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Abstract	

Rheumatoid	arthritis	(RA)	is	an	autoimmune	disease	in	which	chronic	inflammation	of	the	synovial	
joints	can	lead	to	destruction	of	cartilage	and	bone.	Pre-clinical	studies	attempt	to	uncover	the	
underlying	causes	by	emulating	the	disease	in	genetically	different	mouse	strains	and	characterising	
the	nature	and	severity	of	bone	shape	changes	as	indicators	of	pathology.	This	paper	presents	a	fully	
automated	method	for	obtaining	quantitative	measurements	of	bone	destruction	from	volumetric	
micro-CT	images	of	a	mouse	hind	paw.	A	statistical	model	of	normal	bone	morphology	derived	from	
a	training	set	of	healthy	examples	serves	as	a	template	against	which	a	given	pathological	sample	is	
compared.	Abnormalities	in	bone	shapes	are	identified	as	deviations	from	the	model	statistics,	
characterised	in	terms	of	type	(erosion	/	formation)	and	quantified	in	terms	of	severity	(percentage	
affected	bone	area).	The	colour-coded	magnitudes	of	the	deviations	superimposed	on	a	three-
dimensional	rendering	of	the	paw	show	at	a	glance	the	severity	of	malformations	for	the	individual	
bones	and	joints.	With	quantitative	data	it	is	possible	to	derive	population	statistics	characterising	
differences	in	bone	malformations	for	different	mouse	strains	and	in	different	anatomical	regions.	
The	method	was	applied	to	data	acquired	from	three	different	mouse	strains.	The	derived	
quantitative	indicators	of	bone	destruction	have	shown	agreement	both	with	the	subjective	visual	
scores	and	with	the	previous	biological	findings.	This	suggests	that	pathological	bone	shape	changes	
can	be	usefully	and	objectively	identified	as	deviations	from	the	model	statistics.		
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1 Introduction	

1.1 Rheumatoid	arthritis	
Rheumatoid	arthritis	(RA)	is	an	inflammatory	disease	of	autoimmune	origin.	It	is	most	common	in	
the	elderly	population,	but	it	can	affect	people	of	all	ages.	It	is	a	chronic	disease,	and	being	one	of	
the	most	common	causes	of	disability,	it	constitutes	a	public	health	problem.		
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The	autoimmune	response	mounted	by	the	body	affected	by	RA	gives	rise	to	chronic	inflammation	
of	the	synovial	joints	between	the	bones,	which	are	the	most	common	type	of	movable	joints	in	the	
body.	A	proportion	of	sufferers	will	develop	persistent	inflammation	of	the	synovial	membrane	
(synovium)	leading	to	the	destruction	of	both	cartilage	and	bone.	Damage	to	the	bone	is	thought	to	
occur	through	imbalance	of	two	processes:	bone	erosion	(the	breakdown	of	bone	through	secretion	
of	enzymes	that	demineralise	the	bone	matrix)	and	bone	formation	(deposition	of	new	bone	mineral	
into	the	underlying	bone	matrix).	In	healthy	patients	the	two	mechanisms	are	tightly	regulated	to	
ensure	that	on	average,	bone	integrity	remains	constant.	In	patients	with	RA	bone	erosion	
dominates	and	over	time	the	destruction	of	the	bone	surface	can	impair	normal	joint	function	and	
lead	to	structural	deformities.	In	approximately	90%	of	cases	where	inflammation	is	persistent,	
patients	will	be	clinically	disabled	within	20	years	(Buckley,	1997).	

1.2 Mouse	models	of	the	disease	
The	exact	cause	of	rheumatoid	arthritis	is	unknown,	which	limits	the	number	of	available	treatment	
options.	Pre-clinical	studies	attempt	to	uncover	the	underlying	causes	by	emulating	the	disease	in	
animals.	Animal	models	of	disease	allow	biomedical	researchers	to	investigate	medical	conditions	
through	experimentation	that	would	otherwise	be	infeasible	or	unethical	to	perform	on	human	
subjects.	Mice	are	particularly	well-suited	due	to	their	high	genetic	homology	with	humans,	speed	of	
breeding	and	inexpensive	housing	costs.	A	number	of	laboratory	mouse	strains	have	been	developed	
and	bred	to	be	near	genetically	identical	to	one	another.	This	allows	for	the	roles	of	different	genes	
to	be	investigated	in	a	way	that	eliminates	genetic	variation	as	a	factor	and	helps	to	gain	better	
understanding	of	disease	mechanisms	and	of	the	efficacy	of	new	treatments.	Characterisation	of	
bone	destruction	is	one	of	the	key	factors	in	understanding	RA	pathogenesis.	

In	longitudinal	studies	mice	may	be	examined	for	traits	associated	with	inflammatory	arthritis.	These	
could	be	based	either	on	measurements	(e.g.	paw	and	ankle	thickness,	body	weight,	grip	strength)	
or	on	subjective	qualitative	scoring	(e.g.	limb	deformity,	colouration,	gait).	Typically	a	hind	paw	is	
examined.	Based	on	such	observations	and	measurements	individual	animals	are	assigned	a	
physiological	disease	index	score	according	to	disease	severity.	Assessment	of	disease	in	this	way	is	
an	effective	method	for	determining	the	gross	differences	between	individual	animals,	but	it	does	
not	provide	explicit	information	about	how	the	disease	affects	bones	and	joints.		

1.3 Objective	characterisation	of	RA	
The	nature	and	severity	of	bone	shape	changes	are	important	indicators	of	pathology	in	mouse	
models	of	rheumatoid	arthritis.	Researchers	that	rely	on	the	assessments	of	the	external	signs	of	the	
disease,	as	described	above,	cannot	characterise	a	specific	nature	of	bone	destruction	in	different	
models	of	RA.	Observation	of	the	pattern	of	joint	involvement	and	the	bias	towards	bone	formation	
compared	to	bone	destruction	allows	characterisation	of	the	nature	of	the	arthritis,	for	example	
spondyloarthropathy	is	characterised	by	bone	formation	at	the	sites	of	tendon	insertion	whilst	
rheumatoid	arthritis	shows	predominantly	bone	erosion	at	sites	close	to	the	articular	joints.	The	
spatial	pattern	of	malformations	can	help	to	uncover	cellular	mechanisms	of	bone	destruction	by,	
for	example,	identifying	the	sites	where	activated	osteoclasts	proliferate	causing	bone	erosion,	or	
studying	regulatory	factors	that	control	osteoclast	differentiation	and	activity	at	specific	bone	
junctions	(Goldring,	2003;	Romas	et	al.,	2000).	



In	order	to	assess	the	degree	of	damage	to	bone,	x-ray	based	techniques	such	as	micro-CT	are	
employed	to	reveal	changes	in	bone	structure.	The	technique	has	been	demonstrated	early	on	in	
animal	studies	of	RA	as	a	suitable	means	for	evaluating	bone	loss	and	osteophytosis	(formation	of	
bone	spurs)	through	visual	examination	of	a	sequence	of	two-dimensional	micro-CT	slices	(Pettit	et	
al.,	2001;	Pine	et	al.,	2007).	The	process	of	identifying	bone	abnormalities	is	carried	out	manually	
and	relies	on	the	experimenter's	own	experience	of	how	such	bones	appear	under	normal	(non-
pathological)	circumstances.	

A	number	of	methods	have	been	proposed	to	automate	the	analysis	of	bone	destruction	in	RA,	both	
in	animal	models	and	in	humans.	Of	particular	interest	to	this	paper	are	volumetric	methods	that	
consider	three-dimensional	bone	surface	data.	Quantification	of	bone	volume	is	one	possible	
approach,	where	gross	differences	can	be	determined	automatically	from	image	data.	This	approach	
has	been	used	to	assess	mice	with	collagen	induced	arthritis	(CIA),	which	were	shown	to	have	
significantly	lower	bone	volume	and	density	than	wild-type	(normal)	controls	(Yang	et	al.,	2013).	One	
of	the	main	limitations	of	this	approach	is	that	it	provides	no	data	about	bone	morphology,	or	the	
nature	of	the	bone	destruction	that	has	occurred.	This	problem	has	since	been	tackled	using	surface-
based	registration	of	bones	(Joshi	et	al.,	2013).		

