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ABSTRACT 40 

Objective: An association exists between repetitive movements and neck-shoulder muscle pain. 41 

The mechanisms underlying this association remain unclear. This observational study investigated 42 

the effect of upper trapezius muscle pain on the distribution of upper trapezius activity during 43 

repetitive lifting. It was hypothesized that nociception would change the distribution of activity 44 

resulting in activation of muscle regions which would not normally be active during the task. 45 

Methods: Healthy men repeatedly lifted a box with a cycle time of 3s for 50 cycles, at baseline, 46 

following injection of isotonic and hypertonic saline into the upper trapezius muscle and 15 mins 47 

after the last injection. High-density surface electromyography (EMG) was recorded from the upper 48 

trapezius using a grid of 64 electrodes. The EMG amplitude was computed for each location to 49 

form a map of the EMG amplitude distribution.  50 

Results: During the painful condition, the overall EMG amplitude was lower compared to all other 51 

conditions (p<0.05) and in addition, the center of activity of upper trapezius was shifted towards the 52 

caudal region of the muscle (p<0.01), a region not normally active during the task. The described 53 

alterations of muscle activity likely play an important role in the perpetuation of pain during 54 

repetitive activity.  55 

Discussion: Novel mapping of the spatial distribution of upper trapezius muscle activity showed 56 

that nociception induced a redistribution of activity during repetitive lifting. This knowledge 57 

provides new insights into the mechanisms underlying the perpetuation of pain with repetitive 58 

activity. 59 

Keywords. Muscle pain, repetitive work, work-related musculoskeletal disorders, high-density 60 

EMG 61 

 62 
 63 
 64 
 65 
 66 
 67 
 68 
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INTRODUCTION 69 

 Pain localized to the neck-shoulder region is an increasing problem in both general and 70 

working populations 
1
. Muscle pain frequently affects the upper division of the trapezius muscle, 71 

and patients typically complain of dull pain and stiffness. A prospective study among healthy 72 

female packers indicated that within the first year of employment more than 50% of workers 73 

develop trapezius myalgia 
2
. Similarly an investigation among both blue- and white-collar workers 74 

with pain symptoms in the upper quadrant reported the highest prevalence of myofascial trigger 75 

points in the upper trapezius muscle 
3
. Epidemiological reviews provide strong evidence for an 76 

association between repetitive movements, awkward posture, and the development of neck-shoulder 77 

muscle pain 
4-7

. However the mechanisms underlying these associations remain unclear. One likely 78 

mechanism could be pain induced changes in neuromuscular control during repetitive movements, 79 

for instance to protect the painful region, which could eventually perpetuate the painful condition.  80 

 Pain within the region of the trapezius muscle is known to limit maximal voluntary 81 

contraction, reduce endurance, and induce adaptive changes in muscle coordination during complex 82 

tasks 
8-11

. Additionally, studies using high-density surface electromyography (EMG) have shown a 83 

change in the spatial distribution of trapezius muscle activity during sustained isometric 84 

contractions following noxious stimulation of the upper trapezius muscle via injection of hypertonic 85 

saline 
12-14

. Furthermore, high-density EMG investigations revealed a different distribution of 86 

muscle activity in people with fibromyalgia 
15-16

 and that pain prevents the redistribution of muscle 87 

activity to different regions of the upper trapezius during sustained shoulder abduction in this 88 

patient group 
17

. These findings suggest that nociception induces a change in the distribution of 89 

upper trapezius muscle activity during isometric tasks leading to suboptimal production of force and 90 

potential overload on specific muscle regions. However, whether or not nociception induces a 91 

change in the distribution of upper trapezius muscle activity during repetitive tasks is unknown. 92 

