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Abstract 

Femtosecond laser ablation allows direct patterning of engineering materials in industrial 

settings without requiring multistage processes such as photolithography or electron beam 

lithography. However, femtosecond lasers have not been widely used to construct 

volumetric microphotonic devices and holograms with high reliability and cost efficiency. 

Here, a direct femtosecond laser writing process is developed to rapidly produce 

transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated 

holograms. The optical properties including light transmission, angle-dependent 

resolution, and light polarization effects for the microphotonic devices have been 

characterized. Varying the depth of the microgratings from 400 nm to 1.5 µm allowed the 

control over their transmission intensity profile. The optical properties of the 1D/2D 

gratings were validated through a geometrical theory of diffraction model involving 2D 

phase modulation. The produced Fresnel lenses had transmission efficiency of ~60% at 

normal incidence and they preserved the polarization of incident light. The computer-

generated holograms had an average transmission efficiency of 35% over the visible 

spectrum. These microphotonic devices had wettability resistance of contact angle ranging 

from 44° to 125°. These devices can be used in a variety of applications including 

wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices. 

Keywords: laser ablation, microphotonics, diffraction, Fresnel Zone Plate lens, holograms, 

gratings, phase modulation 
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Introduction 

Femtosecond (FS) lasers have been widely used for the processing of polymers [1], metals 

[2, 3], and biological tissues [4]. Their applications also span across machining of 

submicrometer sized features on silica and silver substrates [5, 6], along with a myriad of 

large-area industrial applications [7-9]. The unique advantage of FS laser ablation of 

transparent materials is that they have a nonlinear nature of light absorption due to the lack 

of electronic transitions at the energy of the incident photon [10, 11]. This nonlinear 

absorption confines any induced change to the focal volume, allowing the fabrication of 

complex structures [12, 13]. Additionally, FS laser processing is a deterministic process 

[14, 15]. First, it has no thermal effect because the laser pulse ends before the electrons 

thermally excite any ion and the heat diffusion outside the focal area is minimized. This 

FS machining process reduces heating caused by expansion effects, leading to an increase 

in its patterning precision as compared to other laser patterning processes [16-18]. Hence, 

FS lasers have the potential to rapidly produce tailored and accurate nano- and 

microstructures in automated manufacturing systems [19, 20]. 

FS lasers have been utilized to pattern transparent materials for the fabrication of 1D 

gratings [21-24], 2D devices [25], and Fresnel zone plate (FZP) lenses [26, 27]. These 

approaches have utilized either amplified Ti:Sapphire systems or long-cavity oscillators, 

which have relatively lower powers and low pulse operating frequencies. Therefore, their 

fabrication speeds in patterning transparent materials are lower as compared to FS 

ytterbium-based laser sources, commonly used in optical device fabrication [28]. Here, the 

novelty was to integrate computer-generated holography (CGH) during laser fabrication 

process to predict its optical characteristics. Rapid direct FS laser writing of optical devices 
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through holographic patterning on transparent polycarbonate (PC) substrates has not been 

reported before. Hence, the development of a patterning approach employing highly 

dynamic FS laser sources can enable the cost-effective production of microphotonic 

devices on polymeric substrates.  

Here, a FS ytterbium-based laser microstructuring method is demonstrated to produce 

microphotonic devices, 1/2D transmission gratings, Fresnel lenses and holograms in the 

visible spectrum range directly on a transparent PC substrate. PC has high light 

transmission efficiency, high-impact resistance, lightweight, and effective wettability 

resistance [29-31]. It has also been reported to have high thermal stability (thermo-optic 

coefficient of -1.06×10-4 ℃-1 at 1550 nm), ease of processability, high adhesion, and low 

propagation losses in the visible spectrum (0.197 dB cm-1 at 632.8 nm) [32]. It is also well-

known as a retardation film that produce high contrast and wide viewing-angle 

properties[33] and is needed for electroluminescence display to prevent the reflection of 

ambient light[34].The microphotonic devices were fabricated by using a FS ytterbium-

based laser. This approach allowed patterning large areas of microstructures with a depth 

of few hundred nanometers to rapidly produce rigid and mechanically strong 

microphotonic devices and holograms as compared to other microfabrication techniques 

which require phase masks or photosensitive materials. In addition, a FS ytterbium-based 