In	a	longitudinal	study	of	treatment	efficacy,	three-dimensional	CT	images	were	acquired	from	
patients	with	established	RA.	Individual	bones	were	manually	segmented,	and	surface	
representations	generated	as	triangulated	meshes.	Surface	registration	of	bones	at	different	stages	
of	treatment	was	followed	by	calculation	of	point-wise	distances	between	them,	and	used	to	
determine	local	differences	in	bone	volume.	These	differences	were	visualised	as	colourised	surface	
renderings,	highlighting	the	presence	of	abnormalities.	This	approach	is	effective	in	assessing	bone	
changes	over	time	in	individual	patients,	but	is	not	well-suited	to	detecting	abnormalities	in	multiple	
subjects	imaged	at	a	single	time	point.	Subsequently	this	work	was	extended	to	analyse	statistical	
shape	differences	in	wrist	bone	shapes	of	different	populations	(Joshi	et	al.,	2015).	This	involved	
constructing	an	atlas	of	bone	shapes	where	each	surface	point	is	characterised	by	the	mean	and	
variance	and	the	p-value	of	the	locations	in	individual	samples.	Shape	differences	were	then	
visualised	on	colour-coded	surface	maps	of	p-values.	A	similar	approach	was	used	to	identify	erosive	
changes	of	carpal	bones	in	longitudinal	patient	studies.	The	detected	erosions	were	quantified	by	
measuring	changes	in	their	depth.		

The	osteoarthritic	changes	affecting	the	mandibular	joint	were	analysed	in	a	study	aiming	to	
correlate	the	nature	of	morphological	changes	of	the	bone	shape	and	the	amount	of	pain	
experienced	by	a	patient	(Cevidanes	et	al.,	2010).	Individual	bone	instances	were	segmented,	
meshed	and	registered	via	spherical	mapping	using	Procrustes	alignment,	followed	by	building	a	
statistical	shape	model	(SSM).	Variations	in	the	three	aspects	of	morphological	changes	(flattening,	
erosions	and	osteophytes)	for	mild,	moderate	and	severe	conditions	were	visualised	by	generating	
the	meshes	from	the	SSM.	

1.4 Objectives	and	contributions	of	this	work	
This	paper	presents	an	automated	method	for	obtaining	quantitative	measurements	of	bone	
destruction	in	mouse	models	of	RA	from	micro-CT	images.	A	statistical	model	of	normal	bone	
morphology	derived	from	a	training	set	of	healthy	examples	serves	as	a	“template”	against	which	a	
given	sample	is	compared.	Abnormalities	in	bone	shapes	for	a	given	RA	model	are	identified	as	



deviations	from	the		model	statistics	and	are	then	characterised	in	terms	of	type	(erosion	/	
formation)	and	quantified	in	terms	of	severity	(affected	bone	area).	The	colour-coded	magnitudes	of	
the	deviations	superimposed	on	a	three-dimensional	rendering	of	the	paw	show	at	a	glance	the	
spatial	distribution	and	severity	of	the	bone	erosions	and	formations	and	their	association	with	
specific	joints.	The	method	has	been	applied	to	investigate	the	nature	of	bone	destruction	in	three	
different	mouse	models	of	inflammatory	arthritis,	providing	an	insight	into	the	different	ways	that	
joints	are	affected	by	the	disease.		

1.5 Outline	of	the	paper	
The	hypothesis	underpinning	this	work	is	that	shapes	of	bones	affected	by	pathology	depart	from	
statistically	normal	bone	shape	variations.	This	suggests	the	three-step	procedure:	first,	the	
development	of	a	statistical	shape	model	of	a	normal	limb;	second,	the	detection	of	bone	regions	
that	lie	outside	the	statistically	predicted	boundaries;	and	third,	qualitative	and	quantitative	
characterisation	of	the	detected	abnormal	regions	both	globally	and	locally.	Step	1	was	the	subject	
of	an	earlier	paper	(Brown	et	al.,	2014).	This	paper	focuses	on	the	detection	and	quantification	of	
the	bone	destruction.	

The	mouse	models	used	in	the	experiments	are	discussed	in	section	2.1.	Section	2.2	briefly	describes	
data	acquisition	and	sample	preparation.	The	construction	of	the	articulated	statistical	shape	model	
(ASSM)	of	a	normal	mouse	hind	paw	is	outlined	in	section	2.3.		Shape	model	fitting	and	abnormality	
detection	are	described	in	sections	2.4	and	2.5	respectively.	Validation	of	the	abnormality	detection	
methods	is	presented	in	section	2.6	followed	by	results	(section	3),	discussion	(section	4)	and	
conclusions	(section	5).	

2 Materials	and	methods	

2.1 Mouse	models	of	rheumatoid	arthritis	used	in	the	study	
Mouse	models	of	rheumatoid	arthritis	work	by	targeting	the	genes	and	proteins	that	are	implicated	
in	its	pathogenesis.	Although	RA	is	predominantly	an	erosive	disease,	a	number	of	mouse	models	
show	evidence	of	both	erosion	and	formation	of	bone	(Pettit	et	al.,	2001)	(Aya	et	al.,	2005).	Accurate	
assessment	of	these	bone	changes	is	required	to	identify	those	mouse	models	that	best	replicate	the	
human	disease	progression	and	phenotype	and	to	identify	protective	genetic	mutations	and	drug	
efficacy	in	pre-clinical	trials.	This	study	used	three	different	mouse	models	of	RA.	

The	K/BxN	serum	transfer	model:		These	mice	develop	a	transient	form	of	arthritis	in	response	to	a	
serum	injection.	They	show	evidence	of	pannus	formation,	synovial	hyperplasia	and	erosion	of	
cartilage	and	bone	that	is	reminiscent	of	human	RA	(Monach	et	al.,	2008)	(Ditzel,	2004).	Because	the	
K/BxN	serum	transfer	model	has	100%	penetrance	and	high	reproducibility	of	clinical	score,	a	strain	
of	mice	that	are	resistant	to	arthritis	was	used	to	test	the	sensitivity	of	the	ASSM.	These	
inflammation-resistant	mice	have	a	genetic	mutation	in	the	TTP	gene	which	is	described	in	detail	in	
other	publications	(Ross	et	al.,	2016);	throughout	this	manuscript	they	will	simply	be	referred	to	as	
“non-responders”.	

Collagen	antibody	induced	arthritis	(CAIA)	mice:	As	in	the	K/BxN	serum	transfer	model,	CAIA	mice	
experience	transient	inflammatory	arthritis,	characterised	by	inflammation	of	the	synovium	and	
destruction	of	both	cartilage	and	bone	(Oestergaard	et	al.,	2008).	



TNFΔARE	transgenic	mice:	These	mice	develop	a	progressive	arthritis	spontaneously.	They	experience	
chronic	polyarthritis	(affecting	five	or	more	joints)	that	is	non-resolving	and	highly	erosive	
(Kontoyiannis	et	al.,	1999).	Despite	this,	TNFΔARE	mice	lack	the	severe	swelling	of	the	joints	observed	
in	the	other	models.	

Two	of	these	models	(KBxN	and	CAIA)	are	resolving	models	induced	by	injection	of	autoantibody	and	
one	(TNFΔARE)	is	a	chronic	model	caused	by	a	genetic	modification	in	the	mouse	that	results	in	
overproduction	of	a	pro-inflammatory	protein	(tumour	necrosis	factor	α).	Normal,	untreated	mice	
(wild-type	mice)	were	used	to	develop	the	shape	model	of	normal	bones.		

