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Highlights  

- The hypothalamic neuropeptide oxytocin acts as an anorexigenic signal. 

- Intranasal oxytocin delivery curbs food intake in healthy and obese individuals. 

- Possible links to oxytocin’s psychosocial function are discussed. 

- Does oxytocin hold some clinical potential as an appetite-reducing drug? 
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Abstract 

In the face of the alarming prevalence of obesity and its associated metabolic impairments, it 

is of high basic and clinical interest to reach a complete understanding of the central nervous 

pathways that establish metabolic control. In recent years, the hypothalamic neuropeptide 

oxytocin, which is primarily known for its involvement in psychosocial processes and 

reproductive behavior, has received increasing attention as a modulator of metabolic 

function. Oxytocin administration to the brain of normal-weight animals, but also animals 

with diet-induced or genetically engineered obesity reduces food intake and body weight, and 

can also increase energy expenditure. Up to now, only a handful of studies in humans have 

investigated oxytocin’s contribution to the regulation of eating behavior. Relying on the 

intranasal pathway of oxytocin administration, which is a non-invasive strategy to target 

central nervous oxytocin receptors, these experiments have yielded some promising first 

results. In normal-weight and obese individuals, intranasal oxytocin acutely limits meal 

intake and the consumption of palatable snacks. It is still unclear to which extent – or if at all 

– such metabolic effects of oxytocin in humans are conveyed or modulated by oxytocin’s 

impact on cognitive processes, in particular on psychosocial function. We shortly summarize 

the current literature on oxytocin’s involvement in food intake and metabolic control, ponder 

potential links to social and cognitive processes, and address future perspectives as well as 

limitations of oxytocin administration in experimental and clinical contexts.  
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1. Introduction 1 

The hypothalamic neuropeptide oxytocin, besides its physiological function in parturition and 2 

lactation, is primarily known for its role in psychosocial and affective processing, e.g., in 3 

bonding behavior, emotion regulation, and sexual function [1–4]. Oxytocin is released into 4 

the circulation by axonal terminals in the posterior pituitary and, in addition, acts directly on 5 

central nervous receptors. Interestingly, oxytocin is produced in hypothalamic regions that 6 

also regulate appetite and metabolism and are targets of appetite-regulating hormones like 7 

leptin, cholecystokinin (CCK) and ghrelin [5,6]. Important insights into the role of oxytocin 8 

in the central nervous regulation of metabolic functions have been obtained in animal 9 

experiments (e.g., [7–9]; for review see [10,11]) which indicate that oxytocin contributes to 10 

the control of food intake, energy expenditure and glucose homeostasis [12,13]. In recent 11 

years, first experiments to investigate respective effects in the human organism have been 12 

performed, primarily relying on the intranasal pathway of neuropeptide delivery to the brain. 13 

Intranasal administration of oxytocin in humans has been repeatedly shown to inhibit eating 14 

behavior driven by hunger due to energy depletion as well as by more reward-related, 15 

‘hedonic’ factors associated with food intake [14–16]. This short review summarizes the 16 

effects of oxytocin on ingestive behavior in healthy humans and subjects with obesity or 17 

eating disorders, with the aim of providing an update on current research and future 18 

directions, and looks at possible links between oxytocin’s eating-related function and its role 19 

in psychosocial regulation (see Figure 1 for an overview of oxytocin effects).   20 

 21 

2. The neuropeptide oxytocin 22 

Oxytocin is a nine-amino acid neuropeptide hormone that is predominantly produced in two 23 

hypothalamic regions, the paraventricular nucleus (PVN) and the supraoptic nucleus [17]. 24 

PVN oxytocin neurons project to the pituitary gland (about 40%) and a number of brain areas 25 
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including the brainstem. Around ten percent of PVN neurons project to three core areas of the 26 

brainstem that play an important role in the regulation of food intake: nucleus tractus 27 

solitarius, dorsal motor nucleus of the vagus nerve (DMNV), and area postrema [18,19]. 28 

