Teammate Prosocial and Antisocial Behaviors Predict Task Cohesion and Burnout: The Mediating Role of Affect

IN PRINT: Journal of Sport & Exercise Psychology
Teammate Prosocial and Antisocial Behaviors Predict Task Cohesion and Burnout: The Mediating Role of Affect

Over the last two decades, there has been a growing literature on moral behavior in sport (see Kavussanu, 2012). Sport is a social context, where athletes are likely to participate in, as well as be exposed to, prosocial behaviors (e.g., helping players off the floor) and antisocial behaviors (e.g., verbally abusing a player). While the majority of previous research has investigated primarily antecedents of these behaviors (e.g., Bruner, Boardley, & Côté, 2014; Kavussanu, Stanger, & Ring, 2015; Sage, Kavussanu, & Duda, 2006), the potential consequences of these behaviors for the recipient have received scant research attention. The present study sought to fill this gap in the literature, by investigating consequences of prosocial and antisocial behaviors for the recipient.

Our study was grounded on social cognitive theory of moral thought and action (Bandura, 1991) which proposes that personal factors, behavior, and environmental factors, operate as interacting determinants of each other. In this theory, the social environment (e.g., significant others) plays an important role in shaping the individual’s behavior. Bandura (1991) emphasized the importance of the consequences of one’s behavior for the recipient, which are important in characterizing a behavior as moral. In the context of sport, behaviors such as supporting or verbally abusing another player can have positive or negative psychological consequences for the recipient (Kavussanu, 2012). Bandura (1999) has also distinguished between proactive and inhibitive morality, which pertain to the power to behave humanely and refrain from behaving inhumanely, respectively.

In sport research, these two aspects of morality have been investigated as prosocial and (absence of) antisocial behaviors (Kavussanu & Boardley, 2009). Prosocial behavior is voluntary behavior intended to help or benefit another individual or group of individuals (Eisenberg & Fabes, 1998), while antisocial behavior is behavior intended to harm or
disadvantage others (Sage et al., 2006). These behaviors can be directed at opponents (e.g., helping or arguing with an opponent) and teammates (e.g., encouraging or criticizing a teammate). Given the amount of athletes’ potential exposure to these behaviors within their team, teammate behaviors could have lasting consequences for the recipient. Prosocial behaviors could enhance the recipient’s motivation and subsequent performance (see Kavussanu & Boardley, 2009), while antisocial teammate behaviors could have negative psychological consequences for the recipient. In the present study, we focused only on teammate behaviors, because these behaviors are more likely to have achievement-related psychological consequences for the recipient, and we investigated their direct and indirect relationships (through affect) with two important outcomes: task cohesion and burnout.

Prosocial Behavior

Although much research has examined antecedents of prosocial teammate behavior in sport, to date, only one study has investigated the consequences of this type of behavior for the recipient. Specifically, Al-Yaaribi, Kavussanu, and Ring (2016) asked soccer and basketball players, after a match they had just played, to complete questionnaires about their experiences during the match. They found that players’ perceptions of prosocial teammate behaviors were positively related to their effort, perceived performance, and commitment. In addition, the relationship between prosocial teammate behaviors and effort and performance was mediated by enjoyment: Players who perceived their teammates behaving prosocially toward them, reported more enjoyment, which in turn was positively associated with both effort and performance.

Another potential consequence of prosocial teammate behaviors is task cohesion, which reflects the degree of unity possessed by team members to work together toward achieving team goals (Eys, Loughead, Bray, & Carron, 2009a, 2009b). It has been suggested that perceptions of positive interaction, encouragement, and constructive comments may lead
sport participants to perceive mutual interdependence in pursuing task-relevant goals and a high-task cohesive team (Carron, Eys, & Martin, 2012). The conceptual model of team building (Carron & Spink 1993) identified that teammate task interaction and communication are key aspects of group processes to promote team cohesion. Eys et al. (2009b) found that task support among teammates, for example cheering on teammates and saying they’re doing a good job, which is similar to the manner prosocial teammate behavior as measured, was a major factor in developing task cohesion in youths. The recipients of prosocial teammate behaviors (e.g., encouragement, constructive feedback, etc) may gradually form a stronger bond with teammates and feel more united in the pursuit of the team goals, thereby perceiving a higher level of task cohesion.