2.2 Sample	preparation	
All	experiments	were	carried	out	at	the	University	of	Birmingham,	UK	(project	licence	number	
40/3253	or	70/8003)	following	strict	guidelines	governed	by	the	UK	Animals	(Scientific	Procedures)	
Act	1986	and	approved	by	the	local	ethics	committee	(BERSC:	Birmingham	Ethical	Review	Sub-
committee).	Mice	were	housed	in	individually	ventilated	cages	in	groups	of	3-6	individuals	on	a	12	
hour	light-dark	cycle	with	ad	libitum	access	to	standard	laboratory	mouse	chow	diet	and	water.	Six	
mice	were	used	for	each	experiment.	Mice	were	sacrificed	at	12	weeks	of	age.	Both	hind	limbs	were	
dissected	above	the	hip	and	fixed	in	formalin	over	24	hours	at	room	temperature	and	then	
transferred	to	70%	ethanol	in	preparation	for	imaging.	Hind	limb	samples	were	imaged	in	70%	
ethanol	using	a	Skyscan	1172	micro-CT	scanner	(Bruker).	The	x-ray	beam	was	set	to	a	source	voltage	
of	60	kV	and	source	current	of	167	μA.	A	0.5mm	aluminium	filter	was	used	to	minimise	soft	x-ray	
emission	and	projections	were	taken	every	0.45	degrees	at	1000	ms	exposure.	Image	volumes	(2000	
x	2000	x	1187	isotropic	voxels	of	size	13.59	μm)	were	reconstructed	using	the	Feldkamp	algorithm	
(Feldkamp	et	al.,	1984)(in	NRecon	1.6.1.5,	Bruker)	having	applied	flat	field	and	beam	hardening	
correction.	A	radiodensity	range	of	-300.0	to	3000	Hounsfield	units	(HU)	was	chosen	to	isolate	the	
bony	structures	from	the	imaging	medium.	CTAnalyser	(v1.12)	image	analysis	software	(Kharitonov,	
2003)	was	used	to	extract	an	isosurface	mesh	representation	of	the	mouse	limb	from	the	
reconstructed	and	thresholded	micro-CT	slices.	Poisson	surface	reconstruction	(Powell,	1964)	
(MeshLab	1.3.2)	was	then	used	to	generate	a	smooth,	uniformly	sampled	surface	mesh	that	
preserved	the	original	surface	topology.	Internal	structures	of	no	interest	to	this	study,	such	as	
trabecular	bone,	were	removed	using	ambient	occlusion	(Bowden,	2000).	Finally,	the	number	of	
mesh	vertices	(originally	of	the	order	of	2x106)	was	reduced	by	90%	using	quadric	edge	collapse	
decimation	(Boisvert	et	al.,	2008).	Together	these	procedures	generated	a	simplified	surface	
representation	of	manageable	size	so	that	registration	could	be	performed	in	a	reasonable	time	
frame	and	within	feasible	memory	requirements.	

2.3 Building	articulated	statistical	model	of	the	normal	sample	
The	development	of	the	articulated	statistical	model	of	the	mouse	hind	paw	was	described	in	detail	
in	an	earlier	publication	(Brown	et	al.,	2014).	For	completeness,	this	section	provides	the	essential	
details	of	the	methods	used.	

The	model	comprises	shape	statistics	of	the	hind	paw	bones	of	ten	wild-type	mice.	It	is	initialised	by	
hand-labelling	the	constituent	bones	and	joints	of	a	single	hind	mouse	paw	(a	reference)	according	
to	the	hierarchy	shown	in	Figure	1.	A	global	rigid	registration	of	the	entire	reference	mesh	to	an	
unlabelled	sample	mesh	uses	the	curvature	of	the	meshes	to	bring	the	two	into	a	coarse	alignment.	
This	is	followed	by	consecutive	registration	of	individual	bones	and	their	descendants	down	a	



hierarchy	using	the	iterative	closest	point	(ICP)	algorithm	(Besl	and	McKay,	1992).	Transformation	
parameters	for	subsequent	bones	are	constrained	to	a	subset	of	vertices	within	a	frustum	projecting	
from	a	terminal	joint	of	an	already	registered	parent	bone.	This	articulated	registration	procedure	
provides	correspondence	between	the	reference	and	sample	vertices.	Using	this	information,	labels	
are	propagated	from	the	reference	to	sample,	effectively	performing	its	segmentation.		

Registration	carried	out	in	this	step	aligns	the	reference	mesh	with	a	sample	mesh.	This	direction	of	
transformations	is	chosen	because	in	the	reference	set	each	individual	bone	can	be	manipulated	
individually	whereas	prior	to	segmentation	a	sample	mesh	is	not	differentiated	into	individual	
objects.	In	order	to	bring	a	sample	into	correct	alignment	with	the	reference,	inverse	
transformations	are	performed	in	reverse	hierarchical	order.	The	result	of	this	process	is	complete	
alignment	of	the	sample	with	the	reference	in	its	original	coordinate	system.	This	process	is	applied	
to	all	of	the	samples	used	in	model	construction,	registering	them	with	the	reference.		

Description	of	shape	variability	uses	a	well	known	idea	of	the	point	distribution	model	(PDM)	
(Cootes	et	al.,	1995),	based	on	principal	component	analysis	(PCA)	.	After	establishing	point	
correspondence	between	the	individual	shapes,	the	mean	shape	and	the	principal	components	of	
the	shape	variations	are	computed.	In	the	articulated	statistical	shape	model,	ASSM,	the	shape	
statistics	are	derived	for	each	bone	individually	(van	de	Giessen	et	al.,	2010).	Details	of	development	
and	validation	of	ASSM	can	be	found	in	an	earlier	paper	(Brown	et	al.,	2014).	

2.4 Shape	model	fitting	for	pathological	mice	
The	ASSM	described	above	was	trained	exclusively	with	ten	non-pathological	samples	to	produce	a	
model	of	“normal”	bone	shape.	Any	given	instance	of	the	model	should	therefore	only	consist	of	
bone	shapes	that	are	likely	to	be	found	among	normal	mice.		The	objective	of	the	shape	model	
fitting	step	is	to	find	an	instance	of	the	model	that	approximates	as	closely	as	possible	a	pathological	
sample	being	analysed.	By	constraining	model	instances	to	fall	within	three	standard	deviations	of	
the	mean	shape,	differences	due	to	normal	anatomical	variability	are	discounted	whilst	highlighting	
those	that	might	have	arisen	due	to	pathology.		

The	model	fitting	process	proceeds	in	two	steps.	The	first	step,	articulated	registration,	effectively	
initialises	the	fitting	process	and	is	identical	to	the	one	used	for	model	construction	as	described	in	
Section	2.3.		The	only	difference	here	is	that	rather	than	registering	the	annotated	reference	to	a	
normal	sample	(as	used	in	model	construction),	the	mean	model	shape	is	registered	to	a	
pathological	sample,	labelled,	and	inversely	transformed	into	the	model	coordinate	system.	As	in	2.3	
this	process	also	generates	one-to-one	correspondence	between	the	sample	and	the	model	vertices.	
In	the	second	step	a	non-rigid	deformation	is	found	for	each	individual	bone	that	minimises	the	
distances	between	the	model	points	and	corresponding	sample	points.	The	iterative	algorithm	
implemented	for	this	task	is	based	on	similar	active	shape	model	fitting	algorithms,	e.g.	(Besl	and	
McKay,	1992).			

The	shape	of	a	sample	bone	is	approximated	by	a	non-rigid	deformation	of	the	mean	bone	shape,	
defined	by	a	linear	combination	of	the	principal	components	computed	by	PCA	during	model	
construction:	

	 𝑥 ≈ 𝑥 + 𝑃𝑏	 (	1	)	



The	vector	𝑏	parametrises	the	deformation	and	is	constrained	to	lie	within	+/-	3	standard	deviations	
from	the	mean,	𝑃	is	the	eigenvector	matrix,	and	𝑥	and	𝑥	are	the	mean	model	points	and	
corresponding	sample	points,	respectively.	After	each	iteration	the	point	correspondence	between	
the	model	and	the	sample	is	re-computed	and	the	process	is	repeated	for	a	fixed	number	of	
iterations	𝑛.	A	value	of	𝑛	=	100	was	used	for	this	work,	above	which	only	negligible	deformations	
were	observed	for	any	of	the	shape	model	experiments.	The	result	of	this	iterative	process	is	a	
model	instance	that	best	approximates	the	sample	given	the	constraint	on	the	vector	𝑏.	