Oxytocin in addition is active in brain areas of relevance for reward- and eating-related 29 

behavior such as the ventral tegmental area (VTA), nucleus accumbens (NAcc), and nucleus 30 

stria terminalis [20]. It is assumed that only a small ratio of oxytocin released into the 31 

periphery via the posterior pituitary passes the blood-brain barrier to re-enter the brain [21], 32 

which might explain why oxytocin concentrations are up to 1000 times higher in the brain 33 

than in the blood. In conjunction with the observation that the half-life of the peptide in the 34 

central nervous system (CNS) is over three times longer than in the periphery (19 vs. 6 35 

minutes) [22,23], this pattern furthermore points to the specific relevance of the hormone for 36 

central nervous functions [24]. 37 

The role of oxytocin in the periphery and in particular in the female reproductive 38 

system is well established, first of all with regard to fertilization and parturition. During 39 

pregnancy, the uterus increases its oxytocin sensitivity before giving birth, and receptor 40 

density increases during labor [25]. The human ovary also expresses oxytocin receptors 41 

(OXTR), and oxytocin possibly affects the fertilization process and the very early 42 

development of the embryo [26]. The most prominent role of oxytocin in humans concerns 43 

lactation. The infant triggers secretion of the peptide by sucking on the mother’s nipple, 44 

which stimulates additional milk ejection. The male reproductive system has also been 45 

observed to be oxytocin-sensitive [27]. 46 

The G-protein coupled OXTR [28] can be found in a wide range of brain regions (see 47 

ref. [27,29] for review), e.g., in hypothalamus, amygdala, anterior cingulate cortex, olfactory 48 

nucleus, and in limbic areas [30]. Moreover, oxytocin interacts with other neurotransmitters 49 

to influence brain function. It has been suggested that serotonin increases oxytocin 50 
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concentrations [31] and that dopamine interacts with oxytocin [32] to modulate activity of the 51 

brain’s reward circuitry [32,33] (see also chapter 4.2 of this review). The latter interaction has 52 

been assumed to be of relevance for behavioral disorders such as sexual dysfunction, autism, 53 

depression, but also eating disorders (see ref. [34] for further reading). In addition to its 54 

expression in the brain, oxytocin is expressed in myenteric and submucous ganglia and nerve 55 

fibres of the human gastrointestinal tract [35], with potential consequences for eating 56 

behavior and metabolism.  57 

A suitable way to study the contribution of (neuro)peptidergic messengers to human 58 

brain function is the intranasal route of administration, which largely bypasses the blood-59 

brain barrier (BBB) and delivers neuropeptides directly to the CNS. In humans, intranasally 60 

administered peptides have been found to reach the CNS within 45 min after delivery [36]. 61 

Since intra-neuronal transport of neuropeptides from the nasal mucosa to the olfactory bulb 62 

normally takes several hours [37], it is assumed that intranasally administered neuropeptides 63 

travel to the CNS via extra-neuronal pathways, bypassing the BBB paracellularly by 64 

diffusing into the subarachnoidal space across the olfactory epithelia and through intercellular 65 

clefts between sustentacular cells and olfactory neurons [38]. Passage of intranasally 66 

delivered peptides to the brain may also be established along cranial and trigeminal nerve 67 

branches [39]. Most recently, bulk flow within the perivascular space of cerebral blood 68 

vessels has been identified as another transport mechanism after intranasal administration 69 

[40]. Research relying on nasal spray application (mainly of 24-30 IU) of oxytocin indicates 70 

that the concentration of the peptide increases in both saliva and peripheral blood, with peak 71 

plasma concentrations at 10-40 min, or even 90 min following intranasal application [41–43]. 72 

Recent experiments by Striepens and colleagues [44] suggest that plasma oxytocin 73 

concentrations peak 15 min after intransal adminstration (24 IU) while cerebrospinal fluid 74 

oxytocin concentrations reach their maximum up to 75 min post administration, so that the 75 
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strongest brain effect of intranasal oxytocin might emerge around 60 min after 76 

administration. Intranasally administered oxytocin has been assumed to travel along the 77 

olfactory system to amygdaloid nucei, which are directly connected to the hypothalamus. 78 