Such knowledge would further our understanding of the mechanisms contributing to ongoing pain 93 

with repetitive work activity.  94 
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 Here we investigate the effect of experimentally induced upper trapezius muscle pain on the 95 

distribution of upper trapezius muscle activity during a repetitive dynamic task. High-density 96 

surface EMG was utilized to provide topographical representations of the EMG amplitude, and 97 

relative adaptations in the intensity of activity within regions of the upper trapezius muscle were 98 

quantified. It was hypothesized that nociception would change the distribution of upper trapezius 99 

muscle activity resulting in activation of muscle regions which would not normally be active during 100 

the task. 101 

 102 

MATERIAL AND METHODS 103 

Subjects   104 

Ten healthy male (age: 26.2 ± 3.1 years, height: 178.2 ± 6.3 cm, weight: 71.3 ± 9.2 kg) 105 

volunteers participated in this observational study after providing written informed consent. All 106 

participants were free of shoulder and neck pain, had no past history of orthopedic disorders 107 

affecting the shoulder or neck region and no history of neurological disorders. All subjects were 108 

right hand dominant. Ethical approval for the study was granted by the local Ethics Committee 109 

(200538) and all procedures were conducted according to the Declaration of Helsinki. All subjects 110 

completed the study. 111 

 112 

Experimental procedure 113 

 Subjects attended a single laboratory session were required to lift a 1 kg box between 114 

shelves positioned at hip and shoulder height with a cycle time of 3 s for 50 cycles. Subjects were 115 

asked to sit tall on an angled cushion positioned on a table, in order to have both legs suspended and 116 

avoid possible compensation from leg muscles. An acoustic signal from a digital metronome was 117 

provided to the subjects during the task to standardize the duration of cycles. Subjects repeated the 118 

task four times: 1. baseline, 2. following injection of isotonic saline into the right upper trapezius 119 

muscle, 3. following injection of hypertonic saline into the right upper trapezius muscle and 4. 15 120 
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mins after the last injection (recovery). The rest interval between the repetitions was set to 15 121 

minutes starting from the moment when the pain caused by the injections disappeared. Subjects 122 

practiced the movement sequence for ~1 min without the weight prior to data recording. 123 

 124 

Experimental Muscle Pain 125 

Experimental muscle pain was induced by injection (27G cannula) of 0.4 ml sterile 126 

hypertonic saline (5.8%) into the upper division of the trapezius on the right side. Isotonic saline 127 

(0.4 ml, 0.9 %) was used as a control injection in a similar location. For both injections, subjects 128 

were positioned in comfortable sitting. The location of the injection was defined as 15 mm cranial 129 

to the line between the acromion and the spinous process of the seventh cervical vertebra. The bolus 130 

was injected over a 10-s period. The isotonic saline injection was given first however participants 131 

were blinded to each injection and were told that one or both might be painful. 132 

 133 

Measures of Perceived Pain Intensity and Area 134 

Participants were asked to verbally rate their level of perceived pain intensity on an 11 point 135 

numerical rating scale (NRS) anchored with “no pain” and “the worst possible pain imaginable”. 136 

Pain intensity ratings were obtained immediately following the injection and every 30 s until pain 137 

was no longer reported. Peak pain intensity and duration of pain were extracted. Participants 138 

documented their area of pain on a simple body chart illustrating an outline of a body. Pain 139 

drawings were subsequently digitized (ACECAD D9000 + Taiwan) and pain areas measured in 140 

arbitrary units.  141 

 142 

Electromyography 143 

Surface EMG signals were detected with a semi-disposable adhesive grid of electrodes (OT 144 

Bioelettronica, Torino, Italy). The grid consists of 13 rows and 5 columns of electrodes (1-mm 145 

diameter, 8-mm inter-electrode distance in both directions) with one absent electrode at the upper 146 
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right corner (Figure 1). The position corresponding to the missing electrode was used as the origin 147 

of the coordinate system to define the electrode location. Prior to electrode placement, the main 148 

innervation zone location of the right upper trapezius was identified between the seventh cervical 149 

vertebra (C7) and the lateral edge of the acromion line with an array of 8 electrodes (silver bars, 5-150 

mm long, 1-mm diameter, 5-mm inter-electrode distance). The electrode grid was placed with the 151 

4
th

 row along the line between C7 and the lateral edge of the acromion with the lateral electrode 152 

column 10-mm distant from the innervation zone location (Figure 1). The injections were 153 

performed lateral to the electrode grid (~ 10 mm) and corresponded to the 4th row of the grid.  154 

