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Abstract  8 

The existing literature pays limited attention to the design and 3D analysis of small-scale axial and 9 

radial-outflow turbines that can be utilised in Organic Rankine Cycles (ORC) for power generation with a 10 

low-temperature (<100°C) heat source and low mass flow rate. Turbine efficiency significantly affects an ORC’s 11 

efficiency because the turbine is considered a key component of the ORC. Therefore, obtaining high cycle thermal 12 

efficiency requires high turbine efficiency and power output. This work presents an integrated mathematical model 13 

for developing efficient axial and radial-outflow (centrifugal) turbines using a range of organic working fluids 14 

(R141b, R245fa, R365mfc, isobutane and n-pentane). This mathematical approach integrates mean-line design and 15 

3D CFD analysis with ORC modelling. The ANSYSR17-CFX is used to predict 3D viscous flow and turbine 16 

performance. To achieve accurate prediction, the ORC/turbines model uses real gas formulations based on the 17 

REFPROP database. The results showed that the axial turbine performed better, with efficiency of 82.5% and power 18 

output of 15.15 kW, compared with 79.05% and 13.625 kW from the radial-outflow turbine, with n-pentane as the 19 

working fluid in both cases. The maximum cycle thermal efficiency was 11.74% and 10.25 % for axial and radial-20 

outflow turbines respectively with n-pentane as the working fluid and a heat source temperature of 87 °C. The large 21 

tip diameter of the axial turbine was 73.82 mm compared with 108.72 mm for the radial-outflow turbine. The 22 

predicted results are better than others in the literature and highlight the advantages of the integrated approach for 23 

accurate prediction of ORC performance based on small-scale axial and radial-outflow turbines. 24 

Keywords: Mean-line design; Organic Rankine Cycle; CFD; small-scale; axial and radial-outflow turbines. 25 

1. Introduction   26 

Recently, exploiting low-temperature heat sources such as solar and geothermal energy has increasingly focused on 27 

decreasing reliance on fossil fuels. Consequently, ORC systems are a promising technology that can be used to 28 

convert low-temperature heat sources into useful energy. Small-scale ORC systems based on axial and 29 

radial-outflow turbines are suitable for many electricity generation applications, such as domestic and rural 30 

situations, isolated installations and off-grid zones.  31 
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Nomenclature 
 

A area (m2) AS aspect ratio 
B constant of tip clearance loss (-) blds blade 
b axial chord (m)  cr critical  
C absolute velocity (m s-1) e evaporator  
c chord length (m) sec eff second law efficiency 

CL lift coefficient (-) ex exergy 
D, d diameter (m) H high  

f correction/friction coefficient’s (-) hyd hydraulic 
h specific enthalpy (kJ/kg)  L low  
H Blade height (m) nbp   normal boiling point 
K losses coefficient (-) P profile/pump 
k   specific turbulence kinetic energy (m2 s-2) R rotor  
ṁ mass flow rate (kg s-1) Re Reynolds number  
N Number of blade (-) Rec recuperator  
o throat (m) S stator  
p pressure (bar) Sec secondary 
𝑄̇𝑄 heat (kW) sh shock  
Rn reaction (-) t turbine 
S blade space (pitch) (m)  T total  
s entropy (kJ kg-1.K-1) TC tip clearance  
T temperature (K) TE trailing edge 
t time (s)/ Blade thickness (m)  ts total-to-static 
U blade velocity (m/s)/ mean flow velocity (m s-1)  tt  total-to-total 
V Velocity (m/s) * uncorrected 
W relative velocity (m s-1) 

 

Acronyms  
w specific work (kJ kg-1) 1D, 3D one and three dimensional  
𝑊̇𝑊 power (kW)  CFD computational fluid dynamics 

 

Greek symbols  GWP global warming potential  

α absolute flow angle (degree) ODP ozone depletion potential   
β relative flow angle (degree) ORC organic Rankine cycle  
η efficiency (%) PD preliminary mean-line design 
φ flow coefficient (-) RANS Reynolds-Averaged Navier-Stockes  
ψ loading coefficient (-) SST        shear stress transport 
ω specific turbulence dissipation rate (m2 sec-3)   
Ω Angular velocity (rad s-1)   
τ Tip clearance (m)   
ζ enthalpy loss coefficient (-)   

 

Subscript/superscript    

1-6 station within the turbine and cycle respectively.    
accel accelerating    
 32 

In an ORC system, organic fluids such as refrigerants and hydrocarbons are used as working fluids instead of 33 

steam. High-density organic fluids offer unique advantages through their small plant size compared with steam 34 

turbine/Rankine cycle systems. Using dry organic fluids produces a dry vapour phase after expansion through the 35 

turbine, preventing the presence of liquid droplets in the flow path and reducing the cost of maintenance. The 36 

low-temperature heat source leads to a low level of operating pressure, reducing the system’s complexity and 37 

alleviating safety concerns.  38 

2 
 



Selecting a practical turbine type depends on the maximum efficiency of the turbine type in specific operating 39 

conditions; the turbine is considered a key component of the ORC system and its performance (efficiency and power 40 

output) significantly affects the ORC’s thermal efficiency. Mean-line design of a radial-inflow turbine for ORC 41 

applications was performed for low power output levels in [1,2,3,4,5,6,7,8,9,10,11] with maximum turbine 42 

isentropic efficiency of 84% as reported in [10].  43 

For the axial turbine stage, the preliminary mean-line design was proposed and performed by [12,13] with 44 

different maps of isentropic efficiency for different working fluids. Martins et al. [14] designed and optimised a 45 

partial-admission axial turbine used in an ORC system for heat recovery below 140 ºC. R245fa was used as the 46 

working fluid with the Redlich–Kwong–Soave equation of state as a real gas model. Maximum efficiency of around 47 

81% was achieved with a convergent nozzle. Pei et al. [15] carried out an experimental test of a kW-scale ORC 48 

system operating with R123. The test was performed using a radial-inflow turbine with a maximum temperature 49 

difference of 70 °C between the hot and cold sides; isentropic and cycle efficiencies were 65% and 6.5%. Wang et 50 

al. [16] conducted an experimental investigation of low-temperature solar recuperative ORC with R245fa as the 51 

working fluid and a flat-plate solar collector. Their results showed that with constant mass flow rate of R245fa, the 52 

experimental system’s cycle efficiency remained steady at 3.67%. Kang et al. [17] conducted an experimental study 53 

of an ORC based on a radial-inflow turbine using a low-temperature heat source, with R245fa as the working fluid. 54 