laser has a higher fabrication speed as compared to other laser sources due to high pulse 

repetition frequency (2 MHz). Optical characteristics of the fabricated microphotonic 

structures with different depths were studied through periodic structure visualization; 

diffraction intensity profiling, angle-resolved measurements, and light output shape 

symmetry analysis. The groove depths can be used to control the phase modulation of light 
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and for producing wavelength selective diffractive devices. Additionally, FFT has been 

utilized to write computer-generated holograms. Such microphotonic structures produce 

interference in the visible spectrum of light to create a desired light shape output. This 

fabrication approach combined with FFT simulations enables creating rationally-designed 

complex geometries that can produce any predicted shape, transmission intensity profile 

with precise diffraction angle, and the geometry of output. These microphotonic devices 

can be used in a wide variety of industrial applications including laser patterning, dynamic 

displays, sensors, fiber optics, and photomedicine [35]. 

FFT-based Design and Fabrication of Microphotonic Devices 

The first step in the FS laser fabrication of the microphotonic devices was to rationally 

design microstructures using computational modelling (Figure 1a-c). A 1/2D transmission 

gratings, a Fresnel Zone Plate (FZP) lens and a hologram pattern were designed to provide 

predefined photonic characteristics. These designs were micropatterned using a FS laser 

on a large surface area of 2 mm thick PC substrates. 
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Figure 1. FS laser patterning of microphotonic devices. (a) A schematic of the FS laser 

microprocessing system. (b) Image of a 2D computed hologram based on 200 × 200 square 

array of aligned microgrooves. (c) A 2D Fast Fourier Transform of an image producing a 

light scattering pattern showing the first order of ‘bham’ diffraction. The zero order 

produced in the center of the image was reduced to view the pattern clearly. The schematics 

of optical devices: (d) 1D grating, (e) 2D grating, (f) FZP lens, and (g) hologram. 

 

1/2D transmission gratings were designed to disperse incident light on the opposite side 

of the grating at a specific angle and direction. The dispersion of light depends on the angle 

of incidence and groove spacing. As the angle of incidence increases or the groove spacing 

decreases, the dispersion of light increases. This is based on the grating equation when light 

is normally incident on the microphotonic structures; in d sin θm = n λ, where d is the 

distance from the center of one groove to another adjacent groove, θm is the angle of 

diffraction measured from the normal, n is the order of diffraction, and λ is the diffracted 

wavelength[36]. For a 1D grating, the periodic grooves (d=25 µm) were designed to be 

parallel to each other (Figure 1d); while the periodic grooves (d=35 µm) were designed to 

be perpendicular to each other for the 2D grating (Figure 1e). These images show the 

incident light dispersion after passing through periodic grooves to produce a diffraction 

pattern. The profile of groove grating affects the profile of the transmitted light diffraction. 

A FZP lens consists of a series of concentric annular grooves resembling rings ablated 

on a PC substrate (Figure 1d). This FZP lens reduces the amount of material required for 

its fabrication as compared to the conventional lens or blazed Fresnel lens production. The 
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rings diffract light to create constructive interference based on alternating transparent and 

opaque zones. These zones on the lens have been designed to operate in the optical regime. 

Therefore, to pattern the alternating zones by FS laser ablation, it is necessary to study the 

limitation of the spot size of the laser beam (20 µm). This led us to determine the radius 

(d) of rings and their numbers(n) with the wavelength of incident light (λ) to measure the 

focal length, 𝑓 = 𝑑2/𝑛λ, (𝑛 = 1,2,3 … ) [37], where  𝑑 is the radius and 𝑛 is the  number 

of  rings, and λ is the wavelength of the incident light [38-40]. The focal length and optical 

wavelength were set to (f=39.5 cm for 633 nm, 47 cm for 533 nm, and 56 cm for 450 nm) 

with nine rings. Due to fabrication on a transparent PC substrate, the lens operates in the 

transmission mode. The key advance in the fabrication of the lenses is their thin, 

lightweight construction in a variety of sizes for light gathering for use in a wide range of 

research and industrial applications.  

