The anatomy of Teleocrater rhadinus, an early avemetatarsalian from the lower portion of the Lifua Member of the Manda Beds (Middle Triassic)
Nesbitt, Sterling; Butler, Richard; Ezcurra, Martin; Charig, Alan; Barrett, Paul

DOI: 10.1080/02724634.2017.1396539
License: Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 09/04/2018
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Vertebrate Paleontology on 27/03/2018, available online: https://www.tandfonline.com/doi/abs/10.1080/02724634.2017.1396539
https://doi.org/10.1080/02724634.2017.1396539

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
The anatomy of *Teleocrater rhadinus*, an early avemetatarsalian from the lower portion of the Lifua Member of the Manda Beds (~Middle Triassic)

STERLING J. NESBITT,*1 RICHARD J. BUTLER,2 MARTÍN D. EZCURRA2,3, ALAN J. CHARIG,4,† and PAUL M. BARRETT4

1Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, U.S.A. sjn2104@vt.edu;

2School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.;

3CONICET–Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales, C1405DJR Buenos Aires, Argentina;

4Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.

RH: NESBITT ET AL.—*TELEOCRATER SKELETAL ANATOMY*

*Corresponding author

†Deceased
ABSTRACT—Bird-line archosaurs (=Avemetatarsalia, the clade containing birds, dinosaurs, pterosaurs, and their kin) originated in the Triassic Period. However, the earliest evolution of this group is poorly documented because fossils are extremely rare and consist mostly of postcranial. Here, we document the osteology of *Teleocrater rhadinus*, an early avemetatarsalian from the lower portion of the Middle Triassic Lifua Member of the Manda Beds of the Ruhuhu Basin, southwestern Tanzania. Material of *Teleocrater rhadinus* includes the holotype partial skeleton comprising a single individual including cervical, trunk, and caudal vertebrae, pectoral, pelvic, forelimb, and hind limb material, and referred specimens representing parts (skull elements, vertebrae, pectoral, pelvic, and limb elements) of at least three other individuals collected from a bonebed. Character states of the skull elements, vertebrae, girdles, and limbs indicate that *Teleocrater rhadinus* represents the first documented non-ornithodiran avemetatarsalian known from well-preserved, associated material. Furthermore, *Teleocrater rhadinus* forms part of a newly recognized clade, *AphanosauriaSilendasauria*, which also contains formerly enigmatic archosaur taxa from across Pangea, including *Dongusuchus efremovi* from the Middle Triassic of Russia, *Yarasuchus deccanensis* from the Middle Triassic of India, and *Spondylosoma abconditum* from the ?Middle Triassic of Brazil. This new clade and other new discoveries from the Middle to Late Triassic elucidate the sequence of character acquisitions at the base of Avemetatarsalia and fill a crucial gap in the understanding the anatomical transformations that enabled dinosaurs to flourish later in the Mesozoic.
INTRODUCTION

Archosauria, the clade that includes extant crocodylians and birds, has a deep evolutionary history that stretches back to the late Early Triassic, over 247 million years ago (Gower and Sennikov, 2000; Butler et al., 2011; Nesbitt, 2011; Nesbitt et al., 2011). In the 15 million years following their origin, archosaurs became the largest, most diverse group of terrestrial vertebrates and extended their range across Pangea (Fraser, 2006; Sues and Fraser, 2010; Sookias et al., 2012; Turner and Nesbitt, 2013). By the early part of the Late Triassic (c. 230 Ma), nearly all the major groups of Triassic archosaurs were present (Rogers et al., 1993; Furin et al., 2006). This diversification has been viewed as an example of an adaptive radiation (Benton, 1983, 2010; Brusatte et al., 2008a, b, 2010; Nesbitt, 2011; Ezcurra, 2016).

Archosauria is divided into two lineages: archosaurs more closely related to crocodylians (= ‘crocodile-line archosaurs’, = Pan-Crocodylia, = Pseudosuchia) and archosaurs more closely related to birds (= ‘bird-line archosaurs’, = Ornithosuchia, = Avemetatarsalia, = Pan-Aves) (Gauthier, 1986; Benton, 1999; Gauthier and de Queiroz, 2001). Of these two lineages, the pseudosuchians have been interpreted as the first to increase in diversity and disparity (Brusatte et al., 2008a) and a number of major clades (ornithosuchids, aetosaurs, crocodylomorphs) appeared in the fossil record for the first time by the Late Triassic. Pseudosuchians have a relatively good fossil record in the Middle Triassic and a widespread distribution across Pangea (Butler et al., 2011; Nesbitt, 2011; Nesbitt et al., 2011; Butler et al., 2014). By contrast, the fossil record of...
avemetatarsalians is limited prior to the Late Triassic: although previously thought to extend into the Middle Triassic, recent radiometric dating of the Chañares Formation of Argentina pushed much of their early fossil record into the early Late Triassic (Marsicano et al., 2016). Consequently, the first half of Triassic avemetatarsalian evolutionary history is represented by only a handful of derived dinosauriform occurrences (Asilisaurus kongwe, Nyasasaurus parringtoni, Lutungatali sitwensis). To complicate matters further, character support at the base of Archosauria has typically been weak (Sereno, 1991; Juul, 1994; Brusatte et al., 2010; Nesbitt, 2011; Nesbitt et al., 2014) and the identification of its sister-taxon is debated (Nesbitt, 2011; Ezcurra, 2016), so it has been difficult to distinguish the earliest archosaurs from their closest relatives, the non-archosaurian archosauriforms.

The Middle Triassic Manda Beds archosaur assemblage is helping to resolve some of the outstanding questions posed by the poorly sampled fossil record of early archosaurs. Most archosaurs from this assemblage include cranial and postcranial remains, which are essential for untangling the order of character acquisition in archosaur clades. The pseudosuchian component of the Manda Beds archosaur assemblage includes *Parringtonia gracilis* (Huene, 1939; Nesbitt and Butler, 2012; Nesbitt et al., 2017a), *Mandasuchus tanyauchen* (Butler et al., 2017), *Stagonosuchus nyassicus* (Huene, 1938; Lautenschlager and Desojo, 2011), *Nundasuchus songeaensis* (Nesbitt et al., 2014), *Hypselorhachis mirabilis* (Butler et al., 2009), and several other species that await description. By contrast, only three avemetatarsalians are also known from the assemblage, Asilisaurus kongwe (Nesbitt et al., 2010), Nyasasaurus parringtoni (Nesbitt et al., 2013a), and Teleocrater rhadinus (Nesbitt et al., in review 2017b).
Teleocrater rhadinus was first described by AJC in his unpublished PhD dissertation (Charig, 1956), and subsequently appeared widely in the literature as a nomen nudum (see Moody and Naish, 2010; Butler et al., 2017). Nesbitt et al. (2017bin review) formally erected the taxon and provided brief discussions of its anatomy and phylogenetic position. Here, we fully describe the osteology of the holotype (NHMUK PV R6795) and referred material of Teleocrater T. rhadinus. Furthermore, we provide a detailed examination of its phylogenetic position and discuss its impact on the evolution of character states from the base of Archosauria through to the origin of Dinosauria. Teleocrater is part of the lower Lifua Member (Fig. 1) archosauromorph assemblage, which also includes an allokotosaurian archosauromorph and likely Hypselorhachis mirabilis (see Smith et al., 2017; Nesbitt et al., 2017bin review).

SYSTEMATIC PALEONTOLOGY

ARCHOSAURIA Cope, 1869 sensu Gauthier and Padian, 1985

AVEMETATARSALIA Benton, 1999

Definition—The most inclusive clade containing *Passer domesticus* Linnaeus, 1758 but not *Crocodylus niloticus* Laurenti, 1768 (modified from Benton, 1999).

Comments—Equivalent clade names include Ornithosuchia (Gauthier and Padian, 1985; de Queiroz and Gauthier, 1990) and Pan–Aves (Gauthier and de Queiroz, 2001). We do not use Ornithosuchia for the reasons outlined by Sereno (1991).

SILENDSAURIA—*Teleocrater rhadinus* Nesbitt, Butler, Ezcurra, Barrett, Stocker, Angielczyk, Smith, Sidor, Niedźwiedzki, Sennikov, and Charig, **in review**2017b

Definition—The most inclusive clade containing *Teleocrater rhadinus* Nesbitt, Butler, Ezcurra, Barrett, Stocker, Angielczyk, Smith, Sidor, Niedźwiedzki, Sennikov, and Charig, **in review**2017b, and *Yarasuchus deccanensis* Sen, 2005 but not *Passer domesticus* Linnaeus, 1758 or *Crocodylus niloticus* Laurenti, 1768 (Nesbitt et al., **in review**2017b).
Diagnosis—Epipophyses present on post-axial anterior cervical vertebrae (Nesbitt, 2011: character 186, state 1; abbreviated to e.g., ‘N186-1’ hereafter; and Ezcurra, 2016: character 336, state 1; abbreviated to e.g., ‘E336-1’ hereafter); dorsal end of neural spines of cervical vertebrae blade-like, but with adjacent, rounded expansions with a rugose texture (N191-3, ambiguous when Dongusuchus efremonvi is included); anterior and middle postaxial cervical neural spines with a strong anterior overhang (E343-1); posterior cervical vertebrae with an articulation surface just dorsal to the parapophysis (= divided parapophysis of Nesbitt [2011]) (N193-1; E314-1); dorsally opening pit lateral to the base of the neural spine of trunk vertebrae (E361-1); elongated deltopectoral crest of the humerus greater than 30% the length of the shaft (N230-1); wide distal end of the humerus greater than 30% of humerus length (N235-1); extensive contact between the ischia on the midline but the dorsal margins are separated (E485-1; N191-1, but ambiguous); rounded outline of the posterovertral portion of the ischium (N293-1); longitudinal groove on the dorsal surface of shaft of the ischium (E484-1); femur with a scar for the M. iliofemoralis externus near the proximal surface (homologous with the anterior trochanter in dinosauroomorphs) (N308-1; E520-1); proximal surface of the femur with a straight transverse groove (N314-1; E495-1); distal articular surface of the femur concave (E512-2); calcaneal tuber taller than broad (N376-0).

Remarks—Silendasauria Aphanosauria, meaning ‘secret reptiles’ in Greek, contains a group of long-necked Triassic-aged archosauriform taxa that have been discovered across Pangea from fragments or partial skeletons, but not recognized as a natural group until the naming of Teleocrater (Nesbitt et al., 2017b, in review).
TELEOCRATER RHADINUS Nesbitt, Butler, Ezcurra, Barrett, Stocker, Angielczyk, Smith, Sidor, Niedźwiedzki, Sennikov, and Charig, in review 2017b

Figures 2–26

“Teleocrater”; de Ricqlès et al., 2008:61, 63, plate 2.1.

Teleocrater rhadinus Nesbitt, Butler, Ezcurra, Barrett, Stocker, Angielczyk, Smith, Sidor, Niedźwiedzki, Sennikov, and Charig, in review 2017b

Holotype—NHMUK PV R6795 (field number 48b of F. R. Parrington), a disarticulated but associated partial skeleton, including: four cervical, seven-eight trunk, and 162 caudal vertebrae, two rib fragments, one from the cervical and one from the trunk region, partial right scapula, partial coracoid, complete right radius and ulna, partial left ilium, both femora, both tibiae, left fibula, two proximal ends of metatarsals, isolated phalanges, and associated fragments (Figs. 3, 8, 11–13, 16, 17, 19, 21, 23–25; Tables 1, 2).

Referred Specimens—Left maxilla (NMT RB495; Fig. 2); right frontal (NMT RB496; Fig. 2); left quadrate (NMT RB493; Fig. 2); braincase (NMT RB491; will be described elsewhere); axis (NMT RB504; Fig. 4); anterior cervical vertebrae (NMT RB505; NMT RB506; Fig. 5); middle cervical vertebrae (NMT RB511; NMT RB512;
Fig. 6); posterior cervical vertebra (NMT RB514; Fig. 7); anterior trunk vertebra (NMT RB500); posterior trunk vertebrae (NHMUK PV R6796, NMT RB516; Fig. 9); second sacral vertebra (NMT RB519; Fig. 10); right scapula (NMT RB480; Fig. 13); left humeri (NMT RB476; NMT RB477; Fig. 14); distal half of left humerus (NHMUK PV R6796; Fig. 15); left ulnae (NMT RB485; NMT RB486); metacarpal (NMT RB484; Fig. 18); left ilium (NMT RB489; Fig. 19); left ischium (NMT RB479; Fig. 20); right femur (NMT RB498; Figs. 22, 23); left tibia (NMT RB481); right fibulae (NMT RB482; NMT RB488); right calcaneum (NMT RB490; Fig. 26) (Tables 3, 4).

Locality and Horizon—The holotype specimen was found in a fluviolacustrine mudstone–sandstone sequence in the lower portion of the Lifua Member of the Manda Beds, near the confluence of the Mkongoleko and Rutikira rivers, Ruhuhu Basin, Tanzania (Fig. 1). The exact locality is not known but was mapped as locality B9 of Stockley (1932) by F. R. Parrington and recorded as “1/2 hours march west village of Mkongoleko. South of river Mkongoleko” (field notes of F. R. Parrington, 1933, UMZC). The holotype specimen was found at the same locality as the holotype and associated remains of ‘*Stanocephalosaurus* pronus’ (Howie, 1970).

The referred specimens were discovered in 2015 within 1 km of the mapped position of Stockley’s (1932) locality B9, in the lower portion of the Lifua Member of the Manda Beds (locality Z183; Smith et al., 2017; exact locality information available from the authors because of possible fossil poaching in the area). However, the precision of the locality data provided by Stockley (1932), as well as the reliability of Parrington’s attributions of his localities to Stockley’s original localities, is unclear (see Sidor et al., 2017). Therefore, the recently collected specimens could have come from the exact same
locality as the holotype, or from a new locality nearby.

On the basis of comparisons with the tetrapod fauna from subzone B of the Cynognathus Assemblage Zone of South Africa, the base of the Lifua Member is considered to be Anisian in age (Lucas, 1998; Hancox, 2000; Abdala et al., 2005; Rubidge, 2005; Hancox et al., 2013; Nesbitt et al., 2017b) though it might possibly be as young as earliest Carnian (Marsicano et al., 2016).

Diagnosis—Teleocrater rhadinus differs from all other archosauriforms except Yarasuchus deccanensis and Dongusuchus efremovi in possessing the following combination of character states (*asterisk indicates possible autapomorphy): anterior cervical vertebrae with large anterior neural canal openings, which are sub-elliptical in outline with the long axis of the ellipse oriented mediolaterally, whereas the posterior neural canal openings are elliptical with the long axis oriented dorsoventrally*; anterior cervical vertebrae at least 1.5 times longer than anterior to middle trunk vertebrae; olecranon process present, but forms only a short expansion; preacetabular process of the ilium arcs medially to create a distinct pocket on the medial surface; small concave ventral margin of the ischial peduncle of the ilium; long M. iliofibularis crest of the fibula, extending for more than 35% of the length of the bone; anterior edge of the proximal portion of fibula curved laterally. Teleocrater rhadinus can be further distinguished from Yarasuchus deccanensis in possessing a more posteriorly directed scapula glenoid. Teleocrater rhadinus and Dongusuchus efremovi can be differentiated on the basis of femoral morphology, with the former taxon possessing a more rounded lateral portion of the proximal portion in anterolateral view, a concave medial surface on the proximal end, a lower ratio of total femoral length to minimum midshaft diameter.
(~12), and the possession of a posteromedial tuber of the proximal portion that is mediolaterally convex.

Taphonomic Comments—The holotype of *Teleocrater rhadinus* consists of a single, disarticulated skeleton that was surface-collected alongside temnospondyl remains (field notes of F. R. Parrington, 1933, UMZC). The areal extent of the collection surface was not recorded, but is likely to have been several meters. With the exception of two sacral ribs that likely belong to a dicynodont, all of the material pertains to a single taxon. None of the remains attributed to *T. rhadinus* are duplicated, elements from alternate sides of the body, when present, correspond in size (e.g., both tibiae are the same length), and the preservation style and color of the remaining matrix is common to all of the bones that compose the holotype.

The referred specimens of *Teleocrater rhadinus* were found weathered out and in situ within a bonebed in association with a mixed vertebrate assemblage that also includes a much larger, long-necked archosauromorph (anterior cervical vertebra, NMT RB549; quadrate, NMT RB550) that is likely an allokotosaurian (sensu Nesbitt et al., 2015; [Nesbitt et al., 2017b](#)), a partial skeleton of *Cynognathus crateronotus* (NMT RB459; Wynd et al., 2017), a dicynodont (NMT RB554), temnospondyl skull fragments (NMT RB551), and small indeterminate reptiles (humerus, NMT RB552; femur, NMT RB553). Differences in size between the referred specimens of *T. rhadinus* indicate that at least three individuals are preserved. None of the referred specimens were found in articulation, but their relatively similar size, consistent morphology, morphological similarity to the closely related taxon *Yarasuchus deccanensis* (see Nesbitt et al., 2017b in review Supplemental Information), and their overlap with the holotype indicate
that all of this material is referable to the same taxon, *T. rhadinus*. Although very well preserved in general, some of the referred vertebrae are missing parts of the neural spines, vertebral processes, and the edges of the anterior and posterior articular surfaces of the centra.

Skeletal Maturity—Determining the ontogenetic age of the *Teleocrater rhadinus* specimens is challenging. The vertebrae of the holotype and the referred specimens have closed neurocentral sutures indicating that none of the specimens of *T. rhadinus* were young individuals, assuming that they followed the same sutural closing patterns documented in *Alligator mississippiensis* (Brochu, 1996; Ikejiri, 2012) and other crocodile-line archosaurs (Irmis, 2007). However, some *T. rhadinus* individuals clearly grew to sizes that were considerably larger (~30%) than the holotype, as evidenced by a referred large middle cervical vertebra (NMT RB512; Fig. 6). Additionally, histological data from a humerus (NMT RB476) and fibula (NMT RB488) presented by Nesbitt et al. (2017) indicate that the sampled animals were in a rapid growth stage, but no growth marks are present; thus, the skeletal maturity of the sampled individuals cannot be confirmed histologically.

DESCRIPTION

Skull

Maxilla (Referred)—The front of the skull is represented by a nearly complete referred left maxilla (NMT RB495; Fig. 2) missing only parts of the posterior portion of the dorsal process. We assign this bone to *Teleocrater rhadinus* based on its suitable...
size, which is commensurate with that of other associated elements of the taxon (including other skull bones; see below), and the presence of an antorbital fossa on the posterodorsal margin of the posterior of the maxilla (present in crown Archosauria; Nesbitt, 2011). No other character states specifically clearly support the assignment of this specimen to an Aavemetatarsalian. In lateral view, the maxilla has a long posterior process and an anteroposteriorly restricted dorsal process. The antorbital fenestra has a gently rounded anterior border and a straight ventral border. The maxilla also bears an antorbital fossa that excavates the dorsal process and the dorsolateral portion of the posterior process along nearly its full length. The presence of these two character states supports the placement of *Teleocrater* *T. rhadinus* within Archosauria (Nesbitt, 2011).

The preserved portion of the dorsal process is directed primarily dorsally but with a small posterior component. The excavation of the dorsal process by the antorbital fossa is more extensive anteriorly, whereas the fossa becomes narrower and shallower posteriorly. The anterior edge of the dorsal process has a roughened, well-defined surface for articulation with either the maxillary (= posterodorsal) process of the premaxilla or the ventral process of the nasal. The maxilla appears therefore to be excluded from the border of the external naris, as also occurs in proterochampsids (e.g., *Chanaresuchus bonapartei*; PULR 07), *Euparkeria capensis* (SAM-PK-K5867), ctenosauriscids (e.g., *Arizonasaurus babbitti*; Nesbitt, 2005a; Nesbitt et al., 2011), and the pterosaur *Dimorphodon macronyx* (NHMUK PV OR41212). The anterior portion of maxilla is continuously rounded in lateral view, and there may have been a notch between the maxilla and premaxilla, resembling the condition in *Gracilisuchus stipanicicorum* (MCZ 4117), but unlike that in *Euparkeria capensis* (SAM-PK-K6047) where there is a continuous ventral margin.
between the premaxilla and the maxilla. In *Teleocrater rhadinus*, the anterior-most extent of the maxilla in lateral view bears a large, anteriorly opening foramen. This anteriorly opening foramen is also present in *Asilisaurus kongwe* (NMT RB159) and *Silesaurus opolensis* (ZPAL Ab III/361/26) and may be homologous to the anteriorly opening foramen on the lateral surface of the anterior end of the maxilla of *Euparkeria capensis* (SAM-PK-K6047).

Much of the lateral surface of the maxilla is flat with a slightly rugose surface texture. A row of foramina runs parallel to the ventral margin of the maxilla for most of its length, and a few anteroposteriorly elongated foramina lie immediately ventral to the antorbital fossa. The ventral margin of the posterior process is straight and parallel with the dorsal margin, as in *Euparkeria capensis* (SAM-PK-K6047) and *Chanaresuchus bonapartei* (PVL 4586). The antorbital fossa is dorsoventrally deepest anteriorly near the dorsal process of the maxilla and disappears near the posterior extent of the posterior process. The boundary between the lateral surface of the maxilla and the antorbital fossa consists of a simple change in slope, as in most archosauriforms (e.g., *Euparkeria capensis*; SAM-PK-K6047), and there is no laterally expanded ridge defining the edge of the fossa unlike that present in *Gracilisuchus stipanicorum* (MCZ 4117), *Eoraptor lunensis* (PVSJ 512), and several basal neotheropods, such as *Coelophysis bauri* (MCZ 4326, 4327). Posteriorly, the posterior process of the maxilla expands slightly dorsally and ventrally immediately posterior to the termination of the antorbital fossa, resembling the condition in some non-eucrocopodan archosauriforms (e.g., *Proterosuchus fergusi*; RC 846; *Erythrosuchus africanus*; BP/1/5207). A weakly developed, posterovertrally directed ridge is present on
the lateral surface at the posterior end of the maxilla near the articular surface for the
jugal (Fig. 2).

The medial surface of the dorsal process bears a rimmed, triangular fossa that
extends dorsally along much of the preserved height of the process and ventrally to the
base of the palatal process. This deep fossa is also present in *Euparkeria capensis*
(SAM-PK-K6050; Gow, 1970) and might be homologous to fossae in the same position
in *Asilisaurus A. kongwe* (NMT RB159) and *Silesaurus S. opolensis* (ZPAL Ab
III/361/26). The medial surface of the dorsal process surrounding the deep fossa is flat.
The palatal process is oriented horizontally and extends anteriorly beyond the most
anterior extent of the lateral surface of the maxilla, such that the palatal process is visible
in lateral view. The extent of the medial expansion of the palatal process indicates that it
likely met its antimere on the midline, as in nearly all archosaurs (Nesbitt, 2011), and that
it was more medially expanded than that of *Euparkeria capensis* (Gow, 1970). The
delicate medial flange of the palatal process is dorsoventrally compressed and lacks
grooves on its medial surface. A small groove, with a parallel ridge ventral to it, lies
immediately ventral to the palatal process. This groove possibly marks the articular
surface for the palatal process of the premaxilla, as in *Asperoris mnyama* (Nesbitt et al.,
2013b).