This projection also influences the ventral striatum, an essential part of the reward system, 79 

with potential modulatory effects on forebrain structures [20] including cingulate and other 80 

parts of the frontal cortex [45]. It should be added that although intranasal delivery of 81 

oxytocin is an easy-to-use and generally well-tolerated approach [46,47], routine use, in 82 

particular in clinical settings, will necessitate some optimizing with regard to absorption 83 

despite degradation by the nasal mucosa (for review see [48]). In this context, the respective 84 

administration mode appears to be relevant considering recent reports that the administration 85 

of nebulized or aerosolized compared to simple spray solutions of oxytocin may permit CNS-86 

specific uptake of the hormone [49,50].  87 

 88 

3. Oxytocin’s impact on cognition and emotion 89 

The role of oxytocin in psychosocial, cognitive and emotional processes has become 90 

increasingly clear in recent years (see ref. [3,51] for reviews). A rapidly growing number of 91 

studies provides evidence that intranasally administered oxytocin enhances empathy [52], the 92 

perception of emotional facial expressions as well as covert attention to happy faces [53–56] 93 

and increases trust in others [2]. Oxytocin also enhances the recognition of emotional states 94 

expressed in body language [57], the formation of social memory contents, respective 95 

memory performance [58,59], and moreover may even promote self-perception [60]. 96 

However, oxytocin’s effects may not be purely beneficial in a social sense since the hormone 97 

can also trigger aggression towards members not belonging to one’s own group (out-group 98 

vs. in-group effects) and increase in-group favoritism [61,62](see [63] for review). Neural 99 

mechanisms behind behavioral effects of oxytocin have been identified in studies using 100 
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functional magnetic resonance imaging (fMRI; see [64] for review). One of the first studies 101 

to examine the effect of oxytocin on neural responses found that the hormone reduces 102 

amygdala activation in response to fear-inducing stimuli [65]. Domes and coworkers [66] 103 

reported amygdala responses to facial stimuli to be suppressed by oxytocin independent of 104 

emotional valence, and suggested that oxytocin is involved in general emotion regulation. In 105 

accordance with this assumption, the impact on amygdala activity of the perception of 106 

emotional (happy and angry) faces, and also of pain, trust and hearing infant laughter [67–70] 107 

turned out to be modulated by oxytocin. In addition, oxytocin affects the activity of 108 

frontocortical areas such as anterior cingulate cortex, orbitofrontal cortex and ventromedial 109 

prefrontal cortex during the observation of emotional faces [67,71]. 110 

Social context is an important modulator of the effects that oxytocin exerts on the 111 

processing of social-emotional stimuli. During exposure to aversive social stimuli amygdala 112 

activity is inhibited by oxytocin whereas insular activity is increased along with functional 113 

coupling to the amygdala [72]. This pattern suggests that oxytocin has anxiogenic effects 114 

when subjects are confronted with (socially) threatening stimuli [73–75] and may support the 115 

formation of memory for social interactions [76]. Fittingly, increases in saliva and, 116 

respectively, plasma concentrations of oxytocin have been found during psychosocial stress 117 

[77] and relational distress [78]. In contrast, oxytocin improves the positive effect of social 118 

support on stress reactions and, in these circumstances, exerts anxiolytic effects [74,76,79]. 119 

Person variables moreover appear to play an important role in the interplay between oxytocin 120 

and the regulation of anxiety and stress [74,80]. 121 

Oxytocin has also been implicated to contribute to memory function. In recent animal 122 

studies, oxytocin was found to protect hippocampus plasticity against stress [81] and to 123 

enhance the formation of hippocampus-dependent memory [82]. The hippocampal formation 124 

is essential for the formation and storage of declarative memory, i.e., memory for facts and 125 
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events that can be consciously recollected [83]. Mice lacking oxytocin display impairments in 126 

social memory function, failing to recognize animals they have been familiarized with [84]. 127 