													 	
	 (a)	 (b)	

	
(c)	

Figure	1.	(a)	Main	anatomical	regions:	heel	(red),	metatarsals	(blue),	phalanges	(green).	(b)	(c)	The	hierarchy	of	
the	mouse	hind	paw,	with	corresponding	labels.	The	connections	between	nodes	represent	joints,	shown	as	
red	circles.	The	heel	(calcaneus)	bone	is	the	root	node	of	the	hierarchy,	and	is	therefore	the	first	bone	to	
undergo	alignment.	Transformations	applied	to	any	parent	node	are	inherited	by	the	entire	subtree,	allowing	
for	the	connected	bones	to	be	initialised	and	registered	accordingly.	This	particular	traversal	order	was	
selected	from	a	number	of	less	successful	approaches	which	produced	unsatisfactory	registration	results	in	
initial	experiments.	



	

2.5 Abnormality	detection	and	analysis	
This	work	aims	to	develop	a	tool	with	which	to	better	understand	the	diversity	in	nature	and	severity	
of	bone	shape	destruction	in	different	arthritis	mouse	models.	Of	particular	interest	are	the	total	
bone	loss	(erosion)	and	gain	(formation),	the	statistics	of	erosions	and	formations,	and	their	
magnitudes	and	locations	for	the	individual	bones	and	joints.	By	computing	the	signed	distance	
between	the	corresponding	points	(vertices)	in	the	sample	and	in	the	best-fitting	model	instance,	
the	required	quantities	can	be	computed	in	an	objective	manner.	

2.5.1 Abnormality	detection,	characterisation	and	visualisation	
The	process	of	fitting	the	model	onto	a	sample	allows	for	identification	of	abnormalities	in	terms	of	
fitting	error.	Regions	where	the	model	and	sample	show	good	agreement	are	assumed	to	be	non-
pathological.	Conversely,	regions	where	the	sample	deviates	from	the	model	statistics	are	regarded	
as	abnormal.	Numerically,	the	Euclidean	distance	between	corresponding	points	can	be	used	as	a	
measure	of	how	closely	the	model	matches	the	sample.	Let		𝑚 = 	 𝑚*,𝑚,,𝑚- 	and	𝑠 = 	 𝑠*, 𝑠,, 𝑠- 		be	
a	model	point	and	its	corresponding	sample	point,	respectively.	The	unsigned	Euclidean	distance	is	
calculated	as:	

	 E m, s = 	 (m* − s*), + (m, − s,), + (m- − s*-),	 (	2	)	

In	order	to	differentiate	between	bone	erosions	and	formations	the	signed	Euclidean	distance	(SE)	is	
calculated	between	the	model	and	sample	points.	The	model	and	sample	meshes	each	consist	of	a	
set	of	vertices,	connected	to	form	triangular	faces.	For	any	given	face	its	surface	normal	is	computed	

as	the	cross-product	of	any	two	of	its	edges.	For	each	vertex	its	normal	𝑁	is	computed	as	the	mean	
of	the	normals	of	the	faces	that	are	connected	to	it.	The	signed	Euclidean	distance		

	 SE m, s = E m, s (sgn N ∙ (m − s ))	 (	3	)	

is	then	used	to	characterise	and	quantify	the	nature	of	deformations.	Values	close	to	zero	are	where	
the	model	and	sample	surfaces	closely	match	one	another.	Positive	values	indicate	the	presence	of	
elevations,	whereas	negative	values	are	due	to	indentations.	Physiologically,	this	translates	into	
regions	of	deposition	(gain,	formation),	and	bone	resorption	(loss,	erosion)	respectively.	This	can	be	
visually	represented	as	a	heatmap	(see	Figure	2	(d)).			Figure	2	illustrates	the	consecutive	steps	of	the	
process,	starting	from	micro-CT	data	through	registration,	segmentation	and	labelling,	through	to	
heatmap	visualisation.	



	

	 (a)	 (b)	 (c)	 (d)	

Figure	2.	Visualisation	of	the	consecutive	steps	of	the	process	leading	to	quantification	and	visualisation	of	bone	
deformation.	(a)	Three-dimensional	reconstruction	of	micro-CT	data;	(b)	Results	of	registration	of	the	articulated	model	
(ASSM)	to	the	sample	shown	in	(a).	Colours	indicate	the	individual	model	bones;	(c)	Results	of	segmentation	where	
different	colours	indicate	labels	assigned	to	the	individual	bones;	(d)	Heatmap	showing	the	departure	of	the	sample	from	
the	model	of	normal	bone	shapes.	The	red	and	blue	regions	of	the	heatmap	correspond	to	bone	formation	and	bone	
erosion,	respectively.		
	

2.5.2 Delineation	of	abnormal	regions	
In	order	to	provide	meaningful	numerical	indicators	of	bone	deformations,	abnormal	regions	are	
delineated	and	measured	in	terms	of	their	surface	area.	A	tolerance	threshold	is	first	defined	to	
account	for	imperfections	in	registration	and	shape	model	fitting.	The	threshold	is	determined	by	
calculating	the	mean	Euclidean	distance	between	model	and	sample	vertices	across	the	original	
training	set.	The	statistics	are	computed	for	each	bone	independently,	rather	than	for	the	limb	as	a	
whole,	to	account	for	the	variability	in	registration	accuracy	between	different	bones.		In	the	results	
presented,	error	values	within	three	standard	deviations	of	the	mean	error	(per	bone)	are	regarded	
as	normal	departures	from	the	mean	bone	shape.	Any	vertices	with	error	values	above	this	
threshold	are	therefore	regarded	as	abnormal,	and	used	in	the	abnormal	surface	area	calculation.	

In	the	next	step	the	mesh	faces	adjacent	to	the	abnormal	vertices	are	grouped	together	to	form	
labelled	patches	representing	either	erosion	or	formation.	A	patch	is	defined	as	a	maximally	adjacent	
set	of	mesh	faces	bearing	the	same	label:	negative	(bone	erosion),	zero	(normal)	or	positive	(bone	
formation).	The	face	labels	are	assigned	by	considering	the	sign	of	its	vertices	and	the	vertices	of	the	
adjacent	faces.	The	most	trivial	case	is	where	an	individual	face	comprises	three	vertices	with	the	
same	label,	receiving	the	same	label	itself.	Non-trivial	cases	emerge	as	a	result	of	small	surface	
irregularities	where	patches	of	faces	are	surrounded	by	a	combination	of	negative,	positive	and	zero-
valued	vertices.	To	remove	these	local	irregularities	a	library	of	rules	was	defined	to	assign	each	
mesh	face	the	most	consistent	label.	Labelling	proceeds	as	follows.	Each	vertex	is	visited	in	turn,	and	
the	surrounding	faces	are	assigned	labels	based	on	the	current	vertex	label	and	the	labels	at	
neighbouring	vertices.	Given	an	input	configuration	of	labels	in	clockwise	order,	and	adjusted	to	be	
rotationally-invariant,	the	library	provides	the	appropriate	assignment	of	face	labels.	As	each	vertex	
is	examined,	the	relevant	rule	is	extracted	from	the	library	and	the	appropriate	labels	assigned	to	



the	adjacent	faces.	Figure	3a	shows	an	example	of	the	library	entry	for	positive	vertices	of	degree	
three,	their	corresponding	vertex	labels	and	the	face	labels	to	be	assigned.	Figure	3b	shows	an	
illustrative	example	of	the	face	label	assignment	for	vertices	of	degree	three	and	six	(the	maximum	
degree	found	in	the	surface	mesh).	This	labelling	system	provides	a	segmentation	of	the	mesh	
surface	into	three	classes:	normal,	erosion	and	formation.	