In medial view, the posterior process of the maxilla is divided into two major
sections, a robust, mediolaterally broad, tooth-bearing *ventral* portion that tapers
posteromedially, and a mediolaterally thin dorsal lamina that extends along the posterior
two-thirds of the posterior process and forms the ventral margin of the antorbital fenestra.
In dorsal view, a distinct groove separates the thin dorsal lamina from the tooth-bearing
ventral portion, as also occurs in most other archosaurs (e.g., *Xilousuchus sapingensis*, Wu, 1981; Nesbitt et al., 2011; *Postosuchus kirkpatricki*, Weinbaum, 2011). A distinct anteroposteriorly elongated articular surface for the palatine is present, and lies about halfway between the posterior extent of the posterior process and the posterior margin of the dorsal process.

The tooth-bearing ventral margin of the maxilla is not well preserved. However, it is clear that the interdental plates were well separated and closely associated with the ridge that divides the tooth-bearing margin from the rest of the medial surface. At least 12 rounded alveoli are preserved, and a maximum of 13 or 14 tooth positions would have been present in the complete bone. The first alveolus is the smallest, and the size of the alveoli increases from the first to the fourth alveoli. Alveolus size decreases posteriorly from the fourth alveolus. A single, partially erupted broken tooth is present in the fourth alveolus. The tooth is mediolaterally compressed, slightly posteriorly recurved, and serrated on at least the anterior mesial edge (Fig. 2D). Tooth implantation appears to be thecodont, but this condition can only be confirmed once a fully erupted tooth crown is found.

Frontal (Referred)—A right frontal (NMT RB496; Fig. 2) is referred to *Teleocrater rhadinus* based on the similarity of size of the surrounding material also referred to *T. rhadinus Teleocrater rhadinus* and character states consistent with an avemetatarsalian phylogenetic position (Nesbitt et al., 2017b). The frontal is nearly complete but missing the anterior portion that would have articulated with the nasal. The entire element is gently bowed dorsally at the orbital margin and the ventral surface is concave in lateral view. The dorsal surface is slightly concave.
mediolaterally so that the midline and the orbital margin are raised slightly above the rest of the dorsal surface, as also occurs in some other archosauriforms (e.g., *Chanaresuchus bonapartei*, PULR 07; *Gracilisuchus stipanicicorum*, MCZ 4117). The frontal participates in the orbital margin. A lateral embayment anterior to the orbital margin represents the articular surface for the prefrontal. Posterior to the orbital margin a second lateral embayment represents the articular surface for either the postfrontal or postorbital. This more posterior articular surface is overhung by the frontal dorsally and the articulation takes the form of a deep ventral slot. The lateral surface of the orbital margin is slightly rugose, like that of *Chanaresuchus C. bonapartei* (PULR 07), *Silesaurus opolensis* (ZPAL Ab III/1223), and *Arizonasaurus babbitti* (Nesbitt, 2005a), and is not as dorsoventrally thin as that of *Asilisaurus kongwe* (NMT RB159). Posteriorly, the articulation with the parietal is located on the posteromedial edge of the frontal suggesting that a midline projection of the parietal intervened between the frontals, as in *Coelophysis bauri* (CM 31374). A similar condition also appears to be present in *Asilisaurus A. kongwe* (NMT RB159), but the anterior extent of the parietal is not as long as in the latter taxon. By contrast, an almost transversely straight frontoparietal suture is present in most other archosauriforms, including *Euparkeria capensis* (Ewer, 1965), *Chanaresuchus C. bonapartei* (PVL 4647), *Herrerasaurus ischigualastensis* (PVSJ 407), and *Gracilisuchus G. stipanicicorum* (MCZ 4117). In *T. rhadinus* *Teleocrater*, the dorsal surface of the posterior portion of the frontal bears a posteriorly opening depression with an anterior bounding ridge. A similar, but better-defined, depression is present in the same position in *Asilisaurus A. kongwe* (NMT RB159), and is also present in many early dinosaurs (Langer and Benton, 2006; Langer et al., 2010; Brusatte et al., 2010b). This
depression, referred to as the supratemporal fossa, has often been considered a
synapomorphy of Dinosauria (Langer et al., 2010; Brusatte et al., 2010b), but is now
synapomorphic for a more inclusive group of avemetatarsalians (Nesbitt et al., 2017 in
review).

The medial margin, or midline, is slightly thickened relative to the rest of the
element. In medial view, the midline suture possesses thin grooves and ridges that radiate
from the center of the medial surface.

Ventrally, the entire length of the frontal possesses a laterally bowed
ridge (the crista cranii) that marks the medial edge of medially defines the roof of the
orbital cavity roof. The orbital fossa likely continued onto the prefrontal and the
postfrontal/postorbital, as also occurs in other archosauriforms. Medial to this ridge, a
depression marks the anterior portion of the cerebrum (olfactory tract) and anteriorly, this
depression expands laterally to form the dorsal and lateral extent of the impression of the
primary olfactory bulb.

Quadrat (Referred)—The referred left quadrat (NMT RB493; Fig. 2) of
Teleocrater rhadinus is nearly complete, missing only some part of the thin edge margin
of the pterygoid process. The quadrat referred to *T. rhadinus* was found closely
associated with the other remains of the taxon and its size is consistent with that of the
other skull bones assigned to *T. rhadinus*. There are no clear character states that allow
the quadrat to be assigned to an early Avemetatarsalian. The total height of the
quadrat is 36 mm. The Ir posterior edge of the quadrat is moderately arched
posteriorly in lateral view. No crests are present on the posterior margin of the quadrat.
In posterior view, the ventral portion of the quadrat expands medially and laterally and
distally it terminates in two distinct and rounded condyles for articulation with the
mandibular glenoid. The medial condyle extends further ventrally than the lateral condyle
and a broad anteromedial groove separates the two, resembling the condition in
Chanaresuchus bonapartei (PVL 4575) and Lewisuchus admixtus (CRILAR-Pv 552). By
contrast, the two ventral quadrate condyles extend for an approximately equal distance in
Silesaurus opolensis (ZPAL Ab III/361) and Gracilisuchus stipanicicorum (MCZ 4117).
In ventral view, the two condyles are anteroposteriorly compressed, like those of
Asilisaurus kongwe (NMT RB15), and are not as anteroposteriorly thickened as in
Silesaurus opolensis (ZPAL Ab III/362/36). Anteriorly In anterior view, a thin ridge
separates the condylar articular surfaces from the rest of the quadrate body. Just dorsal to
this ridge, a distinct crest rises from above the medial side of the lateral condyle and
extends anteromedially to form part of the ventral border of the pterygoid process. A
similar crest has been reported in pseudosuchians (e.g., Arizonasaurus babbitti, Nesbitt,
2005a; Batrachotomus kupferzellensis, Gower, 1999; crocodylomorphs, Walker, 1990;
Iordansky, 1964) and is also present in some avemetatarsalians (e.g., Allosaurus fragilis,
Madsen, 1976). A shallow fossa lies between the ventral termination of the crest and the
anterodorsal rim of the condylar articular surfaces. Lateral to the lateral condyle, the
ventral end of the quadrate bears an anteriorly directed flange, the lateral surface of
which would have articulated with the quadratojugal, although there is no distinct
articular surface preserved. The dorsal surface of this flange forms the ventral margin of a
seemingly large foramen that would have been formed between the quadrate and the
quadratojugal; this paraquadratic-quadratojugal foramen is present in most Triassic
archosauriforms (e.g., Batrachotomus kupferzellensis, Gower, 1999). A small fossa is
present posteromedial to the medial border of the paraquadratojugal foramen. The medial border of the quadrate-foramen transitions dorsally into the anterodorsal process of the quadrate, which likely articularated with the squamosal, as in other archosauriforms (e.g., *Euparkeria capensis*, SAM-PK-K5867; *Batrachotomus kupferzellensis*, Gower, 1999). The anterolateral process is triangular in posterolateral view, laterally convex, mediolaterally compressed, and has a slightly concave medial surface.

Anteromedially. The head of the quadrate is continuous with the thin pterygoid process. The medial surface of the pterygoid process bears a fossa that is deepest posteriorly and is framed by two low ridges, one dorsally oriented and defining the medial edge of the quadrate and one defining the ventral border of the pterygoid process, as also occurs in other archosauriforms (e.g., *Silesaurus opolensis*, ZPAL Ab III/361).

Axial Vertebral Column

Charig (1956) assigned 28 vertebrae (Figs. 3, 5, 8, 11; Table 1) to the holotype along with one fragmentary trunk rib (Fig. 12). No sacral ribs or chevrons are preserved. A cervical rib was found with the holotype (Fig. 12), but Charig (1956) did not refer it to that specimen. By contrast, we consider the cervical rib to be part of the holotype (see below). None of the vertebrae were found in articulation, but Charig (1956) assigned positions to each of the vertebrae within the column on the basis of their overall morphology and relative size, and these positional identifications were written directly onto the specimens using a lettering scheme, presumably by AJC. These identifications should be viewed as provisional pending the discovery of articulated axial remains, but
are mostly followed herein. Charig (1956) assigned the correct relative order, but some of
the vertebrae were assigned to the wrong regions (see below). Two of the vertebrae
(labeled ‘CeA–B’) are clearly cervical vertebrae on the basis of their extreme elongation
and parapophysis position (Fig. 3). Eleven vertebrae were identified as trunk vertebrae
(labeled ‘DA–K’), but we suggest that ‘DA’ and ‘DB’ belong to the cervical series rather
than the trunk based on their lengths and the position of the parapophyses, and that ‘DK’
belongs to the anterior caudal series. Moreover, there are two distinct morphologies
of trunk vertebrae, which differ primarily in their elongation, suggesting
that more than one part of the trunk column is represented and that vertebrae with
morphologies transitional between them might have been lost taphonomically. The
remaining 15 vertebrae (labeled ‘CaA–O’) are middle or distal caudal vertebrae and
their relative sizes suggest they may form a continuous series, or one in which only small
gaps are present. No sacral or proximal caudal vertebrae are present in the holotype, but
the second sacral vertebra is represented in the referred material. All of the available
vertebrae include centra that are effectively complete, though none possess a complete
neural arch. Some of the vertebrae are represented solely by centra (‘CeB’, ‘DA’, ‘DC’,
‘DF’). The neurocentral junctions are fused in all of the available vertebrae from the
holotype and referred material.

Ten vertebrae preserved among the referred specimens are described, including an
axis, two anterior cervical vertebrae, two middle cervical vertebrae, a posterior cervical
vertebra, an anterior trunk vertebra, two posterior trunk vertebrae, and a second
primordial sacral vertebra. Other vertebrae were found at the same locality, but are
duplicates of the specimens described. All of these vertebrae are very well preserved and
the cervical vertebrae are mostly complete. The trunk vertebrae lack their neural spines and the sacral vertebra is fused to its ribs.

Cervical Vertebrae (Holotype)—Charig (1956) regarded ‘CeA’ (Fig. 3) as an anterior cervical vertebra and ‘CeB’ (Fig. 3) as a more posterior cervical vertebra on the basis of their relative sizes and on the greater elongation of ‘CeA’ relative to ‘CeB’. We agree with these identifications based on comparisons to both the referred specimens and *Yarasuchus deccanensis*, and specifically identify ‘CeB’ as from the middle cervical region. ‘CeA’ consists of a centrum, which is anteriorly complete, and a partial neural arch, lacking the tips of the prezygapophyses, the tips of the diapophyses, part of the neural spine apex, and the left postzygapophysis; ‘CeB’ consists of the complete centrum and the base of the neural arch, with the ventral portions of the vertebral laminae.

Although incomplete, the centrum of ‘CeA’ is exceptionally elongate, with a minimum length/posterior height ratio of approximately 3.6. This extreme elongation led Charig (1956) to question whether this vertebra was referable to the holotype individual, but based on its general morphology and the size of its articular surfaces he maintained this assignment. We confirm this assignment based on similarity to the referred material (see below). *Yarasuchus deccanensis* also possesses elongated anterior cervical vertebrae, but the minimum length/posterior height ratio is approximately 2.6 (ISI R334/9), and thus proportionally shorter than in *Teleocrater rhadinus*. In lateral view, the centrum is strongly curved along its length, with the posterior articular surface offset ventrally so that the dorsal margin of the posterior articular surface lies in a similar plane to the
ventral margin of the anterior articular surface, as also occurs in most other Permo-
Triassic archosauromorphs (Ezcurra, 2016). The ventral margin of the centrum is
strongly concave in lateral view, reflecting this ventral offset of the posterior end.

**Centrum elongation and the presence of a ventrally offset posterior centrum articular
surface also both co-occur in dinosauriforms (e.g., *Marasuchus lilloensis*, Sereno and
Arcucci, 1994a; *Eoraptor lunensis*, Sereno et al., 2013) among avemetatarsalians, in
some pseudosuchians (e.g., *Qianosuchus mixtus*, Li et al., 2006), and in allokotosaurians
(Nesbitt et al., 2015) and tanytropheids (Wild, 1973) among non-archosauriform
archosauromorphs.** The lateral surfaces of the centrum are weakly concave
anteroposteriorly, almost flat dorsoventrally, and exhibit no pneumatic features. They are
separated from the ventral surface by sharp breaks in slope that form distinct ridges along
the anterior and middle part of the centrum, resembling the condition in *Yarasuchus Y.
deccanensis* (ISI R334). In ventral view, the centrum is constricted to produce a thin,
elongate, and spool-shaped outline. A deep concavity, defined by the anterolateral ridges,
occupies the anterior half of the ventral surface, whereas the posterior half of the ventral
surface is mediolaterally convex and bears a short, low midline keel that terminates prior
to the posterior end of the centrum. The postaxial cervical vertebrae of proterochampsids
(e.g., *Chanaresuchus bonapartei*, MCZ 4037), *Euparkeria capensis* (SAM-PK-K5867),
Gracilisuchus stipanicicorum (PULR 08), *Yarasuchus Y. deccanensis* (ISI R334), and
Silesaurus opolensis (ZPAL Ab III/411-7) also have a median longitudinal keel, but it
extends further anteriorly than in *T. rhadinus* *Teleocrater gracilis*. Although broken, there
is evidence for a prominent parapophysis on the left anteroventrolateral edge of the
centrum. The posterior articular surface has a sub-circular outline and is deeply concave.
In anterior view, the neural canal of ‘CeA’ (Fig. 3) has a sub-rectangular outline that is wider than tall, but in posterior view this opening is circular, being narrower in diameter than the anterior opening. The prezygapophyses diverge laterally at an angle of approximately 30 degrees in dorsal view and are connected medially by a continuous horizontal platform (interprezygapophyseal lamina; sensu Wilson, 1999) that forms the floor of a deep fossa. This fossa is continuous with a small prespinal fossa that excavates the anterior base of the neural spine. Both of these fossae are delimited by prominent spinoprezygapophyseal laminae. The spinoprezygapophyseal lamina bifurcates posteriorly, with its dorsal branch merging with the neural spine and a ventral branch merging into the lateral margin of the neural arch, resembling the condition in the anterior postaxial cervical vertebrae of *Lewisuchus admixtus* (CRILAR-Pv 552). By contrast, this ventral branch is absent in the anterior postaxial cervical vertebrae of *Yarasuchus* *Y. deccanensis* (ISI R334/9), *Silesaurus* *S. opolensis* (ZPAL Ab III/1930), early pseudosuchians (e.g., *Gracilisuchus* *G. stipanicicorum*; PULR 08), and non-crown eucrocopodans (e.g., *Chanaresuchus* *C. bonapartei*, MCZ 4037; *Euparkeria* *E. capensis*: SAM-PK-K5867). The left diapophysis is broken, but shows that it was a flange-like structure, that was positioned on the anteroventrolateral edge of the neural arch, nearly touching the parapophysis, as occurs in the anterior postaxial cervical vertebrae of *Yarasuchus* *Y. deccanensis* (ISI R334), but distinctly contrasting with the well separated paraphysis and diapophysis of early archosauriforms (e.g., *Chanaresuchus* *C. bonapartei*, MCZ 4037), early pseudosuchians (e.g., *Gracilisuchus* *G. stipanicicorum*, PULR 08), and *Silesaurus* *S. opolensis* (ZPAL Ab III/1930). The posterior margin of the diapophysis is continuous with a prominent posterior centrodiaophyseal lamina, which
extends on to the lateral surface of the centrum (the posterior portion of this lamina that extends onto the centrum is also visible in ‘CeB’). The diapophysis and spinoprezygapophyseal laminae define a shallow, triangular depression on the lateral surface of the neural arch, in a position equivalent to the prezygapophyseal centrodiapophyseal fossa (sensu Wilson et al., 2011). A prominent postzygodiapophyseal lamina extends posterodorsally from the diapophysis, but is not connected with it. The postzygodiapophyseal lamina forms the dorsal border of a shallow, triangular postzygapophyseal centrodiapophyseal fossa, which is bounded ventrally by the posterior centrodiapophyseal lamina, as occurs in the anterior postaxial cervical vertebrae of Silesaurus S. opolensis (ZPAL Ab III/1930) and less conspicuously in Yarasuchus Y. deccanensis (ISI R334), but not in Lewisuchus L. admixtus (CRILAR-Pv 552). The postzygapophysis of ‘CeA’ extends slightly beyond the posterior margin of the centrum.

A small, posteriorly directed base of an epipophysis is present on the dorsal surface of the articular facet of the postzygapophysis as also occurs in dinosauriforms and a variety of other archosauromorphs (Langer and Benton, 2006; Nesbitt, 2011; Ezcurra, 2016). The postzygapophysis has a sub-triangular cross-section and an elliptical articular surface that is oriented at approximately 45 degrees to the horizontal. In posterior view, the postzygapophyseal facets diverge from each other at an angle of approximately 100 degrees and their dorsal margins form prominent spinopostzygapophyseal laminae. These laminae frame a deep postspinal fossa. The preserved part of the neural spine forms a laterally compressed sheet.

The centrum of ‘CeB’ is complete and differs from that of ‘CeA’ in numerous respects (Fig. 3). It is much less elongate, with a length/posterior height ratio of ~2.3 and
it also lacks the extreme curvature produced by the strong offset of the anterior and posterior articular surfaces, although the dorsal margin of the posterior surface of ‘CeB’ is slightly offset ventrally with respect to the dorsal margin of the anterior surface, closely resembling the proportions and shape of the postaxial anterior cervical vertebrae of *Yarasuchus Y. deccanensis* (ISI R334). The centrum of ‘CeB’ has a spool-shaped morphology, but its lateral surfaces are more strongly concave anteroposteriorly than in ‘CeA’; this may be the result of distortion during fossilization, as it is not present in any of the referred specimens or *Yarasuchus Y. deccanensis* (ISI R334). Large, oval parapophyses are positioned on the anteroventrolateral edges of the centrum and have gently concave articular facets. Distinct ridges separate the ventral and lateral centrum surfaces and a shallow concavity excavates the anterior half of the ventral surface, as in ‘CeA’. The posterior part of the ventral surface is flat to slightly convex and lacks a midline keel, contrasting with the presence of a keel in the keeled anterior–middle cervical vertebrae of proterochampsids (e.g., *Chanaresuchus C. bonapartei*, MCZ 4037), *Euparkeria E. capensis* (SAM-PK-K5867), *Gracilisuchus G. stipanicicorum* (PULR 08), *Yarasuchus Y. deccanensis* (ISI R334), and *Lewisuchus L. admixtus* (CRILAR-Pv 552). The anterior articular surface is sub-quadrat in outline and is flat to gently concave, whereas the posterior articular surface is sub-circular in outline and is concave. The ventral part of the paradiapophyseal lamina is preserved, and the area dorsal to this ridge is shallowly excavated to form part of the prezygapophyseal centrodiaipophyseal fossa.

Vertebrae labeled ‘DA’ and ‘DB’ by Charig (1956) belong to the posterior portion of the cervical series rather than the anterior portion of the trunk series based on the
ventral location of their parapophyses (Fig. 8). The centra are shorter relative to the more anterior cervical vertebrae. In ‘DA’, the centrum has a minimum length/posterior height ratio of approximately 1.7, whereas the centrum of ‘DB’ has a minimum length/posterior height ratio of approximately 1.6 in DB, closely resembling the ratios of the posterior cervical vertebrae of *Yarasuchus Y. deccanensis* (approximately 1.6, ISI R334) and *Spondylosoma absconditum* (GPIT 479/30/2). The anterior and posterior articular facets of the centra lie in nearly the same anteroposterior-dorsoventral plane. Both vertebrae have a flat anterior articular surface and a shallowly concave posterior articular surface. The anterior and posterior articular surfaces of ‘DA’ and ‘DB’ are sub-circular in outline. Ventrally, both vertebrae have a poorly developed ridge on the midline, as occurs in the posterior cervical vertebrae of *Yarasuchus Y. deccanensis* (ISI R334) and several other archosauriforms (e.g., *Gracilisuchus G. stipanicicorum*, PULR 08). The ventral surface of the centrum smoothly transitions into a poorly defined lateral fossa that is overhung by the paradiapophyseal and posterior centrodiapophyseal laminae (in ‘DB’, but broken in ‘DA’). A prominent concave parapophysis is present on the anteroventrolateral edge of the centrum in ‘DA’ and ‘DB’. In both of these specimens, a smaller, circular, and convex additional articular surface is present just dorsal to the parapophysis. On the left sides of ‘DA’ and ‘DB’, the smaller articular surface is separated from the parapophysis by a narrow cleft whereas on the right side, the two articular surfaces are touching, but distinct. It is not clear if the parapophysis is divided or if the more dorsally positioned structure is novel. Poposauroids such as *Arizonasaurus babbitti* (Nesbitt, 2005a) and *Poposaurus gracilis* (Weinbaum and Hungerbühler, 2007; Nesbitt, 2011) have a similar structure, as does *Yarasuchus Y. deccanensis* (ISI R334).
The condition in *Yarasuchus Y. deccanensis* (ISI R334), where the two articular facets are nearly adjacent, is more similar to that of *T. rhadinus Teleocrater* than to that of poposauroids in which the two facets are well separated. Some of the taxa with these ‘divided parapophyses’ have associated ribs that are triple-headed (e.g., *Yarasuchus Y. deccanensis*, ISI R334) and we infer that *T. rhadinus Teleocrater* also had triple-headed ribs.