In contrast, other animal studies suggest oxytocin-induced impairments in memory and 128 

learning [85]. In humans, the peptide has been linked to social recognition, inasmuch as it 129 

strengthens the encoding of facial features [86]. On the other hand, Herzmann and coworkers 130 

[87] found that oxytocin impairs recognition memory for both socially relevant and irrelevant 131 

objects. In related studies, Heinrichs and colleagues [88] observed impaired recall 132 

performance after intranasal oxytocin administration. In a recent review of the effects of 133 

intranasal oxytocin on long-term memory in humans, Brambilla and colleagues [89] therefore 134 

point out that there is a link between oxytocin and memory performance, but that the nature 135 

of this effect and the respective mechanisms are still unclear. It has even been proposed that 136 

the effects of oxytocin on social behavior might be primarily due to its impact on global 137 

cognitive processing capacities, namely improvements in working memory [90].  138 

The psychosocial effects of oxytocin shortly summarized above may be of particular 139 

clinical relevance with a view to psychiatric disorders with a pronounced social component. 140 

Therefore, the clinical potential of oxytocin administration has been investigated with regard 141 

to disorders involving social dysfunction such as autism, social anxiety, borderline 142 

personality disorder and schizophrenia as well as to impairments like post-traumatic stress 143 

disorder (for review see ref. [91]). Respective meta-analyses indicate that improving effects 144 

of oxytocin may be particularly pertinent in autistic persons (see ref. [92] for an overview). 145 

At the same time, there is some concern and discussion about the use of intranasal oxytocin 146 

in behavioral research [93–98], in particular about the efficacy of oxytocin penetration into 147 

the brain after intranasal administration [93]. Walum and colleagues [99] recommend 148 

improving the reliability of human studies using the intranasal administration paradigm. 149 

Publication bias might be an issue, so that better dissemination of oxytocin studies with 150 
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negative results appears desirable [98]. Clearly, a greater number of positive as well as 151 

negative results is needed to understand the complex effects of intranasal oxytocin on human 152 

behavior and to unravel the possible mechanisms behind these effects.  153 

 154 

4. Oxytocin as an anorexigenic neuropeptide 155 

4.1. Oxytocin’s impact on eating behavior and energy homeostasis in animals  156 

Thanks to research efforts in the past two to three decades, the contribution of oxytocin to the 157 

regulation of eating behavior and metabolism has gained increasing attention, and it seems 158 

like oxytocin is now not only recognized as a social peptide, but also as a messenger with 159 

relevance for food intake control. First hints at a role of oxytocin in the regulation of food 160 

intake came from animal studies where lesions of the oxytocin-expressing hypothalamic PVN 161 

resulted in increases in food intake and body weight [100,101]. In 1989, Arletti and 162 

colleagues [102] demonstrated that intraperitoneal (IP) and intracerebroventricular (ICV) 163 

injection of oxytocin decreases chow intake in male rats one hour after administration. 164 

Further experiments indicated that ICV administration of oxytocin reduces food intake in 165 

normal-weight rats [7]. Importantly, animals with genetically or diet-induced obesity (DIO) 166 

also respond to oxytocin administration. Thus, IP and subcutaneous (SC) injection of 167 

oxytocin suppresses food intake and SC injection reduces fat mass in DIO mice [8], and also 168 

improves insulin sensitivity [103]. In ob/ob mice, two weeks of SC oxytocin administration 169 

led to a reduction in food intake and body weight [104]. In obese Zucker-fatty rats [105] and 170 

obese diabetic db/db mice [106], ICV and, respectively, IP oxytocin administration also 171 

produced anorexigenic effects. Fittingly, twelve weeks of SC oxytocin administration via 172 

osmotic pumps improved glucose metabolism and reduced body fat content in db/db mice 173 

[107]. Corresponding anti-obesity effects of oxytocin were found in DIO rats [12,108]. 174 