The subject’s skin was prepared by gentle local abrasion (Medic-Every, Parma, Italy) and 155 

cleaned with water. 30 µl of conductive gel was inserted into each cavity of the grid to provide 156 

electrode-skin contact. A ground electrode was placed around the right wrist. 157 

The bipolar EMG signals were amplified (128-channel surface EMG amplifier, OT 158 

Bioelettronica, Torino, Italy; -3dB bandwidth 10-500 Hz) by a factor of 2000, sampled at 2048 Hz, 159 

and converted to digital form by a 12-bit analog-to-digital converter. 160 

 161 

Signal Analysis 162 

Surface EMG signals were off-line band-pass filtered (second order Butterworth filter; -3 163 

dB bandwidth, 10-400Hz). 51 bipolar EMG signals along the direction of the muscle fibers were 164 

obtained from the grid (13 x 4 bipolar recordings with one absent electrode). Root mean square 165 

(RMS) values were computed from each bipolar recording from adjacent, non-overlapping signal 166 

epochs of 1-s duration. For graphical representation, the 51 values were linearly interpolated by a 167 

factor of 8 but only the original values were used for data processing and statistical analysis. To 168 

characterize the spatial distribution of muscle activity, the following variables were extracted from 169 

the 51 bipolar signals: RMS averaged over the 51 signals, entropy, and the two coordinates of the 170 

centroid of the RMS map (x and y-axis coordinates for the medial-lateral and cranial-caudal 171 

direction, respectively) 
13,18

. The centroid of the amplitude map is the mathematical barycenter of 172 
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the map. Entropy indicates the degree of homogeneity in activation, with higher values 173 

corresponding to more uniform distribution of the RMS values over the grid.  174 

Four uniaxial accelerometers (two parallel and two perpendicular to the horizontal plane) 175 

were mounted on the box to obtain the start and end points of the cyclic movement. The signals 176 

from the accelerometers were rectified, averaged and low pass filtered (Butterworth 2
nd

 order filter, 177 

anticausal, 10 Hz cut-off) in order to identify the instant of contact of the box with the shelf. A 178 

simple threshold on the resulting signal was sufficient to identify the contact instants of the box 179 

with each of the two shelves. This operation was necessary to extract the correct timing of the 180 

cycles and to compensate possible errors with respect to the timing provided by the metronome. 181 

Each cycle was divided in 10 epochs of equal length and the EMG signals were analyzed 182 

separately for each epoch of each cycle. The epochs are indicated in the following paragraphs as 183 

percentages with respect to the cycle duration (e.g. 30% cycle indicates the third of the 10 epochs of 184 

a cycle). The EMG variables were then averaged across the 50 cycles for each epoch of the cycle. 185 

 186 

Statistical analysis 187 

One-way ANOVAs were applied to the duration, area and intensity of pain with condition 188 

(hypertonic, isotonic) as a factor. Repeated measures ANOVAs were applied to RMS, entropy and x 189 

and y-axis coordinates with condition (baseline, isotonic, hypertonic, post) and stage of cycle (10% 190 

intervals of the cycle) as factors.  191 

Significant differences revealed by ANOVA were followed by post-hoc Student-Newman-192 

Keuls (SNK) pair-wise comparisons. Results are reported as mean and standard deviation (SD) in 193 

the text and standard error (SE) in the figures. Statistical analyses were performed with SPSS 194 

Version 22.0 (IBM Corp., Armonk, NY, USA). Statistical significance was set at p<0.05. 195 