Vertebra ‘DB’ preserves most of the neural arch, but is missing much of the diapophyses and the neural spine. The diapophysis is located well dorsal to the centrum and near to the anteroposterior center of the neural arch. This structure is connected to the following: the parapophysis and additional articular surface via a thin paradiapophyseal lamina; posteroventrally to the centrum by a posterior centrodiapophyseal lamina; anteriorly to the prezygapophysis via a prezygodiapophyseal lamina; and posteriorly to the postzygapophysis by a postzygodiapophyseal lamina. These laminae frame exceptionally deep fossae. Dorsal to the diapophysis, there is a dorsally opening fossa at the base of the neural spine, as also occurs in several archosauromorphs (Ezcurra, 2016).

In lateral view, the prezygapophyses of ‘DB’ project anterodorsally forming an angle of approximately 45 degrees with the horizontal, whereas in the following trunk vertebrae they project less strongly dorsally, forming a shallower angle of around 30 degrees to the horizontal. Complete postzygapophyses are present only in DB: they are sub-triangular in cross-section, have steeply inclined articular facets that face lateroventrally, and have elongate, sub-elliptical articular surfaces. Stout spinopostzygapophyseal laminae form the lateral borders of a deep, oval postspinal fossa.
Cervical Vertebrae (Referred)—A nearly complete axis (NMT RB504; Fig. 4; Table 3) was recovered from locality Z183. The centrum is moderately elongated with a minimum length/posterior height ratio of approximately 2.7. The axis centrum is likely much shorter than that of the third cervical, given the general length of the other anterior cervical vertebrae (see below); however, no articulated cervical series is currently available. A shorter axis relative to the third cervical vertebra is also known in *Marasuchus lilloensis* (PVL 3870), *Asilisaurus kongwe* (Nesbitt et al., 2010), *Lewisuchus admixtus* (Romer, 1972; Bittencourt et al., 2014), *Silesaurus opolensis* (ZPAL Ab III/1930), and dinosaurs (Gauthier, 1986; Langer and Benton, 2006) and is in contrast to the condition in many pseudosuchians (e.g., *Batrachotomus kupferzellensis*; Gower and Schoch, 2009) and non-crown archosauriforms (e.g., *Chanaresuchus bonapartei, MCZ 4037; Euparkeria capensis, SAM-PK-K5867*) where the axis is approximately the same length as the other cervical vertebrae. Anteriorly, the articular surface for the atlas on the centrum is nearly flat, whereas the more ventral articulation with the axis intercentrum is deflected anteroventrally and is slightly convex. The posterior articular surface of the centrum is circular and distinctly concave. A midline ridge is present that extends ventral to the anterior and posterior articular facets of the centrum, as in some dinosauriforms (e.g., *Asilisaurus As. kongwe, NMT RB147*) and pseudosuchians (e.g., *Riojasuchus tenuisceps, PVL 3827*). In lateral view, the lateral surface of the centrum bears two parallel ridges with a shallow fossa between them. A short, anteroventrally to posterodorsally trending ridge is present just dorsal to the more dorsal ridge on both sides of the axis. The facet for articulation with the atlantal neural arch is well defined with an overhanging rim, extends slightly anterior to of the anterolateral margin of the neural
canal, and is convex. A well-defined ridge extends between the atlantal neural arch articulation facet and the lateral edge of the postzygapophysis. The postzygapophyses diverge at an angle of approximately 45 degrees from the midline in dorsal view as in the other anterior cervical vertebrae and a thin interpostzygapophyseal lamina connects the two structures (Fig. 4). The postzygapophyseal facets are flat, ovoid, and extend just posterior to the posterior articular surface of the centrum, as also occurs in *Euparkeria E. capensis* (SAM-PK-K5867), *Marasuchus M. lilloensis* (PVL 3870), *Silesaurus Si. opolensis* (ZPAL Ab III/1930), early dinosaurs (e.g., *Herrerasaurus H. ischigualastensis*, PVSJ 407), and early pseudosuchians (e.g., *Gracilisuchus G. stipanicicorum*, PULR 08; *Turfanosuchus Tu. dabanensis*: IVPP V3237). Epipophyses lie on the dorsal surfaces of the postzygapophyses, as in most dinosauriforms and some pseudosuchians (Langer and Benton, 2006; Nesbitt, 2011). The epipophyses taper posteriorly and extend slightly posterior to the posterior extent of the postzygapophyses. The neural spine is anteriorly rounded in lateral view and rises posterodorsally to an apex that lies dorsal to the postzygapophyses. This posterodorsally extended neural spine is also present in proterochampsids (e.g., *Chanaresuchus C. bonapartei*: MCZ 4037), most pseudosuchians (e.g., *Arizonaurus Ar. babbitti*: Nesbitt, 2005a), and some dinosauriforms (e.g., *Silesaurus Si. opolensis*, Piechowski and Dzik, 2010; *Herrerasaurus H. ischigualastensis*: Sereno and Novas, 1994; *Allosaurus Al. fragilis*, Madsen, 1976), whereas some non-archosaurian archosauriforms (e.g., *Euparkeria E. capensis*, SAM-PK-K5867) and some dinosauriforms (e.g., *Lewisuchus L. admixtus*, Bittencourt et al., 2014) possess a dorsally arching neural spine where the anterior and posterior terminations are sub-equal in height. In *Te. rhadinus Teleocrater*, the posterodorsal extent...
The edge of the neural arch is mediolaterally thick and overhangs a deep postspinal fossa that is framed by the neural spine and the postzygapophyses, as is common in the axes of other archosauromorphs.

Two anterior cervical vertebrae (NMT RB505; NMT RB506; Fig. 5; Table 3) are referred to *T. rhadinus* *Teleocrater* and their morphology closely matches that of the holotype vertebra ‘CeA’. As in ‘CeA’, the two referred specimens have exceptionally elongate centra with minimum length/posterior height ratio of approximately 3.2 (NMT RB505) and 3.0 (NMT RB506). Both have a posterior articular surface that is positioned ventral to the anterior articular surface. Centrum elongation and the presence of a ventrally offset posterior centrum articular surface also occur in dinosauriforms (e.g., *Marasuchus lilloensis*, Sereno and Arcucci, 1994a; *Eoraptor lunensis*, Sereno et al., 2013) among avemetatarsalians, in some pseudosuchians (e.g., *Qianosuchus mixtus*, Li et al., 2006), and in allokotosaurians (Nesbitt et al., 2015) and tanystropheids (Wild, 1973) among non-archosauriform archosauromorphs. The ventral surface of the centrum has two pairs of low ridges paralleling the long axis, with a weakly developed ridge on the midline and paramedian ridges at the lateral sides of the ventral surface, as with the anterior cervical vertebra of the holotype (‘CeA’). The parapophysis sits on the anteroventral edge of the centrum and has a slightly concave articular surface. A deep fossa lies between the parapophyses on the ventral surface. The diapophysis and parapophysis touch anteriorly and a deep cleft separates the their articular faces posteriorly them, as in ‘CeA’. A weakly developed posterior centrodiapophyseal lamina extends posteriorly from the oval diapophysis; this lamina terminates well anterior of the posterior articular surface of the centrum. The posterior centrodiapophyseal laminae in
both NMT RB505 and NMT RB506 are not as laterally extensive as in ‘CeA’ and the development of the laminae differs on the left and right sides of NMT RB505. Ventral to the posterior centrodiapophyseal lamina, there is a laterally opening fossa that is bound ventrally by another low ridge, resembling the condition of an anterior postaxial cervical of *Silesaurus* *Si. opolensis* (ZPAL Ab III/411/7). The anterior articular face of the centrum is concave, but not as deeply concave as the posterior articular face. Anteriorly, the neural canal aperture is oval in outline with the long axis oriented mediolaterally, and is larger than the neural canal in posterior view aperture (Fig. 5). The prezygapophyses extend well anterior of the centrum, are angled at 45 degrees to the horizontal in anterior view, and, in dorsal view, diverge anterolaterally at ~30 degrees from the midline. A thin interprezygapophyseal lamina connects the prezygapophyses and a deep prespinal fossa excavates the base of the neural spine. At the posterior end of the lateral surface, in lateral view, a weakly developed postzygodiapophyseal lamina and the posterior portion of the posterior centrodiaophyseal lamina frame a shallow, triangular postzygapophyseal centrodiaophyseal fossa as in other non-theropod archosaurs (Langer and Benton, 2006). A shallow fossa is present dorsal to the anterior part of the postzygodiapophyseal lamina at the base of the neural spine, resembling the condition in several other Permo-Triassic archosauromorphs (Ezcurra, 2016). The postzygodiapophyseal lamina is gently rounded where it meets the lateral surface of the postzygapophysis. Just dorsal to this ridge, the bone surface is rugose and extends posteriorly to form a posteriorly directed epipophysis, as occurs in dinosauromorphs and a variety of other archosauromorphs (Langer and Benton, 2006; Nesbitt, 2011; Ezcurra, 2016). The articular facets of the postzygapophyses are
angled at 45 degrees to the horizontal in posterior view. A deep postspinal fossa is present between the postzygapophyses and excavates the posterior base of the neural spine.

In both of the referred anterior cervical vertebrae (NMT RB505; NMT RB506; Fig. 5), the neural spine is completely preserved. The blade-like anterior edge slopes anterodorsally and the posterior edge slopes posterodorsally. This results in a greatly expanded distal end of the neural spine in lateral view, similar to the condition in the anterior post-axial cervical vertebrae of several early non-archosauriform archosauromorphs (e.g., *Macrocnemus bassanii*, PIMUZ T4822; *Prolacerta broomi*, BP/1/2675) and *Yarasuchus Y. deccanensis* (Sen, 2005). The neural spine is similar in mediolateral thickness throughout its height, except for near its apex where it expands laterally to form a rounded, rugose surface. This rugose surface expands anteriorly and posteriorly to form small apices that overhang the neural spine, and this feature is also present in *Yarasuchus Y. deccanensis* (Sen, 2005) and the erythrosuchid *Guchengosuchus shiguaiensis* (IVPP V8808-10). The lateromedial expansion of the most apical part of the neural spine, however, does is thin and is not expanded into form the flat, concave, or gently convex surfaces seen in some archosauriforms (e.g., *Sarmatosuchus otschevi*, PIN 2865/68-20; *Euparkeria E. capensis*, SAM-PK-K5867) and pseudosuchians (e.g., *Batrachotomus B. kupferzellensis*, Gower and Schoch, 2009).

The referred material includes two middle cervical vertebrae (NMT RB511; NMT RB512: Fig. 6; Table 3), representing a portion of the presacral series that is not present in the holotype. We interpret these vertebrae as middle cervical vertebrae, as they have intermediate morphologies between the anterior and posterior cervical
vertebrae, but their exact positions within the series are not known. NMT RB511 is similar in size to the holotype whereas NMT RB512 is significantly larger than the holotype. The centra have offset articular surfaces and are elongate, with a minimum length/posterior height ratio of approximately of 2.5 (NMT RB512) and 2.4 (NMT RB511), closely resembling the proportions of the middle cervical centra in

Spondylusoma Sp. absconditum (ratio approximately 2.3, GPIT 479/30/1) and

Yarasuchus Y. deccanensis (ratio approximately 2.5–2.6, ISI R334). The ventral surfaces of both middle cervical vertebrae bear ridges on the midline ridge; that in NMT RB512 is much more pronounced than on NMT RB511. These midline ridges are also present on the middle cervical vertebrae of *Yarasuchus Y. deccanensis* (ISI R334) and several other archosauriforms (e.g., *Euparkeria E. capensis*, SAM-PK-5867; *Chanaresuchus C. bonapartei*, MCZ 4037; *Gracilisuchus G. stipanicorum*, PULR 08). The lateral sides of the centra immediately dorsal to the ventral surface are rounded and grade dorsally into a deep fossa roofed by the ventrolaterally arching expanding posterior centrodiaaphyseal lamina, which arches dorsally in lateral view. As in the anterior postaxial cervical vertebrae, this lateral fossa extends anteriorly to divide the diapophysis from the parapophysis. The posterior portion of the centrum expands laterally and is distinctly convex around the rim. The posterior articular surface of the centrum is deeply concave, whereas the anterior articular surface is concave but much shallower. The oval parapophysis sits on the anterolateral ventrolateral edge of the anterior portion of the centrum, but the deep ventral fossa that is present between the parapophyses on the ventral surface in the anterior cervical vertebrae is absent. In both of the middle cervical vertebrae, the oval diapophysis is posteriorly separated from the
parapophysis in lateral view, rather than being in partial contact with it as in the anterior cervical vertebrae.

The neural arches of the middle cervical vertebrae bear more pronounced laminae than the anterior cervical vertebrae. In lateral view, a rounded, but distinct, postzygodiapophyseal lamina and the posterior portion of the posterior centrodiaepophyseal lamina form a distinct, triangular postzygapophyseal centrodiaepophyseal fossa that is deeper anteriorly than posteriorly. This deep fossa also occurs in Spondylosoma Sp. absconditum (GPIT 479/30/1), Silesaurus Sp. opolensis (Piechowski and Dzik, 2010), and dinosaurs (Langer and Benton, 2006), whereas the feature is rare outside Avemetatarsalia. A weakly developed lamina extends from the dorsal portion of the prezygapophyses and terminates in the anteroposterior middle of the neural arch, just ventral to a fossa at the base of the neural spine, resembling the condition in some early archosauriforms (e.g., Chasmasuchus rossicus; Ezcurra, 2016).

In NMT RB511, a prezygodiapophyseal lamina connects the lateral side of the prezygapophysis with the diapophysis and this lamina creates a deep anteriorly opening prezygapophyseal centrodiaepophyseal fossa (sensu Wilson et al., 2011). As in the anterior cervical vertebrae, the articular surfaces of the prezygapophyses are angled at 45 degrees to the horizontal in anterior view and they extend anterior to the centrum. The prezygapophyses are connected medially by a thin interprezygapophyseal lamina. A prespinal fossa is located at the base of the neural spine. The postzygapophyses taper posterolaterally and their articular surfaces are shifted slightly dorsally from the do not include the interpostzygapophyseal lamina. This lamina is shifted slightly ventrally from the articulation surface—Dorsal to the postzygapophyses, posteriorly projecting
epipophyses are present and the apices of these small processes continue anterodorsally along the spinopostzygapophyseal laminae, as also occurs in the middle cervical vertebrae of *Yarasuchus Y. deccanensis* (ISI R334). The presence of epipophyses in the middle cervical vertebrae of *Spondylosoma Sp. absconditum* is equivocal because these specimens have been lost since the original description by Huene (1942). Galton (2000) reported the absence of these structures, but Langer (2004) considered them as present. The postspinal fossae are exceptionally deep in the middle cervical vertebrae.

The anterior neural canal opening is oval with a mediolateral long axis anteriorly, whereas the posterior opening posteriorly is nearly square.

The neural spine of NMT RB512 (Fig. 6) is like that of the anterior cervical vertebrae in that the spine expands more strongly anterodorsally than posterodorsally in lateral view. The anterior margin of NMT RB511 is slanted anterodorsally, but is more vertical than that of NMT RB512 and the anterior cervical vertebrae, and closely resembles the condition in the middle cervical vertebrae of *Spondylosoma Sp. absconditum* (Huene, 1942:pl. 30) and *Yarasuchus Y. deccanensis* (ISI R334). The apices of the neural spines are blade-like and their lateral portions expand like those of the anterior cervical vertebrae (see above) and those present in *Yarasuchus Y. deccanensis* (ISI R 334; Sen, 2005). The lateral rugosities are much less pronounced and the dorsal margin is anteroposteriorly more convex in NMT RB511 than in NMT RB512.

A very well-preserved posterior cervical vertebra (NMT RB514; Fig. 7; Table 3) is referred to *T. rhadinus Teleocrater* and closely matches the morphology of vertebra ‘DB’ in the holotype. The parapophysis is connected with an accessory rib articular surface as evidenced by a change of slope on the left side of the centrum, supporting the
inference of three-headed ribs in the posterior cervical region. All of the laminae and associated deep fossae present in vertebra ‘DB’ are complete on at least one side of NMT RB514. The diapophysis extends from the centrum laterally with a small posterior component and has a rounded articular surface. The prezygapophyses and postzygapophyses are connected to their antimeres at the midline by thin interprezygapophyseal and interpostzygapophyseal laminae and deep prespinal and postspinal fossae excavate the neural spine. The neural spine is complete and extends dorsally from the neural arch, being proportionally taller than in more anterior vertebrae. The neural spine is approximately twice the height of the centrum, resembling the condition present in the anterior dorsals-trunk vertebrae of *Yarasuchus Y. deccanensis* (ISI R334). By contrast, the posterior cervical vertebrae possess proportionally shorter neural spines in most non-archosaur eucrocopodans (e.g., *Euparkeria E. capensis*, SAM-PK-K5867; *Chanaresuchus C. bonapartei*, MCZ 4037), early pseudosuchians (e.g., *Gracilisuchus G. stipanicicorum*, PULR 08), and early dinosauriforms (e.g., *Silesaurus Si. opolensis*, Piechowski and Dzik, 2010; *Lewisuchus L. admixtus*, Bittencourt et al., 2014; *Herrerasaurus H. ischigualastensis*, Sereno and Novas, 1994). The thin anterior edge of the neural spine in *T. rhadinus Teleocrater* is angled slightly anterodorsally in lateral view whereas the thicker posterior edge is angled slightly posterodorsally: as a result, the neural spine increases in anteroposterior width towards its distal apex in lateral view. In lateral view the distal surface is convex anteroposteriorly and the lateral sides of the spine apex are slightly rugose as in the more anterior vertebrae.

Trunk Vertebrae (Holotype)—All of the trunk centra are longer than they are tall. In ‘DC–DG’ (Figs. 3, 8; Table 1), the centrum is conspicuously elongate with
length/posterior height ratios ranging from 1.70–2.23. By contrast, the centra of ‘DH–DI’ (Fig. 8) are less elongate with length/posterior height ratios of 1.28–1.57. As a result, the range of ratios observed in the trunk vertebrae of *Teleocrater rhadinus* overlaps that of *Yarasuchus deccanensis* (ISI R334) and *Spondylosoma absconditum* (GPIT 479/30). In most other respects, the trunk centra are similar, however, with lateral surfaces that are longitudinally concave and dorsoventrally convex, with a concave ventral margin in lateral view. None of the centra exhibit any pneumatic openings or nutrient foramina. The lateral and ventral surfaces merge around a smooth continuous curve without any distinct break in slope. None of the trunk vertebrae possess ventral midline keels, grooves, or concavities, which are also absent from the middle and posterior trunk centra of *Yarasuchus Y. deccanensis*, but the anterior trunk vertebrae of the latter species possess a low median keel (ISI R334). All of the centra of *T. rhadinus* *Teleocrater* have a constricted, spool-shaped outline in ventral view. The anterior and posterior articular surfaces are more elliptical in outline in DC–DI (slightly wider than tall) than in the posterior cervical vertebrae. A prominent parapophysis migrates dorsally through this series: it has an elliptical outline, with its long axis oriented dorsoventrally to slightly posterodorsally, and a shallowly concave articular surface. In DD–DI the parapophysis is situated on the neural arch (see below). Laterally prominent parapophyses are also present in *Yarasuchus Y. deccanensis* (ISI R334) and *Silesaurus opolensis* (Piechowski and Dzik, 2010).

None of the neural arches are complete, so most of the following description is based upon ‘DD’, which has the most complete arch, supplemented with details from other vertebrae where possible. The anterior neural canal openings are sub-elliptical in
outline with the long axes of these ellipses oriented mediolaterally. They are larger in
diameter than the posterior neural canal openings, which have elliptical outlines whose
long axis is dorsoventrally oriented. This difference in anterior/posterior neural canal
shape is present in all trunk vertebrae with preserved neural arches (‘DD’, ‘DE’, ‘DG’,
‘DH’), but contrasts with *Verasuchus Y. deccanensis* (ISI R334), in which the openings
of the neural canal are similar in shape and size anteriorly and posteriorly, with most of
them being transversely broader than tall. All of the preserved prezygapophyses have
sub-triangular transverse cross-sections and possess flat articular facets with oval outlines
that face dorsomedially at an angle of approximately 45 degrees to the horizontal. In
dorsal view, the prezygapophyses diverge at an angle of approximately 45 degrees. The
bases of the prezygapophyses are connected by an intraprezygapophyseal lamina, which
forms a short shelf anterior to the neural spine. This shelf is not as extensive as that seen
in the cervical vertebrae and resembles the condition of the anterior trunk vertebrae of
Verasuchus Y. deccanensis (ISI R334) and *Spondylosoma Sp. absconditum* (GPIT
479/30/4). This shelf is absent in *Silesaurus Si. opolensis* (Piechowski and Dzik, 2010).
Well-developed spinoprezygapophyseal laminae extend from the bases of the
prezygapophyses to the anterior margin of the neural spine, forming the medial margins
of a small, triangular prespinal fossa. In ‘DD’ and ‘DE’ a weak prezygoparapophyseal
lamina is present, but its presence/absence is equivocal in the remaining trunk vertebrae.
A prezygoparapophyseal lamina is absent in the preserved trunk vertebrae of *Verasuchus
Y. deccanensis* (ISI R334) and *Spondylosoma Sp. absconditum* (GPIT 479/30/3, 4). ‘DD’
and ‘DE’ possess distinct prezygodiapophyseal laminae (although it is reduced in length
and prominence in ‘DE’), but it appears that this lamina is lost in ‘DI’, although poor preservation makes this difficult to confirm.

In ‘DD’ and ‘DE’, the parapophysis forms a stalk-like process at the anteroventral corner of the neural arch: in the remaining trunk vertebrae it migrates posteriorly and dorsally to a position adjacent to the diapophysis (in ‘DG’ and ‘DH’) and it probably merged with the diapophysis in some other trunk vertebrae (‘DI’). Parapophyses forming stalk-like processes are also present in some of the anterior trunk vertebrae of *Yarasuchus* *Y. deccanensis* (ISI R334) and *Silesaurus Si. opolensis* (Piechowski and Dzik, 2010). A clear paradiapophyseal lamina is present in ‘DC–DE’, but is obliterated by the fusion of the two structures with the diapophysis in the other trunk vertebrae. The paradiapophyseal and prezygo-diapophyseal laminae frame a deep triangular and anteriorly opening prezygapophyseal fossa in ‘DC–DE’. A very short centroparapophyseal lamina arises from the ventral margin of the parapophysis in ‘DD’ and ‘DE’. Almost all of the diapophyses are missing and those that are present are incomplete. Where present they are laterally projecting, anteroposteriorly narrow flanges with flattened sub-elliptical cross-sections (e.g., ‘DD’, ‘DE’). In all trunk vertebrae, the posteroverentral margin of the diapophysis supports a prominent posterior centro-diapophyseal lamina that extends posterovertrally to merge with the posterodorsal margin of the centrum. The paradiapophyseal and posterior centro-diapophyseal laminae frame a deep, triangular, and ventrally opening centro-diapophyseal fossa in all of the trunk vertebrae preserving this region, with the exception of ‘DK’, which lacks this feature and bears only a shallow depression in this region. ‘DD’ and ‘DE’ possess well-developed postzygo-diapophyseal
laminae, which form the dorsal borders of large posteriorly opening postzygapophyseal centrodiaapophyseal fossae, but both the lamina and fossa appear to be lost in ‘DG’, ‘DH’, and other posterior vertebrae.