Bandura (2001) identified affective states as psychological mechanisms through which the social environment influences the individual’s behavior. Prosocial teammate behavior could impact task cohesion through its effects on the recipient’s positive affect, defined as the degree to which one feels enthusiastic, active, and alert, and has high energy, full concentration, and pleasurable engagement (Watson, Clark, & Tellegen, 1988). It is reasonable to expect that athletes would experience more positive affect when their teammates act in a prosocial manner toward them, for example by giving them positive and constructive feedback and encouraging them after a mistake. In past research, perceptions of positive peer interactions were associated with positive affect and enjoyment (Smith, 2007; Ullrich-French & Smith, 2006), while prosocial teammate behaviors positively predicted enjoyment (Al-Yaaribi et al, 2016). Satisfaction of athletes’ affective needs can enhance their willingness to remain united and work together toward attaining the team goals (Eys et al., 2009a, 2009b). Indeed, in-group affect which is the positive feeling derived from being a team member, was positively related to task cohesion (Bruner et al., 2014).
Prosocial teammate behaviors could also help prevent burnout, which has been conceptualized as a multidimensional cognitive-affective syndrome that has three dimensions (e.g., Raedeke, 1997; Raedeke & Smith, 2009): emotional and physical exhaustion, resulting from the physical and psychosocial demands of training and competition; reduced athletic accomplishment, which pertains to feeling of inefficacy and the tendency for a negative evaluation of one’s performance; and sport devaluation, which refers to a negative, detached attitude toward sport involvement reflected in a lack of concern for sport and performance. Although most researchers consider emotional and physical exhaustion as the core dimension of burnout (e.g., Cresswell & Eklund, 2007; Shirom, 2005), others view the multi-dimensional nature of the construct as essential for its comprehensive understanding (e.g., Eklund & DeFreese, 2015; Gustafsson, Hassmén, Kenttä, & Johansson, 2008; Raedeke & Smith, 2009). In the present research, we adopted the multi-dimensional conceptualization of burnout.

Burnout is viewed as a reaction to chronic stress resulting from the demands made on a person’s resources (Smith, 1986). It has been suggested that teammates can play a role in both the development and the prevention of burnout (Gustafsson et al., 2008; Smith, Gustafsson, & Hassmen, 2010). Positive social behaviors from one’s teammates, such as offering positive feedback, congratulating the athlete for good play, and encouraging him or her after a mistake, should buffer the stress experienced in sport and reduce one’s vulnerability to burnout. These behaviors may enhance the recipients’ ability to deal with stress of training and competition because they may be perceived as indicators that one’s teammates are concerned and care about the recipient of the behaviors. One of the variables that have been inversely associated with burnout is team social interaction in the form of social support (DeFreese & Smith, 2013, 2014; Raedeke & Smith, 2004); social support
resembles prosocial behavior, in that it involves positive social interaction that can have positive consequences for the recipient.

The relationship between prosocial teammate behaviors and burnout could be mediated by positive affect. Research has consistently revealed negative correlations between the three dimensions of burnout and positive affective variables, such as enjoyment (Price & Weiss, 2000; Raedeke & Smith, 2001). In addition, positive affect has been inversely associated with burnout in elite soccer players and individual sport athletes (Gustafsson, Skoog, Davis, Kenttä, & Haberl, 2015; Gustafsson, Skoog, Podlog, Lundqvist, & Wagnsson, 2013). Finally, teammate prosocial behaviors have been positively associated with enjoyment (Al-Yaaribi et al., 2016). Taken together, these findings suggest that prosocial teammate behaviors should lead to more positive affect, which in turn should reduce burnout.

Antisocial Behavior

Antisocial behavior is behavior that violates others’ rights and has consequences for physical or psychological well-being (Kavussanu & Boardley, 2009) and could interfere with the development of task cohesion. For example, expressing frustration at a teammate’s (bad) performance could lead the recipient to think that he or she is unable to contribute to team goals, leading him or her to experience a reduced sense of team unity. In past research (McLaren, Newland, Eys, & Newton, 2016), task cohesion was inversely associated with intra-team conflict (e.g., criticizing their teammates when they make mistakes), which refers to negative behaviors expected to undermine interpersonal relationships (Ntoumanis & Vazou, 2005). Sullivan and Feltz (2001) reported similar findings between task cohesion and destructive intra-team conflict (i.e., showing anger at a teammate).