The maximum turbine efficiency, power output and cycle thermal efficiency were found to be 78.7%, 32.7 kW and 55 

5.22% respectively. Ssebabi et al. [18] replaced the rotor of the radial turbine kit with one manufactured in-house 56 

and designed for low-grade waste heat recovery. The test was carried out using air as the working fluid, then used to 57 

scale the turbine for R123. The predicted performance was very similar for both rotors, with low isentropic 58 

efficiency (6-10%). Clemente et al. [19] evaluated the performance of different expanders, including axial turbine, 59 

radial turbine, scroll and positive displacement expanders to design a bottoming cycle to recover heat from the 60 

exhaust gases of a 100 kWe gas turbine. The highest power achieved was 26 kWe with 8% cycle efficiency. Pu et al. 61 

[20] presented an experimental study on a small-scale ORC system based on a single-stage axial turbine, which 62 

reported the influence of mass flow rate and evaporation pressure on ORC performance. Maximum power output 63 

from the ORC system was 1979 W and 1027 W for R245fa and HFE7100 respectively. Kang [21] designed and 64 

tested an ORC, with R245fa as the working fluid, based on a two-stage radial-inflow turbine to enhance the system’s 65 

performance. The results showed power, turbine isentropic and cycle efficiencies of around 39 kW, 58.4% and 9.8% 66 
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respectively with an evaporation temperature of 116 ºC. Hu et al. [22] presented off-design analysis of ORC system 67 

performance for a geothermal application, with variable mass flow rates and temperature, using a radial-inflow 68 

turbine. Turbine efficiency, power output and ORC system efficiency at the design point were 82.3%, 66.9 kW and 69 

5.5% respectively with R245fa as the working fluid and mass flow rate of 5.85 kg/s. Chang et al. [23] undertook an 70 

experimental investigation of a low-temperature organic Rankine cycle based on a scroll expander with R245fa as 71 

the working fluid. For heat source temperatures below 100 °C, the results showed expander efficiency, power output 72 

and cycle thermal efficiency of 73.1%, 2.3 kW and 9.44% respectively. Eyerer et al. [24] performed an experimental 73 

and analytical study of ORC for low-temperature applications by replacing R245fa as the working fluid with the 74 

low-global-warming-potential fluid R1233zd. The experimental investigation was conducted using a scroll-expander 75 

with different mass flow rates, rotational speeds and condensing temperatures. The results showed that R1233zd 76 

outperformed R245fa by 6.92% in terms of cycle efficiency. Ziviani et al. [25] conducted an experimental and 77 

numerical study of a single-screw expander for an ORC application with a heat source temperature of 125 °C.  Two 78 

different working fluids (R245fa and SES36) were used. The results showed that R245fa generated 10% higher 79 

power output than SES36.  80 

Fiaschi et al. [26] proposed a 3D design and analysis of a 5 kW micro radial-inflow turbine with R134a as the 81 

working fluid, in which total-to-static efficiency and power output were 69.35% and 4.504 kW. Sauret and Gu [27] 82 

carried out 1D analysis and 3D simulation of a radial-inflow turbine working with R143a in different operating 83 

conditions, including off-design conditions. Maximum efficiency and power output were 87.6% and 421.5 kW 84 

respectively. Al Jubori et al. [28] presented a new methodology integrating an ORC based on a small-scale axial 85 

turbine. Their results showed that, using working fluid R123 for a turbine of 70 mm mean diameter, the maximum 86 

isentropic efficiency was 82% and power output 5.66 kW, leading to cycle efficiency of 9.5%. Russell et al. [29] 87 

conducted a design and testing process for a 7 kW radial-inflow turbine using R245fa as the working fluid. The 88 

maximum total-to-total efficiency was approximately 76%, with approximate power output of 7kW for a pressure 89 

ratio of around 3.5. Persico et al. [30,31] conducted a 3D CFD aerodynamic analysis of small-scale centrifugal 90 

turbine cascades, which found efficiency to be higher than estimated by 1D analysis. Casati [32] proposed a 1D 91 

preliminary design of an example 10 kWe centrifugal turbine for a mini-ORC, for power systems driven by heat 92 

recovery. The preliminary design results showed efficiency in excess of 79%. Nithesh and Chatterjee [33] designed 93 

a small-scale laboratory radial-inflow turbine with 2 kW power output for an ocean thermal energy conversion 94 

4 
 



application. R134a was used as the working fluid, with a turbine speed of 22,000 rpm. The results showed turbine 95 

efficiency of 70% with turbine rotor tip radius of 35.5 mm. Sung et al. [34] designed and built a 200 kW ORC, 96 

based on a radial-inflow turbine, for a waste heat recovery application with a heat source temperature of 140 °C and 97 

R245fa as the working fluid. The experimental results showed power output and ORC thermal efficiency of 98 

177.4 kW and 9.6% respectively.  99 

High turbine efficiency is necessary in order to achieve high system performance in small-sized power output 100 

applications from a low-temperature heat source and low mass flow rate. Therefore, the aim of this study is to 101 

investigate the potential of a small-scale radial-outflow (centrifugal) turbine, compared with a small-scale axial 102 

turbine, for a small-scale ORC for low-scale power generation (i.e. 5 kW – 15 kW) applications, driven by a low-103 

temperature heat source. In particular, a new methodology based on 1D mean-line design and 3D CFD analysis is 104 

conducted and integrated with ORC modelling to provide accurate performance assessment for both turbine 105 

configurations. To the authors’ knowledge, this significant aspect has not previously been considered in the 106 

literature for this application, especially with radial-outflow turbines. This integrated approach allows us to 107 

exchange the assumption of constant isentropic turbine efficiency for dynamic isentropic turbine efficiency. 108 

Dynamic isentropic efficiency is unique to each turbine configuration, working fluid and operating conditions.  The 109 

ORC modelling and mean-line design of the turbines (both axial and radial-outflow) is implemented using the 110 