In vertebra ‘DD’ a very short accessory lamina branches ventrally from the postzygodiaapophyseal lamina, at a point approximately halfway along its length, and extends posteroventrally to merge with the posterior margin of the neural arch, subdividing the postzygapophyseal centrodiaapophyseal fossa into dorsal and ventral portions. However, this lamina cannot be seen in any of the other trunk vertebrae because this area is damaged in all other examples. This accessory lamina is also present in *Spondylosoma Sp. absconditum* (GPIT 479/30/3), *Silesaurus Si. opolensis* (Piechowski and Dzik, 2010), and some early saurischian dinosaurs (e.g., *Guaibasaurus candelariensis*, MCN-PV 2355). Nevertheless, the accessory lamina is vertical or slightly anteroventrally oriented in *Silesaurus* and dinosaurs. The presence or absence of this lamina cannot be determined confidently in *Yarasuchus Y. deccanensis* because the area is not well preserved in the available trunk vertebrae. Anteriorly, in vertebra ‘DD’ there is a large gap between the prezygapophyses that is consistent with the morphology of the hypantrum in dinosaurs (e.g., theropods; Rauhut, 2003). Referred specimens confirm the presence of hypophene-hypantrum articulations (see below), as in saurischian dinosaurs (Gauthier, 1986) and several other Triassic archosauriforms. None of the preserved neural spines are complete, but those portions that are preserved indicate that its base formed a mediolaterally-compressed sheet that extended for almost the full length of the neural arch.

Trunk Vertebrae (Referred)—Three trunk vertebrae can be referred to
Teleocrater rhadinus, an anterior trunk vertebra (NMT RB500) and two posterior trunk vertebrae (NMT RB516; NHMUK PV R6796; Fig. 9; Table 3). The anterior and posterior trunk vertebrae preserve nearly all of the features present in the trunk vertebrae of the holotype and do not need to be described in detail here. However, NMT RB500 and NMT RB516 do have clear hyposphene-hypantrum accessory intervertebral articulations. Posteriorly, the hypantrum forms a rectangular structure that is more complicated than the simple, mediolaterally thin, and vertical lamina present on the midline in Spondylosoma absconditum (GPIT 479/30/3), some dinosauriforms (e.g., Silesaurus opolensis, Piechowski and Dzik, 2010; Guaubasaurus candelariensis, Langer et al., 2011), and pseudosuchians (e.g., Batrachotomus kuperzellensis, SMNS 80305; Aetobarbakinoides brasiliensis, Desojo et al., 2012). Yarasuchus deccanensis apparently lacks hyposphene-hypantrum articulations in its preserved trunk vertebrae (ISI R334), but this condition should be re-examined in the future if new, better preserved specimens are found. In NMT RB500 and NMT RB516, a deep anteroposteriorly-oriented groove lies at the medial surface of these articular facets of the postzygapophysis. The groove continues anteriorly and marks the anterior-most extent of the articular surface of the postzygapophysis. In posterior view, the hyposphene is constricted dorsally and is slightly expanded laterally at its ventral margin. The ventral surface of the hyposphene is flat. In dorsal view, there is a clear gap between the prezygapophyses. The rounded medial edges of the prezygapophyses are straight in dorsal view for much of their length and then converge just posterior to the articular facets. The rounded medial edges fit into the grooves at the medial margins of the postzygapophyses and the hyposphene structure fits perfectly within the hypantrum.
Sacral Vertebra (Referred)—No sacral vertebrae are present in the holotype, but we refer a sacral vertebra (NMT RB519; Fig. 10; Table 3) to *Teleocrater rhadinus* based on its size, which is similar to that of other *T. rhadinus* material recovered from the same locality (Z183), and on its similarity to the sacral vertebrae of *Yarasuchus deccanensis*. We identify NMT RB519 as a second sacral vertebra based on its robust sacral rib, which extends from the anteroposterior middle of the centrum, and on its close similarity to the second sacral of *Asilisaurus kongwe* (NMT RB159) and the primordial second sacral vertebra of dinosaurs (e.g., *Saturnalia tupinquim*, MCP 3844-PV). NMT RB519 is nearly complete, missing only parts of the neural arch and its sacral rib. The centrum has amphicoelous articular facets and the ventral surface lacks any groove or ridge; the ventral surface of the centrum is similarly smooth in *Yarasuchus Y. deccanensis* (ISI R334) and *Spondylosoma absconditum* (GPIT 479/30/7). Laterally, the sacral rib is completely co-ossified to the centrum, although a raised ridge marks the contact between the sacral rib and the centrum these elements. The prezygapophyses are anteriorly short, angled at ~60 degrees to the horizontal in anterior view, and are well separated by a gap in dorsal view. A circular prespinal fossa is present at the anterior base of the neural spine. Just lateral to the prezygapophyses, a prezygodiapophyseal lamina extends from the prezygapophysis to the sacral rib, and a deep fossa is present anterior to this lamina, as is also the case in *Yarasuchus Y. deccanensis* (ISI R334). A shallow dorsolaterally open fossa is present between the prezygapophyses and postzygapophyses at the base of the neural spine. The small postzygapophyses are angled at ~60 degrees to the horizontal, complementing the orientation of the prezygapophyses. A dorsoventrally tall postspinal fossa separates the postzygapophyses in posterior view.
The sacral rib extends laterally from its junction with the centrum and neural arch. Laterally, the rib splits into two components, a smaller, dorsoventrally thinner process that extends posteriorly and more dorsally that the other portion, and a larger, more robust portion that extends anteroventrally (Fig. 10). The more posterior process occurs only within avemetatarsalians and is present in *Yarasuchus Y. deccanensis* (ISI R334), *Spondylacoma Sp. absconditum* (GPIT 479/30/7), *Asilisaurus A. kongwe* (NMT RB159), and in dinosaurs (e.g., *Saturnalia tupiniquim*, MCP 3844-PV). The more robust anteroventral portion of the sacral rib is similar to that of *Yarasuchus Y. deccanensis* (ISI R334) and *Asilisaurus A. kongwe* (NMT RB159) in that they both taper anteroventrally to a rounded termination with a distinct facet for articulation with the previous sacral rib, the articulation with the ilium is nearly vertical, and the posterior portion tapers posterodorsally. The sacral rib is restricted to this vertebra, contrasting with the condition in *Silesaurus opolensis* (ZPAL Ab III/362), in which the sacral ribs are shared between consecutive sacral vertebrae.

Caudal Vertebrae (Holotype)—With the exception of vertebra ‘DK’, we accept all of Charig’s (1956) identifications of caudal vertebra position (Figs. 8, 11; Table 1). We identify vertebra ‘DK’ (Fig. 8L) as an anterior caudal vertebra rather than a posterior trunk vertebra. ‘DK’ possesses no centrodiapophyseal laminae, has a **unique single** ventral keel, and dorsoventrally compressed, anteroposteriorly elongated processes that we identify as caudal ribs, but it lacks chevron facets. These features place this vertebra close to the beginning of the caudal series. The anterior and posterior articular surfaces of the centrum are slightly **amphicoelous concave**, like the in the other trunk and caudal vertebrae, and have sub-equal heights and lengths. The ventral centrum surface is
transversely concave as also occurs in *Yarasuchus deccanensis* (ISI R334). The vertebra has anteriorly short prezygapophyses and laminae that occur lateral to the prezygapophyses and likely continued onto the postzygapophyses. The base of the neural spine suggests that the structure was anteroposteriorly restricted, thus probably contrasting with the anteroposteriorly extensive neural spine bases deep bases of the neural spines of the anterior caudal vertebra in *Yarasuchus Y. deccanensis* (ISI R334).

All of the middle to distal caudal centra are mildly amphicoelous and longer than they are tall, with length/posterior height ratios of 1.92–3.58, with this ratio increasing in the more distal caudals within the series (Figs. 8, 11). The range of this ratio partially overlaps with that of the middle to distal caudals of *Yarasuchus Y. deccanensis*, but the latter taxon possesses some caudal vertebrae that are proportionally shorter than those of *T. rhadinus Teleocrater* (ratio = 1.68, ISI R334/45). The lateral surfaces of all of the caudal vertebrae are gently concave longitudinally and lack pneumatic or nutrient foramina. In most cases the lateral and ventral surfaces merge smoothly into each other without distinct breaks in slope, producing a spool-like morphology with a convex ventral surface. However, in a small number of caudal vertebrae (‘CaE’, ‘CaI–CaK’), the lateral and ventral surfaces are separated by a more angular break in slope, creating a more distinctive ventral surface that bears a shallow midline groove. Similar morphological variation is observed in the middle–distal caudal vertebrae of *Yarasuchus Y. deccanensis* (ISI R334) and *Silesaurus opolensis* (ZPAL Ab III/361/3, 362/8, 1975).

Both the anterior and posterior articular surfaces of the centra are shield-shaped in outline with rounded ventral margins and slightly straighter lateral margins. Distinct anterior chevron facets are not present on any of the preserved caudal vertebrae, but small
posterior facets are visible in ‘CaA–CaK’ (but absent in ‘CaL–CaO’). The posterior chevron facets in the larger vertebrae have a notched ventral margin and a ‘W’-shaped outline, whereas in smaller vertebrae they become harder to distinguish from the rest of the posterior articular surface and have a crescentic outline.

The neural canal openings are elliptical in both anterior and posterior views, with the long axis of the ellipse directed mediolaterally. ‘CaA–CaJ’ lack complete prezygapophyses, but several of these vertebrae possess spinoprezygapophyseal laminae (e.g., ‘CaC–CaD’), which were connected medially by a sheet-like interprezygapophyseal lamina. The prespinal fossa is absent in ‘CaA–CaB’ (the only vertebrae to preserve this region). In ‘CaK–CaN’, the prezygapophyses are short, stub-like processes that are oriented at around 15 degrees to the horizontal in lateral view and that do not project far beyond the ends of their respective centra, as also occurs in Yarasuchus Y. deccanensis (ISI R334). By contrast, the prezygapophyses of the distal caudal vertebrae of Silesaurus Si. opolensis (ZPAL Ab III/1975) and some early saurischians (e.g., Herrerasaurus ischigualastensis, Novas, 1994) overlap anteriorly at least one-third of the preceding vertebra. The prezygapophyses are conjoined medially for most of their length, except for their anterior tips, which are bluntly rounded. Spinoprezygapophyseal laminae are present in ‘CaK–CaL’, but are absent in the more distal caudal vertebrae. None of the preserved caudal vertebrae possesses a prezygodiapophyseal lamina or any of its accompanying fossae.

None of the caudal ribs are preserved completely, but their broken bases indicate that they were thin, dorsoventrally compressed plates that extended laterally for approximately half of the length of the neural arch. Caudal ribs appear to have been
present on ‘CaA–CaK’, but lost from ‘CaL’ onwards. There is no indication of an
anterior centrodiapophyseal lamina in any of the caudals, but ‘CaA–CaJ’ each possesses
a short, weakly expressed posterior centrodiapophyseal lamina and, where the
postzygapophyses are preserved, a weak postzygodiapophyseal lamina. Distinct neural
arch fossae associated with these laminae are absent from all of the preserved caudal
vertebrae. The postzygapophyses are reduced in size to small, rounded processes that are
oriented at approximately 30 degrees to the horizontal in ‘CaB’ and around 15 degrees to
the horizontal in ‘CaM–CaN’. They do not extend, or only slightly extend, beyond the
posterior margin of the centrum in any of the caudal vertebrae in which they are
preserved, contrasting with the more posteriorly projecting postzygapophyses of the
middle–distal caudal vertebrae of *Yarasuchus Y. deccanensis* (ISI R334). The
postzygapophyses have sub-elliptical cross-sections in ‘CaB’ and ‘CaK’, but merge into a
single, midline compound process in ‘CaM–CaN’. ‘CaB’ lacks a postspinal fossa and
spinopostzygapophyseal laminae are absent from all of the preserved vertebrae.

In ‘CaB’, the neural spine is as tall as the centrum, but in more posterior vertebrae
it is reduced in height (e.g., ‘CaH’, ‘CaK’) and it is further reduced to a ridge in ‘CaM’
and lost in ‘CaN’–‘CaO’. Where preserved, it is a laterally compressed, anteroposteriorly
narrow, and posterodorsally inclined sheet. The neural spines of the middle caudal
vertebrae of *Yarasuchus Y. deccanensis* (ISI R334), and to a lesser degree *Silesaurus S.
opolensis* (ZPAL Ab III/361/3, 1975), are distinctly taller than in ‘CaB’.

Cervical Rib (Holotype)*—A partial cervical rib was found with the holotype
(Fig. 12), but was excluded from it by Charig (1956). However, the size and shape is
consistent with the other cervical ribs of the holotype and we consider

Society of Vertebrate Paleontology
refer this element as part of the holotype to this specimen. The cervical rib is missing the tip of the anterior process and most of the thin posterior process. The capitulum and tuberculum are nearly touching and separated by only a thin margin (though this area is partially obscured by matrix). The tuberculum (dorsal portion) has a larger articular surface area than the capitulum. The anterior process is elongated and slightly curved anterodorsally at its tip. Dorsally, this curvature results in a concave surface. The posterior process tapers and is highly compressed mediolaterally.

Trunk Rib (Holotype)—The proximal end of a single trunk rib is preserved (Fig. 12). The tuberculum forms an elongate process that extends dorsal to the capitulum and terminates in a sub-elliptical articular facet. It has an oval transverse cross-section and narrows mediolaterally as it merges with the capitulum and rib shaft ventrally. The articular surface for the capitulum is damaged and its outline cannot be determined. A prominent flange of bone arises from the proximal end of the shaft at the same level as the capitulum giving the rib a sub-triangular cross-section. Deep grooves separate this flange from both the capitulum and tuberculum.

Pectoral Girdle

Scapula (Holotype and Referred)—A partial right scapula (Fig. 13) missing the anterior margin and distal blade was assembled from pieces collected with the rest of the holotype, but for unknown reasons was separated from the rest of the holotype by Charig (1956). The size and preservation of the element suggests that it belongs to the holotype, and it possesses a distinct longitudinal ridge on the posterior edge of the blade that is shared only by avemetatarsalians (see below). As further support, a nearly complete,
slightly smaller, right scapula (NMT RB480; Fig. 13; Table 4) is assigned to \textit{Teleocrater rhadinus} and both share identical morphology.

Proximally, the glenoid has a rounded rim and is directed more posteriorly than posterolaterally, as in \textit{Spondylosoma absconditum} (GPIT 479/30/10), \textit{Yarasuchus deccanensis} (ISI R334/49), and dinosauriforms (e.g., \textit{Silesaurus opolensis}, Dzik, 2003; \textit{Eoraptor lunensis}, Sereno et al., 2013). The preserved portion of the articular surface with the coracoid is triangular and tapers anteriorly. A weakly defined scar in the form of a shallow pit just distal to the lateral margin of the glenoid is interpreted to be the attachment site of the M. anconaeus scapularis lateralis externus, as in crocodylians (Brochu, 1992). By contrast, the inferred attachment of this muscle in several other early archosaurs, such as \textit{Yarasuchus Y. deccanensis} (ISI R334/49), \textit{Silesaurus Si. opolensis} (ZPAL Ab III/2534), and \textit{Turfanosuchus T. dabanensis} (IVPP V3237), is developed as a low, prominent tuberosity (Nesbitt, 2011). Anteriorly, the anterior part of the proximal margin that articulates with the coracoid is not complete in either specimen and is very thin (Fig. 13). The referred specimen (NMT RB480) preserves a weakly developed acromion that is laterally distinct raised from the rest of the surface of the proximal end, as in most archosaurs (Nesbitt, 2011) and in proterochampsids (e.g., \textit{Chanaresuchus bonapartei}, PVL 4575; Ezcurra, 2016). A shallow fossa is present between the glenoid and the acromion. Compared to the distal end, the proximal end is more strongly expanded anteroposteriorly, as also occurs in \textit{Silesaurus Si. opolensis} (ZPAL Ab III/1930).

A shallow proximodistally-oriented groove is present just distal to the glenoid on the posterior surface. At a distance of 30 mm distally (~from the posterior edge of the
glenoid; 47% the preserved length), a thin ridge that is 10 mm in proximodistal length
demarcates the posterior edge of the blade. This ridge is present in *Spondyloma Sp.
absconditum* (GPIT 479/30/10), *Asilisaurus kongwe* (NMT RB159), *Silesaurus Si.
opolensis* (ZPAL Ab III/2534), and *Lewisuchus admixtus* (PULR 01), but absent in
dinosaurs. A finished edge on part of the anterior edge of the holotype scapula blade
indicates that 1) the scapula is narrow throughout its midshaft (~1.5 cm width at its
narrowest point) and 2) that the distal end of the scapula blade expands anteriorly and
posteriorly. This is confirmed by the referred specimen (NMT RB480), in which the
distal end of the blade is more strongly expanded anteriorly than posteriorly, resembling
the condition in *Silesaurus Si. opolensis* (ZPAL Ab III/2534) and *Lewisuchus L. admixtus*
(PULR 01). Distally, the anterior edge thickens mediolaterally and bears a ridge that
parallels the anterior margin. The distal end is thicker posteriorly in distal view than it is
anteriorly. The distal surface is rugose and nearly flat.

Coracoid (Holotype)—A possible left coracoid was preserved with the holotype
(Fig. 13). The size corresponds well with that of the holotype scapula and the
preservation is also similar. However, the articular surface with the scapula is slightly
different from that expected for a typical coracoid; it is directed at an unusual angle and is
either poorly preserved or over-prepared. The posterior orientation of the glenoid
confirms that the glenoid formed by the scapula and coracoid was directed
posteroventrally like that of *Yarasuchus deccanensis* (ISI R334/49) and dinosauromorphs.
There is a clear notch ventral to the posterior portion of the glenoid and the surface
ventral to the notch is mediolaterally thick, but it is unclear if there was a tuber here as
present in proterochampsids (Ezcurra, 2016) and nearly all archosaurs (Nesbitt, 2011). A
coracoid foramen appears to be present on the anterior margin of the preserved portion.

Forelimb

Humerus (Referred)—No humerus was found directly with the holotype, but the distal half of a left humerus (NHMUK PV R6796; Fig. 15) was found nearby (Charig, 1956) and two well-preserved left humeri (NMT RB476; NMT RB477; Fig. 14; Table 4) are also referred to the taxon. In general, the proximal and distal ends of the humerus are greatly expanded compared to the midshaft as in some non-archosaurian archosauriforms (e.g., *Erythrosuchus africanus*; Gower, 2003), *Yarasuchus deccanensis* (Sen, 2005), and sauropodomorph dinosaurs (Langer and Benton, 2006). The proximal half bears a robust and anterolaterally directed deltopectoral crest that is distally elongated. The anterolateral apex of the deltopectoral crest extends greater than 30% the length of the humerus in *Teleocrater rhadinus* (Table 4), as also occurs in *Yarasuchus Y. deccanensis* (Sen, 2005), dinosaurs (Langer and Benton, 2006), and probably *Nyasasaurus parringtoni* (Nesbitt et al., 2013a). The deltopectoral crest of *T. rhadinus Teleocrater* does not flare laterally and does not possess the small ventral notch seen in *Nyasasaurus N. parringtoni* (Nesbitt et al., 2013a). Connected with the rest of the proximal surface, the deltopectoral crest has a nearly straight anterolateral margin with a small concave surface between the proximal surface and the apex of the crest, as also occurs in *Yarasuchus Y. deccanensis* (ISI R334/53). A proximodistally-oriented faint ridge, the supinator ridge, is present on the posterolateral surface of the deltopectoral crest and extends distally to the midshaft, resembling the condition in other archosauriforms (e.g., *Aetosauroides scagliai*, PVL 2073).
The proximal surface has two proximally extended peaks, one proximal to the deltopectoral crest and one that represents the humeral head, which closely resembles the condition in *Yarasuchus Y. deccanensis* (ISI R334/53), but not that of other archosauromorphs. The humeral head, like the rest of the proximal surface, is poorly ossified. In NMT RB476 and NMT RB477, a groove is present on the proximal surface lateral to the humeral head. The medial tuberosity is distally shifted from the humeral head, but is not separated from it, and this is similar to other early archosauromorphs (e.g., *Euparkeria capensis*, SAM-PK-K5867; *Yarasuchus Y. deccanensis*, ISI R334/53; *Silesaurus opolensis*, ZPAL Ab III/452; *Parasuchus hislopi*, ISI R42). The anteroventral surface of the proximal portion is broadly concave and the posterodorsal surface is broadly convex and bears two proximodistally-oriented fossae separated by a low convex surface.

This midshaft is sub-circular in cross-section and the long axis of the proximal surface is twisted at an angle of ~45 degrees to the long axis of the distal end, resembling the condition in *Euparkeria Eu. capensis* (SAM-PK-K5867) and some pseudosuchians (e.g., *Parasuchus P. hislopi*, ISI R42; *Acteosaurus A. scagliai*, PVL 2073). By contrast, the torsion between the proximal and distal ends is approximately 10 degrees in *Yarasuchus Y. deccanensis* (ISI R334/53), *Marasuchus lilloensis* (PVL 3871), *Silesaurus Si. opolensis* (ZPAL Ab III/452), and early dinosaurs (e.g., *Herrerasaurus ischigualastensis Tawa hallae*, PVSJ GR 373242). The lateral and medial edges of the distal end gradually diverge to form a broadly triangular distal end in anterior view.