 196 

 197 

 198 

 199 
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RESULTS 200 

Sensory characteristics  201 

Peak pain intensity was greater following the injection of hypertonic (5.5 ± 1.8) compared to 202 

isotonic saline (0.9 ± 0.8, p<0.00001; Figure 2). Pain duration and area were significantly greater 203 

following hypertonic compared to isotonic saline injection (both p<0.00001). Total mapped pain 204 

areas were 0.25 ± 0.18 and 0.02 ± 0.05 (arbitrary units) for the hypertonic and isotonic saline 205 

injections respectively.  206 

  207 

Electromyography  208 

 Figure 3 illustrates the average EMG amplitude (averaged across the entire grid of 209 

electrodes) for each of the four conditions. An overall reduction in the amplitude of upper trapezius 210 

activity is evident in the painful condition compared to the other conditions. Consistent with this 211 

observation, the mean RMS was dependent on the interaction between condition and stage of the 212 

cyclic movement (F=8.5, p<0.00001). The mean RMS was lower during the painful condition 213 

compared to baseline, post and recovery during stages 30-70% of the cyclic movement (SNK: all 214 

p<0.05; Figure 3), stages when the muscle should have been most active.  215 

The y-axis coordinate of the centroid of the EMG map was also significantly dependent on 216 

condition (F=7.5, p<0.001) with higher values observed during the painful condition compared to 217 

all other conditions (SNK: all p<0.01; Figure 4). This indicates that center of activity was shifted in 218 

the caudal direction in the painful condition. No differences were observed between the baseline, 219 

isotonic or recovery conditions (p>0.05).   220 

Figure 5 provides representative EMG amplitude maps from a single subject extracted at 221 

60% of the cycle for the four conditions. Note the overall reduced EMG amplitude and shift of 222 

activity away from the cranial direction in the painful condition. On the contrary the x-axis 223 

coordinate of the centroid of the EMG map did not differ between conditions (p>0.05; Figure 6).   224 
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Figure 7 illustrates the entropy measured from the EMG amplitude maps recorded for each 225 

cycle of the task from a single representative subject for all four conditions. Note that the EMG 226 

amplitude becomes more uniform in the painful condition. Accordingly, the entropy of the EMG 227 

amplitude was dependent on the interaction between condition and stage of the cyclic movement 228 

(F=2.5, p<0.001) with a higher percentage of entropy observed during the painful condition 229 

compared to all other conditions at stages 30-80% of the cyclic movement (SNK: all p<0.01; Figure 230 

8). Entropy was also higher for the painful condition at stage 20% of the cycle compared to the 231 

isotonic and recovery conditions (SNK: both p<0.05). 232 

 233 

DISCUSSION 234 

 Noxious stimulation of the upper trapezius resulted in a shift of the distribution of activity 235 

towards the caudal region of the muscle during performance of a repetitive lifting task. This change 236 

in the distribution of activity to different regions of the muscle may have important implications for 237 

the perpetuation and worsening of neck-shoulder pain during repetitive tasks. 238 

During the baseline and control conditions, there was a general increase in the amplitude of 239 

upper trapezius activity during the lifting phase of the task (stages ~30-70%). This was expected 240 

and is in line with the anatomical action of the muscle. Activation of the upper trapezius is essential 241 

for normal scapulohumeral rhythm during arm elevation 
19

. Normal scapulohumeral rhythm 242 

requires upward rotation of the scapula which is provided by the force couple of the trapezius and 243 

serratus anterior, in order to prevent the rotator cuff tendon from impinging against the anterolateral 244 

acromion 
19,20

. Moreover, the results revealed a shift in the distribution of activity towards the 245 

cranial region of the muscle during the elevation phase of the task. The relative adaptations in the 246 

intensity of activity within muscle regions may be attributed to variation in peripheral properties or 247 

in the control of motor units within a muscle. For example, since muscle fibers within the upper 248 

trapezius have non-uniform morphological and histological properties 
21

, an increase in the neural 249 

drive to the muscle would result in preferential activation of specific muscle regions. Most likely, 250 
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motor unit recruitment or the discharge rate of the active motor units varied within the different 251 

regions of the muscle 
22,23

. The cranial shift in the distribution of upper trapezius activity likely 252 

reflects a shift in activation towards the muscle fibers which have a better mechanical advantage to 253 

generate the upward rotation and elevation of the scapula with arm elevation. This pattern of upper 254 

trapezius muscle activation during the repetitive task was consistent between the baseline and 255 

control conditions and is in agreement with the characteristic increase in surface EMG amplitude 256 

towards the cranial region of the upper trapezius muscle with increasing force 
24