Engineering Equation Solver (EES) software. and ANSYSR17-CFX was utilised to predict 3D viscous flow and 111 

turbine performance. To achieve accurate prediction and real behaviour of the five organic working fluids, real gas 112 

formulation is used in the ORC/turbines model. In order to highlight the advantages, the results present and compare 113 

design and off-design conditions for each turbine configuration using available low-grade heat sources such as solar 114 

and geothermal energy. Furthermore, there exists gap in the knowledge regarding the development of efficient 115 

small-scale axial and radial-outflow turbines for low power output capacity below 15 kW. This research offers better 116 

understanding of small-scale axial and radial outflow turbines performance by providing more results on organic 117 

working fluids, turbines size, power output, turbines and cycle efficiencies. 118 

2. Organic working fluid selection 119 

Selecting the organic fluid is essential to the design and performance analysis of an ORC system. The selection 120 

of organic working fluid and the accomplished efficiency varies considerably based on the selected temperature 121 

levels, the turbine type, ORC cycle configuration, environmental impact, and application and power-sized. 122 

5 
 



Substances selected as working fluids for low-temperature ORCs are outlined in Table 1. The working fluids have 123 

an enormous effect on turbine design for ORCs. The thermo-physical properties of organic fluids substantially affect 124 

turbine size and performance, system efficiency, system stability and safety (critical pressure and temperature), cost 125 

and availability, and environmental issues such as global warming potential (GWP), ozone depletion potential 126 

(ODP), safety and life time, as presented in Table 1. Also, some thermal-physical properties of organic fluids should 127 

be taken into account in selecting appropriate working fluids for low-temperature heat source applications, such as 128 

their latent heat and specific volume. The lower latent heat of vaporisation of organic fluids is preferred due to its 129 

generating higher flow rates of working fluid vapour for the same amount of heat. The choice of working fluids is a 130 

major challenge for ORC turbines designers and it is based on an acceptable balance between the abovementioned 131 

criteria, environmental concerns, thermodynamic performance, commercial availability and cost (e.g. R245fa is 132 

selected based on these criteria and is recommended in literature as a suitable working fluid for low temperature heat 133 

sources application).  134 

With a low-temperature heat source, the choice of isentropic and dry working fluids (dT/ds slope >1) are more 135 

favourable for ORC because expansion in the turbine will be in the superheated regime, as shown in the T-s 136 

(Temperature-entropy) diagram in Fig. 1. This will alleviate concerns over the existence of droplets of organic liquid 137 

in the rotor stage, compared with wet fluids’ expansion in the wet regime, which requires preheat equipment, as 138 

shown in Fig. 1a. This feature considerably reduces turbine maintenance and evaporator size requirements, leading 139 

to reduced capital cost of the ORC system.  140 

Table 1. Physical, safety, and environmental properties for five organic fluids.  141 
Fluid Mol.  

weight  
(g/mol) 

Tnbp  
(K) 

Tcr (K) Pcr (kPa) ODP GWP 
(100 yr) 

Atmospheric life 
time (yr) 

Safety 
group 

R141b 116.95 305.05 480 4460 0.12 725 9.2  A2 
R245fa 134.05 288.14 426 3610 0 950 7.7 B1 
R365mfc 148.07 313.18 459.9 3266 0 850 8.7 n.a. 
Isobutane 58.122 272.51 408 37.96 0 <10 0.018 A3 
n-Pentane 72.15 309.1 469 3360 0 ~20 0.01 A3 

 142 

 143 

 144 

 145 

 146 

 147 
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 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

3. ORC system modelling 159 

The layout of the proposed recuperative ORC system is displayed in Fig. 2. The system consists of five main 160 

components: evaporator, turbine, condenser, pump, and recuperator. The subcritical ORC cycle is considered in this 161 

study to avoid the complexity and safety concerns of high-pressure systems. Heat and pressure losses through the 162 

connecting pipe of the ORC system are negligible. Steady state operating conditions are assumed. Heat added from 163 

the low-temperature heat source is given by: 164 

Q̇e = ṁ(h1 − h6)                                                                                                                                                (1) 

Net power output from the ORC cycle is given by: 165 

Ẇnet = Ẇtηmechηgen − Ẇp                                                                                                                              (2) 

where ηmech and ηgen are mechanical efficiency and generator efficiency.  166 

ORC thermal efficiency is given by:  167 

ηth =
Ẇnet

Q̇e
                                                                                                                                                           (3) 

The second law efficiency can be defined as the proximity of the real thermal efficiency of the cycle to the 168 

Carnot cycle efficiency as: 169 

ηseceff =
ηth

ηCarnot
=

Ẇnet

Q̇e �1 − TL
TH
�

                                                                                                                 (4) 

Fig.1. T-s diagram of dry fluid (a), T-s diagram of five organic working fluids (b). and  

(a) (b) 

7 
 



Fig. 2. Schematic diagram of recuperative  Rankine cycle components. 

        The design input parameters of the ORC system modelling and turbine design are detailed in Table 2. The 170 

design parameter values are stated in terms of heat source temperature and heat sink temperature (cold side 171 

temperature) with five organic working fluids for different mass flow rates ranged within 0.3-0.7 kg/sec. The mass 172 

flow rate of organic fluid is used as the inlet condition in the ORC system analysis and turbine design to calculate 173 

the desired power output. Therefore, the turbine, and thus the ORC system can be sized to meet this specification. 174 

Also, the performance of the turbine and ORC system is expressed as a function of mass flow rate.  175 

Table 2. The input parameters of the ORC model. 176 
Parameters Unit Value 
Heat source temperature K 360 
Heat sink temperature  K 293 
Pump efficiency - 0.75 
Generator efficiency - 0.96 
Mechanical efficiency - 0.96 
Recuperator effectiveness - 0.8 
Working fluid mass flow rate kg/s 0.3-0.7 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