Posterodorsally, a broadly concave surface divides the rounded *epicondyle* (medial) and *ectepicondyle* (lateral) of the distal end. Likewise, a concave surface...
(=radial fossa) separates the entepicondyle and ectepicondyle anteromedially. Across the three humeri, there is variation in the breadth and depth of this fossa. In the largest example, NMT RB476, the concave surface is broad and the shallowest of the three. The depth is greater in NMT RB477 and the fossa is deepest and most mediolaterally restricted in NHMUK PV R6796. The distal development of the entepicondylar and ectepicondylar sides also varies across the three specimens. In the smallest of the three (NMT RB477), the condyles are approximately equal in distal extent whereas in the other two larger specimens (NMT RB476 and NHMUK PV R6796), the entepicondyle is much more extended distally, as also occurs in the preserved humerus of *Yarasuchus Y. deccanensis* (ISI R334/53). The lateral side of the entepicondylar side has a clear supinator process, but this process is poorly developed and does not expand far laterally with respect to the rest of the ectepicondylar lateral surface. A groove lies adjacent and parallel to the supinator process. The presence of a supinator process and accompanying groove occurs in most archosauriforms (e.g., *Erythrosuchus Fr. africanus*; Gower, 2003; *Batrachotomus kupferzellensis*, Gower and Schoch, 2009; *Aetosauroides A. scagliai*, PVL 2073; *Yarasuchus Y. deccanensis*, ISI R334/53) and in some dinosauriforms (e.g., *Asilisaurus kongwe*, NMT RB159), but is lost in *Silesaurus Si. opolensis* (ZPAL Ab III/452), *Lewisuchus admixtus* (CRILAR-Pv 552), and early dinosaurs (e.g., *Herrerasaurus ischigualastensis*; Sereno, 1994). The distal surface has a deep groove that parallels the surface’s long axis.

Radius (Holotype)—A complete, but poorly preserved right radius (Fig. 16; Table 2) and the distal one-third of the left radius is present in the holotype (NHMUK PV R6795; Fig. 17). The proximal surface is concave in anterior view, resembling the
condition in *Euparkeria capensis* (SAM-PK-K5867), and asymmetrical with the lateral margin of the proximal end extending further proximally than the medial margin. A sharp intermuscular line is present on the anterior surface, beginning around 20 mm distal to the proximal surface (~22% the length of the element), but this fails to reach the midshaft. A second intermuscular line on the posterolateral surface originates just proximal to midshaft and extends to the distal margin. In distal view, the distal surface is concave with a circular outline.

Ulna (Holotype and Referred)—A complete, well-preserved right ulna is present in the holotype (NHMU PV R6795; Fig. 16; Table 2), but it is heavily fractured throughout its length. Two other well-preserved left ulnae (NMT RB486; NMT RB485) are referred to *Teleocrater rhadinus* and are identical to that of the holotype. The shaft of the ulna is rather robust compared to those of dinosauriforms (e.g., *Marasuchus lilloensis*, PVL 3871; *Silesaurus opolensis*, Dzik, 2003) and is nearly straight, closely resembling that of *Yarasuchus deccanensis* (ISI R334). The long axis of the proximal surface is mediolaterally oriented and is offset from the anteromedially oriented long axis of the distal surface by ~45 degrees, as also occurs in *Yarasuchus Y. deccanensis* (ISI R334) and several other early archosaurs (e.g., *Aetosauroides scagliai*, PVL 2073; *Silesaurus S. opolensis*, ZPAL Ab III/404/7). Proximally, an olecranon process is present but poorly expanded relative to the rest of the proximal surface, as also occurs in *Yarasuchus deccanensis* (ISI R 334) and a referred specimen of *Dongusuchus efremovi* (PIN 952/84-2; Niedźwiedzki et al., 2016). The proximal surface is concave, and poorly preserved in the holotype. Anterolaterally, the surface is bowed, and a short, poorly defined, and proximodistally oriented ridge is present that is homologous with the lateral (=radial)
tuber of other archosaurs. This weakly developed expansion is also present in *Yarasuchus Y. deccanensis* (ISI R334). A muscle scar is present anterolateral to the lateral tuber, forming a shallow depression that is also present in *Asilisaurus kongwe* (NMT RB159). A rugose surface on the anterolateral surface of the ulna of *T. rhadinus Teleocrater* is also present in *Yarasuchus Y. deccanensis* (ISI R334), *Asilisaurus A. kongwe* (NMT RB159), *Lewisuchus admixtus* (CRILAR-Pv 552), and the sauropodomorph *Saturnalia tupiniquim* (Langer et al., 2007a). The anterolateral portion of the proximal surface tapers in proximal view. Sharp ridges define the anterior and posterior edges of the shaft whereas the lateral and medial surfaces are gently rounded. The distal end is moderately expanded relative to the midshaft, as also occurs in several archosauriforms (e.g., *Euparkeria capensis*, SAM-PK-K5867; *Parasuchus hislopi*, ISI R42; *Lewisuchus L. admixtus*, CRILAR-Pv 552). A shallow fossa is present on the posteromedial surface of the distal end. The elliptical distal surface is concave, as in *Yarasuchus Y. deccanensis* (ISI R334) and *Lewisuchus L. admixtus* (CRILAR-Pv 552).

Metacarpal (Referred)—A single metacarpal (NMT RB484; Table 4) was recovered from locality Z183 (Fig. 18). The assignment of the metacarpal to *Teleocrater rhadinus* is tentative and cannot be confirmed at this time because no metacarpal is present in the holotype or in *Yarasuchus Y. deccanensis* for comparison. However, the size of the metacarpal is consistent with the size of the other material referred to *Teleocrater T. rhadinus* from the same locality. We identify NMT RB484 as a right metacarpal II based on its similarity to that of *Azendohsaurus madagaskarensis* (Nesbitt et al., 2015), and the anterolateral cant of its proximal end. The metacarpal has a proximal portion that is expanded relative to the narrow midshaft. The convex proximal
surface is trapezoidal with an acute anterolateral corner and a long axis that is nearly anteroposteriorly oriented. The proximal portions lack distinct articular surfaces, in contrast to the deep facets present in some dinosaurs (e.g., *Herrerasaurus ischigualastensis*, Sereno, 1994; *Tawa hallae*, Nesbitt et al., 2009a) and in contrast to the clear facets present in *Azendohsaurus A. madagaskarensis* (Nesbitt et al., 2015). The posteromedial portion surface of the proximal portion is rugose and bears numerous proximodistally-oriented striations. The medial side of the proximal portion is nearly flat, and this surface likely represents the articular surface for metacarpal I. The distal end is asymmetrically expanded, being expanded more strongly laterally than medially in anterior view. In distal view, the articular surface is rectangular with a mediolaterally-oriented long axis; the posterior side tapers both medially and laterally. The anterior surface bears a deep extensor pit, although this is not as deep as those of neotheropods (e.g., *Coelophysis bauri*, Colbert, 1989). Medially, the distal end is nearly flat whereas the lateral surface bears a deep ligament pit.

Pelvic Girdle

Ilium (Holotype and Referred)—The partial left ilium of the holotype (NHMUK PV R6795; Fig. 19) is largely complete but is missing the postacetabular process; a slightly larger, referred left ilium (NMT RB489; Fig. 19) consists mostly of the acetabular region but lacks the supra-acetabular crest and postacetabular process. Overall, the ilium has a deep acetabulum framed by a laterally (or ventrolaterally) directed supra-acetabular crest. The supra-acetabular crest is well defined and forms a thin ridge; small radiating ridges ornament its ventral surface. The supra-acetabular crest extends to the
contact with the pubis anteriorly and fades out dorsal to the posterior end of the ischial peduncle posteriorly. The pubic articular surface of the ilium is shorter than that for the ischium. Both the pubic and ischial peduncles meet in the anterior half of the acetabulum at an angle of nearly 90 degrees. A similar condition is present in dinosauriforms (e.g., *Asilisaurus kongwe*, NMT RB159) and poposauroids (e.g., *Arizonasaurus babbitti*, MSM 4590). A small notch at the ventral margin of the ischial peduncle articulation indicates that the acetabulum might be partially open (see below). A notch positioned halfway between the iliac articulation with the pubis and the posterior extent of the ischial peduncle is also present in *Yarasuchus deccanensis* (ISI R334/56), some dinosauriforms (e.g., *Asilisaurus As. kongwe*, NMT RB159; *Silesaurus opolensis*, ZPAL Ab III/404/1), and poposauroid pseudosuchians (e.g., *Arizonasaurus Ar. babbitti*, MSM P4590). By contrast, the articular margin of the ischial peduncle is straight in most archosauriforms, including the dinosauriform *Marasuchus lilloensis* (PVL 3871). The articular surface of the pubic peduncle is nearly flat whereas that of the ischial peduncle is slightly concave in the holotype. However, these surfaces are better preserved in NMT RB489 and in this specimen the contact surface with the pubis is rugose and slightly angled anterolaterally, whereas the rugose surface of the ischial peduncle is distinctly convex mediolaterally. An antitrochanter on the lateral surface of the ischial peduncle within the acetabulum is absent in both specimens, contrasting with the presence of this feature in *Lagerpeton chanarensis* (PVL 4619) and some dinosaurs (e.g., *Herrerasaurus ischigualastensis*, MCZ 4381). Within the acetabulum of NMT RB489, a small ridge separates the fibrous surface texture on the anterior half of the acetabulum from the smoother bone texture.
present on the posterior half of the ilium (Fig. 19). The holotype also appears to show this transition, but poor preparation within the acetabulum obscures these details.

The anterior (= preacetabular) process is separated from the rest of the ilium by a well-defined vertical ridge that originates from the dorsal surface of the supra-acetabular crest. The anterior-most portion of the anterior process arcs medially; this curvature results in a distinct pocket medial to the lateral surface of the anterior process and the well-defined vertical ridge. The vertical ridge is confluent with the anterior process, as in dinosauriforms (*Asilisaurus As. kongwe* NMT RB159), and a similar vertical crest is also present in poposauroids (e.g., ctenosauriscids, Nesbitt, 2005a, b; Butler et al., 2011), *Batrachotomus kupferzellensis* (Gower and Schoch, 2009), and early crocodylomorphs (Nesbitt, 2011). The dorsal surface of the crest bears deep grooves and sharp ridges and these ridges continue onto the anterior process.

Much of the surface medial to the acetabulum is relatively smooth and featureless. Two distinct sacral rib scars are present, one anterior and medial to the level of the supra-acetabular crest and the other more posterior and medial to the ischial peduncle. The articular surface for the first sacral rib is rounded and a small piece of the dorsal portion of the scar appears to contact the medially curved anterior process as in some poposauroids (*Arizonasaurus Ar. babbitti*, MSM P4590; Nesbitt, 2005a, 2007, 2011). The scar for the second sacral rib lies ventral to a well-defined medial ridge; the posterior portion of this scar is present on a thin flange at the posterior margin of the ischial peduncle.

Ischium (Referred)—A complete left ischium (NMT RB479; Fig. 20) is referred to *Teleocrater rhadinus* based on its similarity to that of *Yarasuchus deccanensis* and its
size, which is consistent with the other *Teleocrater rhadinus* material identified from the same bonebed. The left ischium exhibits a widened articular surface for the ilium and a long shaft that extends posteroventrally. The proximal portion of the ischium articulates with the ischial peduncle of the ilium anterodorsally and the pubis anteriorly and these articular surfaces are continuous, as in most archosauriforms (Nesbitt, 2011), including *Yarasuchus Y. deccanensis* (ISI R334), and in contrast to those of dinosauriforms (e.g., *Silesaurus opolensis*, Dzik, 2003; *Marasuchus lilloensis*, PVL 3870) in which the two surfaces are separated. The articular surfaces for the ischial peduncle of the ilium and the posteroventral rim of the acetabular margin of the ilium are continuous and they do not form two distinct surfaces. The acetabular rim of the ischium is a simply, rounded ridge, contrasting with the raised lip that is present in dinosaurs with a pelvic antitrochanter (e.g., *Lagerpeton chanarensis*, PVL 4619; *Herrerasaurus ischigualastensis*, MCZ 4381). The articular surface for the ischial peduncle of the ilium is nearly straight, suggesting that the notch in the ventral portion of the ilium (Fig. 19) was not in-filled by bone when the ischium and ilium were in articulation, and that this represents a small opening in the acetabulum; the same feature can be inferred for *Yarasuchus Y. deccanensis* (ISI R334). The articulation with the pubis is straight and indicates that the contact between the two elements was more restricted than in *Euparkeria capensis* (SAM-PK-K5867), other non-archosaurian archosauriforms (e.g., *Tropidosuchus romeri*, PVL 4601), and *Lagerpeton L. chanarensis* (PVL 4619). Dorsally, just posterior to the acetabular rim, a long groove is positioned on the ischial shaft. This groove, which is present in a wide variety of diapsids (Ezcurra, 2016), occupies about half of the length of the dorsal shaft surface. The ventral edge of the
ischium tapers, resulting in a triangular shaft cross-section for nearly its entire length.

The tapered ventral edge is also tapered in *Asilisaurus kongwe* (NMT RB159), but this contrasts with the more rounded ventral endmargin seen in dinosaurs (e.g., *Eoraptor lunensis*; Sereno et al., 2013). Posteriorly, as in *Yarasuchus Y. deccanensis* (ISI R334; the ischium was originally reported as absent: see Sen, 2005), the shaft subtly expands ventrally, as also occurs in a variety of archosaurs, including poposaurids (Arizonasaurus babbitti, MSM P4590) and dinosauriforms (e.g., *Asilisaurus kongwe*, NMT RB135; *Eoraptor lunensis*; Sereno et al., 2013). Proximodistally oriented Parallel thin striations are present on the dorsal and lateral surfaces just anterior to the distal surface. The distal end is generally rounded in posterior and lateral views.

Medially, the proximal portion bears a broad fossa that is framed by its articulations with the ilium anterodorsally, the pubis anteriorly, and its contact with the other ischium (Fig. 20). A flat, striated surface forms the articular surface for the other ischium and, proximally, this articulation approaches, but does reach, the articular facet for the pubis. Nevertheless, this proximal extension indicates that the two ischia contacted each other over nearly their entire lengths, as also occurs in silesaurids (e.g., *Silesaurus opolensis*, ZPAL Ab III/404/1), early dinosaurs (*Eoraptor lunensis*, Sereno et al., 2013), and paracrocodylomorphs (e.g., *Arizonasaurus A. babbitti*, MSM P4590; *Postosuchus kirkpatricki*, TTUP 9000, Weinbaum, 2013). This is in contrast to the condition in *L. chanarensis* (PVL 4619) and other stem archosaurs (e.g., *E. capensis*, Ewer, 1965) where the ischia meet along their medial edges. The medial surface of the shaft of *T. rhadinus* is flat and bears many minute ridges and grooves that parallel the its dorsal and ventral margins of the shaftbone.
Hindlimb

Femora (Holotype and Referred)—The left and right femora of the holotype (NHMUK PV R6795; Figs. 21, 23; Table 2) are complete, three-dimensionally undistorted, and have surfaces that are well preserved (although fractured in some places). We also refer another well preserved, but smaller, right femur (NMT RB498; Figs. 22, 23; Table 4) to *Teleocrater rhadinus*. The femur lies in the parasagittal plane when in articulation with the ilium (as in other eucrocopods) and, therefore, the following description will orient the long axis of the bone vertically. The shaft is sigmoidal in anterolateral and posteromedial views, and the proximal half arcs medially in posterior view. The long axis of the proximal surface is anteromedially to posterolaterally anteromedially orientated and is offset from the mediolaterally oriented long axis of the distal surface by ~45 degrees as in most archosaurs and eucrocopodan archosauriforms (e.g., *Euparkeria capensis*, Ewer, 1965; *Chanaresuchus bonapartei*, MCZ 4035).

The proximal head of the femur is directed anteromedially to posterolaterally anteromedially, and the proximal surface is slanted anteroventrally, as occurs in most eucrocopods (e.g., *Euparkeria-Eu. capensis*, Ewer, 1965; *Chanaresuchus C. bonapartei*, MCZ 4035; *Yarasuchus deccanensis*, ISI R334; *Marasuchus lilloensis*, PVL 3871; *Turfanosuchus dabanensis*, IVPP V3237). The proximal surface exhibits a slight rugosity that surrounds a well defined depression that is straight and oriented parallel to the long axis of the proximal surface (Figs. 21G, –22–g3), resembling the condition in *Yarasuchus Y. deccanensis* (ISI R334), *Dongusuchus efremovi* (PIN 952/15-1), some pseudosuchians (e.g., *Arizonasaurus babbitti*, MSM 4596; *Batrachotomus*).
kupferzellensis, SMNS 52970), and some dinosauriforms (e.g., Asilisaurus kongwe, NMT RB19; Silesaurus opolensis, Dzik, 2003). The posterolateral corner of the proximal surface arcs distally gradually whereas the anteromedial portion forms a nearly 90 degree angle with that of the medial surface of the proximal portion. The proximal portion bears a well-defined anterolateral tuber that extends distally 20 mm from the proximal surface (~12% the length of the element). Posteromedially, only a broad posteromedial tuber (Figs. 21–23; pmt) is present with no indication of an anteromedial tuber. This is similar to the femora of Euparkeria Eup. capensis (Ewer, 1965) and other non-crown archosauriforms (Nesbitt, 2011), but differs from the condition in most archosaurs that possess an anteromedial tuber (Nesbitt, 2011). The anteromedial surface of the proximal end is continuous with the shaft and does not have any bone scars to indicate the presence of the ‘offset femoral head’ present in dinosauriforms. The femoral head of the holotype is poorly preserved whereas the head of NMT RB498 is well preserved. An extremely low scar demarcates the femoral head from the rest of the femur. This scar lies just distal to the head (Figs. 21–23C–D; sc) and we suggest that it is homologous, but represents a different condition to the ‘ventral emargination’ in Lagerpeton chanarensis and Dromomeron (Irwin et al., 2007; Nesbitt et al., 2009b), the surface just distal to the head in Asilisaurus A. kongwe (Griffin and Nesbitt, 2016), and the ligament sulcus in dinosaurs (e.g., Saturnalia tupinquim; Langer, 2003). The anterolateral surface bears a faint muscle scar for the M. iliofemoralis externus -at the distal end of the anterolateral tuber (Fig. 23; mie), as also occurs in Dongusuchus efremovi (Niedźwiedzki et al., 2016). This structure, which is highly reminiscent of, and here suggested to be homologous with, the low anterior trochanter in Yarasuchus Y. deccanensis (ISI R334).
and early dinosauromorphs (e.g., *Dromomeron gregorii*, Nesbitt et al., 2009b; *Asilisaurus A. kongwe*, Griffin and Nesbitt, 2016). The scar is proximally inclined on the posterolateral portion of the proximal femur, reaches a peak just posterior to the distal margin of the anterolateral tuber, and then extends anteromedially to form the proximal portion of the linea intermuscularis cranialis (Fig. 23; ai). The anterior trochanter also follows this pattern in *Yarasuchus Y. deccanensis* (ISI R334) and *Asilisaurus A. kongwe* (NMT RB159). The linea intermuscularis cranialis is located on the anterolateral edge of the femur, but disappears at a proximally opening foramen located at a point approximately two-fifths of the length of the femur from the proximal surface. We have looked at a number of well preserved stem archosaurs and pseudosuchians and have not observed a similar scar in the same position as *T. rhadinus* and *Y. decannensis*. Admittedly, the scar is subtle in these specimens and requires exceptional surface preservation.

A small, raised muscle scar (Fig. 23; mic) located on the posterior half of the anterolateral surface, approximately 50 mm from the proximal surface (~30% the length of the element), likely represents the attachment of the iliofemoralis musculature. Based on its position and inferred muscle attachment this attachment is considered here and is therefore homologous with the trochanteric shelf of dinosauriforms and large lagerpetids (Nesbitt et al., 2009b; Martinez et al., 2016). This scar is located in the same position in *Mandasuchus tanyauchen* (NHMUK PV R6792; Butler et al., 2017) and *Erythrosuchus africanus* (NHMUK PV R3592; Gower, 2003). The division-separation of the anterior trochanter and the trochanteric shelf is present in *T. rhadinus Teleocrater* and also present in *Yarasuchus Y. deccanensis* (ISI R334) and *Dongusuchus Do. efrimovi* (Sennikov, 1988; Niedźwiedzki et al., 2016). This division suggests that the muscles
attaching to the anterior trochanter (M. iliofemoralis externus: Hutchinson, 2001) and the trochanteric shelf (M. ischiotrochantericus: Hutchinson, 2001) were present as separate units in basal avemetatarsalians and became a single unit in later dinosauromorphs.

The ridge for attachment of the caudofemoralis musculature (= fourth trochanter) is low and proximodistally oriented, resembling the condition in *Yarasuchus deccanensis* (ISI R334) and *Dongusuchus Do. efremovi* (PIN 952/15-1). By contrast, the fourth trochanter is far more strongly developed in *Euparkeria Eu. capensis* (Ewer, 1965), proterochampsids (e.g., *Tropidosuchus romeri*, PVL 4601; *Chanaresuchus C. bonapartei*, MCZ 4035), most pseudosuchians (e.g., *Riojasuchus tenuisceps*, PVL 3827; *Aetosauroides scagliai*, PVL 2073), and dinosauromorphs (e.g., *Lagerpeton L. chanarensis*, PVL 4619; *Marasuchus M. lilloensis*, PVL 3871; *Silesaurus S. opolensis*, Dzik, 2003). Anteromedial to the ridge, a deep depression parallels it along its length. The bone surface within the depression is striated. *Teleocrater rhadinus* lacks the dorsolateral trochanter of dinosauriforms on the anterolateral surface of the proximal portion of the femur, but has a scar that has been interpreted to be associated with this feature on the posterolateral side of the femur (= posterior portion of the dorsolateral trochanter: Griffin and Nesbitt, 2016). Given the lack of a dorsolateral trochanter, however, the morphology present in *T. rhadinus* *Teleocrater* suggests that this scar on the posterior surface may not be associated with the dorsolateral trochanter. Distal to the scar and posterior to the attachment of the caudofemoralis musculature, a clear scar is present and we suggest that this scar is homologous to the attachment location of the M. caudofemoralis brevis in crocodylians (see Hutchinson, 2001). A similar scar is present in *Asilisaurus A. kongwe* (Griffin and Nesbitt, 2016).
The posterolateral edge of the femur is well rounded proximally, then forms a sharp ridge that starts at the midshaft and extends distally, but becomes rounded again 40 mm (~76% the length of the element) from the distal surface. From the midshaft, the femur gradually expands, with the expansion of the distal end being similar in magnitude to that of the proximal end, resembling the condition in several eucrocopods (e.g., *Euparkeria-Eu* capensis, Ewer, 1965; *Chanaresuchus-C. bonapartei*, MCZ 4035; *Yarasuchus-Y. deccanensis*, ISI R334; *Dongusuchus-Do. efremovi*, PIN 952/15-1; *Marasuchus-M. lilloensis*, PVL 3871; *Turfanosuchus-T. dabanensis*, IVPP V3237). The distal condyles are poorly differentiated from the shaft and are separated on the posterior surface by a shallow depression. This depression separates the condyles for at least 35 mm proximally from the distal surface (~280% the length of the element). About 15 mm from the distal surface (~94% the length of the element), a bone scar is present in the intercondylar depression in posterior view. This bone scar is also present in *Asilisaurus A. kongwe* (NMT RB159), but absent in *Mandasuchus M. tanyauchen* (Butler et al., 2017) and *Erythrosuchus E r. africanus* (NHMUK PV R3592). The posterior edges of the distal condyles are gently rounded and the crista tibiofibularis is poorly differentiated from the lateral condyle. A well-developed bone scar is present on the posterior surface of the medial condyle. The scar is 30 mm long, 7 mm at its widest, and terminates 5 mm from the distal surface. This scar is present in *Asilisaurus kongwe* (NMT RB159), *Dongusuchus-Do. efremovi* (PIN 952/15-1), *Dromomeron Dr. gregorii* (TMM 31100-1306), *Dromomeron Dr. romeri* (GR 216), and dinosaurs (*Tawa hallae*, GR 244; *Saturnalia tupiniquim*, MCP 3944-PV) in a similar form, but is absent in *Mandasuchus M. tanyauchen* (Butler et al., 2017). A similar scar is present in *Erythrosuchus-Er*.
africanus (NHMUK PV R3592), but is far deeper and proportionally much smaller/shorter. Anteriorly, a shallow fossa oriented proximodistally separates the medial and lateral condyles. The distal surface is rounded with a central depression oriented parallel to the long axis of the surface.