Notably, oxytocin- or OXTR-deficient mice display modest, late-onset obesity in the absence 175 
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of changes in food intake behavior [109,110], and in some experiments oxytocin did not alter 176 

energy intake but still  improved energy homeostasis by increasing lipolysis [108]. Enhancing 177 

effects on energy expenditure have moreover been observed to mediate some of the catabolic 178 

impact of oxytocin [9,12,13,111]. Thus, the beneficial effect of oxytocin on body weight 179 

regulation as derived from animal studies is clearly not limited to reductions in food intake.    180 

The inhibitory effect of oxytocin on food intake has been attributed to different 181 

mechanisms in which the peptide appears to be involved, varying between homeostatic and 182 

more reward-related, hedonic processes. Oxytocin delays gastric emptying [35], while gastric 183 

distention activates oxytocin release [112]. In addition, oxytocin has been found to influence 184 

food selection [113,114] (see ref. [115] for review). Animal studies moreover suggest that 185 

oxytocin in particular decreases carbohydrate intake. Oxytocin-knockout mice display 186 

increased intake of sucrose [116] and also increased carbohydrate intake in general, i.e., 187 

independent of sweet taste [113]. Vice versa, injection of oxytocin into the VTA suppresses 188 

sucrose intake [117]. Experiments distinguishing between the sweet and the fatty component 189 

of palatable food show that oxytocin deficiency seems to affect carbohydrate rather than fat 190 

consumption [114,118]. However, comprehensive research by the group of Blevins [119] 191 

indicates that long-term third ventricular oxytocin infusion also affects fat consumption and 192 

fat oxidation: in rats kept on a high-fat diet, oxytocin curbed calorie consumption and 193 

decreased body weight gain relative to controls, effects that were not observed when the rats 194 

were on a chow-diet. Importantly, oxytocin also reduced energy intake and prevented weight 195 

gain in animals on a sucrose-free high-fat diet. In sum, these experiments indicated that 196 

oxytocin maintains energy expenditure despite concurrent weight loss, increases fat oxidation 197 

and may boost CCK-mediated satiety responses [11]. The ability of oxytocin to sensitize 198 

satiety centers in the hindbrain to the effects of CCK can be assumed to play a role in this 199 

context [6]. 200 
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The anorexigenic role of oxytocin has been proposed to rely at least in part on the 201 

downstream mediation of the effects of leptin [120], a hormone produced in white fat cells 202 

that provides the CNS with feedback on the amount of energy stored as body fat and 203 

therefore is one of the major signals establishing energy balance [121]. Blevins and 204 

coworkers demonstrated in rats that oxytocin-expressing neurons in the hypothalamic PVN 205 

contribute to the inhibitory impact of leptin on food intake [5]. Wu and coworkers [13] found 206 

no effect of adult ablation of oxytocin neurons on body weight, food intake and energy 207 

expenditure in mice on a regular diet; still, the mice lacking oxytocin neurons showed a 208 

reduced response to the anorexigenic effect of leptin and were more prone to develop DIO 209 

due to reduced energy expenditure. Hypothalamic oxytocinergic neurons project to structures 210 

of the brain reward circuit such as the NAcc [122],
 
and oxytocin administration attenuates 211 

dopamine signaling in the NAcc as well as the striatum [123], which suggests that the peptide 212 

may also inhibit eating behavior by modulating the reward-related, ‘hedonic’ effect of eating 213 

(see also next paragraph).   214 

4.2. Oxytocin’s impact on the control of food intake in healthy humans 215 

Studies in humans on the effects of oxytocin on eating behavior are still rare. Early studies 216 

failed to demonstrate an effect of peripheral administration of oxytocin on food intake [124], 217 

which is not surprising since, as stated above, only a small percentage of oxytocin 218 

(presumably around 0.005%) may cross the blood-brain barrier to bind to oxytocin receptors 219 

in the CNS [21]. However, the results of more recent studies relying on the intranasal 220 

administration of oxytocin have yielded first evidence for a hypophagic effect of the peptide. 221 