	

	

							 	

	 (a)	 (b)	

Figure	3.	(a)	A	vertex	library	entry	for	positive	vertices	of	degree	three.	Large	red	plus	sign	indicates	a	positive	vertex,	large	
blue	minus	sign	indicates	a	negative	vertex,	red	triangle	face	and	small	plus	sign	indicates	that	the	face	was	labelled	as	
formation,	and	blue	face	and	small	minus	sign	indicates	the	erosion	label.	(b)	Labelling	of	faces	as	regions	of	bone	
erosion/formation.	Each	vertex	is	visited	in	turn,	and	the	labels	of	surrounding	faces	assigned	based	on	its	own	label.	
Vertex	A	shows	a	simple	case,	where	its	blue	label	is	given	to	three	of	the	surrounding	faces,	due	to	each	of	them	having	
two	blue	vertices.	At	vertex	B,	despite	there	being	a	mixture	of	red	and	blue	vertices,	only	the	two	blue	faces	are	assigned.	
The	face	marked	by	an	asterisk	does	not	receive	its	red	label	until	vertex	C	is	visited.	

	

Bone	surface	areas	corresponding	to	the	labelled	patches	are	calculated	by	summing	the	areas	of	
their	individual	mesh	triangles.	For	any	given	triangle	∆	=	v1v2v3,	its	area	is	given	by:	

	 A(∆)	=1/2	|(v2	−	v1)	×	(v3	−	v1)|	 (	4	)	

The	overall	degree	of	bone	destruction	measured	for	each	bone	is	then	expressed	as	the	total	
percentage	coverage,	e.g.	x%	erosions,	y%	formations.	In	order	to	provide	a	more	detailed	
characterisation	of	the	abnormalities	present,	individual	patches	are	considered.	A	queue-based	
connected	component	labelling	algorithm	(see	Algorithm	1)	assigns	individual	labels	to	maximally	
connected	faces	of	the	same	abnormal	type	(erosion	or	formation).	The	patch	surface	area	is	
calculated	as	a	sum	of	the	surface	areas	of	the	triangles	forming	the	patch.	The	equivalent	diameter	
𝐷<= 	is	then	calculated	as	the	diameter	of	a	circle	with	area	equal	to	the	patch	size.		

	 𝐷<= = 2 ?(∆)
A
	 (	5	)	
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2.6 Method	validation	
The	model’s	ability	to	characterise	and	quantify	bone	abnormalities	was	validated	using	digital	
phantoms.	Three	leave-one-out	experiments	were	conducted	using	wild-type	samples	that	had	been	
computationally	deformed	to	simulate	the	presence	of	bone	erosions	and	formations.	This	was	
achieved	by	elevating	or	depressing	the	normal	bone	surface	at	a	number	of	locations,	with	
variations	in	their	cross-sectional	area	and	height/depth.	To	achieve	ground	truth	that	was	
biologically	realistic	the	abnormalities	were	generated	at	locations	which	were	observed	in	real	data.	
Parameters	characterising	their	size	and	shape	were	derived	from	the	statistics	of	measured	
deformations	in	one	of	the	diseased	populations.	An	example	of	a	sample	with	artificial	bone	



formations	is	shown	in	Figure	4.	Parameters	characterising	their	location	and	surface	area	were	used	
as	the	“ground	truth”,	which	was	then	compared	to	measurements	generated	by	the	ASSM.		

Figure	5	shows	the	results	of	the	validation	for	each	sample,	grouped	by	bone	destruction	type.	This	
data	provides	a	broad	overview	of	the	affected	regions	as	the	percentage	of	the	total	surface	area	
affected.	In	all	three	samples	the	measured	bone	erosion	is	accurate	to	within	0.1%	of	total	surface	
area.	Its	accuracy	is	relatively	consistent	across	all	three	anatomical	regions.	For	bone	formation	the	
results	are	more	variable.	The	model	is	most	accurate	in	the	metatarsal	region.	In	the	heel	region,	
the	degree	of	bone	formation	is	consistently	underestimated.	One	possible	explanation	for	this	is	a	
lack	of	variation	in	the	model,	preventing	it	from	deforming	inwards	to	fit	the	sample	surface.	This	
may	have	been	caused	by	there	being	too	few	samples	in	the	model,	or	poor	point	correspondence	
due	to	misregistration.	In	the	phalanx	region,	bone	formation	is	overestimated.	Bone	formation	is	
rarely	found	in	the	phalanx	regions	of	the	mouse	models	studied,	hence	the	absence	of	ground	truth	
values	in	that	region.	Furthermore,	the	lowest	articulated	registration	accuracy	is	generally	found	in	
the	phalanx	region,	providing	a	poor	initialisation	for	shape	model	fitting.	

	

Figure	4.	Sample	with	computationally	deformed	erosions	and	formations.	The	abnormalities	were	generated	at	locations	
which	could	realistically	be	observed	in	real	data,	and	of	a	similar	size	and	shape.	

	

	

Figure	5.	Results	of	three	leave-one-out	experiments	using	artificially	deformed	wildtype	samples.	The	amount	of	overall	
bone	erosion	measured	using	the	model	is	accurate	to	within	0.1	%.	For	bone	formation,	the	model	showed	similar	
accuracy	for	samples	1	and	2	(~0.2	%)	but	produced	a	larger	error	for	sample	3	(~1	%).	



2.7 Comparison	with	bone	destruction	scores	
A	scoring	system	for	evaluation	of	severity	of	bone	destruction	in	micro-CT	data	was	devised	to	
enable	comparison	of	the	visual	assessment	with	numerical	scores	obtained	by	computer	analysis.	
Scores	were	assigned	according	to	the	criteria	shown	in	Table	1	for	each	of	the	three	main	regions:	
heel,	metatarsals	and	phalanges	(see	Figure	1).	The	scores	were	acquired	by	three	independent	
observers	and	averaged	to	give	a	combined	score	for	each	hind	paw	sample.	Measurements	for	
abnormalities	computed	from	the	model	are	given	as	the	percentage	surface	area	affected,	
separately	for	erosion	and	formation.	Although	the	data	is	not	directly	comparable,	this	test	served	
to	establish	whether	similar	trends	can	be	observed.	Linear	and	rank	correlation	coefficients	were	
computed	as	numerical	indicators	and	scatterplots	were	produced	to	visualise	relationships	between	
the	two	scoring	systems	for	the	main	anatomical	regions	(heel,	metatarsals	and	phalanges),	
separately	for	erosions	and	formations.	

Type	 Visual	
Score	

Observations	

Bone	erosion	

0	
1	
2	
3	

Normal,	no	signs	of	erosion	
Roughness	of	bone	surface	
Pitting	/	indentations	
Full	thickness	holes	

Bone	formation	

0	
1	
2	
3	

Normal,	no	signs	of	formation	/	deformity	
Rough	appearance,	small	osteophytes	
Spurs	or	signs	of	bone	fusion	
Whole	bone	deformity	/	complete	fusions	

	

Table	1.	Scoring	system	for	bone	destruction	observed	from	micro-CT	image	data.	Scores	are	assigned	by	independent	
observers.	

Figure	6	(left)	shows	the	scatterplot	for	visual	scores	of	bone	erosion	against	the	percentage	area	
affected	by	erosions,	as	measured	by	the	model.	Pearson	correlation	coefficient	r=0.62	(p<	0.0015)	
and	Spearman	rank	correlation	coefficient	r=	0.63	(p<	0.0015)	indicate	strong	correlation	between	
the	two.	The	visual	scores	reveal	low	levels	of	erosion	in	the	phalanges	as	compared	to	the	rest	of	
the	paw,	which	is	recapitulated	by	the	model	measured	results.		

Figure	6	(right)	shows	the	scatterplot	for	the	visual	scores	of	bone	formation	against	the	model	
measurements.	Pearson	correlation	coefficient	r=0.69	(P<0.0002)	and	Spearman	rank	correlation	
coefficient	r	=	0.76	(p<1.6*10-5)	indicate	strong	correlation	between	the	two.	As	with	the	erosion	
data,	relatively	low	levels	of	bone	formation	are	found	in	phalanges	by	visual	scoring.	One	sample,	
however,	has	significantly	higher	phalangeal	bone	formation	scores	than	the	other	samples.	In	
examining	the	image	data,	narrow	strips	can	be	observed	along	the	lengths	of	several	of	the	
phalanges.	These	are	likely	to	be	image	artefacts	caused	by	incorrect	misalignment	compensation.	
Their	narrow	width	also	explains	the	model's	inability	to	detect	and	measure	their	surface	area.	