A computer-generated 2D hologram consists of an array of vertically aligned 

microgrooves in a PC substrate. The circular pixels produce binary phase pattern which 

provide broad viewing angles and  high-resolution image quality [41]. This microgroove 

array was produced by a direct FS laser ablation process. The array of circular pixels 

diffract light to create constructive interference based on alternating transparent and 

“dispersive” pixels to form a diffraction pattern [42, 43]. The pixel size dictates the 

resolution and beam divergence [44]. Larger pixels allow the dispersion of light at a small 

angle but large viewing distance [45]. Here, we used a FS laser to directly create an array 

of vertically aligned microgrooves as diffractive patterns to produce a high resolution 

image in the far field. The design of microgroove array was calculated based on Fourier 

optics [46], to produce a 2D ‘bham’ diffraction pattern. The array represented a transparent 
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and diffractive circular pixel mask that would create a pattern in the far field similar to a 

Fraunhofer hologram. The PC hologram was designed as a square array of 200×200 

intensity delta spaced by a lattice constant of 40 µm and a groove diameter of 20 µm. A 

binary amplitude array was optimized by using the Gerchberg-Saxton algorithm [47]. 

Figure 1bshows the optimized solution for the microgroove array based hologram. Figure 

1c illustrates the 2D Fast Fourier Transform (FFT) array of the microgroove hologram. 

This computational approach allowed predicting the order of ‘bham’ diffraction for the 

hologram. 

To fabricate optical devices, Figure 1a shows a schematic of the multiaxis laser 

micromachining that was utilized. FS pulses of an ultra short ytterbium-based laser 

(λ=1030 nm, 310 fs) have a maximum pulse energy (10 µJ), repetition rate of 500 kHz and 

an average power of 5 W. The FS laser system integrates a 100 mm f-theta telecentric lens 

to provide a focused laser beam spot diameter of 30 µm and machining field of view of 

35×35 mm. This system also integrates a high dynamic scan head that is computer 

controlled to produce with high speed with micro patterns.  The optimized laser parameters 

for the micromachining of the Fresnel lens, the hologram and the gratings are provided in 

Table 1. Furthermore, to ensure a machining accuracy of ±10 µm, a customized software 

was used to minimize the dynamic effects of the beam delivery subsystem on machining 

results during the fabrication process [27, 48, 49]. The profile of grooves was measured by 

a G5 Alicona Infinite system by using a 50× objective. This magnification allow a lateral 

resolution of 1-2 µm to be achieved and thus to image and identify the edges of 

microgrooves (20 µm). 
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Table 1. Parameters used in FS laser patterning process of optical devices 

Laser parameter Units Fresnel Lens Hologram Grating (1D) Grating (2D) 

Power W 3.5 3.5 2.2 2.2 
Repetition rate kHz 500 125 125 125 
Scanning speed m/s 2 0.5 0.5 0.5 
Pulse duration fs 310 310 310 310 
Beam diameter µm 30 30 30 30 
Hatch style - Horizontal Outlines Horizontal Horizontal and Vertical 
Hatch pitch µm 7 - 15 15 
Layers  - 1 1 1 3 

 

Optical Characterization of Microphotonic Structures 

1D and 2D Transmission Gratings. Transmission gratings were designed to disperse 

incident light at specific angles. Angular dispersion is a function of the angle of incidence 

and groove spacing. The grooves were designed either to be parallel (1D grating) or 

perpendicular (2D grating) to each other (Figure 2d, g). The samples were studied using an 

optical microscope (Alicona Infinite) with 20× magnification. During the laser ablation 

process, some amount of the PC evaporated from the groove zone (black) and then 

redeposited near the groove edges. Optical microscopy measurements revealed the surface 

profile of these gratings showing that the width and depth of grooves were in the range of 

micrometer except the depth of 1D grating grooves were 550 nm. 

The laser-written gratings were characterized optically, where light transmission 

measurements were conducted using broadband light. These measurements were 

performed using a spectrophotometer (2 nm resolution), which was connected to a 

microscope by an optical fiber. The light transmissions of the gratings were measured, 

where a plane PC surface was used as a reference. Figure 2a shows the average 

transmission spectra of 1D and 2D gratings at a normal angle of incidence. An increase in 

the patterned area of the grooves reduced the light transmission because of the grooves that 

behaved as opaque zones. The 1D and 2D gratings had ~70% and ~60% total transmission 