The proposed diminishing effect of antisocial teammate behaviors on task cohesion may occur in part via negative affect, defined as “a general dimension of subjective distress and unpleasurable engagement that subsumes a variety of aversive mood states, including
anger, contempt, disgust, guilt, fear, and nervousness” (Watson et al., 1988, p. 1063). In previous research, soccer and basketball players who perceived their teammates behaving antisocially toward them during a match, reported more anger (Al-Yaaribi et al., 2016), while athletes’ perceptions of negative social interactions have been positively associated with anxiety (DeFreese & Smith, 2014). Both anger and anxiety have been inversely associated with task cohesion (e.g., Borrego, Cid, & Silva, 2012; Bosselut, Heuzé, Eys, & Bouthier, 2010; Eys et al., 2003). Thus, there is some evidence to suggest negative affect may mediate the relationship between antisocial teammate behaviors and task cohesion.

Antisocial teammate behaviors, such as receiving criticism from one’s teammates about performance could be a source of stress, which is an antecedent of burnout (e.g., Gustafsson, Kenttä, & Hassmén, 2011; Raedeke & Smith, 2004), thus it could make the recipients more susceptible to burnout. Indeed, negative social interactions (e.g., act angry or upset with you) and teammate conflicts have been linked to athlete burnout (e.g., DeFreese & Smith, 2014; Gustafsson et al., 2008). This relationship could be mediated by negative affect, which has been consistently associated with athlete burnout (e.g., Gustafsson et al., 2013, 2015). Anger has been proposed as an affective response that could lead to burnout (Smith, 1986), and this emotion has been positively associated with antisocial teammate behaviors (Al-Yaaribi et al., 2016). Taken together, these findings suggest that negative affect may mediate the positive relationship between antisocial behavior and burnout.

The Present Study

In sum, the findings described above suggest that prosocial and antisocial teammate behaviors could have important psychological consequences for the recipient, and affective states may play an important role in this process. In the present research we examined: (a) whether prosocial and antisocial teammate behaviors (hereafter referred to as prosocial and antisocial behaviors) are related to task cohesion and burnout; and (b) whether positive and
negative affect mediate these relationships. We hypothesized that prosocial behaviors would be positively related to task cohesion (e.g., Eys et al., 2009) and negatively related to burnout (e.g., DeFreese & Smith, 2013). With respect to mediation, we expected that prosocial behaviors would positively predict positive affect (e.g., Al-Yaaribi et al., 2016), which in turn would positively predict task cohesion (e.g., Bruner et al., 2014) and negatively predict burnout (e.g., Gustafsson et al., 2015).

The opposite pattern of relationships was expected for antisocial behaviors. Specifically, we expected that antisocial behaviors would be negatively related to task cohesion (e.g., McLaren et al., 2016) and positively associated with burnout (e.g., DeFreese & Smith, 2014). We also hypothesized that affect would mediate the relationships between teammate behaviors with task cohesion and burnout. In particular, we expected that antisocial behaviors would positively predict negative affect (e.g., Al-Yaaribi et al., 2016), which in turn would negatively predict task cohesion (e.g., Borrego et al., 2012) and positively predict burnout (e.g., Gustafsson et al., 2015).

Method

Participants were male \((n = 96)\) and female \((n = 176)\) athletes, recruited from 22 sports clubs from the West Midlands region of the UK, competing in netball \((n = 148)\), field hockey \((n = 79)\), or soccer \((n = 45)\). They ranged in age from 16 to 35 years old, with a mean age of 21.86 \((SD = 4.36)\). At the time of data collection, they had an average of 3.03 \((SD = 2.59)\) years playing for their current team and were competing at five different levels of competition: local \((n = 84)\), district \((n = 26)\), academy \((n = 73)\), club \((n = 13)\), and national \((n = 76)\). Finally, participants had played 1-4 \((4\%)\), 5-8 \((2.2\%)\), 9-12 \((31.3\%)\), 13-16 \((13.6\%)\), 17-20 \((22.4\%)\), and 21 or more \((26.5\%)\) competitive matches for their current team during the season. Data collection took place between 3-6 months after the season had started.

Procedure
Having obtained ethical approval from the University Ethics Committee, head coaches of sports teams were contacted via email for permission of their athletes’ participation in the study. Before signing consent forms, participants were informed about the research purpose, their right to withdraw at any time, that participation was voluntary, and their responses would be used only for research purposes and would be kept confidential. Then, they completed questionnaires either prior or after regular training sessions. Participants were asked to think about their general training and competition experiences with their team during the season. Upon questionnaire completion, participants were fully debriefed and thanked for their participation. Data collection took place five months after the season had started. The questionnaires were counterbalanced to prevent order effects.