The first study addressing the impact of intranasal oxytocin on food intake investigated if the 222 

peptide reduces hunger- and reward-driven food intake in normal-weight healthy men [14]. It 223 

turned out that oxytocin strongly decreased the consumption of chocolate cookies assessed 224 

around three hours after peptide administration and 90 min after ad-libitum breakfast intake, 225 
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i.e., at a time-point when reward-related eating motivation prevailed. In contrast, hunger-226 

driven breakfast intake in the fasted state was not affected by oxytocin [14]. In that study, in 227 

accordance with experiments in humans [79] and animals [12,108], intranasal oxytocin also 228 

suppressed endocrine stress axis activity and curbed the postprandial peak in plasma glucose 229 

concentrations. Beneficial effects on glucose homeostasis were corroborated in experiments 230 

in healthy men who underwent an oral glucose tolerance test [125]. Here, oxytocin attenuated 231 

peak excursions of plasma glucose and augmented early increases in insulin and C-peptide 232 

concentrations, results that according to oral minimal model analyses indicated a pronounced 233 

oxytocin-induced increase in β-cell responsivity and a more than twofold improvement in 234 

glucose tolerance. When the impact of oxytocin on eating behavior was compared between 235 

normal-weight and obese subjects [16], cookie intake turned out to be likewise reduced by 236 

oxytocin and the peptide induced comparable changes in stress hormone- and glucose 237 

homeostasis-related blood parameters in obese participants. Remarkably, obese individuals in 238 

addition decreased hunger-driven breakfast intake after oxytocin administration, i.e., 239 

displayed a hypophagic effect that was absent in normal-weight humans. However, oxytocin-240 

induced reductions in hunger-driven food intake from a breakfast buffet were found in obese, 241 

but also normal-weight participants in related studies [15], which moreover indicated that the 242 

anorexigenic effect centered on fat intake (before correction for multiple comparisons). These 243 

results were accompanied by an oxytocin-induced increase in circulating CCK concentrations 244 

that, as the authors report, were not related to changes in calorie intake, and signs of 245 

improved insulin sensitivity after administration of the peptide.  246 

It is to note in this context that oxytocin and dopamine signaling have been found in 247 

humans [126] and animals [127] to interact in the regulation of pair bonding, and that 248 

intranasal oxytocin administered to nulliparous and postpartum women (at the dose also used 249 

in food-related experiments [14–16]) increases VTA activation during exposure to images of 250 
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crying infants as well as sexual stimuli [128]. Likewise, oxytocin enhances VTA activation in 251 

response to cues that signal social reward or punishment, although this effect is modulated by 252 

intraindividual differences in sociability [129]. Moreover, variability in the oxytocin gene 253 

explains interindividual differences in dopaminergic responses to stress measured by positron 254 

emission tomography [130]. These findings support the tentative assumption that oxytocin 255 

exerts some of its effects on food intake in humans by acting on reward processing, although 256 

at the moment it remains to be seen if the effect of oxytocin on eating behavior is primarily 257 

hunger- or reward-driven.  258 

There is some first evidence that in addition to acting via homeostatic and reward-259 

related mechanisms, oxytocin also reduces food intake by enhancing cognitive control 260 

mechanisms. Thus, a recent neuroimaging study [131] revealed that oxytocin reduces craving 261 

for food and in parallel increases activity of prefrontal cortical areas in women. Clearly, 262 

further studies are needed to pinpoint the exact mechanisms behind the hypophagic effect of 263 

oxytocin in humans. They should also answer the obvious question whether this effect is 264 

conveyed, at least in part, via oxytocin’s contribution to the regulation of psychosocial 265 

functions, so that a strong modulatory role of social context in the extent or even direction of 266 

oxytocin’s effect on eating behavior would be expected (see chapter 5).  267 

4.3 Oxytocin as a potential intervention in eating disorders and obesity 268 

The contribution of oxytocin to the control of food intake as illustrated in studies in animals 269 

and healthy subjects raises the question if oxytocin might support therapeutic interventions 270 

aimed at specific eating disorders. Individuals with anorexia nervosa have been found to 271 

display increased oxytocin concentrations after standardized meal intake [132], suggesting 272 

that changes in oxytocin signaling might be a feature of or even a pathophysiological factor 273 

in this disorder. Accordingly, anorexia has been associated with epigenetic dysregulation of 274 

the OXTR gene [133]. Intranasal oxytocin administration to patients with anorexia nervosa 275 
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changes their attitude towards social and food-related stimuli; the peptide induces a shift from 276 

the avoidance of angry faces towards increased vigilance and moreover attenuated attention 277 

to food stimuli [134,135]. These and related promising findings [136,137] by the group of 278 

