameters (w, cl; z, cl). Since
cl # c(zw) # cl, Go + zw is a union of vertex-disjoint properly coloured
cycles with V(Go+zw) = V(Gy) = V(G). If V(KS) # V(Gy), then Go+ zw
together with a vertex v € V(K{) \ V(G) is also properly coloured 1-path-
cycle, contradicting the maximality of |G|. Therefore, V(Go) = V(KY)
implying that G+ zw is a properly coloured 2-factor in K, as required. [J

5. PROOF OF THEOREM 1.4

We may assume that 0 < ¢ < 1/4. Let ng be the integer given by
Lemma 3.1. Set y = 2794 °+2 and ¢/ = (2¢ — 7)/(2 — 2v). Note that
0 <¢& <1/2. Let Ng = max{ng, [n1(¢’)/(1 — )]}, where n; is the function
given by Lemma 4.1.

Let K¢ be an edge-coloured complete graph on n vertices with Ap,on(KS) <
(1/2 —e)n and n > Ny. Let C be the properly coloured cycle given by
Lemma 3.1 and so |C| < yn. Let K¢, = K \ V(C). Note that

Amon(KS) < (1/2 —e)n < (1/2 — €)n/,
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where n = n — |C| > (1 —v)n > ny(e’). There exists a properly coloured
2-factor in K¢, by Lemma 4.1. Hence, K, contains a properly coloured
Hamiltonian path P by Theorem 1.2. By the property of C guaranteed by
Lemma 3.1, there exists a properly coloured cycle C’ spanning the vertex
set V(C)UV(P) =V(K). Hence, C' is a properly coloured Hamiltonian
cycle in K. ]
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