4. Turbine Design 186 
A mobile small-scale ORC system with power output of a few kW, based on axial and radial-outflow turbines, 187 

is capable of converting the energy from a low-temperature heat source into useful power using organic working 188 

fluids. The radial-outflow turbine has a low specific work per stage because of the reduction of peripheral velocity 189 

through the expansion of the working fluid (U2 < U3) compared with the axial turbine, as shown in Fig. 3. Thus, a 190 

number of stages are required to increase the specific work compared with the axial turbine. The axial turbine is 191 

described by a single stage mounted on the same disc, which limits the number of stages. Here, for low mass flow 192 

range, low-temperature heat source and, hence a target application outputting only a few kW (5 kW- 15 kW), a 193 

single stage is considered for both turbine configurations. In the axial turbine, the flow streamlines through the blade 194 
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rows basically have a constant radius, compared with a considerable increase in radius through the blade rows in the 195 

radial-outflow turbine. It is evident from the aforementioned literature that there has been limited attention given to 196 

axial turbine and radial-outflow turbines. The industrial exploitation of radial-outflow configuration in the ORC 197 

application market is currently ongoing [35] and it is receiving more analytical studies by [30,31,32]. While the 198 

detailed studies are conducted of radial-inflow turbine that combined with mean-line design and ORC cycle analysis 199 

and followed by three-dimensional CFD simulation for a number of working fluids and operating conditions as 200 

reported by Sauret et al. [1,27,36] and other studies [2-11,15,17,21,22,26,29,33,34].  201 

4.1 Mean-line Design of axial and radial-outflow (centrifugal) turbines 202 
The mean-line design of the turbine stage is based on the 1D assumption that there is a mean streamline 203 

through the turbine stage. The assumptions usually used in axial turbine design are applied to the radial-outflow 204 

(centrifugal) turbine design. This novel design methodology is presented for the 1D mean-line design of centrifugal 205 

turbine configurations in small-sized power output applications, borrowed from axial turbine design. The three 206 

dimensionless parameters – loading coefficient, flow coefficient and reaction (ψ, ϕ and Rn) were chosen in order to 207 

predict the shape of the velocity triangle and the initial turbine efficiency for both configurations. The working fluid 208 

enters the turbine through the stator at flow angle (α1) with absolute velocity (C1) and exits at flow angle (α2) with 209 

absolute velocity (C2), as shown in Fig. 3. The relative velocity at the inlet of the turbine rotor is (W2) at angle (β2), 210 

then the flow is accelerated to relative velocity (W3) at the outlet of the turbine rotor at angle (β3). The flow angles at 211 

inlet and outlet of the turbine stage are calculated by [37]: 212 

𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽2 =
(𝛹𝛹 − 2𝑅𝑅𝑛𝑛)

2𝜙𝜙
    

𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽3 =
−(𝛹𝛹 + 2𝑅𝑅𝑛𝑛)

2𝜙𝜙
   

𝑡𝑡𝑡𝑡𝑡𝑡 𝛼𝛼3 =
−�𝛹𝛹 2⁄ − (1 − 𝑅𝑅𝑛𝑛)�

𝜙𝜙
  

𝑡𝑡𝑡𝑡𝑡𝑡 𝛼𝛼2 =
�𝛹𝛹 2⁄ + (1 − 𝑅𝑅𝑛𝑛)�

𝜙𝜙
   
⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                                                                                                                 (5) 

 213 

In the centrifugal (radial-outflow) turbine, the blade chord and height had an influence on the distribution of 214 

the blade along the stage diameter of the machine. The stage diameter and the outlet section area are calculated as 215 

follows [32]: 216 

𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑏𝑏                                                                                                                                                   (6)  

𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑚̇𝑚

𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
                                                                                                                      (7) 
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Assuming a rectilinear suction blade end-side, the relationship between blade geometric discharge angle and outlet 217 

width is given as: 218 

𝑜𝑜 = 𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵𝐵𝐵𝐵𝐵)                                                                                                                                                (8) 

where BDA is a blade geometric discharge angle, equivalent to α2, β3 in Fig. 3. 219 

Blade pitch S is calculated according to the following equation: 220 

𝑆𝑆 = 𝜋𝜋𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�                                                                                                                                                 (9) 

Blade height is calculated by rearranged equation (7) as: 221 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑚̇𝑚

𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 cos(𝐵𝐵𝐵𝐵𝐵𝐵)𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝜋𝜋
                                                                                                                 (10) 

The original 1D mean-line code formulated in-house was developed based on the losses model by AMDCKO 222 

(Ainley and Mathieson, Dunham and Cam, Kacker and Okapuu), adopted to account for losses within the blade 223 

rows. Notably, the losses model is used to estimate the performance for both turbine configurations. The total 224 

pressure losses through the blade passage are expressed in terms of profile, secondary flow, trailing edge, and tip 225 

leakage losses, which are given by the following equation [38,39] and summarised in Table 3:   226 

𝐾𝐾𝑇𝑇 = 𝐾𝐾𝑃𝑃𝑓𝑓𝑅𝑅𝑅𝑅 + 𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐾𝐾𝑇𝑇𝑇𝑇𝐾𝐾𝑇𝑇𝑇𝑇                                                                                                                         (11) 

The stage total-to-total and total-to-static isentropic efficiency in terms of enthalpy loss are as follows [40]: 227 

𝜂𝜂𝑡𝑡𝑡𝑡 =
1

1 + �ζ𝑅𝑅 𝑊𝑊3
2 2⁄ + �ζ𝑆𝑆𝐶𝐶2

2 2⁄ �(ℎ3 ℎ2⁄ )� (ℎ01 − ℎ03)⁄
                                                                        (12) 

𝜂𝜂𝑡𝑡𝑡𝑡 =
1

1 + �ζ𝑅𝑅 𝑊𝑊3
2 2⁄ + �ζ𝑆𝑆𝐶𝐶2

2 2⁄ �(ℎ3 ℎ2⁄ ) + 𝐶𝐶32 2⁄ � (ℎ01 − ℎ03)⁄
                                                        (13) 

The pressure loss coefficient and enthalpy loss coefficient are approximately equal at a small value of enthalpy 228 

[38]. The full details of conversion from pressure loss to enthalpy loss are outlined in Moustapha et al. [39].  229 

In the mean-line design of the outflow-radial turbine, the cascade losses are borrowed from axial turbines, such 230 

as those proposed by Ainley & Mathieson, Dunham & Came, Craig & Cox, and Kacker & Okapuu [38,39]. The 231 

losses model proposed by Craig & Cox [39,41] has been used by many researchers working on radial-outflow 232 

turbines, such as [30,31,32,42]. This losses model only includes the profile loss and secondary loss [32]. This paper 233 

considers end-wall losses, including the secondary, tip leakage and trailing edge losses [42], as detailed in Table 3.  234 