Janet Treasure suggest that therapeutic approaches aiming at improving emotional and 279 

eating-related processes in anorectic, and moreover bulimic patients might be supported by 280 

concurrent oxytocin delivery [138], but will need to be corroborated in larger clinical trials. 281 

Of note, irregularities in oxytocin signaling, i.e., an OXTR gene polymorphism, have also 282 

been associated with bulimia nervosa [139].  283 

  Obesity is presumably linked the emergence of central nervous resistance against the 284 

hypophagic effects of the adiposity signals leptin and insulin [121,140]. As mentioned above, 285 

it appears that in some contrast to this pattern the brain of obese animals and humans displays 286 

intact or even enhanced sensitivity to the anorexigenic impact of oxytocin [16,120]. It has 287 

been speculated that the relatively elevated cholesterol levels in obesity may boost high-288 

affinity binding of oxytocin to the OXTR [27,141]. Support for the assumption that oxytocin 289 

signaling is altered in obesity comes from studies linking the OXTR gene to body weight 290 

[142,143] and the observation that overweight subjects as well as newly diagnosed diabetic 291 

patients display lower circulating concentrations of oxytocin when compared to normal-292 

weight controls [144]. Patients with Prader-Willi syndrome, who suffer from hyperphagic 293 

obesity as a consequence of persistent food craving, display a 40% reduction in the number 294 

and size of oxytocin neurons [145]. Pilot experiments in patients with this syndrome who 295 

received oxytocin substitution via the intranasal pathway for eight weeks yielded none of the 296 

intended effects on body weight and psychosocial function, which might have been due to a 297 

lack of feed-forward endogenous oxytocin release after exogenous delivery [146]. In related 298 

studies [147], young children with Prader-Willi syndrome improved their social and food-299 

related behavior after a four-week oxytocin intervention. Taken together, these findings 300 
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suggest that the oxytocin system might be a potential target of clinical interventions to 301 

normalize eating behavior [16,46]. Considering evidence that metabolic disorders increase 302 

the risk of cognitive impairments [148,149] and meta-analyses indicating that weight loss in 303 

subjects with overweight or obesity is associated with respective enhancements [150], the 304 

beneficial metabolic effect of oxytocin may even be associated with improvements in 305 

cognitive processes. 306 

In animal experiments, DIO rhesus monkeys receiving subcutaneous oxytocin for four 307 

weeks reduced their food intake by around 27% and their body weight by 3.3%, while their 308 

energy expenditure increased by 14% [9]. Obese human subjects reduced their food intake by 309 

around 10% in the first hours after acute intranasal administration [16]. When obese 310 

individuals received four daily intranasal doses of 24 IU oxytocin for a duration of eight 311 

weeks, they were observed to lose around 9 kg of body weight and to show a decrease in 312 

waist and hip circumference [103]. Since the interpretation of these results is complicated by 313 

the large pre-administration differences in BMI and age between the treatment and the 314 

control groups (36 vs. 30 kg/m
2
, 29 vs. 41 years), further and possibly larger trials are clearly 315 

needed to sound the potential of oxytocin as an anti-obesity drug. In these studies it will be of 316 

high relevance to address potential sex differences, which are suggested by some experiments 317 

in animals [13], and carefully control for side effects on metabolic parameters but also 318 

psychosocial functions. Although the intranasal administration of oxytocin at doses from 18-319 