.  257 

 An overall reduction of upper trapezius activity was observed following noxious stimulation 258 

of the upper trapezius muscle. This observation is line with several studies which demonstrated that 259 

injection of hypertonic saline (experimental muscle pain), which excites nociceptive muscle 260 

afferents (group III and IV), reduces the activation of the painful muscle 
13,25-27

. Reduced muscle 261 

activation implies that the nociceptive input reduced the net excitatory input to the population of 262 

motor neurons
 28,29 

which is likely due to decreased descending drive to the muscle or to pure spinal 263 

mechanisms, or more likely, a combination of both. 264 

 Novel to this study, we also observed a shift of the distribution of upper trapezius activity 265 

during performance of the repetitive task. Specifically, the center of trapezius muscle activity was 266 

shifted more caudally in the painful condition. This implies that regions of the muscle which would 267 

not normally be as active, became active in the painful condition and that regions which would 268 

normally be active (based on their anatomical action) became less active. This change resulted in 269 

more uniform activation of the upper trapezius muscle as seen from the entropy data. This new 270 

motor strategy may be seen as effective mechanism to “protect” the painful region 
30,31

. However, 271 

based on anatomical considerations, the “new” pattern of trapezius muscle activation in the painful 272 

condition can be seen as inefficient motor strategy. Previous investigations of the distribution of 273 

upper trapezius muscle activity using high-density EMG have observed a shift in the distribution of 274 

activation towards the caudal region of the muscle during painful conditions, albeit during isometric 275 

shoulder abduction 
12-14

. Additionally, people with fibromyalgia display activation of their upper 276 
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trapezius which is centered more caudally compared to pain-free participants during sustained 277 

shoulder abduction 
17

. Moreover, a recent study of people with low back pain showed that patients 278 

performed a repetitive task with a different distribution of lumbar erector spinae muscle activity 279 

compared to pain-free volunteers 
32

. Although there may be a short term benefit of such an adaption 280 

as it allows the person to complete the motor task, the long term consequence of these altered motor 281 

strategies may be overload of muscle fibers and as a further consequence, perpetuation or 282 

recurrence of pain.   283 

 Hodges and Tucker 
31

 proposed a theory of motor adaptation to pain, which explained a 284 

large number of findings that were not fully explained by previous theories such as the Pain 285 

Adaptation 
33

 or Vicious Cycle 
34

 theories. One element of this new theory is that muscle activity is 286 

redistributed to minimize activity of the painful region with the aim of “protecting” the painful area. 287 

The current results support this theory since the shift of activity was away from the site of local 288 

noxious stimulation. However, other work has shown a shift of the distribution of muscle activity 289 

towards the caudal (painful) region of the upper trapezius during isometric shoulder abduction even 290 

when the site of noxious stimulation is in the caudal region 
13

. Motor units in the caudal region of 291 

the upper trapezius have greater discharge rates during sustained shoulder abduction than motor 292 

units in cranial regions 
22-23

 which suggests that motor units in the caudal region have lower 293 

recruitment thresholds than those in the cranial region. Since nociception decreases the net 294 

excitatory drive to the motor neurons 
28,29

, the presence of pain in the upper trapezius is expected to 295 

reduce muscle activity predominantly in the cranial region, where motor units have higher threshold 296 

for activation.  Thus when the upper trapezius muscle is painful, regardless of the location of pain, 297 

the adaptation of the upper trapezius aims preferentially to minimize activation of the cranial 298 

region; possibly because this region has higher pain sensitivity 
35

. 299 

Clinical considerations 300 

Repetitive movement is a physical risk for work-related musculoskeletal disorders including 301 

those of the neck-shoulder region 
36

. The proportion of workers exposed to repetitive arm 302 
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movement continues to increase 
37