 235 
 236 
 237 
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Table 3. Axial and radial-outflow turbines losses modelling. 238 
Type of losses Correlation References 
 
 
Profile loss 

𝐾𝐾𝑃𝑃∗       = �𝐾𝐾𝑃𝑃(𝛼𝛼1𝑏𝑏=0)  + �𝛼𝛼1𝑏𝑏
𝛼𝛼2
� �𝛼𝛼1𝑏𝑏

𝛼𝛼2
� �𝐾𝐾𝑃𝑃(𝛼𝛼1𝑏𝑏=𝛼𝛼2) −

𝐾𝐾𝑃𝑃(𝛼𝛼1𝑏𝑏=0)�� �
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐⁄
0.2

�
(𝛼𝛼1𝑏𝑏/𝛼𝛼2)

  

𝐾𝐾𝑃𝑃 = 0.914 �
2
3
𝐾𝐾𝑃𝑃∗𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐾𝐾𝑠𝑠ℎ� 

 

[38,39] 

 
Secondary loss 𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆 = 0.0334𝑓𝑓𝐴𝐴𝐴𝐴 �

𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼2
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼1𝑏𝑏

� �
𝐶𝐶𝐿𝐿
𝑆𝑆 𝑐𝑐⁄

�
2 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼2
𝑐𝑐𝑐𝑐𝑐𝑐3 𝛼𝛼𝑚𝑚

 

 

[39] 

 
Trailing Edge loss 𝐾𝐾𝑇𝑇𝑇𝑇 =

∆𝑝𝑝0
0.5𝜌𝜌𝐶𝐶22

= �
𝑡𝑡2

𝑜𝑜2 − 𝑡𝑡2
� 

 

[12,13]  

 
Tip clearance loss 𝐾𝐾𝑇𝑇𝑇𝑇 = 4𝐵𝐵 �

𝜏𝜏
𝐻𝐻
�
𝑐𝑐𝑐𝑐𝑐𝑐2(𝛼𝛼2)
𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑚𝑚)

(𝑡𝑡𝑡𝑡𝑡𝑡 𝛼𝛼1 − 𝑡𝑡𝑡𝑡𝑡𝑡 𝛼𝛼2) 
[39] 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

4.2 Input/output of mean-line design  247 
The main aim of the 1D preliminary mean-line design (PD) is to deliver the initial turbine dimensions and 248 

blade shape, such as chord length, number of blades, blade pitch, leading edge thickness and trailing edge thickness, 249 

as detailed in [37]. In this study, the preliminary mean-line design is developed using EES (Engineering Equation 250 

Solver software) code [43]. The EES code can discover a wide range of turbine configurations by accomplishing 251 

inclusive studies in terms of different input parameters, as outlined in Table 5. The mean-line design methodology is 252 

a highly iterative procedure; the flow chart in Fig. 4 shows the procedure for the turbine design methodology, while 253 

the output of the mean-line design methodology is outlined in Table 6 for axial and radial-outflow (centrifugal) 254 

turbines respectively. Fig. 4 shows the flow chart of the detailed 1D mean-line design and 3D CFD process carried 255 

out in this paper.  256 

 257 

 258 

Fig. 3. Schematic of turbine stage velocity triangle for both configurations [32]. 
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Table 5. Input parameters of mean-line design for axial and radial turbines and their ranges/values. 259 
Parameters Values/Range Unit 
Reaction (Rn) 0.4-0.6 - 
Loading coefficient (Ψ) 0.6-1.4  - 
Flow coefficient (φ) 0.2-0.8 - 
Hub/tip radius ratio (rh/rt) 0.5-0.8 - 
Rotational speed 18000-20000 rpm 
Inlet total temperature 360 K 
Degree of superheating 0-10 K 
Inlet-total-pressure Corresponding saturated vapour 

pressure at inlet temperature 
bar 

Mass flow Rate 0.3 – 0.7 kg/sec 
Working fluids R141b, R245fa, R365mfc, n-butane and n-pentane - 

 260 

Table 6. Mean-line design output of the axial and radial-outflow turbines for ṁ = 0.7 kg/s and five investigated 261 
working fluids.  262 

Parameter R141b R245fa R365mfc Isobutane n-Pentane 
Axial Turbine 

Tip diameter (dt) mm  68.47 66.75 63.07 70.51 73.82 
Hub diameter (dh) mm 46.17 46.39 44.33 46.31 48.0 
Blade height (H) mm 11.15 10.18 9.37 12.10 12.91 
Tip clearance (mm) 0.35 0.35 0.35 0.35 0.35 
LE Blade Angle (deg) -16.34 -13.68 -11.27 -19.31 -22.19 
TE Blade Angle (deg) 65.80 63.75 63.50 65.25 70.50 
Stagger angle (deg) 32.21 33.67 34.24 30.83 28.35 
Solidity (c/S) (-) 1.924 1.815 1.736 1.903 1.944 
Number of blade (-) 25 21 21 25 27 
Turbine isentropic Efficiency % 82.88 78.91 79.39 83.55 84.56 
Power output (kW) 14.55 13.054 13.885 15.052 15.947 

Radial-outflow Turbine 
inlet diameter (Din) mm  49.12 48.06 45.89 49.75 50.23 
Outlet diameter (Dout) mm 93.66 86.52 81.52 102.72 108.72 
Blade height (H) mm 11.94 11.26 10.295 12.86 13.625 
Tip clearance (mm) 0.35 0.35 0.35 0.35 0.35 
LE Blade Angle (deg) -18.23 -15.41 -14.90 -21.56 -25.00 
TE Blade Angle (deg) 67.10 65.50 65.25 68.40 69.50 
Stagger angle (deg) 28.25 30.74 30.82 28.45 25.87 
Solidity (c/S) (-) 1.891 1.749 1.675 1.843 1.910 
Number of blade (-) 30 28 26 30 34 
Turbine isentropic Efficiency 81.04 77.58 79.07 80.25 82.00 
Power output (kW) 12.543 11.058 12.094 13.4225 14.4252 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 
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 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