Tibiae (Holotype and Referred)—Both tibiae are present in the holotype (Fig. 24) and a left tibia (NMT RB481) is referred to *Teleocrater rhadinus*. The right side is much better preserved than the left in the holotype. The tibiae are shorter than the femora (~85% of their length). In the proximal view, the proximal surface of the tibia is triangular with rounded edges, because the tibial condyles are well separated and the cnemial crest is basically absent, resembling the condition in *Dorosuchus neoetus* (PIN 1579/61), *Euparkeria capensis* (SAM-PK-K6047B), *Dongusuchus efremon* (PIN 952/84-5), *Yarasuchus deccanensis* (ISI R334), and pseudosuchians (e.g., Nesbitt, 2011; Ezcurra, 2016). By contrast, the tibia of proterochampsids (e.g., *Tropidosuchus romeri*, PVL 4601; *Chanaresuchus bonapartei*, MCZ 4035) and dinosauromorphs (Novas, 1996) possesses a well developed, anteriorly projecting cnemial crest. The tibial condyles are separated by a slight gap, and are poorly offset from rest of the proximal end, as also occurs in *Dongusuchus D. efremon* (PIN 952/84-4, 5), but the gap between the condyles is deeper in *Yarasuchus Y. deccanensis* (ISI R334). The proximal surface is largely convex with a few grooves ornamenting the surface. The proximal end bears several well defined muscle scars, one located near the posteromedial edge as a deep depression located on the medial surface bounded anteriorly by a distinct ridge, which is interpreted as the attachment of the M. puboischiadictibialis (=M. flexor tibialis interior of Brochu, 1992); a scar proximoposteriorly to the aforementioned scar on the medial surface and in
the form of a slightly raised surface interpreted as the attachment of the internal lateral ligament (Brochu, 1992); a scar located on the medial crest that extends onto the anterior surface in the form of a striated surface, which is interpreted as the attachment of the M. tibialis anterior (Brochu, 1992); and a scar distal to the more lateral tibial condyle in the form of a slightly raised and striated surface. A small proximally opening foramen is present on the lateral surface, 40 mm distal to the proximal surface (~30% the length of the element).

At midshaft, the tibia is elliptical with an anteroposteriorly oriented long axis. On the distal one-third of the bone, a proximodistally-oriented ridge is present on the anteromedial edge but fails to reach the distal end. In distal view, the tibia is sub-oval in outline and tapers slightly to its anterolateral edge, resembling the condition in *Euparkeria E. capensis* (SAM-PK-K6047B) and *Yarasuchus Y. deccanensis* (ISI R334).

The lateral surface of the distal end of the tibia of *Teleocrater T. rhadinus*, *Yarasuchus Y. deccanensis* (ISI R334), and *Dongusuchus D. efremovi* (PIN 952/84-4, 5) is homogenously convex and lacks the lateral longitudinal groove present in proterochampsids and dinosauriforms (Nesbitt, 2011; Ezcurra, 2016). The distal surface is nearly flat without any indication of any divisions of the surface for articulation with the astragalus. The distal surface of the bone is concave in *Yarasuchus deccanensis* (ISI R334) and *Dongusuchus D. efremovi* (PIN 952/84-4, 5). There is no facet for the reception of the ascending process of the astragalus and there is no posterolateral process on the distal end of the tibia of *Teleocrater T. rhadinus*, *Yarasuchus Y. deccanensis* (ISI R334), and *Dongusuchus D. efremovi* (PIN 952/84-4, 5; contra Niedźwiedzki et al., 2016), contrasting with dinosauriforms (Novas, 1996).
Fibula (Holotype and Referred)—The left fibula of the holotype (Fig. 25; Table 2) is complete and very well preserved and two additional right fibulae are referred to *Teleocrater rhadinus* (NMT RB482; NMT RB488; Table 4). Overall, the shaft of the fibula is weakly sigmoidal in lateral view. The long axis of the proximal surface is anteroposteriorly oriented, and is set at approximately 30 degrees to the anteromedially to posterolaterally anteromedially-oriented long axis of the distal surface. The proximal surface is anteroposteriorly elongated with a broader posterior edge compared to the tapered anterior end. The anterior-most corner of the proximal end slightly curls anteromedially, as in dinosauriforms (e.g., *Asilisaurus kongwe*, NMT RB159). In lateral view the anterior margin of the proximal end is straight and vertical, whereas the posterior edge is straight but slanted posterodorsally proximally. A distinct muscle scar is present on the anterior edge of the lateral surface around 10 mm from the proximal surface (~7% the length of the element). Another muscle scar, represented by proximodistally-oriented striations, is present on the posterior edge of the lateral surface immediately distal to the proximal surface. Medially, the proximal end of the fibula bears a small scar on its posterior surface immediately distal to the proximal surface. More anteriorly a proximodistally oriented and well-defined ridge forms the anterior margin of the fibula. Proximally, this ridge arcs posteriorly and frames a slight depression located in the middle of the medial surface of the proximal surface of the fibula.

A well-developed iliofibularis crest originates on the anterior edge of the fibula ~30 mm from the proximal surface (~21% the length of the element), crosses the lateral surface of the fibula, and reaches the posterior edge of the element ~55
mm from the proximal surface (~38% the length of the element). The crest has a nearly equal lateral expansion for its entire length. This is in contrast to the more proximally restricted scar in *Mandasuchus tanyauchen* (Butler et al., 2017), aetosaurs, and phytosaurs (Nesbitt, 2011). The iliofibularis crest is restricted to the anterolateral edge of the bone in dinosauriforms (e.g., *Lewisuchus admixtus*, CRILAR-Pv 552; *Silesaurus opolensis*, ZPAL Ab III/3284). The posterior edge of the fibula has a poorly defined ridge that extends for the entire length of the element, whereas the anterior edge of the fibula bears a sharp ridge that originates at the iliofibularis crest and terminates at the distal end.

The distal end of the fibula extends further distally at its posterior margin than it does anteriorly, resulting in an asymmetrical distal end resembling the condition in *Marasuchus lilloensis* and several pseudosuchians (Nesbitt, 2011). A shallow depression representing a muscle scar is present on the posterior side of the distal end. Another scar is present in the middle of the lateral surface immediately proximal to the distal surface. The distal surface is ellipsoidal with its long axis trending slightly medially with respect to the anteroposterior plane. A shallow depression is present on the distal surface.

Calcaneum (Referred)—The only ankle element recovered from *Teleocrater rhadinus* is a referred, well-preserved right calcaneum (NMT RB490; Fig. 26) that was found among the scattered remains of the taxon (Nesbitt et al., 2017b). This nearly complete calcaneum is missing only a small chip from the posteromedial side of the calcaneum tuber. Several calcanea were collected with the holotype of *Yarasuchus deccanensis*, but were never described (see Sen, 2005). These calcanea appear to be identical to that of *T. rhadinus* *Teleocrater.*
Proximally, the calcaneum of *T. rhadinus Teleocrater* has a convex, triangular surface that articulated with the fibula. This articular surface has the same shape as that of the dinosauriform *Asilisaurus kongwe* (NMT RB159) and the non-archosaur archosauriform *Euparkeria capensis* (UMCZ T692). A groove lies on the posteromedial surface of the proximal portion separating the fibular facet from the rest of the calcaneum, resembling the condition in *Euparkeria E. capensis* (UMCZ T692).

Anteriorly, the calcaneum of *T. rhadinus Teleocrater* possesses a concave facet for articulation with, presumably, the convex surface of the astragalus. This configuration is present in all pseudosuchians and has been termed ‘crocodile normal’ (Chatterjee, 1978; Cruickshank, 1979; Gauthier, 1986; Benton and Clark, 1988; Sereno, 1991; Parrish, 1993; Juul, 1994; Dyke, 1998; Benton, 2004; Brusatte et al., 2010; Nesbitt, 2011), but is now clearly present in at least some dinosauriforms such as *Asilisaurus A. kongwe* (NMT RB159) and *Lewisuchus admixtus* (PVL 4629, holotype of *Pseudolagosuchus major*) (Nesbitt et al., 2010). In contrast, the homologous region in *Euparkeria E. capensis* (UMCZ T692) is distinctly convex. Like *Asilisaurus A. kongwe* (NMT RB159) and some other archosauriforms (*Nandasuchus songaensis*, Nesbitt et al., 2014; Nesbitt et al., 2017b), the concave surface for articulation with the astragalus stretches from near the lateral extent to the medial termination. A rim surrounds the proximal and medial portions of the concave surface in *T. rhadinus Teleocrater*.

The fibular facet and the facet for articulation with distal tarsal four nearly contact each other, but are separated by a short non-articular surface, and this condition is also present in an exceptionally well preserved example of *Asilisaurus A. kongwe* (NMT RB159). In pseudosuchians (e.g., *Mandasuchus tanyauchen*, Butler et al., 2017;
Revuetosaurus callenderi, PEFO 34561) and Euparkeria E. capensis (UMCZ T692) these two facets are continuous, whereas in most non-archosaurian archosauriforms (e.g., Erythrosuchus africanus, Gower, 1996), these facets are well separated. Distally, the triangular and mildly convex facet for articulation with distal tarsal four occupies much of the distal surface. The lateral surface of the calcaneum of *T. rhadinus Teleocrater* is concave, with a slight rim formed from the fibular facet, the calcaneum tuber, and the articulation surface for distal tarsal four. The homologous surface in *Asilisaurus A. kongwe* (NMT RB159) is much smaller, not as posteriorly extensive, and bears a cluster of small foramina in its center.

The calcaneum tuber is well developed in *T. rhadinus Teleocrater* (Fig. 26). It extends posteriorly and proximally at its posterior extension with no ventral expansion. In cross-section, the shaft of the tuber is ovoid with a longer proximodistal component than mediolateral component. These proportions are similar to those of *Euparkeria E. capensis* (UMCZ T692) and *Nundasuchus N. songaeensis* (Nesbitt et al., 2014), but contrast with the much taller than wide tubera present in the following non-archosaur archosauriforms: the proterochampsids *Tropidosuchus romeri* (PVL 4601) and *Chanaresuchus bonapartei* (Cruickshank, 1979), *Vancleavea campi* (Nesbitt et al., 2009c), and *Erythrosuchus africanus* (Gower, 1997). The posterior portion of the tuber of *T. rhadinus Teleocrater* is gently rounded, as in *Euparkeria E. capensis* (UMCZ T692) and *Chanaresuchus C. bonapartei* (Cruickshank, 1979), and this morphology is in contrast to the more tapered tuber of *Asilisaurus A. kongwe* (NMT RB159), *Lewisiuchus L. admixtus* (PVL 4629), and *Marasuchus lilloensis* (Sereno and Arcucci, 1994a). The posterior surface of the tuber of *T. rhadinus Teleocrater* is rugose and lacks any
dorsoventrally oriented groove.

Metatarsals—Two proximal metatarsals (Fig. 27) were recovered with the holotype, but were not originally thought to pertain to it (Charig, 1956). The metatarsals are consistent in size and preservation with the rest of the hind limb material and we regard them as part of the holotype individual. We assign these one fragment fragments to the third metatarsal (Fig. 27E) and the other to the and fourth metatarsals (Fig. 27D), respectively, based on comparisons with the feet of *Asilisaurus kongwe* (NMT RB159).

Specifically, the similar proximal expansion of the third and fourth metatarsals and the rectangular proximal shape of those elements in *A. kongwe* (NMT RB159) matches well with those of *T. rhadinus*. Both metatarsals expand proximally in lateral view and are highly compressed mediolaterally. The broken shafts are circular and suggest that the metatarsals were likely proportionately elongate (~one-third to half of the length of the fibula). The shorter preserved metatarsal (Fig. 27E) was sectioned and described by de Ricqlès et al. (2008), but cannot be located currently (V. de Buffrénil, pers. comm.).

Phalanges (Holotype)—Three complete phalanges are present (Fig. 27), but were excluded from the holotype by Charig (1956). However, the phalanges are consistent in size and preservation with the rest of the hind limb material and we regard them as pertaining to the holotype. An assignment to individual digits is currently impossible. All of the phalanges are elongated relative to their widths (e.g., length = 22 mm, midshaft width = 6 mm), have proximally and distally expanded ends, a concave articular facet on the proximal end, a convex addle-shaped distal articular surface, and medial and lateral ligament pits. The smallest phalanx has a deep retractor pit on the dorsal surface of the
distal end and the distal condyles are asymmetrically developed, where either the lateral or medial distal condyle is extended further distally than the other condyle.

PHYLOGENETIC RELATIONSHIPS

We previously included *Teleocrater rhadinus* in the two most comprehensive phylogenetic datasets of Triassic archosauromorphs compiled to date (Nesbitt, 2011; Ezcurra, 2016) in order to test the relationships of the taxon and to determine its effect on character optimizations and the evolutionary history of the clade (Nesbitt et al., 2017b). We repeat the methods and results here, as this information underpins the subsequent discussion of character evolution (below). Although some of the characters overlap between Nesbitt (2011) and Ezcurra (2016), these datasets are mostly independent. We used the taxon sampling and strategy outlined in Nesbitt et al. (2017b) for both the Nesbitt (2011) and Ezcurra (2016) datasets. Our iteration of the Nesbitt (2011) dataset with modifications by Butler et al. (2014) includes 82 taxa (excluding *Archosaurus rossicus*, *Prestosuchus chiniquensis*, UFRGS 0156 T, UFRGS 152 T, *Lewisuchus admixtus*, *Pseudolagosuchus majori*, *Parringtonia gracilis*, *Erpetosuchus granti*, *Asilisaurus kongwe* skeleton, *Teleocrater holotype, Teleocrater 2015 quarry*) and 419 characters. Our iteration of the Ezcurra (2016) dataset includes 84 taxa and 605 characters (following Nesbitt et al., 2017b). The following characters were ordered in the Nesbitt (2011) dataset: 32, 52, 121, 137, 139, 156, 168, 188, 223, 247, 258, 269, 271, 291, 297, 328, 356, 399, and 413. The following characters were ordered in the Ezcurra (2016) dataset: 1, 2, 7, 10, 17, 19, 20, 21, 28, 29,
36, 40, 42, 50, 54, 66, 71, 75, 76, 122, 127, 146, 153, 156, 157, 171, 176, 177, 187, 202,
221, 227, 263, 266, 279, 283, 324, 327, 331, 337, 345, 351, 352, 354, 361, 365, 370, 377,
379, 398, 410, 424, 430, 435, 446, 448, 454, 458, 460, 463, 472, 478, 482, 483, 489, 490,
504, 510, 516, 529, 537, 546, 552, 556, 557, 567, 569, 571, 574, 581, 582, and 588.

Both matrices were analyzed under equally weighted parsimony using TNT 1.5
(Goloboff et al., 2008; Goloboff and Catalano, 2016). A heuristic search with 100
replicates of Wagner trees (with a random addition sequence) followed by TBR branch-
swapping (holding 10 trees per replicate) was performed. The best trees obtained from
the replicates were subjected to a final round of TBR branch swapping. Zero length
branches in any of the recovered MPTs were collapsed. Decay indices (=Bremer support
values) were calculated and a bootstrap resampling analysis, using 10,000
pseudoreplicates, was performed reporting both absolute and GC (i.e., difference between
the frequencies of recovery in pseudoreplicates of the original group and the most
frequently recovered contradictory group) frequencies.

Analysis of the Nesbitt (2011) dataset with modifications of Butler et al. (2014)
resulted in 36 most parsimonious trees (MPTs) with lengths of 1374 steps (Consistency
Index [CI] = 0.356; Retention Index [RI] = 0.764) (Fig. 28). Analysis of the Ezcurra
(2016) dataset resulted in two most parsimonious trees (MPTs) with lengths of 2671 steps
(CI = 0.297; RI = 0.616) (Fig. 28). In both cases we recover Teleocrater rhadinus in a
clade with Spondylosoma absconditum, Dongusuchus efremovi, and Yarasuchus
deccanensis. This clade, SilendasauriaAphanosauria, is the sister taxon of Ornithodira
(Nesbitt et al. 2017b).
DISCUSSION

Relationships of *Teleocrater rhadinus* Within Archosauria

The description of well-preserved, three-dimensional remains of *Teleocrater rhadinus* revolutionizes our ability to assess homologies and evaluate character support at the base of Archosauria, Avemetatarsalia, and Ornithodira. Prior to the discovery of the silesaurid clade just outside Dinosauria (Ezcurra, 2006; Irmis et al., 2007; Nesbitt et al., 2010; Baron et al., 2017; but see Langer and Ferigolo, 2013), the majority of non-dinosaurian avemetatarsalians were represented by either partial skeletons missing key parts of the skeleton (e.g., lagerpetids), specimens embedded in slabs (e.g., most pterosaurs), or poorly-preserved natural molds (e.g., *Scleromochlus taylori*). Moreover, the small size and fragile nature-condition of many non-dinosaurian avemetatarsalians also precluded additional preparation in many cases. These factors prevented full sampling of the anatomical variation present among basal members of Avemetatarsalia.

However, the new data available from *Teleocrater T. rhadinus* and other members of the newly recognized clade *Silendasauria* *Aphanosauria* now mitigate some of these issues, enabling us to examine character state optimizations and the evolution of avemetatarsalian anatomy in greater detail than before. Nevertheless, although we present the following character state support for these basal clades, the study of this part of the archosaur tree is still in its infancy and additional specimens and characters are needed to tease apart the events occurring during basal divergences within the clade. Here, we also identify and discuss several other character states that are not present in either dataset or optimized unambiguously at a particular node in order to broaden this discussion.
We utilize optimizations from both the Nesbitt (2011: designated as ‘N, character number-state’) and Ezcurra (2016: designated as ‘E, character number-state’) datasets. Some of the character state optimizations in the two analyses agree and in these cases both character states are listed. In many cases, the optimizations are not perfectly consistent because of: 1) differences in taxon sampling; 2) differences in included characters; and 3) disagreement over the closest relatives of Archosauria (e.g., the position of *Euparkeria capensis* versus proterochampsids, the position of Phytosauria within Pseudosuchia or outside Archosauria). Nevertheless, both datasets obtain the same relative phylogenetic positions for all of the taxa that they share within Avemetatarsalia.

Teleocrater rhadinus is critical to the position of *Silendasauria-Aphanosauria* within Archosauria. For example, without the inclusion of *T. rhadinus*, the phylogenetic positions of *Yarasuchus deccanensis* and *Dongusuchus efremovi* were most recently found to lie outside Archosauria (Ezcurra, 2016). Character support at the base of Archosauria, however, has always been weak, with variable topologies occurring due to differences in taxon inclusion (Nesbitt et al., 2014). This is the also case in the two datasets used here, given that the closest relatives of Archosauria in each case are found to differ, with Phytosauria recovered as the sister taxon to Archosauria using the Nesbitt (2011) dataset, whereas phytosaurs are recovered within Pseudosuchia with Proterochampsia as the sister taxon of Archosauria using the Ezcurra (2016) dataset. *Teleocrater rhadinus* is recovered as an archosaur based on the presence of the following unambiguous character states: palatal processes that meet on the midline (N32-2); an antorbital fossa on the dorsal process and dorsal portion of the posterior process of the maxilla (N137-2; E54-2); acromion of the scapula distinct (N220-1); lateral tuber of the
ulna present (N237-1); articulation between astragalus and calcaneum concavoconvex
with concavity on the calcaneum (E532-1); and articular surfaces for fibula and distal
tarsal 4 continuous (E555-1).

Teleocrater rhadinus is also important for establishing the silendasaur aphanosaur
clad at the base of Avemetatarsalia, as character states that previously supported
Ornithodira, Dinosauriformes, and even Dinosauria in previous phylogenetic analyses
(Gauthier, 1986; Benton and Clark, 1988; Juul, 1994; Benton, 1999, 2004; Brusatte et al.,
2010a; Nesbitt, 2011) are now found to support more basal divergences within
Avemetatarsalia. *Teleocrater rhadinus* is supported as an avemetatarsalian on the basis of
both cranial and postcranial characters, including: a supratemporal fossa on the posterior
portion of the frontal (N144-1); greatly elongated cervical vertebrae (N181-1); anterior
cervical vertebrae longer than the axis (N183-1); crest dorsal to the supraacetabular
crest/rim confluent with anterior extent of the anterior (= preacetabular) process of the
ilium (N265-2; E462-2); and proximal end of the fibula mediolaterally compressed
(N341-1). **By themselves, none of these character states are unique to avemetatarsalians
within Archosauria, but their**. However, the combination of these states is unique to
avemetatarsalians.

Newly added characters in the Nesbitt (2011; characters 414–418) and Ezcura
(2016; characters 601–605) datasets also support the recovery of *T. rhadinus Teleocrater
rhadinus* and other silendasaur aphanosaurs as avemetatarsalians. All five of these
characters have states that optimize ambiguously or unambiguously at the node including
T. rhadinus Teleocrater + bird-line archosaurs in both datasets. The presence of a
posterolateral projection of the second sacral vertebra (N416-1; E601-1) and the presence
of a well defined proximodistally oriented scar extending proximally from the posterior portion of the medial condyle of the distal end of the femur (N417-1; E604-1) both unambiguously support silendasaurs aphanosaurs as avemetatarsalians in both datasets. In addition, the following characters also support this position: a distinct notch (= dorsal concavity) between the posterior and anterior ends of the ischial peduncle of the ilium (N414-1 ambiguous; E603-1 ambiguous); sharp ridge on the posterior edge of the fibula (N415-1; E605-1 ambiguous); and a distinct, longitudinal sharp ridge on the posterior edge of the scapular blade, immediately dorsal to the glenoid region (N418-1 ambiguous; E602-1 ambiguous).