.  Needless to say, musculoskeletal disorders located in the neck–303 

shoulder region are associated with substantial socio-economic consequences 
36

. Changes in the 304 

activation of upper trapezius have been observed in people with neck-shoulder disorders and 305 

include altered activation during repetitive tasks 
38-40

 and computer work 
41

, reduced ability to relax 306 

the upper trapezius following voluntary activation 
39

 and reduced rest periods of the upper trapezius 307 

during repetitive tasks 
42

. Given the common complaint of upper trapezius muscle pain and the 308 

alterations of upper trapezius activity which have been frequently documented in people with neck-309 

shoulder disorders, further studies investigating the basic effect of nociception on the activation of 310 

the trapezius muscle have been needed to better understand the potential associations between 311 

repetitive movement, pain and altered motor control. By applying state of the art, high-density 312 

surface EMG, the current work revealed a change in the distribution of upper trapezius activity 313 

during repetitive work when pain is present. These findings may be relevant for interpreting 314 

changes in trapezius activity in clinical pain conditions and offer further insight into the hypothesis 315 

of overload of muscle regions and overexertion of low-threshold motor units in the presence of 316 

upper trapezius pain 
43

.         317 

 318 

Methodological considerations 319 

 It is likely that the noxious stimulation of the upper trapezius induced a reorganization of the 320 

activation of other neck, shoulder and/or scapular muscles 
25,45

.  However, we preferred to have 321 

more channels placed over the trapezius muscle in order to generate a larger mapping of trapezius 322 

muscle activity rather than having a reduced number of electrodes spread over multiple muscles. 323 

Since upper trapezius activity changed in the painful condition, it is also possible that scapular 324 

motion was altered during the lifting task. Motion analysis of the upper quadrant may have 325 

strengthened the current observations. The lack of kinematic analysis of task performance does not 326 

allow us to conclude that the task was performed in exactly the same way in the painful condition 327 

i.e. that the subjects were doing the same movements, although using different muscle patterns. 328 
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Even though the general posture and performance of the subjects were monitored throughout by 329 

investigators to ensure consistency, we cannot exclude subtle variations in movement between 330 

conditions. Nonetheless, other studies using more constrained tasks have confirmed that the 331 

kinematics of the task can remain the same in painful and control conditions despite reorganization 332 

of muscle activation 
25,45

. 333 

The electrode grid was positioned in order to be within the region of the upper trapezius and 334 

achieve coverage of a large proportion of the upper trapezius in the longitudinal direction. In some 335 

cases the electrode grid may have covered a portion of the middle division of trapezius. However 336 

this would not affect the main conclusion of the study, as the middle fibers of the trapezius are not 337 

anatomically suited to provide scapular elevation with arm elevation.  338 

Experimental muscle pain provides a means to explore the effect of nociception on motor 339 

control in the absence of pathological changes within the muscle and joint. Thus for the purposes of 340 

the current study, this approach allowed us to specifically evaluate the effect of nociception on the 341 

distribution of upper trapezius muscle activity. However, different results may be seen in people 342 

with work-related neck-shoulder pain, especially in people with high levels of kinesiophobia where 343 

their motor strategy may be altered in a different way due to fear of pain provocation with 344 

movement.  Although the sample size was small it is in line with previous experimental pain studies 345 

however, it should be noted that the subjects were young men and the results cannot necessarily be 346 

generalized to women or older persons. This is a limitation of the study especially considering the 347 

higher prevalence of trapezius myalgia in women 
5
.  Finally, a potential further limitation of the 348 

study is that the order of the injections was not randomized although, the participants were advised 349 

that one or both could be painful. Moreover a recovery condition was included.  350 

 351 

Conclusion 352 

Repetitive tasks are an important risk factor for initiation, maintenance and recurrence of neck-353 

shoulder pain. This study revealed a different distribution of upper trapezius activity when a repetitive 354 
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lifting task was performed in the presence of pain. This knowledge provides new insights into the 355 

mechanisms underlying the perpetuation of pain with repetitive activity. 356 

 357 

 358 
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FIGURE LEGENDS 529 

 530 

Figure 1: High-density surface EMG signals were detected using a semi-disposable adhesive grid 531 

of electrodes over the right upper trapezius muscle. The grid consists of 13 rows and 5 columns of 532 

electrodes with one electrode absent at the upper right corner. The electrode grid was placed with 533 

the 4th row along the C7-acromion line. The injection was performed lateral to the electrode grid (~ 534 