5. CFD Methodology  289 

The CFD application becomes an essential step to investigate the ORC/turbines’ performance and goes 290 

hand-in-hand with their preliminary mean-line design due to the actual flow field in axial and centrifugal turbines’ 291 

being a strongly 3D, viscous and turbulent flow. Therefore, this section offers the 3D CFD analysis used in 292 

predicting the aerodynamic performance of the axial and centrifugal turbines by conducting 3D CFD analysis across 293 

the stator and rotor blade passage for both turbine configurations. The essential geometric characteristics (i.e. blade 294 

height, inlet hub and tip radii, and angles of blade) of the applicant turbines, as presented in Table 6, are used to 295 

create the 3D geometry of the turbine stage (stator and rotor), utilising the ANSYSR17-BladeGen tool as shown in 296 

Fig. 5. The pressure/suction and angle/thickness modes are employed respectively to define the curves for the hub, 297 

shroud and blade profile for the stator and rotor blades.  298 

Fig. 4. Flow chart of mean-line and 3D CFD methodology adopted. 
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The computational mesh is created using the ANSYSR17-TurboGrid meshing tool, tailored for CFD analysis via 299 

hexahedral mesh and mostly based on an O-H grid. The adopted topology is constructed based on the H-type grid, 300 

with the O-type grid added to increase the grid orthogonality around the blade. For mesh resolution purposes, the 301 

computational mesh was increased by adding nodes in the hub-to-tip and blade passage (blade-to-blade) because of 302 

the variation of y+, where y+ is defined as boundary layer mesh size, which is a dimensionless distance from the 303 

wall and used to determine the first node away from the wall. The variation of y+ is determined by the first node 304 

from the wall to a wetted surface in those two directions. The meshes are generated using the ATM optimised 305 

algorithm; tip clearance is applied based on design and manufacture standards.  306 

After the meshes are constructed, the 3D RANS equations with the k-ω SST turbulence model are solved using 307 

the high resolution advection scheme. The turbulence model k-ω SST is capable of automatic near-wall treatment to 308 

capture the turbulence closure by determining y+. The value of y+ is required to be around unity, based on the k-ω 309 

SST model as recommended in the CFX user’s manual. The k-ω SST turbulence model is considered for flow 310 

separation under an adverse pressure gradient, which accounts for the transport of the turbulent shear stress. 311 

Turbulence intensity at the inlet was maintained at 5% – the recommended value when no information is available 312 

about the inlet turbulence. The k-ω transport equations carried out to find the turbulent kinetic energy and the 313 

specific dissipation rate are: 314 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌𝜌𝜌𝜌𝑢𝑢𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝐺𝐺𝑘𝑘 − 𝑌𝑌𝑘𝑘 + 𝑆𝑆𝐾𝐾                                                                             (14) 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌𝜌𝜌𝜌𝑢𝑢𝑖𝑖) =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�Γ𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝐺𝐺𝜔𝜔 − 𝑌𝑌𝜔𝜔 + 𝑆𝑆𝜔𝜔                                                                          (15) 

where Gk and Gω represent the generation of turbulent kinetic energy and its dissipation rate.  Yk and Yω represent 315 

the fluctuating dilation in compressible turbulence. Sk and Sω are the source terms of the k-ω turbulence model. 316 

The stage (mixing-plane) model is applied at the stator-rotor interface to equip connection (communication) 317 

across the domain of stationary and rotating blade rows. Periodic boundaries are applied for the stator and rotor 318 

blade passages. For stage analysis and the steady state flow, the GGI (Generalised Grid Interface) feature is 319 

employed in CFX setup. All CFD analyses were performed at steady state condition, and the convergence criterion 320 

of the CFX was equal to 10-5 for all values of the residuals (RMS) with a time scale of 0.5/Ω as recommended in the 321 

CFX user’s manual. The 3D CFD analysis of ORC turbines requires an accurate thermodynamic model to account 322 

for the variations in the properties of organic fluids. Therefore, the thermodynamic properties of the organic fluids 323 

14 
 



were obtained using REFPROP software.  The boundary conditions from the 1D mean-line design in Table 5, such 324 

as inlet total pressure and temperature, rotational speed, and mass flow rate are used to perform the 3D CFD 325 

simulations via ANSYSR17-CFX.   326 

Grid independence was performed for the stator and rotor to ensure the meshes were sufficient in size. The 327 

initial mesh was generated and the 3D CFD solution completed; the turbine isentropic efficiency and dimensionless 328 

distance y+ were calculated. The meshes were then clustered and the simulation re-run and repeated until the 329 

grid-independent solution was achieved. The grid independence study is presented in Fig. 6 for both turbine 330 

configurations and summarised in Table 7 for all investigated working fluids and both turbine configurations. The 331 

computational meshes of the blade passage for both the stator and rotor blades are outlined in Fig. 7.  332 

 333 

Table 7. Summarised the grid size and the corresponding y+ values for both turbines and each working fluid. 334 
 

Working 
fluids 

Axial turbine Radial-outflow Turbine 
Stator No.  

of Elements 
Rotor No.  

of Elements 
y+ Stator No. 

of Elements 
Rotor No.  

of Elements 
y+ 

R141b 450000 550000 0.9325 350000 600000 0.9532 
R245fa 425000 525000 0.8951 300000 575000 0.9257 
R365mfc 450000 500000 0.8612 300000 550000 0.9125 
Isobutane 450000 580000 0.9570 375000 650000 0.9866 
n-Pentane 475000 625000 1.025 410000 650000 1.036 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

Fig. 5. 3D geometry for axial turbine stage (left) and radial-outflow turbine stage (right). 
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 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

Fig. 6. Grid independence based on turbine efficiency for  
both turbine configurations with n-pentane as the working fluid. 