Silendasaurs Aphanosaurs lack a number of synapomorphies present in Ornithodira in both analyses. Aphanosaurs Silendasaurs lack an elongated tibia relative to the length of the femur, which is present in early pterosaurs, Scleromochlus taylori, and in the dinosauriform Marasuchus lilloensis (N299-1). The proximal portion of the aphanosaurs silendasaur femur lacks the distinct posteromedial condyle (or medial head) that is present in all ornithodirans (N301-1). Moreover, the bone wall thickness of aphanosaurs silendasaurs is much thicker than that of the thin-walled femora of pterosaurs, lagerpetids, and silesaurids (E508-1; N323-1 ambiguous). The ilium of aphanosaurs silendasaurs lacks a clear antitrochanter as in ornithodirans (E457-1) and the calcaneum tuber of all ornithodirans is either lost (e.g., pterosaurs, lagerpetids) or highly reduced (e.g., Marasuchus M. lilloensis, Asilisaurus kongwe). We do note that the branch support for Ornithodira is weak (i.e., Bremer support and resampling frequencies) largely because of the same problems that previous authors have experienced, namely 1) the earliest dinoauromorphs (e.g., Dromomeron, Lagerpeton chanarensis) are only known
from parts of the postcranial skeleton and 2) pterosaurs are difficult to score because their morphology is highly derived-modified and many of the characters cannot be scored because they are not visible or preserved.

Character Support for Aphanosauria Silendasauria

Character states that unite Aphanosauria Silendasauria occur in several distinct parts of the postcranial skeleton. Unsurprisingly, the clade lacks diagnostic cranial character states because *Teleocrater rhadinus* is the only taxon with cranial remains, and this is further complicated by the crushed skull material available for early diverging pterosaurs, the poorly known absence of cranial material-morphology in lagerpetids (but see the newly described *Ixalerpeton polesinensis*; Cabreira et al., 2016), and the limited cranial material preserved in non-dinosaurian dinosauriforms (e.g., *Marasuchus lilloensis*). The cervical vertebrae of aphanosaurs silendasaur are greatly elongated, more so than in any other non-dinosaurian avemetatarsalian from the Triassic Period, with the possible exception of *Nyasasaurus parringtoni* (Nesbitt et al., 2013a, 2017b; in review). Ventrally, the centrum of the anterior cervical vertebrae of *Teleocrater rhadinus* and *Yarasuchus deccanensis* have paramedian ridges and lack a midline ridge, which results in a sub-rectangular cross-section. The cervical vertebrae bear posteriorly directed epipophyses on at least the anterior and middle cervical vertebrae (N186-1; E336-1). The neural spines of aphanosaurs silendasaur appear to be unique within Archosauria in bearing steeply inclined anterior neural spine margins (N419-1; E343-1) with rugose bony expansions at the distal end of the neural spines adjacent to a blade-like distal margin (N191-3). The posterior cervical vertebrae of *T. rhadinus* *Teleocrater rhadinus*
and Yarasuchus deccanensis bear accessory articular facets just dorsal to the paraphysis and this additional facet articulates with a distinct third articular facet on the respective rib (N193-1; E314-1). Yarasuchus deccanensis is currently the only aphanosaur silendasaur that preserves a three-headed rib, whereas T. rhadinus Teleocrater rhadinus possesses the three articular facets on a posterior cervical vertebra that should have received a three-headed rib. This accessory articulation on the posterior cervical vertebrae also occurs in poposauroids among archosaurs (see above), so this character cannot be used to diagnose aphanosaurs silendasaur in isolation. The aphanosaur silendasaur trunk centra are elongate and much longer proportionally than those of other non-dinosaurian avemetatarsalians. The proportions of the trunk vertebrae are similar to those of neotheropods and Eodromaeus murphi (Martinez et al., 2011).

The humeri of Yarasuchus Y. deccanensis and T. rhadinus Teleocrater rhadinus are robust and more like those of sauropodomorph dinosaurs and Nyasasaurus parringtoni (see Nesbitt et al., 2017b in review) than any other archosauriform. Aphanosauria Silendasaur share an elongated deltopectoral crest (N230-1) with dinosaurs and Nyasasaurus N. parringtoni and this is significant because an elongated deltopectoral crest has been an important character for diagnosing Dinosauria (Bakker and Galton, 1974; Brusatte et al., 2010b; Langer et al., 2010; Nesbitt et al., 2013a; Baron et al., 2017). Currently, the presence of an elongated deltopectoral crest in aphanosaurs silendasaur and dinosaurs optimizes as convergent. The distal end of the humerus of Yarasuchus Y. deccanensis and T. rhadinus Teleocrater rhadinus is wide relative to its length (N235-1), as in sauropodomorph dinosaurs (Langer and Benton, 2006).

Several ischial character states of aphanosaurs silendasaur support their
monophyly (Nesbitt et al., 2017 in review). However, the ischial morphology of

Yarasuchus Y. deccanensis and *Teleocrater rhadinus* is much more similar
to that of poposauroids and silesaurids + early dinosaurs than to that of other
avemetatarsalians. For example, the ischia of *Yarasuchus Y. deccanensis* and *Teleocrater*
T. rhadinus have extensive contact along the midline for much of their length (E485-1;
N191-1, but ambiguous), a character state that is present in silesaurids, dinosaurs, and
poposauroids. By contrast, the ischia of pterosaurs (e.g., *Dorygnathus banthensis*; Padian,
2008), *Lagerpeton chanarensis*, and *Marasuchus M. lilloensis* have much more plate-like
ischia and these elements meet at a short contact at the midline (Sereno and Arcucci,
1994a, b). Furthermore, the ischia of *aphanosaur silesauridae* terminate in rounded,

As with most archosauriform clades, the femur helps diagnose

Aphanosauria Silesauria. The femora of *Yarasuchus Y. deccanensis, Dongusuchus
efremovi*, and *Teleocrater rhadinus* share many features including a straight
transverse groove on their proximal surface of the femur bone (N314-1; E495-1), a
concave articular surface on its distal end of the femur (E512-2), the absence of an
anteromedial tuber of the femur, and the presence of a weakly developed ridge (= fourth
trochanter) for attachment of the M. caudofemoralis musculature. The femur attributed to
Spondylosoma absconditum lacks the ventral surface depression and the absence of this
character state suggests that the taxon may lie within *Aphanosauria Silesauria* but
outside of a clade including *Yarasuchus Y. deccanensis, Dongusuchus Do. efremovi*, and
Teleocrater T. rhadinus, as found in our analyses. One of the most intriguing features of the aphanosaur femora of aphanosaurs silendasaurs is the presence of a structure on the anterolateral side of the proximal portion of the femur in a homologous position to the anterior trochanter of dinosauriforms (Novas, 1994, 1996) and likely all dinosauromorphs (see Nesbitt et al., 2009b). As discussed by Niedźwiedzki et al. (2016), this structure is particularly similar in shape and location to the anterior trochanter of dinosauromorphs. Here, we agree with their homology assessment, but find in both of our phylogenetic analyses that the ‘anterior trochanter’ of aphanosaurs silendasaurs is a character state that diagnoses this clade but not a more inclusive clade including all avemetatarsalians; this is because of the absence of an anterior trochanter in Lagerpeton chanarensis and pterosaurs. However, it is possible that either early pterosaurs had the structure, but that it is hard to recognize given the difficulty of assessing muscle scars in the small and crushed pterosaur specimens from the early Mesozoic, and/or that there is a strong ontogenetic component to the early appearance of the anterior trochanter. In support of the latter hypothesis, the anterior trochanter is present only in the largest specimens of Dromomeron gregorii (Nesbitt et al., 2009b) and absent in the smallest specimens of the silesaurid Asilisaurus kongwe (Griffin and Nesbitt, 2016). This may explain why some small avemetatarsalians appear to lack the feature.

Aphanosaurs Silendasaurs appear to be the only group of avemetatarsalians that have an anterior trochanter but lack a trochanteric shelf that are not in an adjoining positions and that are separated from one another by a smooth area of bone surface. In Dromomeron Dr. gregorii (Nesbitt et al., 2009b), the silesaurid Asilisaurus kongwe, and many early dinosaurs (e.g., coelophysids), the anterior trochanter and the
trochanteric shelf are always connected when both structures are present. In
aphanosaurus silendaeurs, the structure homologous with the trochanteric shelf is located
well ventral to the anterior trochanteric structure and is situated in the plesiomorphic
position found in other early archosaurs (see Nesbitt, 2011).

Aphanosaurs Silendasauria have a crocodile-normal ankle in that it has a concave
articular socket on the calcaneum that receives a convex articular surface from the
astragalus; a convex articular surface on the calcaneum for the reception of the fibula;
and a distinct, posteriorly directed calcaneal tuber. The calcaneal tuber of *T. rhadinus*
Teleocrater rhadinus and *Yarasuchus Y. deccanensis* is reduced in size relative to those
of pseudosuchians, but remains better developed than that of the dinosauriforms
Murasuchus M. lilloensis, *Lewisuchus admixtus* (probable senior synonym of
Pseudolagosuchus major, Arcucci, 1998; Nesbitt et al., 2010), and *Asilisaurus A.
kongwe*. The shaft of the tuber in *aphanosaurus silendaeurs* is slightly taller than wide
(N376-0) and this is plesiomorphic for Archosauria.

AphanosauriaSilendasauria - Poposauroidea Convergence?

Surprisingly, the basal-most diverging and stratigraphically earliest bird-line
archosaurs, the *aphanosaurus silendaeurs*, seem to be partially convergent with the earliest
appearing, but not the basal-most, pseudosuchians – the poposauroids. Indeed,
Yarasuchus deccanensis was recovered as a basally diverging poposauroid when it was
first included in a numerical cladistic analysis (Brusatte et al., 2010a). Other than one
clear character state that is present in some poposauroïds and *AphanosauriaSilendasauria*,
the presence of an accessory articulation facet just dorsal to the parapophysis in the
posterior cervical vertebrae (N193-1; E314-1), these two clades do not appear to share any synapomorphies that are not present in more inclusive clades. For example, both poposauroids and _aphansaurus silendasaurs_ share the presence of a concave ventral surface of the ischial peduncle of the ilium (N414-1; E603-1). However, this character state is not exclusive to these two clades but occurs in many avemetatarsalians.

Additionally, other similarities between some poposauroids and _aphansaurus silendasaurs_, such as the lack of osteoderms, are highly homoplastic within Archosauria. In the Nesbitt (2011) phylogenetic dataset, poposauroids are firmly established as suchians and possess the synapomorphies of that clade (e.g., a calcaneum with a well-developed tuber; hemicylindrical articulation with the fibula; medially opening fossa for articulation with the ‘peg’ of the astragalus: Nesbitt, 2007, 2011). The apparent convergence between poposauroids and _aphansaurus silendasaurs_ is part of a larger trend of evolutionary convergences between the early poposauroid to shuvosaurid lineage and the early avemetatarsalian to coelurosaurian theropod lineage (Nesbitt, 2007). This further illustrates the common convergence present in body plans in early Archosauromorpha (Stocker et al., 2016).

The convergence between some of the character states present in poposauroids (including those taxa once referred to as ‘rauisuchians’ or ‘rauisuchids’) and _aphansaurus silendasaurs_ does, however, make it remarkably difficult to assign isolated skeletal elements from the Early–Middle Triassic to either of those clades. For example, isolated elongated cervical vertebrae from the Early–Middle Triassic of Russia (e.g., _Vjushkovisaurus berjanenesis_, Ochev, 1982; ‘_Tsylmosuchus donensis_’, Sennikov, 1990) may not be assignable to either poposauroids, _aphansaurus silendasaurs_, and non-
eucrocopod archosauriforms, as there is little way to distinguish them given that both taxa have elongated necks with some of the same morphology (see above). Ilias are also potentially difficult to tell apart, as both poposauroids and aphanosaurs silendasaur have a vertical crest dorsal to the supra-acetabular rim, a short anteromedially directed process, and a partially concaveischial peduncle. This set of character states call into question the taxonomic assignment of an ilium referred to *Bystrowisuchus flerovi* (PIN 1043/831; Sennikov, 2012) to a ctenosauriscid; alternatively, this specimen could also be interpreted as that of an *aphanosaursilendasaur*. This ilium is from the same locality as *‘Tsylmosuchus’ spp.* (Gower and Sennikov, 2000) and all of this material could pertain to a single taxon. The same comments also apply to the ilium of *Vyschegdosuchus zhehartensis* (PIN 3361/134; Sennikov, 1988). Furthermore, an ilium (UCMP 36233; Welles, 1947:fig. 28) from the Moenkopi Formation, previously assigned to an indeterminate reptile, may pertain to a third poposauroid in the Holbrook Member (see Nesbitt, 2003, 2005), or possibly a *aphanosaursilendasaur*.

In the same vein, some ‘rauisuchians’ or non-eucrocopod archosauriforms likely represent members of *AphanosauriaSilendasauria*. For example, *Jaikosuchus magnus*, from the late Olenekian Yarenskian Gorizont, is represented by a complete anterior or middle cervical vertebra (Sennikov, 1990). The holotype bears two *aphanosaur silendasaur* synapomorphies, an anteriorly overhanging neural spine and a laterally rugose distal end of the neural spine. Furthermore, the greatly elongated cervical vertebra appears to possess epipophyses, a character state present in (but not exclusive to) *aphanosaursilendasaur*. However, we also note that some early diverging archosauriforms could have some of these features (e.g., *Guchengosuchus shiguaiensis*,...
IVPP V8808-10) and that the early members of these clades do overlap with aphanosaurs, silendasaurs, and poposauroids in time and geographic range.

In summary, we urge caution when assigning isolated elements or even partial skeletons from the Early to Middle Triassic to any archosaurian clade, as elements once thought to be diagnosable to poposauroids or ‘rauisuchians’ may be indistinguishable from those of aphanosaurs, silendasaurs.

Biogeography

Teleocrater rhadinus comes from the lower part of the Lifua Member of the Manda Beds (Fig. 29; Nesbitt et al., 2017b). This area was in the mid southern hemisphere during the Middle Triassic, at a paleolatitude of c. 50–55 degrees south. *Teleocrater rhadinus* is associated with a tetrapod assemblage that includes the stereospondyl *Stanocephalosaurus pronus* (Howie, 1970), at least one dicynodont (*Dolichuranus*; Smith et al., 2017; Fig. 29), archosauromorphs (an undescribed azendohsaurid allokotosaurian), and the cynodont *Cynognathus crateronotus* (Wynd et al., 2017; Nesbitt et al., 2017b). Based on comparisons with the tetrapod fauna of the *Cynognathus* Subzone B Assemblage Zone of South Africa (Rubidge, 2005), this portion of the Lifua Member is considered to be Middle Triassic in age (Wynd et al., 2017).

Yarasuchus deccanensis comes from the Yerrapalli Formation of Andhra Pradesh, India (Sen, 2005), which was located geographically close to Tanzania in the Middle Triassic, and at a similar paleolatitude in southern Pangea. The associated faunal assemblage includes a capitosauroid temnospondyl (Sengupta, 2003), kannemeyeriform dicynodonts (Bandyopadhyay, 1988, 1989), the allokotosaurian archosauromorph
Pamelaria dolichotrachela (Sen, 2003; Ezcurra, 2016), the stenaulorhynchine rhynchosaur Mesodapedon kuttyi (Chatterjee, 1980; Schultz et al., 2016), and an undescribed erythrosuchid (MDE, pers. obs., 2015). An Anisian age has been assigned to this assemblage on the basis of vertebrate biostratigraphy (e.g., Sen, 2005).

Dongusuchus efremovi comes from the Donguz I site within the Donguz Svita of Orenburg Province, European Russia (Sennikov, 1988; Niedźwiedzki et al., 2016). This region was situated in the mid northern hemisphere in the Middle Triassic, in the northern part of Pangea, at a paleolatitude of c. 30–35 degrees North. The Donguz Svita is considered to contain the *Eryosuchus* faunal assemblage, one of the four local faunal assemblages (all named after common temnospondyl genera) that have been recognized by Russian workers (Shishkin et al., 2000). Other taxa recovered from the Donguz Svita include capitosauroid and plagiosaurid temnospondyls (Schoch and Milner, 2000, 2014), a procolophonid (Spencer and Benton, 2000), kannemeyeriiform dicynodonts (Fröbisch, 2009), baurioid therocephalians (Battail and Surkov, 2000; Sues and Hopson, 2010), and among archosauromorphs the non-eucrocopod archosauriform *Sarmatosuchus ostchevi* (Gower and Sennikov, 1997; Ezcurra, 2016), the erythrosuchid *Uralosaurus magnus* (Gower and Sennikov, 2000; Ezcurra, 2016), the early eucrocopod archosauriform *Dorosuchus neoetus* (Sookias et al., 2014), and fragmentary archosaur remains (*’Vjushkovisaurus berdjanensis’* and *‘Dongusia colorata’*; Gower and Sennikov, 2000).

Palynological data suggests that the Donguz Svita is of early to middle Anisian age (Niedźwiedzki et al., 2016), and this is consistent with the vertebrate fauna, with the presence of an erythrosuchid, kannemeyeriiform dicynodonts, and baurioid
therocephalians suggesting similarities to the *Cynognathus* Assemblage Zone of South Africa.

The holotype of *Spondylosoma absconditum* was collected at the Baum-Sanga locality of Rio Grande do Sul State, southern Brazil. This area was located in the mid southern hemisphere in the Middle Triassic, in the northern part of Pangea, at a paleolatitude of c. 50 degrees South. *Spondylosoma absconditum* comes from the *Dinodontosaurus* Assemblage Zone of the Pinheiros-Chiniquá Sequence (sensu Horn et al., 2014), which has been dated as Ladinian in age (Langer et al., 2007) but may be as young as Carnian (Marsicano et al., 2016). The associated faunal assemblage includes traversodontid and chiniquodontid cynodonts, kannemeyeriform dicynodonts, the doswelliid *Archeopelta arborensis*, and the loricatan archosaurs *Prestosuchus chiniquensis* and *Decuriasuchus quartacolonia* (Langer et al., 2007; Desojo et al., 2011; França et al., 2011).

Localities for *aphanosaurus silendasaurians* therefore appear to span much of the Middle and early Late Triassic, with *T. rhadinus, Teleocrater, Yarasuchu, Y. deccanensis*, and *Dongusuchus-D. efremovi* all apparently of early Middle Triassic age (Anisian), and *Spondylosoma-S. absconditum* coming from the late Middle or earliest Late Triassic, although there is considerable uncertainty in the dating of individual stratigraphic units. They have been recovered as part of faunal assemblages that are typical for the Middle Triassic, including capitosauroid temnospondyls, kannemeyeriform dicynodonts, baurioid therocephalians, allokotosaurian archosauromorphs, non-hyperodapedontine rhynchosaurs, erythrosuchids, and early eucrocodiles. As yet, evidence for *aphanosaurus silendasaurians* in Lower Early or younger-early Late Triassic strata is absent.
Teleocrater, *rhadinus*, *Y. deccanensis*, and *Yarasuchus*, and *S. absconditum* all come from a relatively paleogeographically restricted belt of localities in southern Pangea, clustering around a paleolatitude of 50° South. By contrast, *Dongusuchus D. efremovi* comes from a biogeographically distinct and distant locality in the northern hemisphere, suggesting that *aphanosaurus silendasaurians* had a broad distribution across Pangea. *Aphanosaurs Silendasaurians* are some of the first crown archosaurs to appear in the fossil record, and their broad early paleogeographic distribution matches the pattern observed for etenosauriscid poposauroids (Butler et al., 2011) and gracilisuchids (Butler et al., 2014). This provides further support for a broad distribution of archosaurs over much or all of Pangea from the end of the Early Triassic onwards, soon after the earliest evidence for the clade in the late Early Triassic (Butler et al., 2011, 2014; Nesbitt et al., 2011).

ACKNOWLEDGMENTS

Our work has been supported by a National Geographic Society grant 9606-14 (to SJN), NSF EAR-1337569 (to CAS), NSF EAR-1337291 (to KDA and SJN), a Marie Curie Career Integration Grant (PCIG14-GA-2013-630123 to RJB), a National Geographic Society Young Explorers grant 9467-14 (to MDE), and a grant from the Special Funds of the NHM (to PMB). We thank C. Saanane (University of Dar es Salaam) and A. Tibajuka and L. Nampunju (Antiquities Division, Ministry of Natural Resources and Tourism) for assistance in arranging and carrying out fieldwork. We are grateful to M. Langer and S. Brusatte for their careful reviews. We thank L. Steel and A. C. Milner.
(NHMUK) for access to the holotype and comparative specimens, and Matthew Lowe (UMCZ) for access to other material collected at the same locality and for access to F. R. Parrington’s field notes, and H. Taylor (NHMUK Image Resources) provided the photographs of the holotype specimen. Scott Hartman provided the skeletal reconstruction in Fig. 1 and Mark Witten provided the full reconstruction provided in Fig. 29.

LITERATURE CITED

Cabreira, S. F., A. W. A. Kellner, S. Dias-da-Silva, L. R. da Silva, M. Bronzati, J. C. de Almeida Marsola, R. T. Müller, J. de Souza Bittencourt, B. J. A. Batista, and T.

on Triassic archosauriforms and the problem of a "phylogenetic signal" in bone
histology. Annales de Paléontologie 94:57–76.

(Archosauria: Pseudosuchia) from the early Late Triassic of southern Brazil.
Zootaxa 3166:1–33.

from the Middle–Late Triassic of southern Brazil and the monophyly of

Dzik, J. 2003. A beaked herbivorous archosaur with dinosaur affinities from the early

Philosophical Transactions of the Royal Society of London, Series B 248:379–
435.

Ezcurra, M. D. 2006. A review of the systematic position of the dinosauriform archosaur
Eucoelophysis baldwini Sullivan and Lucas, 1999 from the Upper Triassic of New
Mexico, USA. Geodiversitas 28:649-684.

Ezcurra, M. D. 2016. The phylogenetic relationships of basal archosauromorphs, with an
emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4:e1778;
DOI 10.7717/peerj.1778.

Galton, P. M. 2000. Are Spondylosoma and Staurikosaurus (Santa Maria Formation, Middle-Upper Triassic, Brazil) the oldest saurischian dinosaurs? Paläontologische Zeitschrift 74:393–423.