10 mm) 15 mm cranial to the line between the acromion and the spinous process of the seventh 535 

cervical vertebra. 536 

 537 

Figure 2:  Mean (+ SE) pain intensity scores following injection of 0.4 ml of hypertonic saline and 538 

0.4 ml of isotonic saline into the cranial of the upper trapezius.  539 

 540 

Figure 3:  Mean (± SE) of the average root mean square (RMS) estimated for each stage of the 541 

repetitive lifting task. Each cycle was divided in 10 epochs of equal length and the EMG signals 542 

were analyzed separately for each epoch of each cycle. The EMG variables were then averaged 543 

across the 50 cycles for each epoch of the cycle. Data are expressed in percentages (0-100%) with 544 

respect to the cycle duration.  Significant difference between hypertonic saline condition compared 545 

to baseline:  * p<0.05; significant difference between hypertonic saline condition compared to 546 

isotonic saline condition:  # p<0.05; significant difference between hypertonic saline condition 547 

compared to recover condition:  ‡ p<0.05. 548 

 549 

Figure 4:  Mean (± SE) of the y-axis coordinate of the centroid of the RMS map estimated for each 550 

stage of the repetitive lifting task. Each cycle was divided in 10 epochs of equal length and the 551 

EMG signals were analyzed separately for each epoch of each cycle. The EMG variables were then 552 

averaged across the 50 cycles for each epoch of the cycle. Data are expressed in percentages (0-553 

100%) with respect to the cycle duration.  Significant difference between hypertonic saline 554 



19 

 

condition compared to baseline:  * p<0.01; significant difference between hypertonic saline 555 

condition compared to isotonic saline condition:  # p<0.01; significant difference between 556 

hypertonic saline condition compared to recover condition:  ‡ p<0.01. 557 

 558 

Figure 5: Representative topographical maps (interpolation by a factor 8) of the EMG root mean 559 

square (RMS) value recorded for one subject during the stage 60% of the repetitive lifting task at 560 

baseline, following the injection of isotonic saline and hypertonic saline into the cranial region of 561 

the upper trapezius and following 15 min of rest after the last injection (recovery). Colors are scaled 562 

between the minimum and maximum RMS values. Areas of dark blue correspond to areas of low 563 

EMG amplitude and dark red to areas of high EMG amplitude. Note the overall decrease of EMG 564 

amplitude in the painful condition (hypertonic) and the general shift of activity towards the caudal 565 

region of the muscle.  566 

 567 

Figure 6: Mean (± SE) of the x-axis coordinate of the centroid of the RMS map estimated for each 568 

stage of the repetitive lifting task. Each cycle was divided in 10 epochs of equal length and the 569 

EMG signals were analyzed separately for each epoch of each cycle. The EMG variables were then 570 

averaged across the 50 cycles for each epoch of the cycle. Data are expressed in percentages (0-571 

100%) with respect to the cycle duration.  No significant differences were identified.  572 

 573 

Figure 7: Representation of entropy of EMG amplitude maps during each portion of each cycle in 574 

the four conditions of a representative subject. Each pixel of the map represents the entropy of the 575 

RMS map. Each column corresponds to each of the lifting cycles while each row represents a 576 

portion of the cycle. Each cycle was divided in 20 epochs of equal length for graphical reasons. 577 

Baseline, Isotonic and Recovery conditions show similar patterns of entropy with lower values 578 

between 30% and 60% of each cycle while the Hypertonic conditions shows higher values and a 579 

different distribution of values. 580 
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 581 

Figure 8: Mean (± SE) of the entropy (%) of the RMS map estimated for each stage of the 582 

repetitive lifting task. Each cycle was divided in 10 epochs of equal length and the EMG signals 583 

were analyzed separately for each epoch of each cycle. The EMG variables were then averaged 584 

across the 50 cycles for each epoch of the cycle. Data are expressed in percentages (0-100%) with 585 

respect to the cycle duration.   586 

 587 

 588 

 589 

 590 