Measures

Teammate behavior. Teammate behavior was measured using adapted versions of the teammate behavior subscales of the Prosocial and Antisocial Behavior in Sport Scale (PABSS; Kavussanu & Boardley, 2009). The original subscales consist of nine items that measure behaviors toward teammates: prosocial (four items; e.g., encouraging a teammate, giving positive feedback to a teammate) and antisocial behavior (five items; e.g., arguing with a teammate, verbally abusing a teammate). However, in line with Bolter and Weiss (2013), an additional item (supported me) was included to improve the internal reliability of the prosocial teammate behavior subscale. The adapted version has been used in a previous study (Al-Yaaribi et al., 2016). Participants were asked to rate how often their teammates engaged in each behavior toward them during the season on a 5-point scale, anchored by 1 (never) to 5 (very often). The stem “This season, my teammates” was followed by items measuring prosocial (e.g., supported me) and antisocial (e.g., criticized me) behaviors. Using confirmatory factor analysis, the adapted version had shown a very good fit to the date, χ^2/df: 52.27/34, RCFI: .971, SRMR: .057, RMSEA: .044, with acceptable internal consistency of
.82 and .71 for prosocial and antisocial teammate behavior subscales, respectively (Al-
Yaaribi et al., 2016).

Task cohesion. Task cohesion was assessed using the task cohesion subscale of the
Youth Sport Environment Questionnaire (YSEQ; Eys et al., 2009a). This subscale contains
eight items and one spurious negative item to detect invalid responses. Example items are “I
like the way we work together as a team” and “As a team, we are all on the same page”.
Participants responded on a 9-point Likert-type scale ranging from 1 (strongly disagree) to 9
(strongly agree). The subscale has shown very good internal consistency (α = .89) in youth
athletes (Eys et al., 2009a).

Athlete burnout. The Athlete Burnout Questionnaire (ABQ; Raedeke & Smith, 2001)
was used to measure athletes’ burnout. The ABQ consists of three 5-item subscales
measuring: perceived emotional and physical exhaustion (e.g., “I’m exhausted by the mental
and physical demands of my sport”); reduced sense of accomplishment (e.g., “I’m not
performing up to my ability in my sport”); and sport devaluation (e.g., “I’m not into my sport
like I used to be”). Participants reported the frequency of experiencing burnout on a scale of 1
(almost never) to 5 (almost always). The burnout dimensions have shown very good levels of
internal consistency, with alpha coefficient above .89 (e.g., DeFreese & Smith, 2014). In
previous research, both scores of the three dimensions of burnout as well as the total score
have been used (e.g., DeFreese & Smith, 2013; Raedeke & Smith, 2004). In our main
analysis, we investigated burnout as a higher-order factor with three sub-dimensions because:
(a) this is a more parsimonious approach to model testing; (b) is line with previous research
(e.g., Raedeke & Smith, 2004) and (c) scores on the three dimensions had large correlations
with each other (see Table 1). However, it is worth mentioning that other researchers have
used only the individual dimensions of burnout in their main analyses (e.g., Gustafsson et al.,
2015).
Positive and negative affect. The 10-item of the International Positive and Negative Affect Schedule – Short Form (I-PANAS-SF; Thompson, 2007) was used to measure participants’ positive (five items; e.g., determined, alert, inspired, attentive, active) and negative (five items; e.g., nervous, upset, hostile, ashamed, afraid) affect. This scale is a shortened version of the 20-item Positive and Negative Affect Schedule (PANAS; Watson et al., 1988). We used the shorter version because these items were deemed most relevant to the context of sport and more likely to be influenced by prosocial and antisocial behaviors. In addition, compared to the original PANAS, the I-PANAS-SF is more concise, less time consuming, and more suitable for participants from different cultures (Thompson, 2007). Players were instructed to recall to what extent they felt each of the ten emotions and to respond to the stem “This season, I felt…” Participants responded on a 5-point scale anchored by 1 (very slightly or not at all) to 5 (extremely). Thompson (2007) reported good internal consistency of the scale, with alpha coefficients of .80 and .74 for positive and negative affect, respectively.

Results

Preliminary Analyses

Prior to the main analyses, data were inspected for normality, missing values, and outliers for all study variables following the procedure outlined by Tabachnick and Fidell (2007). Less than 5% of missing data was identified and replaced with the mean of the respective variable. No extreme outliers were detected (i.e., values higher or lower than 3 SDs from the mean). The univariate kurtosis and skewness for each study variable were within the reasonable range (−0.29 to 5.53 and −0.70 to 1.65, respectively). Kline (2010) suggested using ratio cut-off values of 10.0 for kurtosis and 3.0 for skewness.