10 

efficiencies in all orders across the visible spectrum. Similarly, the light transmission 

through an analyzer was utilized to test the polarization of light and its effects on the 

diffraction in far field [50]. Both gratings nearly preserved polarization, with less than 0.6% 

light transmission intensity. For angular dispersion, the angle-resolved measurements were 

performed at a normal angle of incidence with two laser beams (455 and 533 nm) (Figure 

2c). The sample was placed on a rotary stage and a detector was located 2.0 m away from 

the sample to obtain far field viewing distances. The stage was rotated to measure each 

order individually (Figure 2 f, i). Figure 2f shows the angle of diffraction pattern measured 

for a 1D grating illuminated at λ=450 and 533 nm with periodic grooves (d=25 µm). Well-

ordered 1D diffraction patterns were observed but lower intensity was noticed for zero 

order in transmission mode at λ=450 nm and zero order had a comparable light intensity 

with the second order. This is due to the effect of two dimensional phase modulation 

produced by changing the depth of grooves. Additionally, light diffraction patterns were 

captured using a digital camera. Figure 2b shows a schematic of the experimental setup to 

capture this pattern. The sample was placed on a rotation stage and a semi-transparent glass 

globe was positioned 55 cm away parallel to the sample surface plane. This setup is suitable 

for light interference measurements as it has a far reaching view of the grating diffraction. 

The diffraction grating captured by the digital camera was in agreement with the simulated 

results. The fifth order diffraction pattern, for green, and the third order diffraction pattern 

for blue consisted of two symmetrically conjugate spot diffractions located on the opposite 

sides of the semitransparent global screen. The diffraction results were consistent with 

Bragg’s law, where the diffraction spot dispersed at a larger angle producing larger 

diffraction as the wavelength of the laser beam increased. The image of the 1D grating 
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showed well-ordered bright spots on a large scale with a longer viewing distance as 

compared to 1D holographic gratings [51, 52]. Using the same interrogation setup, the 2D 

grating was analyzed. In the 2D grating, the diffraction split into multiple spots on the 

horizontal and vertical planes. Figure 2g shows that the width and depth of the grooves 

increased when they crossed each other because laser ablation was duplicated at the cross 

point. This process changed the structure from a square to a squircle and the diffraction 

pattern showed this geometry (Figure 2h). In general, although both gratings produced less 

diffraction orders once the wavelength of the incident light decreased, they maintained a 

high diffraction order as compared to the 2D holographic gratings [51, 52]. 
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Figure 2. FS laser processing of PC 1D and 2D gratings and analyses of their optical 

characteristics. (a) Spectroscopic transmission measurements of the 1D and 2D gratings 

using broadband light at normal incidence. (b) Schematic of the experimental setup used 

to capture the 2D pattern from 1D and 2D gratings as seen in (e and h). (c) Schematic of 
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the experimental setup of angle-resolved spectral measurements in (f and i). (d- f) Spectrum 

analysis of the 1D grating. (g-i) Optical measurements of 2D grating. (d, g) Optical 

microscope images of the groove surfaces at normal incidence and their corresponding 

surface profiles. (e, h) 2D views of grating diffraction in a semi-transparent globe using 

533 and 450 nm beams at normal incidence illumination (scale bar= 2 cm). (f, i) The angle 

of diffraction pattern from the grating illuminated normally at λ=450 and 533 nm. 

 

To simulate the diffraction effect, the Geometrical Theory of Diffraction GTD was 

used [53]. The effect of the two-dimensional groove was modeled with a two-dimensional 

phase modulation in a plane. The phase modulation was produced because of the difference 

in the path of the light beam at different depths of the grooves. The phase difference θ at 

different depths of the groove z(x,y) in the plane x-y is: 

θ(x,y) =z(x,y)k1 + (zmax - z(x,y))k0      (Eq. 1) 

where k1 and k0 are the wavevectors of the PC substrate and vacuum respectively and zmax 

is the maxima. The phase difference reduces to: 

θ(x,y) =z(x,y)(k1 – k0) + ϕ       (Eq. 2) 

where ϕ is an arbitrary phase constant. Thus, the modulated complex-valued 2D wave is: 

I(x,y) = I0(x,y) ei θ(x,y)        (Eq. 3) 

where I0 represents the intensity profile of the laser beam (Gaussian beam illumination). 