Goloboff, P. A., and S. A. Catalano. 2016. TNT version 1.5, including a full
implementation of phylogenetic morphometrics. Cladistics 32:221–238.

Gower, D. J. 1996. The tarsus of erythrosuchid archosaurs (Reptilia), and implications for

Gower, D. J. 1997. The braincase of the early archosaurian reptile *Erythrosuchus

Gower, D. J. 1999. The cranial and mandibular osteology of a new rauisuchian archosaur
from the Middle Triassic of southern Germany. Stuttgarter Beiträge zur
Naturkunde, Serie B 280:1–49.

Gower, D. J. 2003. Osteology of the early archosaurian reptile *Erythrosuchus africanus

Gower, D. J., and R. Schoch. 2009. Postcranial anatomy of the rauisuchian archosaur

J. Benton, M. A. Shishkin, D. M. Unwin, and E. N. Kurochkin (eds.), The Age of

Griffin, C. T., and S. J. Nesbitt. 2016. The femoral ontogeny and long bone histology of
the Middle Triassic (?late Anisian) dinosauriform *Asilisaurus kongwe* and

Schultz, C. L., M. C. Langer, and F. C. Montefeltro. A new rhynchosaur from south Brazil (Santa Maria Formation) and rhynchosaur diversity patterns across the Middle-Late Triassic boundary. Paläontologische Zeitschrift:1-17.

DOI:10.1098/rspb.2011.2441

Walker, A. D. 1990. A revision of *Sphenosuchus acutus* Haughton, crocodylomorph reptile from the Elliot Formation (Late Triassic or Early Jurassic) of South Africa. Philosophical Transactions of the Royal Society of London, Series B 330:1–120.

Submitted October 13, 2016; accepted Month DD, YYYY

FIGURE CAPTIONS

FIGURE 1. Geographic position of the type locality of Teleocrater rhadinus (modified from Nesbitt et al., 2014). Reconstruction of skeleton completed by Scott Hartman. Scale bar equals 25 cm. [planned for column width]

FIGURE 2. Cranial elements referred to Teleocrater rhadinus. Left maxilla (NMT RB495) in A, lateral view; B, medial view; C, ventral view and close-up of the only
maxillary tooth in **D**, medial view. Right frontal (NMT RB496) in **E**, dorsal view; **F**, ventral view; **G**, lateral view. Left quadrate (NMT RB493) in **H**, medial view, **I**, lateral view; **J**, ventral view; **K**, posterior view; **L**, anterior view. Scale bar equals 1 cm **A–D, F–L** and 1 mm in **E**. **Abbreviations**: **a.**, articulates with; **anf**, antorbital fenestra; **anfo**, antorbital fossa; **cr**, crest; **d**, depression; **fm**, foramen; **fo**, fossa; **lc**, lateral condyle; **mc**, medial condyle; **ml**, midline; **na/pmx**, nasal or premaxilla; **ofo**, orbital fossa; **om**, orbital margin; **pa**, parietal; **pal**, palatine; **pf/po**, postfrontal or postorbital; **pp**, palatal process canal; **prf**, prefrontal; **ptp**, pterygoid process; **qf**, quadrate/quadratojugal foramen; **qh**, quadrate head; **qj**, quadratojugal; **stfo**, supratemporal fossa; **t**, tooth. [planned for page width]

FIGURE 3. Selected presacral vertebrae of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). Anterior cervical vertebra (‘CeA’) in **A**, left lateral view; **B**, right lateral view; **C**, ventral view; **D**, dorsal view; **E**, posterior view; **F**, anterior view. Middle cervical vertebra (‘CeB’) in **G**, left lateral view; **H**, right lateral view; **I**, ventral view; **J**, dorsal view; **K**, posterior view; **L**, anterior view. Posterior cervical vertebra (‘DB’) in **M**, left lateral view; **N**, right lateral view; **O**, ventral view; **P**, dorsal view; **Q**, posterior view; **R**, anterior view. Middle trunk vertebra (‘DD’) in **S**, left lateral view; **T**, right lateral view; **U**, ventral view; **V**, dorsal view; **W**, posterior view; and **X**, anterior view. Scale bar equals 1 cm. Arrows indicate anterior direction. **Abbreviations**: **dia**, diapophysis; **epi**, epipophysis; **nc**, neural canal; **ns**, neural spine; **par**, parapophysis; **pzo**, postzygapophysis; **prz**, prezygapophysis. [planned for page width]
FIGURE 4. Axis (NMT RB504) referred to Teleocrater rhadinus. A, left lateral view; B, right lateral view; C, anterior view; D, posterior view; E, ventral view. Scale bar equals 1 cm. **Abbreviations:** a., articulates with; atl, atlas; axi, axis intercentrum; natl, neural arch of the atlas; epi, epipophysis; nc, neural canal; ns, neural spine; poz, postzygapophysis; prz, prezygapophysis; r, ridge. [planned for column width]

FIGURE 5. Anterior cervical vertebrae referred to Teleocrater rhadinus. NMT RB505 in A, left lateral view; B, right lateral view; C, anterior view; D, posterior view; E, ventral view. NMT RB506 in F, right lateral view. Scale bar equals 1 cm. **Abbreviations:** dia, diapophysis; epi, epipophysis; ex, expansion; nc, neural canal; ns, neural spine; par, parapophysis; poz, postzygapophysis; prz, prezygapophysis. [planned for column width]

FIGURE 6. Middle cervical vertebrae referred to Teleocrater rhadinus. NMT RB511 in A, left lateral view; B, right lateral view; C, ventral view; D, anterior view; E, posterior view. NMT RB512 in F, left lateral view; G, right lateral view; H, ventral view; I, anterior view; J, posterior view. Scale bars equal 1 cm. **Abbreviations:** dia, diapophysis; epi, epipophysis; ex, expansion; nc, neural canal; ns, neural spine; par, parapophysis; poz, postzygapophysis; prz, prezygapophysis; r, ridge. [planned for column width]

FIGURE 7. Posterior cervical vertebra (NMT RB514) referred to Teleocrater rhadinus. A, left lateral view; B, right lateral view; C, ventral view; D, anterior view; E, posterior view. Scale bar equals 1 cm. **Abbreviations:** dia, diapophysis; ex, expansion; fa, facet;
nc, neural canal; ns, neural spine; par, parapophysis; poz, postzygapophysis; prz, prezygapophysis. [planned for column width]

FIGURE 8. The vertebral column of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). A–B cervical vertebrae in left lateral (top) and right lateral (bottom) views; C–I, anterior to middle trunk vertebrae in left lateral (top) and right lateral (bottom) views; J–K, posterior trunk vertebrae in left lateral (top) and right lateral (bottom) views; L–M, anterior caudal vertebrae in left lateral (top) and right lateral (bottom) views; N–W, middle to distal caudal vertebrae in left lateral (top) and right lateral (bottom) views. Scale bar equals 1 cm. Arrows indicate anterior direction. [planned for page width]

FIGURE 9. Posterior trunk vertebrae (NMT RB516) referred to *Teleocrater rhadinus*. A, left lateral view; B, right lateral view; C, posterior view; D, ventral view; E, dorsal view. Scale bar equals 1 cm. **Abbreviations:** dia, diapophysis; hyp, hypantrum; hys, hyposphene; nc, neural canal; ns, neural spine; par, parapophysis; poz, postzygapophysis; prz, prezygapophysis. [planned for column width]

FIGURE 10. Second sacral vertebra (NMT RB519) referred to *Teleocrater rhadinus*. A, anterior view; B, posterior view; C, ventral view. Scale equals 1 cm. **Abbreviations:** nc, neural canal; ns, neural spine; poz, postzygapophysis; prz, prezygapophysis; sr, sacral rib; srp, sacral rib process. [planned for page width]
FIGURE 11. Distal caudal vertebrae of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). A–E, in left lateral (top) and right lateral (bottom) views. Scale bar equals 1 cm. Arrows indicate anterior direction. [planned for column width]

FIGURE 12. Ribs of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). Partial trunk rib in A, anterior view; B, posterior view; C, lateral view. Left partial cervical rib in E, lateral view; F, medial view. G, metatarsal in three views. Scale bars equal 1 cm. **Abbreviation:** ap, anterior process. [planned for column width]

FIGURE 13. Pectoral girdle elements of *Teleocrater rhadinus*. Partial right scapula (NHMUK PV R6795) in A, lateral view; B, posterior view; C, medial view. Partial right scapula (NMT RB480) in D, lateral view; E, posterior view; F, medial view. Partial left coracoid (NHMUK PV R6795) in G, lateral view; H, posterior view; I, medial view. Scale bars equal 1 cm. **Abbreviations:** a., articulates with; ac, acromion; cf, coracoid foramen; co, coracoid; gl, glenoid; no, notch; r, ridge; sc, scapula. [planned for column width]

FIGURE 14. Humeri referred to *Teleocrater rhadinus*. Left humerus (NMT RB476) in A, proximal view; B, anterior view; C, lateral view; D, posterior view; E, medial view; F, distal view. Left humerus (NMT RB477) in G, proximal view; H, anterior view; I, lateral view; J, posterior view; K, medial view; L, distal view. Scale bars equal 1 cm. **Abbreviations:** dp, deltopectoral crest; gr, groove; hh, humeral head; mtu, medial tuberocity; sp, supinator process. [planned for page width]
FIGURE 15. Distal half of a left humerus (NHMUK PV R6796) referred to *Teleocrater rhadinus*. A, posterior view; B, anterior view; C, distal view. Scale bar equals 1 cm.

Abbreviations: gr, groove; sp, supinator process. [planned for column width]

FIGURE 16. Ulna and radius of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). Right ulna in A, proximal view; B, posteromedial view; C, posterolateral view; D, anterolateral view; E, anteromedial view; F, distal view. Right radius in G, proximal view; H, posteromedial view; I, posterolateral view; J, anterolateral view; K, anteromedial view; L, distal view. Scale bar equals 1 cm. **Abbreviations:** ol, olecranon process; r, ridge. [planned for column width]

FIGURE 17. Left distal half of the radius of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). A, posteromedial view; B, anterolateral view. Scale bar equals 1 cm. **Abbreviation:** r, ridge. [planned for column width]

FIGURE 18. Right metacarpal ?II (NMT RB484) referred to *Teleocrater rhadinus*. A, dorsal view; B, lateral view; C, ventral view; D, medial view; E, proximal view; F, distal view. Scale bar equals 1 cm. [planned for column width]

FIGURE 19. Partial left ilium of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795) (A–D) and a referred partial left ilium (NMT RB489) (E–F). NHMUK PV R6795 in A, dorsal view; B, anterior view; C, lateral view; D, medial view and NMT
RB489 in E, lateral view; F, medial view. Scale bars equal 1 cm. Arrows indicate anterior direction. **Abbreviations:** a., articulates with; ace, acetabulum; ap, anterior process; ip, ischial peduncle; no, notch; pp, pubic peduncle; sac, supra-acetabular crest; sr1, first sacral rib; sr2, second sacral rib; srv, rugose subvertical ridge. [planned for column width]

FIGURE 20. Complete left ischium of *Teleocrater rhadinus* (NMT RB479) in A, lateral view; B, dorsal view; C, distal view; D, medial view. Scale bar equals 1 cm. **Abbreviations:** a., articulates with; gr, groove; il, ilium; is, ischium; pu, pubis. [planned for column width]

FIGURE 21. Femora of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). Right femur in A, proximal view; B, anterolateral view; C, posterolateral view; D, posteromedial view; E, anteromedial view; F, distal view. Left femur in G, proximal view; H, anterolateral view; I, posterolateral view; J, posteromedial view; K, anteromedial view; L, distal view. Scale bars equal 5 cm. **Arrows indicate anterior direction.** **Abbreviations:** alt, anterolateral tuber; ctf, crista tibiofibularis; d, depression; ft, fourth trochanter; g, groove; mic, M. iliotrochantericus caudalis scar; mie, M. iliofemoralis externus scar; r, ridge; sc, scar. [planned for page width]

FIGURE 22. Referred right femur (NMT RB498) of *Teleocrater rhadinus* in A, proximal view; B, anterolateral view; C, posterolateral view; D, posteromedial view; E, anteromedial view; F, distal view. Scale bar equals 1 cm. **Arrows indicate anterior direction.**
Abbreviations: alt, anterolateral tuber; cfb, M. caudofemoralis brevis insertion scar; ctf, crista tibiofibularis; d, depression; dltp, posterior portion of the dorsolateral trochanter; g, groove; mic, M. iliotrochantericus caudalis scar; mie, M. iliofemoralis externus scar; r, ridge; sc, scar; ts, trochanteric shelf. [planned for column width]

FIGURE 23. The femoral scars on the proximal portion of the femur of Teleocrater rhadinus. Proximal end of the right femur (NHMUK PV R6795) in posterolateral view A, photo; B, interpretational drawing. Proximal end of the right femur (NMT RB498) in anteromedial view C, photo; D, interpretational drawing. Scale bars equal 1 cm.

Abbreviations: ail, anterior intermuscular line; als, anterolateral scar; alt, anterolateral tuber; cfb, M. caudofemoralis brevis insertion scar; d, depression; dltp, posterior portion of the dorsolateral trochanter; ft, fourth trochanter; mic, M. iliotrochantericus caudalis scar; mie, M. iliofemoralis externus scar; sc, scar. [planned for column width]

FIGURE 24. Tibiae of the holotype of Teleocrater rhadinus (NHMUK PV R6795). Left tibia in A, proximal view; B, lateral view; C, posterior view; D, medial view; E, anterior view; F, distal view. Right tibia in G, proximal view; H, lateral view; I, posterior view; J, anterior view; K, distal view; L, distal view. Scale bars equal 5 cm. Arrows indicate anterior direction. Abbreviations: cc, cnemial crest; ill, internal lateral ligament; Mpit, M. puboischiadictibialis; Mta, M. tibialis anterior; r, ridge; sc, scar. [planned for page width]
FIGURE 25. Left fibula of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). A, proximal view; B, lateral view; C, posterior view; D, medial view; E, anterior view; F, distal view. Scale bar equals 5 cm. **Abbreviations:** d, depression; ifc, iliofibularis crest; r, ridge. [planned for column width]

FIGURE 26. Referred right calcaneum (NMT RB490) of *Teleocrater rhadinus* in A, proximal view; B, distal view; C, posterior view; D, anterior view; E, lateral view. Scale bar equals 1 cm. **Abbreviations:** 4t, fourth tarsal; a., articulates with; as, astragalus; fi, fibula; ga, gap; tu, tuber. [planned for column width]

FIGURE 27. Other elements that were found with the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). A–C, phalanges in dorsal (top) and ventral (bottom) views. D, fourth metatarsal in three views. E, third metatarsal in three views. Scale bars equal 1 cm. [planned for column width]

FIGURE 28. Phylogenetic relationships of *Teleocrater rhadinus* among archosauriform reptiles. Strict consensus trees (some taxa collapsed into larger clades) based on the analyses of A, Nesbitt (2011) and B, the dataset of Ezcurra (2016). Full tree in Nesbitt et al., (2017b) in review. [planned for column width]

FIGURE 29. Life reconstruction of *Teleocrater rhadinus* feasting on *Cynognathus*. The large dicynodont *Dolichuranus* is seen in the background. Copyright: Mark Witton/Natural History Museum. [planned for page width]
80x35mm (300 x 300 DPI)
color

160x155mm (300 x 300 DPI)
color

88x87mm (300 x 300 DPI)
color

101x113mm (300 x 300 DPI)
101x113mm (300 x 300 DPI)
color

165x305mm (300 x 300 DPI)
165x305mm (300 x 300 DPI)
color

100x112mm (300 x 300 DPI)
color

73x60mm (300 x 300 DPI)
49x13mm (300 x 300 DPI)

color
color

34x13mm (300 x 300 DPI)
color

57x36mm (300 x 300 DPI)
157x275mm (300 x 300 DPI)
129x93mm (300 x 300 DPI)
color

67x55mm (300 x 300 DPI)
67x55mm (300 x 300 DPI)
color

94x116mm (300 x 300 DPI)
color

155x134mm (300 x 300 DPI)
105x123mm (300 x 300 DPI)
115x172mm (300 x 300 DPI)
170x162mm (300 x 300 DPI)
color

75x62mm (300 x 300 DPI)
75x62mm (300 x 300 DPI)
TABLE 1. Measurements of the cervical, dorsal, and caudal vertebrae of the holotype of *Teleocrater rhadinus* (NHMUK PV R6795). The proposed order of vertebrae within the column follows that proposed by Charig (1956) and reflects some uncertainly in the exact positions of the vertebrae. **Abbreviations:** Cd, caudal vertebra; CHA, height of anterior centrum articular surface; CHP, height of posterior centrum articular surface; CL, centrum length; CMW, centrum minimum transverse width; Cv, cervical vertebra; CWA, width of anterior centrum articular surface; CWP, width of posterior centrum articular surface; D, dorsal vertebra. All measurements are provided in mm. Measurements that are too distorted/incomplete to include are denoted by a hyphen.

<table>
<thead>
<tr>
<th>Vertebra</th>
<th>CL</th>
<th>CHA</th>
<th>CWA</th>
<th>CHP</th>
<th>CWP</th>
<th>CMW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CvA</td>
<td>53</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>CvB</td>
<td>32</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>DA</td>
<td>26</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>DB</td>
<td>25</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>DC</td>
<td>24</td>
<td>14</td>
<td>17</td>
<td>13</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>DD</td>
<td>25</td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>DE</td>
<td>28</td>
<td>14</td>
<td>16</td>
<td>13</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>DF</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>14</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>DG</td>
<td>26</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>DH</td>
<td>21</td>
<td>14</td>
<td>17</td>
<td>14</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>DI</td>
<td>22</td>
<td>17</td>
<td>20</td>
<td>15</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>21</td>
<td>24</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>17</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>17</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1. (continued)
<table>
<thead>
<tr>
<th>Element/measurement</th>
<th>Right radius</th>
<th>Right ulna</th>
<th>Right femur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>88</td>
<td>92</td>
<td>170</td>
</tr>
<tr>
<td>Length of proximal end</td>
<td>16</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>Length of distal end</td>
<td>12</td>
<td>13</td>
<td>35</td>
</tr>
<tr>
<td>Midshaft circumference</td>
<td>22</td>
<td>22</td>
<td>51</td>
</tr>
</tbody>
</table>
TABLE 2. (continued)

<table>
<thead>
<tr>
<th>Bone</th>
<th>Length</th>
<th>Length of proximal end</th>
<th>Length of distal end</th>
<th>Midshaft circumference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left femur</td>
<td>170</td>
<td>35</td>
<td>35</td>
<td>53</td>
</tr>
<tr>
<td>Right tibia</td>
<td>145</td>
<td>30</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Left tibia</td>
<td>145</td>
<td>30</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>Left fibula</td>
<td>143</td>
<td>20</td>
<td>17</td>
<td>27</td>
</tr>
</tbody>
</table>
TABLE 2. (continued)
TABLE 3. Measurements of the cervical, dorsal, and sacral vertebrae of referred material of *Teleocrater rhadinus*. **Abbreviations:** CHP, height of posterior centrum articular surface; CL, centrum length; CMW, centrum minimum transverse width. All measurements are provided in mm.

<table>
<thead>
<tr>
<th>Element</th>
<th>Specimen number</th>
<th>CL</th>
<th>CHP</th>
<th>CMW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis</td>
<td>NMT RB504</td>
<td>27</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Anterior cervical</td>
<td>NMT RB505</td>
<td>41</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Anterior cervical</td>
<td>NMT RB506</td>
<td>33</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Middle cervical</td>
<td>NMT RB511</td>
<td>39</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Middle cervical</td>
<td>NMT RB512</td>
<td>55</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>Posterior cervical</td>
<td>NMT RB514</td>
<td>23</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Anterior dorsal</td>
<td>NMT RB500</td>
<td>21</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Posterior dorsal</td>
<td>NMT RB516</td>
<td>23</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Sacral 2</td>
<td>NMT RB519</td>
<td>20</td>
<td>17</td>
<td>7</td>
</tr>
</tbody>
</table>
TABLE 4. Measurements of the pectoral girdle, fore-, and hind limb elements of specimens referred to *Teleocrater rhadinus*. All measurements are provided in mm. Those marked with an ‘*’ are estimated due to abrasion/breakage.

<table>
<thead>
<tr>
<th>Element/measurement</th>
<th>Right scapula (NMT RB480)</th>
<th>Left humerus (NMT RB476)</th>
<th>Left humerus (NMT RB477)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>92</td>
<td>112</td>
<td>87</td>
</tr>
<tr>
<td>Proximal length</td>
<td>50*</td>
<td>48</td>
<td>38</td>
</tr>
<tr>
<td>Distal length</td>
<td>32</td>
<td>42</td>
<td>32</td>
</tr>
<tr>
<td>Diameter at constriction</td>
<td>17</td>
<td>Circumference at midshaft</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Left ulna (NMT RB485)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>85</td>
</tr>
<tr>
<td>Proximal length</td>
<td>16</td>
</tr>
<tr>
<td>Distal length</td>
<td>13</td>
</tr>
<tr>
<td>Circumference at midshaft</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Left ulna (NMT RB486)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>83</td>
</tr>
<tr>
<td>Proximal length</td>
<td>17</td>
</tr>
<tr>
<td>Distal length</td>
<td>14</td>
</tr>
<tr>
<td>Circumference at midshaft</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Right femur (NMT RB498)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>160</td>
</tr>
<tr>
<td>Proximal length</td>
<td>35</td>
</tr>
<tr>
<td>Distal length</td>
<td>33</td>
</tr>
<tr>
<td>Circumference at midshaft</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Left tibia (NMT RB481)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>129</td>
</tr>
<tr>
<td>Proximal length</td>
<td>30</td>
</tr>
<tr>
<td>Distal length</td>
<td>20</td>
</tr>
<tr>
<td>Description</td>
<td>Measurement</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Circumference at midshaft</td>
<td>33</td>
</tr>
<tr>
<td>Right fibula (NMT RB482)</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>153</td>
</tr>
<tr>
<td>Proximal length</td>
<td>20</td>
</tr>
<tr>
<td>Distal length</td>
<td>20</td>
</tr>
<tr>
<td>Circumference at midshaft</td>
<td>30</td>
</tr>
<tr>
<td>Metacarpal II (NMT RB484)</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>23</td>
</tr>
<tr>
<td>Proximal length</td>
<td>8</td>
</tr>
<tr>
<td>Distal length</td>
<td>7</td>
</tr>
<tr>
<td>Circumference at midshaft</td>
<td>10</td>
</tr>
</tbody>
</table>