	 	

Figure	6.	Comparison	between	visual	erosion	(N	=	7)	and	formation	scores	(N	=	8)	and	model	measured	erosions.		

3 Results	
This	section	demonstrates	the	use	of	the	articulated	statistical	shape	model	(ASSM)	as	a	tool	for	
characterising	the	different	ways	in	which	bone	destruction	can	take	place	in	three	phenotypically	
different	mouse	models.	

3.1 K/BxN	serum	transfer-induced	arthritis		
Four	K/BxN	mice	were	analysed	and	compared.	Two	of	the	mice	were	“non-responders"	which	had	
no	clinical	signs	of	inflammation	and	received	microCT	visual	scores	of	zero	(see	Figure	6).		Micro-CT	
imaging	studies	indicate	that	normal	bone	integrity	is	maintained	in	the	non-responders,	showing	no	
evidence	of	localised	erosions.	Application	of	the	ASSM	and	the	resulting	heat	maps	are	supportive	
of	these	observations,	as	shown	in	Figure	7	(a)-(b).	The	uniform	baseline	“elevation”	that	appears	as	
a	pink	hue	suggests	that	the	non-responders	may	have	thicker	cortical	bone	than	the	wild	type	
individuals.	Figure	7(c)-(d)	shows	the	two	other	samples	that	responded	to	the	serum.	Upon	visual	
inspection	the	micro-CT	data	does	not	reveal	any	obvious	signs	of	bone	destruction.	However,	
comparison	with	the	normal	model	reveals	both	erosion	and	formation	of	bone,	predominantly	
around	the	synovial	joints.	It	is	further	clear	that	whilst	both	mice	were	responsive	to	the	serum,	
there	is	a	difference	in	severity	between	the	two	samples	shown.	The	presence	of	bone	formation	
along	the	metatarsals	indicates	that	some	abnormal	thickening	or	perhaps	bowing	has	taken	place	
that	is	not	accommodated	by	wild-type	variation.	Erosions	can	be	found	in	common	locations	on	
both	samples,	such	as	the	calcaneus,	talus	and	metatarsals.	Importantly,	it	is	apparent	that	bone	
remodelling	is	not	exclusively	erosive.	Evidence	of	bone	formation	can	be	found	on	the	calcaneus,	
distal	tarsals	and	metatarsals	of	both	samples.		

3.2 Collagen	antibody-induced	arthritis	(CAIA)		
Two	CAIA	mice	were	analysed	using	the	ASSM,	as	shown	in	Figure	7(e)-(f).	It	can	be	seen	that	the	
two	samples	are	very	different	from	one	another	in	terms	of	bone	phenotype.	In	the	first	sample,	a	
bulbous	formation	of	bone	on	the	distal	region	of	the	4th	metatarsal	causes	the	registration	to	
partially	fail,	resulting	in	subsequent	misalignment	of	the	connected	phalanges.	Elsewhere,	the	
model	reveals	widespread	bone	remodelling	(erosion	/	formation)	of	the	calcaneus,	talus,	
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metatarsals	and	phalanges.	The	second	sample	offers	a	very	different	bone	phenotype	consisting	of	
full	thickness	bone	erosions,	and	small	studded	patches	of	newly	formed	bone.	Application	of	the	
model	reveals	speckled	hotspots	(shown	in	red)	that	are	consistent	with	the	sparse	nature	of	the	
bone	formation	located	on	the	calcaneus,	distal	tarsals	and	metatarsals.	Full	thickness	erosions	
present	on	the	metatarsal	are	not	as	well	handled	by	the	model,	being	detected	either	partially	or	
not	at	all.	

3.3 TNFΔARE	transgenic	mice		
Two	TNFΔARE	mice	were	examined	using	the	ASSM	and	the	results	are	shown	in	Figure	7(g)-(h).	The	
two	samples	are	very	similar	in	terms	of	the	location	and	severity	of	the	bone	destruction	present.	
Notable	erosions	can	be	observed	on	the	2nd	-	4th	metatarsals,	as	well	as	the	flat	portion	of	
calcaneus.	Full	thickness	erosions	present	on	the	metatarsal	are	not	well	handled	by	the	model,	
being	detected	either	partially	or	not	at	all.	Interestingly,	a	small	degree	of	bone	formation	can	be	
observed	along	the	bodies	of	the	metatarsals	which	is	indicative	of	bowing.	This	can	be	verified	upon	
inspection	of	opposite	side	of	the	paw	(not	shown),	where	the	apparent	“bone	loss"	is	in	fact	due	to	
curvature	of	the	bones.		

	 	 	 				 	
(a)	 (b)	 (c)	 (d)	

	 	 	 					 	
(e)	 (f)	 (g)	 (h)	

	
Figure	7.	Heatmaps	of	three	phenotypically	different	mouse	models.	The	heatmaps	show	the	departure	of	a	sample	from	
the	model	expressed	as	the	signed	distance	(µm).	The	red	and	blue	regions	of	the	heatmap	correspond	to	bone	formation	
and	bone	erosion,	respectively.		



(a)-(b)	Non-responsive	mice	after	K/BxN	serum-transfer.	The	micro-CT	data	does	not	show	any	obvious	signs	of	bone	
destruction.	With	the	exception	of	some	uniform	baseline	error,	the	heatmaps	show	no	evidence	of	localised	bone	erosion	
or	formation	having	taken	place.	
(c)-(d)	Responsive	mice	after	K/BxN	serum-transfer.	In	contrast	to	the	non-responders	above,	it	is	immediately	apparent	
from	the	heatmaps	that	bone	remodelling	has	occurred.	The	degree	of	bone	destruction	differs	between	the	two	samples,	
with	sample	(c)	showing	smaller	changes	when	compared	with	sample	(d).	
(e)-(f)	Collagen	antibody	induced	arthritis	(CAIA)	mice.	The	two	samples	present	two	very	different	bone	phenotypes	that	
reveal	two	important	limitations	of	the	proposed	method;	robustness	to	extreme	bone	formation,	and	sensitivity	to	full	
thickness	erosions.	The	black	arrow	in	(e)	indicates	a	rarely	observed,	bulbous	region	of	abnormal	bone	formation	which	
caused	the	connected	subtree	to	be	misaligned.	The	resulting	poor	correspondence	prevents	the	model	from	reliably	
identifying	all	the	abnormalities	present.	The	lack	of	sensitivity	to	full	thickness	erosions	is	most	evident	on	the	metatarsals	
in	(f),	where	blue	patches	in	the	heatmap	do	not	coincide	with	particularly	deep	erosions	(see	the	inset	showing	micro-CT	
data	where	full	thickness	erosions	are	present).	
(g)-(h)	TNFΔARE	transgenic	mice.	The	two	samples	are	very	similar	in	terms	of	the	location	and	severity	of	the	bone	
destruction	present.	Notable	erosions	can	be	observed	on	the	2nd	-	4th	metatarsals,	as	well	as	the	at	portion	of	calcaneus.		

3.4 Quantitative	comparisons	
Figure	8	shows	the	mean	scores	for	bone	erosion	and	bone	formation	for	the	three	mouse	types.	
K/BxN	mice	are	additionally	subdivided	into	responders	(RESP)	and	non-responders	(NON):	See	
methods	(section	2.1)	for	detail	of	the	non-responders.	

															

	 	 	

Figure	8.	Mean	scores	for	bone	erosion	and	bone	formation	computed	for	the	three	mouse	types.	K/BxN	mice	are	
subdivided	into	responders	(RESP)	and	non-responders	(NON).	CAIA	and	TNFΔARE	(DARE)	are	also	shown.	X-axis	shows	the	
mouse	type	for	each	individual	mouse,	Y-axis	shows	the	total	percentage	area	of	erosions	(left)	and	formations	(right)	per	
mouse.	Bars	show	standard	deviation.	Red	dots	show	the	maximum	percentage	area.	