Fig. 7. Computational grid for axial turbine stage (left), radial-outflow turbine stage (right). 
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6. CFD verification  377 

The developed mean-line design described in section 4.1 is validated against published benchmark case namely 378 

the Glassman case (code) as detailed in [44] for axial turbine configuration. The mean-line design results in terms of 379 

total-to-total efficiency and power output (i.e. the global performance parameters) are in a good agreement with the 380 

Glassman case and the deviations are within the acceptable margin for all working fluid as demonstrated in Fig. 8. 381 

Furthermore, because of the lack of available experimental data for small-scale axial and radial-outflow turbines 382 

operating with organic fluids, verification of the present 3D viscous simulation for both turbine configurations is 383 

made against the mean-line design results at nominal boundary conditions (Table 5), as shown in Figs. 8 and 9. The 384 

total-to-total isentropic efficiency and power output are compared for five organic fluids. The maximum difference 385 

in efficiency between the CFD and preliminary mean-line design (PD) for the axial turbine was 3.92% with R141b 386 

as the working fluid, while the maximum difference in the radial-outflow turbine was 4.61%, with R245fa as the 387 

working fluid. The variance between mean-line design PD and CFD is mostly attributable to 1D-characteristic PD, 388 

which is not able to capture all features of 3D flow fields. It may further be attributed to the details of the CFD 389 

analysis of the turbine using 3D CFD modelling. Ultimately, these results showed better agreement than the 390 

comparison between mean-line design and 3D CFD in Ref. [26,29], where the deviation in turbine isentropic 391 

efficiency was around 6-9%.  392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

Fig. 8. Comparison between mean-line design and CFD for axial turbine. 
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 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

7. CFD Results  414 
The 3D CFD analysis of small-scale axial and radial-outflow (centrifugal) turbines was performed in both 415 

nominal conditions (Table 5) and off-design conditions for the five working fluids. The evaluation of small-scale 416 

turbine performance (total-to-total isentropic efficiency and power output) with total-to-total pressure ratio is shown 417 

in  Figs. 10 and 11 for both configurations. However, the best turbine isentropic efficiency is obtained at a pressure 418 

ratio of around 2.25, due to a lower mass flow rate. As can be seen in Figs. 10 and 11, at a pressure ratio of around 419 

2.25, the maximum turbine isentropic efficiency was 82.5% with n-pentane as the working fluid for the axial 420 

turbine, compared with 79.05% for the radial-outflow turbine with the same fluid. R245fa has a minimum turbine 421 

isentropic efiiciency of 76.25% and 74% for axial and radial-outflow turbines respectively, due to its being a heavier 422 

(higher density) fluid. Also, Figs. 10 and 11 show that lighter fluids (n-pentane and isobutane) can produce 423 

considerably higher power outputs compared with the heavier (high-density) fluids (R245fa, R365mfc) for both 424 

turbine configurations. Lighter organic fluids (light molecular weight as n-pentane and isobutane) can produce 425 

substantially higher power outputs compared with heavier fluids (fluids with high molecular weight/high density, 426 

such as R245fa and R365mfc) for the same mass flow rate of organic working fluid, due to a relatively larger turbine 427 

size and consequently higher specific work output, whereas the lighter organic fluids have a higher enthalpy drop 428 

and consequently larger specific work. The high-density organic fluids such as R245fa and R365mfc have smaller 429 

sizes due to their lower specific volumes and thus require a higher pressure ratio and rotational speed to achieve the 430 

same power output as the lighter fluids. 431 

Fig. 9. Comparison between mean-line design and CFD for radial-outflow turbine. 
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The maximum power was 15.15 kW for the axial turbine and 13.625 kW for the radial turbine with n-pentane 432 

as the working fluid. With the rise in pressure ratio, both isentropic and actual enthalpy increase, leading to higher 433 

power output based on the definition of loading coefficient.  434 

 435 
  436 
 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

Figs. 12 and 13 show that maximum efficiency and power output were obtained at design rotational speed: 455 

18,000 rpm for R141b, R245fa and R365mfc and 20,000 for lighter fluids (isobutane and n-pentane) for both turbine 456 

configurations. A maximum difference of 6.25% between the turbine efficiencies of n-pentane and R245fa in the 457 

axial turbine, compared with 5.05% in the radial-outflow turbine was predicted. From Fig. 13, the maximum power 458 

Fig. 10. Variation of total-to-total efficiency (a) and power output (b) with pressure ratio at nominal 
condition for axial turbine. 

 a)  b) 

Fig. 11. Variation of total-to-total efficiency (a) and power output (b) with pressure ratio at nominal rotational 
speed and mass flow rate for radial-outflow turbine. 

 a)  b) 
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output was with n-pentane for both turbine configurations. R245fa had the lowest power output for both turbine 459 

configurations, due to its high density.  460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

Fig. 14 shows the effects of mass flow rate on turbine isentropic efficiency for both turbine configurations with 480 

different organic fluids and indicates that increasing the mass flow rate leads to improved efficiency and increased 481 

power output (as shown in Fig. 15) at the design condition of the rotational speed and pressure ratio. The maximum 482 

turbine efficiency achieved in the axial configuration was 82.5% with n-pentane, compared with 79.05% in the 483 

radial-outflow configuration. The maximum difference in turbine efficiency between n-pentane and R245fa was 484 

Fig. 12. Variation of total-to-total efficiency (a) and power output (b) with rotational speed at nominal condition 
for axial turbine. 

 a)  b) 

Fig. 13. Variation of total-to-total efficiency (a) and power output (b) with rotational speed at nominal condition 
for radial-outflow turbine. 

 a) b) 
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6.25% for the axial turbine, compared with 5.05% for the radial-outflow configuration at a mass flow rate of 0.7 485 

kg/s. As shown in Fig. 15, better performance is achieved with lighter fluids such as n-pentane and isobutane, with 486 

15.15 kW and 13.625 kW for the axial and radial-outflow configurations respectively.       487 

 488 
 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

The effect of working fluid mass flow rate on the overall size (tip diameter of the axial turbine and outer 509 

diameter of the radial-outflow turbine) is substantial, as depicted in Fig. 16. With rising mass flow rate, the drop in 510 

actual enthalpy increases, leading to a larger overall size based on loading coefficient. It can be seen in Fig. 17 that 511 

lighter organic fluids can yield considerably higher power output (more than 19.90%) compared with high-density 512 

a) Axial Turbine b) Radial-outflow turbine 

Fig. 15. Variation of mass flow rate with power output for both turbine configurations at nominal conditions. 