Descriptive Statistics, Correlation Analysis, and Scale Reliabilities
Descriptive statistics and Cronbach’s alpha coefficients for all study variables can be seen in Table 1. On average, participants reported that their teammates displayed sometimes-to-often prosocial behavior and never-to-sometimes antisocial behavior toward them. They also reported a moderate-to-high level of positive affect and task cohesion and a low-to-moderate level of negative affect and all burnout dimensions. Most correlations were in the expected direction. Coefficients of .10, .30, and .50, correspond to small, medium, and large effect sizes, respectively (Cohen, 1992). Prosocial behavior was strongly and positively associated with positive affect and task cohesion and inversely associated with negative affect and burnout dimensions, whereas the reverse relationships were observed for antisocial behavior. All scales showed very good-to-excellent internal consistency (alpha range = .87 -.95). Values greater than .90, .80, and .70 indicate excellent, very good, and good reliability, respectively (Kline, 2010).

Main Analyses

The purpose of this study was to examine whether prosocial and antisocial behaviors are associated with task cohesion and burnout, and whether these relationships are mediated by positive and negative affect. This purpose was investigated using Structural Equation Modelling (EQS 6.1; Bentler, 2003). The Mardia’s normalized coefficient estimate was 43.07, indicating significant non-normality in the present sample. Therefore, the Robust Maximum Likelihood method was used to test the hypothesized structural model. The model fit was assessed with multiple fit indices: the Satorra–Bentler chi square (S-Bχ2), the Robust Comparative Fit Index (R-CFI), the Bentler-Bonett Non-Normed Fit Index (R-NNFI), the Standardized Root Mean Square Residual (SRMR), the Robust Root Mean Square Error of Approximation (R-RMSEA) and its associated 90% Confidence Interval (CI). A good-fitting model is when values of the CFI and NNFI are close to or above .95, values of the SRMR
and RMSEA are close to or below .08 and .06, respectively, and the lower end of 90% CI of the RMSEA contains the value of .05 (Hu & Bentler, 1999).

To test mediation, we conducted a bootstrapping analysis, a non-parametric resampling that constructs Confidence Intervals (CIs) for indirect effects. Bootstrapping has been found to have superior statistical power, minimizes Type I error for mediation testing, and does not make any assumptions about the distribution of the population (Preacher & Hayes, 2008). In this study, the standardized indirect effects were obtained from 1,000 bootstrapped resamples with 95% CI. When the CI of an indirect effect does not contain zero, the effect is considered significant (Preacher & Hayes, 2008). As per Preacher and Kelley’s (2011) recommendation, effect size of the mediating effects is reported as the Completely Standardized Indirect Effect (ab_{cs}), which can be interpreted with Cohen’s (1992) effect size guidelines for squared correlation coefficients, as small, medium, and large size effect with values of .01, .09, and .25, respectively.

Testing the Measurement and Structural Models

Initially, CFA was conducted on each measure, separately, to assess the factor structure of the instruments used in this study. A second order CFA was conducted for burnout with the three dimensions of exhaustion, reduced accomplishment, and sport devaluation as first-order factors, and burnout as second-order factor. Specifically, exhaustion, reduced accomplishment, and devaluation subscale scores were used as indicators of the global burnout latent variable (see Raedeke & Smith, 2004). Item scores served as observed indicators for analyses examining specific burnout dimensions.

These results are presented in Table 2, where it can be seen that all instruments showed good factor structure. As recommended by Anderson and Gerbing (1988), a full measurement model was first assessed and reported an adequate fit to the data: $S-B_χ^2 (874) = 1459.54, p < .001$; R-CFI = .92; R-NNFI = .91; SRMR = .13; R-RMSEA = .05 (90% CI of
the R-RMSEA = .04, .05) with factor loadings ranging from .67 to .94 and a median factor loading = .68. Therefore, we proceeded to test the hypothesized structural model, which showed a good fit to the data: S-By2 (865) = 1396.76, $p < .001$; R-CFI = .94; R-NNFI = .94; SRMR = .05; R-RMSEA = .04 (90% CI of the R-RMSEA = .03, .04). The R-squared indicated that prosocial behavior and antisocial behavior accounted for 19% and 21% of the variance in positive and negative affect, respectively. Teammate behavior and positive and negative affect accounted for 68% and 65%, of the variance in task cohesion and burnout, respectively.