40 IU – the range that comprises most doses commonly applied in experimental settings – 320 

does not acutely induce distinguishable side-effects according to meta-analyses [47] chronic 321 

oxytocin administration was associated with detrimental effects on social behavior in a 322 

number of animal studies [151–153]. While it is unclear whether these findings can be 323 

directly translated to the human situation, they pose a certain caveat to respective clinical 324 

trials [154]. 325 
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 326 

5. Oxytocin as a link between psychosocial mechanisms and eating behavior  327 

The findings discussed above open up an interesting new perspective for oxytocin as a 328 

regulator of eating behavior in humans, although the mechanisms underlying oxytocin’s 329 

hypophagic effect are only poorly understood. In particular, it is unknown why oxytocin in 330 

contrast to other satiating messengers is effective in obese humans. It might even be proposed 331 

that the impact of oxytocin on eating behavior is tightly interrelated with or even dependent 332 

on its psychosocial function, so that a specific social setting of food intake could be a 333 

necessary prerequisite for the effects of oxytocin to emerge. Notably, animal experiments 334 

indicate that social cues can modulate the effect of an OXTR antagonist on sucrose intake: 335 

subordinate mice only showed increased sucrose consumption due to OXTR antagonization 336 

when no social cues related to a dominant animal were present [115,155]. It is well-known 337 

that in humans, cognitive factors such as long-term dietary goals [156], social norms [157] 338 

and the context of eating, e.g., time of the day [158], are of paramount relevance for everyday 339 

food intake behavior. They may even override the homeostatic/reward-related control of 340 

ingestion [159]. In particular, the social context of food intake is a strong determinant of how 341 

much is consumed. Meals that are eaten in the company of others are larger than meals eaten 342 

alone [160], and the duration of meals is prolonged when more people are present [161]. The 343 

amount of ingested food also tends to follow the example given by other subjects – regardless 344 

if they are present or respective information is given [162] – but this effect appears to be 345 

triggered only by peers of the same weight status [163]. Obese individuals model their food 346 

intake according to other obese but not to normal-weight subjects [164]. Importantly, the 347 

oxytocin effects on eating behavior found in laboratory studies [14–16] were observed in 348 

people eating alone – albeit under overt or implicit supervision by the experimenters – 349 

whereas in everyday life, most meals are ingested in social settings.  350 
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Considering the involvement of oxytocin in psychosocial function [165], oxytocin’s 351 

effect on food intake in humans might indeed be strongly modulated or even primarily 352 

mediated by “non-physiological” (in the sense of predominantly psychological) factors. This 353 

assumption is supported by studies in chimpanzees where active food sharing increased 354 

urinary oxytocin levels and bonding behavior [166]. Moreover, oxytocin’s attenuating effect 355 

on stress reactivity and food consumption might be argued to converge with its basic 356 

physiological role in pair-bonding and mother-infant-interaction. E.g., the act of 357 

breastfeeding certainly benefits from relative protection against interfering (food-related) 358 

stimuli from the environment. In this regard, social context and interindividual differences as 359 

modulators of psychosocial stress [74] can be expected to interact with the effect of oxytocin 360 

on eating behavior, but to our knowledge, these interactions are yet to be systematically 361 

investigated. Elucidating presumable neuro-psychosocial mechanisms of oxytocin’s 362 

metabolic impact will be an essential step in the assessment of oxytocin’s potential as an 363 

appetite-reducing drug under conditions of day-to-day eating behavior. In clinical contexts, 364 

the involvement of oxytocin in multiple bodily and psychological functions will demand 365 

particular attention because this neuropeptide may also link seemingly unconnected 366 

pathophysiological conditions.  367 
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Figure 1. Schematic overview of oxytocin effects. The role of endogenous (primarily 930 
hypothalamus-derived) oxytocin has been investigated in numerous studies relying 931 
mostly (in the human setting) on intranasal delivery. Oxytocin has been shown to curb 932 
food intake and decrease body weight both in animals and humans (purple arrow). 933 
Effects on metabolism furthermore comprise increases in energy expenditure, lipolysis, 934 
glucose tolerance and insulin sensitivity (green arrow). The psychosocial effect of 935 
oxytocin concerns social, emotional and cognitive functions as well as anxiety- and 936 
stress-related processes (blue arrow). 937 
 938 