Finally, the Fourier transform of I(x,y) was applied to obtain the diffraction pattern 

observed at the far-field. 
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The characteristics of the groove were measured to simulate the depth profile in 

z(x,y). In the present case, the groove was observed with an inverted Gaussian shape. This 

Gaussian distribution was repeated periodically in the vertical axis, or in both, vertical and 

horizontal axes. The full width at half maximum utilized was 8 μm which corresponded to 

the size of the laser beam writing spot. The maximum height of the Gaussian distribution 

was selected according to the measurements. The 1D grating was simulated to have a 

profile depth (950 nm), refractive index (1.53), grating pitch (25.5 µm), groove width (10 

µm) and analyzed at various spectrum ranges (633, 533 and 450 nm). 2D grating was 

simulated similarly, except profile depth (1450 nm) and grating pitch (35.2 µm) were 

varied. Figure 3 shows that the simulation results of the diffraction pattern observed at 

various wavelengths for 1D (Figure 3a) and 2D gratings (Figure 3c) and their intensity 

profiles of each diffraction order (b and d), respectively. Variation in the wavelength and 

groove depth changed the intensity profiles of each diffraction order. Furthermore, the 

intensity profile of each orders for 1D grating were analyzed across various groove depths 

(200 to 2000 nm). Controlling the depth of the groove grating allowed modulating the 

profile of the transmitted light diffraction. 
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Figure 3. Simulation results of radiant intensity profile diffracted by the phase modulation 

from a 2D groove. (a) Diffraction pattern for 1D grating at 633 nm, 533 nm and 450 nm 

(top, middle and bottom panels, respectively). (b) Radiant intensity profile normal to the 

vertical axis for the 1D grating. (c) Diffraction pattern for a 2D grating at three different 

wavelengths (633, 533 and 450 nm) and their radiant intensity diffraction. (d) Radiant 

intensity profile normal to the vertical axis for the 2D grating. (e-g) Intensity of each 

diffraction orders (1D grating) across groove depth change for various incident light 

wavelengths (633, 533 and 450 nm). 
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Fresnel zone plate (FZP) lens 

A FZP lens was designed to focus incident light into a bright spot at the center within a 

focal length range. The fabricated PC FZP lens was characterized under an optical 

microscope (Alicona G5 Infinite Focus) at 5× magnification to allow imaging the whole 

lens. Figure 4a illustrates the microscopic image of the FZP lens showing contrast between 

the series of concentric annular grooves (black zones) and the non-ablated PC substrate 

(white zones). The profile of FZP lens grooves were measured to understand the laser 

patterning process (Figure 4d). The laser patterning process redeposited the ablated 

material toward the edges, and the bottom of the grooves had a rough surface. Such rough 

surfaces consisting of nano- and microparticles have been reported in other materials such 

as buckypaper and float glass substrate [27, 54, 55]. Such artefacts in the optical device 

causes electron-phonon scattering, which is the main factor in the loss of energy. 

The optical characteristics of the FZP lens fabricated on PC substrate were analyzed 

using a spectroscopy setup and an optical microscope. An optical beam profile was 

conducted using three different laser wavelengths (633, 533 and 450 nm) on an 

interrogation setup (Figure 4b). A high order diffraction from the ablated Fresnel zones 

showed that most of the grooves were successfully created and behaved as opaque zones. 

Figure 4e illustrates that incident light from a series of non-ablated zones were focused into 

a bright spot in the center with a focal length (f) depending on the incident wavelength 

(f=39 cm in 633 nm, 47 cm in 533 nm and 56 cm in 450 nm). Light focusing at focal points 

were observed in the long-distance far field. Figure 4f shows the 2.5D beam profile 

intensity of images illustrated in Figure 4e. The three different laser beams focused higher 

intensity spots by bending parallel light to a common focal length. Therefore, the FZP lens 
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works sufficiently within the visible spectrum and the light focusing effect results were in 

agreement with the analytical solution and simulated FFT model (Figure 4h,i). The light 

transmission efficiency of the FZP lens was measured as ~55% across the visible spectrum 

and the polarization analyzer was oriented from 0° to 90°, where a non-patterned PC 

substrate was the reference. This setup was used to analyze the linear polarization of light, 

which can affect light focusing of lens. In the present work, lenses nearly preserved the 

polarization (0.9%) in transmission mode (Figure 4c). Furthermore, the light transmission 

efficiency of the lens could be improved by increasing the contrast between the transparent 

and opaque zones; thus, reducing the roughness on the side and bottom of the grooves 

during laser ablation process can improve the lens focusing efficiency.  
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Figure 4. FS laser writing of PC FZP lenses and analyses of their surface topography and 

optical characteristics. (a) Optical microscope image of concentric annular grooves in the 