Fig. 14. Variation of mass flow rate with total-to-total efficiency for both turbine configurations at 
nominal conditions. 

b) Radial-outflow turbine  a) Axial turbine  
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organic fluids, due to their lower specific volumes and thus smaller sizes, while lighter fluids lead to larger blade 513 

height for both turbine configurations. Consequently, larger overall size and power output are achieved, as shown in 514 

Figs. 16 and 17.   515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

The pressure distribution (blade loading) of the rotor passage is shown in Fig. 18, which indicates that the 535 

highest pressure values correspond to the lowest flow velocity. By contrast, the lowest pressure values are located on 536 

the suction side due to the highest flow velocity values at the throat area of the blade passage. The isentropic 537 

enthalpy drop (work) is provided by the area circumscribed by such pressure distribution curves, where the enclosed 538 

 a) Axial turbine  

Fig. 16. Variation in overall size for both turbine configurations with mass flow rate at nominal condition. 

 b) Radial-outflow turbine  

Fig. 17. Variation of blade height with power output for both turbine configurations at nominal 
condition. 

 a) Axial turbine  b) Radial-outflow turbine 
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area is indicative of the net torque producing aerodynamic force by the rotor turbine shaft. Fig. 19 shows the Mach 539 

number contour at 50% span. It is marked by low Mach number values, which are due to the high profile curvature 540 

in this zone. The maximum Mach is 0.95 at the exit of the axial turbine’s stator, as shown in Fig. 19, with n-pentane 541 

as the working fluid.  542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

Fig. 18. Blade loading chart at rotor mid-span for both turbine 
configurations with n-pentane as the working fluid. 

Fig. 19. Mach number at mid-span for both turbine configurations with n-pentane as the working fluid at 
nominal condition. 

Axial Turbine Radial-outflow Turbine 
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8. ORC system analysis results 567 

The assumption of constant arbitrary turbine isentropic efficiency, ignoring the possibility of the turbine’s 568 

reaching these efficiencies in realistic conditions, was investigated for different working fluids and a wide range of 569 

boundary conditions. This does not essentially produce accurate results when each working fluid exhibits different 570 

turbine performance in specific operating conditions, as shown in the previous section. Performance parameters such 571 

as turbine isentropic efficiency and power output obtained from the 3D CFD analysis for each working fluid were 572 

then inserted as the inputs into the ORC’s model to calculate the ORC efficiency at nominal operating conditions, as 573 

shown in Fig. 20 (Table 4). Inlet total temperature, mass flow rate and rotational speed are 360 K, 0.7 kg/s, and 574 

20,000 rpm respectively.   575 

It is evident that the axial turbine configuration reached about 11.74% compared with 10.25% for the 576 

radial-outflow configuration with n-pentane as the working fluid due to its having the maximum turbine efficiency 577 

and power output in both configurations. However, R245fa has the lowest cycle thermal efficiency, at around 9.15% 578 

for the axial configuration and around 8.10% for the radial-outflow configuration, because of the low turbine 579 

isentropic efficiency and power output compared with other working fluids, as shown in Fig. 20.  The evaluation of 580 

second law efficiency for each working fluid and both configurations is presented in Fig. 21, at the same nominal 581 

operating conditions as above. The highest second law efficiency is for n-pentane, while R245fa has the lowest 582 

second law efficiency of the working fluids because it has the lowest turbine performance, leading to lower second 583 

law efficency. These results are better than in other reported studies, such as Ref. [15, 16 and 20], with maximum 584 

cycle thermal efficiency 6.8% as reported in [15], and highlight the potential of this integrated approach for further 585 

accurate prediction of ORC performance depending on small-scale axial and radial-outflow (centrifugal) turbines.    586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 Fig. 20. Evaluation of cycle thermal efficiency for five investigated working fluids and both turbine 
configurations. 
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 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

Figs. 22 and 23 show the variation in ORC thermal efficiency with the inlet total temperature of the turbine for 604 

the five different organic working fluids at mass flow rate of 0.7 kg/s and rotational speed of 20,000 rpm. As 605 

expected, the highest ORC thermal efficiency is detected at an inlet temperature of 360 K, as a design point where 606 

the maximum turbine isentropic efficiency and power output leads to maximum cycle thermal efficiency for both 607 

turbine configurations.   608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

Fig. 21. Evaluation of second law efficiency for five investigated working fluids 
and both turbine configurations. 

Axial Turbine 

Fig. 22. Variation in ORC cycle thermal efficiency with 
total inlet temperature with five organic working fluids 

for axial turbine. 

Fig. 23. Variation in ORC cycle thermal efficiency with 
total inlet temperature with five organic working fluids 

for radial-outflow turbine. 

Radial-outflow Turbine 
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9. Conclusions  623 

Limited consideration has been given to 3D CFD analysis, which is important to obtaining the accurate peak 624 

performance of the ORC turbine. This paper is the first to offer the full design procedure of efficient small-scale 625 

axial and radial-outflow (centrifugal) turbines working with sensible and realistic low-temperature heat sources such 626 

as solar and geothermal energy, with low mass flow rate and a range of organic fluids (R141b, R245fa, R365mfc, 627 

isobutane and n-pentane) for different ORC power generation applications. 628 

Furthermore, there is limited literature concerning the design and 3D CFD analysis of ORC systems, based on 629 

small-scale axial and radial-outflow turbines with power output up to 15 kW, for different electricity generation 630 

applications, such as small buildings, rural areas, off-grid zones and isolated installations. The key contribution of 631 

this paper is its development and demonstration of axial and radial-outflow turbine design and 3D analysis 632 

integrated with ORC modelling for low-temperature heat source and small-scale power output applications. The 633 

purpose of using 3D CFD analysis hand-in-hand with mean-line design is to predict turbine performance at the 634 

design condition, allowing a comparison between the proposed turbine and the actual performance achieved by the 635 

CFD model. The CFD results revealed a substantial difference in turbine efficiency of 6.25% between n-pentane and 636 

R245fa for the axial turbine, compared with 5.05% for radial-outflow. The maximum turbine isentropic efficiency 637 

was 82.5% and 79.05% for axial and radial-outflow turbines respectively, with respective power output of 15.15 kW 638 

and 13.625 kW. The large overall size of the axial turbine was 73.82 mm as a tip diameter compared with 108.72 639 

mm for the radial-outflow turbine.  640 

The maximum cycle thermal efficiency of 11.74% by the axial turbine, compared with 10.25% by the 641 

radial-outflow turbine, is achieved with n-pentane as the working fluid. These results highlight the advantages of 642 

this integrated approach of using axial and radial-outflow in the ORC system compared to other literature. Finally, 643 

the  3D blade shape optimisation tool integrated with structural analysis will be developed and applied to these 644 

turbines in avialble low-temperature heat source applications.  645 
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