	 	

Figure	9	illustrates	differences	in	bone	destruction	for	all	the	mouse	types	in	the	three	gross	
anatomical	regions:	the	heel,	metatarsals	and	phalanges.	
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Figure	9.	Percentage	bone	destruction	in	the	three	mouse	types	(CAIA	-	navy	blue,	TNFΔARE	(DARE)	–	green,	K/BxN	
responder	(RESP)	–	cyan,	K/BxN	non-responders	(NON)	-	red)	for	the	three	bone	regions:	the	heel,	metatarsals	and	
phalanges.	X-axis	shows	the	bone	region,	Y-axis	shows	the	total	percentage	area	of	erosions	(left)	and	formations	(right)	
per	region	for	each	of	the	mouse	types.	

	

Numerical	data	characterising	site-specific	bone	deformations	in	different	mouse	models	can	be	
analysed	in	many	different	ways.	As	an	example	of	going	beyond	global	statistics	of	erosions	and	
formations,	histograms	in	Figure	10	show	the	distribution	of	patch	sizes	in	the	three	mouse	models,	
expressed	this	time	as	patch	diameters.	In	the	K/BxN	mice	distinction	is	made	between	responders	
(RESP)	and	non-responders	(NON).	
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Figure	10.	Histograms	show	the	distribution	of	the	patch	sizes	in	the	CAIA	(dark	blue),	TNFΔARE	(DARE	-green),	K/BxN	non-
responder	(NON	-	red)	and	K/BxN	responder	(RESP	-	light	blue).	Patch	diameter	(microns)	was	calculated	for	each	mouse	
model	for	bone	erosion	(left)	and	formation	(right).	Top	row:	the	distribution	of	all	patch	sizes;	middle	row:	only	patches	
above	100	microns	to	give	better	visual	separation	of	the	data;	bottom	row:	cumulative	patch	sizes	with	base	set	at	80	
microns,	for	better	visualisation.	

4 Discussion	
The	ultimate	goal	of	this	work	is	to	provide	the	rheumatological	research	community	with	the	
necessary	tools	to	characterise	and	quantify	murine	bone	destruction	in	an	entirely	automated	and	
unbiased	fashion.	Using	computer	software	researchers	would	supply	unprocessed	micro-CT	images	
and	be	provided	with	bone	phenotype	data	that	describes	the	type,	severity	and	location	of	the	
bone	destruction	present.	Such	data	would	allow	for	reliable,	detailed	comparison	of	different	
disease	models	and	treatments	used	in	mouse	studies.	Furthermore,	large	volumes	of	image	data	
could	be	assessed	with	minimal	user	interaction	that	would	otherwise	be	prohibitively	time	
consuming,	and	subject	to	inter-operator	error.	The	work	presented	in	this	paper	has	proposed	a	
number	of	measures,	demonstrated	the	feasibility	of	their	automatic	derivation	and	applicability	to	
answering	questions	of	importance	for	RA	research.	
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Although	this	study	comprised	a	limited	number	of	samples,	it	has	served	as	a	useful	proof	of	
concept	by	demonstrating	the	ability	of	the	method	to	expose	differences	in	pathology	between	
several	different	mouse	models	with	a	range	of	severities	and	malformation	types.	In	routine	use	it	
is	envisaged	that	over	100	mice	per	annum	will	be	examined.	In	such	large	studies	quantification	
becomes	increasingly	important	for	conducting	what	would	otherwise	be	labour-intensive	
assessments	that	are	subject	to	operator	biases	and	human	error.	Automation	in	this	context	is	a	
significant	advantage	in	terms	of	time	saved	and,	more	importantly,	in	standardising	data	output	
and	comparability	between	samples.	

4.1 Characterisation	of	bone	destruction	

4.1.1 Heatmaps	
Heatmaps	are	three-dimensional	representations	of	the	signed	distance	between	the	model	and	
vertices	of	a	sample,	mapped	as	red	(formations)	through	to	blue	(erosions)	on	the	sample	surface.	
They	provide	an	intuitive,	semi-quantitative,	representation	of	the	bone	deformations.	Heatmaps	
were	enthusiastically	endorsed	by	the	collaborating	RA	researchers	for	allowing	them	to	perceive	at	
a	glance	the	size,	location,	nature	and	severity	of	areas	affected	by	a	disease.	The	location,	
magnitude	and	nature	of	deformations	is	not	so	clearly	apparent	in	either	pathology	slides	or	3-
dimensional	rendering	of	micro-CT	slides.	

4.1.2 Quantitative	indicators	
This	paper	has	developed	a	number	of	quantitative	indicators	of	bone	destruction	to	aid	the	RA	
researchers	in	the	objective	characterisation	of	the	disease	models.	They	all	derive	from	two	
assumptions:	that	normal	bone	shape	anatomy	can	be	sufficiently	represented	by	a	statistical	shape	
model;	and	that	pathological	changes	make	bone	shape	statistics	depart	from	the	normal	model.	
Consequently,	the	disease	indicators	are	all	based	on	differences	between	the	model	of	normal	bone	
anatomy	and	a	given	sample.	A	global	measure,	which	however	proved	too	crude,	is	a	total	distance	
between	the	model	and	the	sample	computed	as	the	sum	of	differences	between	all	the	
corresponding	vertices	of	the	model	and	the	sample	mesh	representations.	A	less	crude	measure	
could	distinguish	between	erosions	and	formations	by	taking	into	account	the	signature	of	the	
distance.	However,	averaged	over	all	the	vertices	it	proved	too	insensitive	to	local	changes.	The	
measures	finally	adopted	consider	individual	erosion	and	formation	patches	on	each	bone	
separately.	The	percentage	patch	area	as	a	fraction	of	the	area	of	a	given	model	bone	provides	a	
relative	measure	of	destruction	per	bone,	irrespective	of	its	size.	From	this	measure	further	statistics	
can	be	derived,	for	example	erosions	/	formations	for	each	individual	bone	(not	shown),	for	all	the	
bones	at	a	given	level	of	hierarchy	(Figure	9),	or	for	the	entire	sample.	The	equivalent	patch	
diameter	is	an	absolute	measure	(µm),	based	on	which	size	distribution	statistics	can	be	computed	
(Figure	10).	Another	informative	measure	that	could	have	been	developed	is	a	volume	of	each	
individual	patch.	This	was	easy	to	compute	for	bone	formations,	but	proved	difficult	even	to	define	
for	full	thickness	holes.	

In	the	present	implementation	the	bone	destruction	statistics	are	computed	in	relation	to	individual	
bones,	rather	than	to	joints	which	are	predominantly	affected	in	RA.	The	joints	at	which	bone	
destruction	is	most	visually	discernible,	and	thus	the	most	interesting	for	these	studies,	are	the	
tarsometatarsal	and	metatarsophalangeal	joints.	Errors	in	segmentation	due	to	narrowing	of	the	
joint	space	and	the	limited	spatial	resolution	may	in	some	cases	result	in	inaccurate	values	for	bone	



loss	and	gain.	In	general,	quantitative	measures	should	be	considered	reliable	for	the	periarticular	
surfaces,	but	less	so	for	the	articulating	surfaces.	Visualisations	presented	via	heatmaps	do	not	
suffer	so	much	in	this	respect	as	their	main	purpose	is	to	indicate	sites	of	abnormality,	their	general	
nature	(erosions	and	formations)	and	relative	magnitude.	In	mouse	models	of	RA	for	histological	
assessment	most	researchers	look	at	the	ankle	region	including	the	joint	between	the	calcaneum	
and	distal	tarsals.	This	is	largely	for	pragmatic	reasons	as	this	large	joint	is	most	readily	located	in	2D	
and	can	be	compared	between	samples.	Heatmaps	consistently	depicted	the	pathology	at	the	
metatarsal	joints	as	expected,	in	addition	showing	other	areas	around	the	tarsal	and	heal	joints	that	
were	particularly	affected.	

4.1.3 Key	biological	findings	revealed	by	the	analysis	
The	analysis	based	on	the	articulated	statistical	shape	model	of	a	normal	mouse	hind	paw	has	
provided	interesting	insights	into	the	nature	of	bone	destruction	in	the	three	mouse	models	of	RA.	
The	initial	observations	are	summarised	below.		