FZP lenses fabricated using FS laser ablation and corresponding groove profile in (d). (b) 

Schematic of experimental setup to capture the bright spot in the center of the image. (c) 

Transmission measurement through lens and analyzer’s axis (0°, 30°, 45°, and 90°) was 

changed to study the polarization of light. (d) Depth profile of the grooves. (e) 633, 533 

and 450 nm beams illuminated through the lens in transmission mode. The observed 

patterns from the lens were recorded by a high-resolution camera and their corresponding 

2.5D profile images are shown in (f). (g) The intensity profile of 633, 533 and 450 nm 

beams at certain focal length points. (h) FFT simulated model of FZP lens and (i) its 

intensity profile. 
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Computer-generated 2D transmission hologram 

A 2D array of circular pixels was designed to produce a holographic projection image. The 

fabricated array of vertically aligned microgrooves as circular pixels were characterized 

using an optical microscope at normal incidence (Figure 5b). Figure 5f shows a magnified 

view of the microgrooves. These microscopic images showed the contrast between the 

ablated circular pixels (black) and the non-ablated pixels (white). Some amount of PC 

evaporated from groove zones (black) and then redeposited near the groove edges during 

the laser ablation process. A FFT simulation was carried out using the designed pattern and 

displayed ‘bham’ diffraction symmetrically located around the center of zero order in 

transmission mode (Figure 5a). The highly-intense zero order of the non-diffracted light 

was reduced from FFT image to clarify the ‘bham’ diffraction. Additionally, the optical 

behavior of the hologram based on the microgroove array was experimentally 

characterized. The PC hologram was mounted onto a slide holder with a white screen 

located 2.5 m away to capture the diffraction pattern in the long-distance far field. The 

white screen was aligned parallel to the surface plane of the hologram substrate and a 

digital camera was placed in front of the screen. Laser beams (633, 532 and 450 nm) were 

normally positioned behind the hologram incident to the substrate. A transmission 

diffraction pattern was produced when the PC hologram was illuminated with laser beams. 

Figure 5c shows captured diffraction pattern images, which were consistent with the 

computed FFT diffraction pattern (Figure 5a). The first order diffraction pattern consisted 

of two symmetrically conjugate ‘bham’ diffraction patterns located on the opposite sides 

of the white screen. A clear and intense ‘bham’ diffraction was produced at a long viewing 

distance with a wide field of view. Furthermore, the wavelength dependence of the 
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diffraction from the PC hologram was also studied. The microscale dimensions of the 2D 

holographic array produced diffraction at a long viewing distance. According to Bragg’s 

law, the diffraction angle depends on illumination wavelength. The diffraction pattern from 

the PC hologram was studied under red (633 nm), green (533 nm) and blue (450 nm) laser 

beams. The ‘bham’ diffraction pattern was projected at the long-distance far field 

producing large images as the laser wavelength increased (Figure 5c). The diffraction 

results were consistent with Bragg’s law[56]. The images for the blue laser had low quality 

as the diffraction angles were close to the zero order making it hard to image the hologram. 

The intensity profile of “bham” diffraction and their sizes along the x-axis were measured 

(Figure 5d), showing that the diffraction images with the green and blue laser were reduced 

by 1.5 and 2.5 cm from an original size of 6.0 cm, respectively. However, the efficiency of 

the PC hologram can be improved by increasing the transmission contrast between the 

transparent pixels and dispersive pixels. Thus, reducing the evaporation and redeposition 

of PC from pixel edges during laser ablation processing can improve the resolution of the 

hologram in the long-distance far field. 



21 

 

Figure 5. FS laser writing of a PC computer-generated 2D hologram. (a) Fourier transform 

displaying ‘bham’ diffraction symmetrically located around the zero order. A highly 

intense of zero order was excluded to clarify the first order diffraction. (b) An optical 

microscope image of the fabricated hologram pattern (scale bar= 200 µm). (c) The ‘bham’ 

diffraction pattern of the holographic array produced on a screen with 633, 533 and 450 

nm beam illumination. Scale bar=2 cm. (d) The intensity profiles of the “bham” diffraction 

pattern in response to 633, 533 and 450 nm wavelength beams. (e) Light transmission 

intensity of the holographic pattern with different probe orientations using broadband light 

at normal incidence. (f) A magnified view of the holographic array. Scale bar= 20 µm. 
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Optical Wettability Resistance of Microphotonic Structures 

Transparent devices having predefined affinity to water is highly desirable in optical and 

electronic devices. These hydrophilic devices may spread water across their surface to 

maximize contact based on the Wenzel model (θ < 90°) while hydrophobic devices that 

naturally repel water and form droplets are defined by the Cassie-Baxter model (90° > θ < 

150°)[57]. The hydrophilicity of transparent devices can have a significant impact on the 

optical and electrical performance in a wide range of applications including self-

cleaning[58, 59], anti-fouling[60], anti-corrosion[61], anti-fogging[62], icephobicity[63], 

and drag reduction properties[64, 65]. FS lasers can be employed not only to fabricate 

microphotonic devices but also modify the surface wettability resistance simultaneously, 

while this will require multisteps in other fabrication techniques [49]. 

Due to the effective wettability resistance of PC, the fabricated microphotonic 

devices were analyzed and tested for their surface wettability resistance. In practical 

applications, water contact angles (CAs) of the optical devices are measured with a 

deionized water droplet (5 µL) 30 days after fabrication to determine surface morphology 

changes over time [66]. In the present work, a water droplet from a pipette was deposited 

vertically along the microphotonic surface at 24 °C. A digital microscope was utilized to 

visualize the side profile of each deposited drop on microphotonic surfaces. The captured 

images were obtained after the droplet had formed its final shape to analyze the interface 

between the liquids and the surface of the microphotonic device. As a result, various shapes 

were obtained from different optical devices affecting the contact angle. Therefore, image 

processing was utilized to measure the contact angle of each shape. Surface wettability 

characterization showed that each water droplet changed their contact angle from one 
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device to another due to various groove depths, across groove widths and the space between 

them (Figure 6). PC substrate (the non-ablated area) had a contact angle of 72°, while the 

contact angle was reduced to 52° and 44°, achieving hydrophilicity, for 1D and 2D gratings 

(periodicity d=25 and 35 µm), respectively. This hydrophilic surface reduces distorted light 

or vision in optics during condensation by spreading water uniformly over the surface [67]. 

However, the contact angle for the hologram and FZP lens increased to as much as 92° and 

125°, achieving hydrophobicity. Accordingly, the energy barriers associated with the local 

contact line depended on spacing between the microgrooves and resulted in the loss of 

circular symmetry in the contact line on the surface [68]. These microphotonic devices with 

hydrophilic and hydrophobic surfaces can be used in various optical applications such as 

outdoor surveillance cameras, and dynamic displays in extreme environments, biomedical 

optics, and endoscopy. 
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Figure 6. Water droplet contact angle for hydrophilic and hydrophobic microphotonic 

devices after the droplet had formed its final shape to analyze the interface between the 

liquids and the surfaces of the microphotonic devices. Water droplets were deposited on 

(a) the PC substrate with non-ablated zone, (b) 1D grating, (c) 2D grating, (d) FZP lens, 

and (e) hologram. Each device has been illustrated with (1) optical microscope images of 

the fabricated devices at normal incident, Scale bars=50, 50, 50, 400 and 400 µm 

respectively, (2) droplet profiles on the grooves, (3) the magnified views of groove profile, 

and (4) microscopic images of water droplets on optical devices. 
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Conclusion 

The fabrication of 1D/2D gratings, a FZP lens and a 2D hologram on PC substrates was 

demonstrated by using direct FS laser writing. This microphotonic device fabrication 

approach allows creating microphotonic devices with nanoscale depth. This technique is 

applicable for producing 3D microphotonic devices in various polymeric and glass 

materials, where a few hundred nanometers in depth of 3D grooves can change the 2D 

phase modulation and diffraction efficiency. The major challenge in using this route for 

fabricating such microphotonic devices is the control and reproducibility of the 2D grooves 

and also minimizing the unwanted burrs on groove edges and bottom. The FS direct laser 

patterning technique presented in this work can enable rapid, accurate, and cost-efficient 

production of displays, optical filters, sensors, and fibre optic devices. 
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