Although	K/BxN	and	CAIA	mice	are	very	similar	in	terms	of	mechanism	of	arthritis	induction	and	the	
transient	inflammation	produced,	this	work	has	identified	apparent	differences	in	the	effects	of	this	
inflammation	on	bone	structure.	Application	of	the	ASSM	has	revealed	that	whilst	both	models	of	
arthritis	are	predominantly	erosive,	both	also	bear	clear	signs	of	bone	formation	having	taken	place.	
This	is	supported	by	previous	studies	of	both	models	(Oestergaard	et	al.,	2008;	Ruiz-Heiland	et	al.,	
2012).		The	nature	of	the	bone	destruction	is	somewhat	different	as	the	CAIA	serum-transfer	model	
presents	with	more	severe	deformities	such	as	the	full	thickness	bone	erosions	and	the	presence	of	
highly	abnormal	bone	formations.	This	caused	the	ASSM	model	to	fail	occasionally,	however	it	was	
still	able	to	highlight	several	interesting	bone	shape	differences	including	apparent	“thinning”	of	
cortical	bone,	as	well	as	bone	spurs	on	the	calcaneus,	located	where	the	tendons	attach	to	bone.	

Histograms	in	Figure	10	show	the	distribution	of	patch	sizes	in	the	three	mouse	models,	in	addition	
making	a	distinction	between	responders	and	non-responders	in	the	K/BxN	mice.	Consistently	the	
ASSM	detected	the	fewest	patches	of	all	sizes	for	the	control	mouse	group	(K/BxN	non-responders)	
with	the	majority	less	than	100	micron	in	diameter.		

The	heatmaps	generated	by	the	model	indicate	that	TNFΔARE	mice	have	a	primarily	erosive	
phenotype,	which	is	consistent	with	reported	findings	(Kontoyiannis	et	al.,	1999)	(Jacques	et	al.,	
2013).	The	erosions	are	more	pronounced	than	those	observed	in	the	other	models,	which	follows	
given	that	TNFΔARE	mice	are	born	with	the	mutation	that	produces	chronic	synovitis	(joint	
inflammation)	at	an	early	age.	Interestingly,	this	data	also	demonstrates	relatively	high	rates	of	bone	
formation	(osteophytosis)	in	contrast	to	the	consensus	in	the	published	literature	that	bone	
formation	in	this	model	is	minimal	or	absent	(Jacques	et	al.,	2013)	(Caplazi	et	al.,	2015).	Further	work	
is	required	to	characterise	the	bone	formation	process	fully	but,	given	that	the	patches	of	bone	
formation	are	almost	exclusively	below	150	micron	in	size,	it	seems	likely	that	they	have	previously	
escaped	detection	by	eye.	In	comparison,	the	CAIA	model	has	previously	been	noted	as	having	high	
levels	of	bone	formation	(Jacques	et	al.,	2013).	This	was	confirmed	by	the	ASSM	and	is	particularly	
characterised	by	large	(>200	micron)	osteophytes	(formations)	as	evident	from	the	histograms	
(Figure	10)	and	by	eye	(Figure	7).	Conversely,	the	K/BxN	model	had	the	lowest	level	of	bone	erosion	
of	the	three	arthritis	models	and	the	cumulative	levels	of	bone	formation	were	equivalent	to	the	
control,	indicating	that	this	model	triggers	low	levels	of	bone	turnover.	Given	that	the	K/BxN	and	



CAIA	models	are	conceptually	relatively	similar	the	large	differences	between	them	are	perhaps	
surprising	and,	to	our	knowledge,	have	not	been	previously	reported.	

The	data	produced	by	the	ASSM	highlight	the	value	of	this	approach	to	analysing	micro-CT	data	from	
murine	models	of	arthritis.	These	models	are	commonly	used	in	rheumatology	research	and	the	
micro-CT	analysis	is	generally	scored	by	eye.	Our	results	demonstrate	that	the	ASSM	has	the	ability	
to	detect	bone	changes	that	can	discriminate	between	the	different	murine	arthritis	models	
commonly	used	in	research.	In	addition,	as	identified	by	the	TNFΔARE	bone	formation	results,	this	
method	has	the	capacity	to	capture	information	not	readily	visible	by	eye.	The	ability	of	the	ASSM	to	
detect	small	changes	in	bone	resorption	and	formation	will	allow	automated	and	unbiased	analysis	
of	the	effect	of	genes	and	compounds	on	bone	changes	in	in	vivo	models	of	arthritis.	A	
comprehensive	paper	addressing	the	differences	in	the	bone	phenotypes	resulting	from	various	
mouse	models	of	RA	is	now	in	preparation.	

4.2 Further	work	
To	attain	an	ultimate	goal	of	a	fully	automated	method	there	are	several	areas	requiring	
improvement.	Construction	of	an	ASSM	based	on	a	single	reference	sample	(section	2.3)	is	
inherently	biased	towards	the	geometry	of	the	chosen	sample.	The	effects	of	this	bias	were	not	
investigated,	but	are	considered	an	important	issue,	to	be	examined	in	future	work.	Large	
differences	in	pose	observed	in	a	number	of	diseased	samples	caused	fully	automatic	model-to-
sample	registration	fail.	Similarly,	failures	occurred	due	to	large	departures	from	a	statistically	
“normal”	bone	shapes	at	the	high	levels	of	the	bone	hierarchy.		At	present	approximately	one	in	five	
cases	required	some	form	of	manual	adjustment,	usually	applied	to	a	single	bone.	Variations	in	
relative	bone	position	are	handled	to	some	extent	by	the	kinematic	constraints	imposed	during	
registration	(Brown	et	al.,	2014).	However,	in	cases	where	mice	have	developed	extreme	structural	
deformities,	registration	of	the	model	can	fail.	Occasionally	problems	occurred	due	to	bone	fusion	at	
a	joint	and	presence	of	severe	abnormalities	such	as	full	thickness	bone	erosions.	Some	of	these	
problems	can	be	tackled	by	utilising	non-rigid	correspondence	in	order	extract	as	much	variation	as	
possible	from	the	training	data.	This	would	also	improve	the	articulated	registration	accuracy	at	
intermediate	steps,	minimising	error	propagation	down	the	hierarchy.	With	a	larger	number	of	
samples	available	in	the	future	a	statistical	model	of	erosions	and	formations	per	disease	model	can	
be	built	by	mapping	erosions	and	formations	to	the	template	to	show	the	likelihood	of	a	
deformation	arising	at	a	given	anatomical	location.	Population-based	statistical	maps	of	this	nature	
were	previously	reported	to	be	useful	in	human	studies	(Cevidanes	et	al.,	2010;	Joshi	et	al.,	2015;	
Joshi	et	al.,	2013).	

5 Conclusions	
In	this	work	an	articulated	statistical	shape	model	has	been	demonstrated	as	a	suitable	approach	for	
quantifying	bone	destruction	in	mouse	models	of	RA.	Validation	experiments	using	in	silico	
generated	known	deformations	produced	an	error	<	1%	for	most	of	the	bones	with	the	exception	of	
a	false	positive	error	of	about	4%	for	bone	formations	in	the	phalanx	region.	Application	of	the	
model	to	real	data	acquired	from	a	number	of	mouse	models	has	shown	agreement	both	with	the	
clinical	scores	and	with	the	previous	biological	findings,	suggesting	that	bone	shape	changes	can	be	
usefully	identified	as	deviations	from	the	model	statistics.	Quantitative	data	provided	objective	
evidence	for	differences	in	bone	deformation	occurring	in	different	mouse	models	of	rheumatoid	



arthritis.	This	quantitative	data	allows	for	unbiased	and	reproducible	analysis	of	bone	changes	in	
arthritis	models	and,	ultimately,	it	is	hoped	that	the	developed	method	may	be	employed	in	pre-
clinical	studies	to	assess	the	degree	of	bone	protection	conferred	by	potential	therapies	and	to	help	
answer	questions	about	how	different	mechanisms	contribute	to	RA	pathogenesis.	
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