As can be seen in Figure 1, all standardized path coefficients were significant. Prosocial behavior positively predicted positive affect and task cohesion and negatively predicted burnout. Positive affect positively predicted task cohesion and negatively predicted burnout. Antisocial behavior positively predicted negative affect and burnout and negatively predicted task cohesion. Negative affect positively predicted burnout and negatively predicted task cohesion. The results of the bootstrapping analysis showed that positive affect mediated the effects of prosocial behavior on task cohesion ($\beta = .13; 95\% CI = .16, .26; ab_{cs} = .12; 95\% CI = .07, .25$) and burnout ($\beta = -.14; 95\% CI = -.23, -.07; ab_{cs} = -.11; 95\% CI = -.19, -.03$).

Finally, negative affect mediated the effects of antisocial behavior on burnout as indicated by the size of indirect effects and their associated CSIE ($\beta = .15; 95\% CI = .06, .10; ab_{cs} = .09; 95\% CI = .06, .16$) and task cohesion ($\beta = -.11; 95\% CI = -.11, -.02; ab_{cs} = -.07; 95\% CI = -.14, -.01$).

Discussion

Over the last two decades, a large body of literature has investigated antecedents of prosocial and antisocial behaviors in sport (see Kavussanu, 2012 for a review). However, to date, only one study has examined the potential consequences of these behaviors for the recipient (Al-Yaaribi et al., 2016). The present study attempted to fill this gap in the literature.
by examining whether prosocial and antisocial teammate behaviors predict task cohesion and burnout and whether positive and negative affect mediate these relationships.

Teammate Behavior, Task Cohesion, and Burnout

In line with our hypothesis, our findings showed that players who perceived that their teammates displayed prosocial behaviors toward them during the sport season, for example, encouraged them after a mistake and gave them constructive feedback, also perceived higher task cohesion in their team. These findings support Carron and Spink’s (1993) model by underlining the importance of positive interaction such as mutual support and encouragement among teammates in team processes to develop task cohesion. In the same vein, the findings are consistent with research examining teammate support and task cohesion (Carron et al., 2012; Eys et al., 2009b). The recipient of prosocial behaviors may have felt accepted by teammates and integrated within the team toward achieving the shared objective.

We also found that prosocial behaviors negatively predicted burnout. This finding is in line with the view that the social context contributes to athlete burnout (e.g., Cresswell & Eklund, 2007; Gustafsson et al., 2011) driven from Smith’s (1986) model. Prosocial teammate behaviors, may promote caring and supportive relationships among teammates, which may buffer perceived stress associated with training or competition and prevent athletes from developing burnout. This finding is consistent with previous research (e.g., DeFreese & Smith, 2013, 2014) which has shown that positive social interaction was negatively related to burnout. Our findings extend this work to prosocial teammate behavior, which is behavior occurring in the specific context of sport and includes a variety of behaviors by one’s teammates that could have positive consequences for the recipient.

Consistent with our hypothesis, the more players perceived antisocial behaviors from their teammates, such as verbally abusing, criticizing them, and expressing frustration at their poor play during the season, the lower the task cohesion perceived in the team. Perhaps the
recipients of antisocial behaviors felt that their roles and responsibilities with the team were not important, or their teammates may not have worked together to achieve the team goals. Antisocial teammate behaviors may be the outcome intra-team conflict, which has been negatively related to task cohesion in previous research (e.g., McLaren et al., 2016; Sullivan & Feltz, 2001). Taken collectively, these findings have implications for the conceptual model of team building (Carron & Spink, 1993) as they suggest that the psychosocial context of a team as reflected in teammate behaviors may be an important antecedent of task cohesion. As hypothesized, antisocial behaviors positively predicted burnout. The psychosocial perspective taken by burnout research (e.g., Cresswell & Eklund, 2007; Gustafsson et al., 2008; Gould, Tuffey, Udry, & Loehr, 1996) was supported in the present study. Previous research has also found that negative social interactions and intra-team conflict increased burnout (e.g., DeFreese & Smith, 2014; Gustafsson et al., 2008). Verbally abusing, arguing, and criticizing a teammate are patterns of negative social interactions, which could also lead to burnout. Our findings contribute to the knowledge based on the relationship between personal and situational factors and burnout (Smith 1986), by highlighting the importance of antisocial teammate behaviors on burnout (e.g., Gustafsson et al., 2008, 2011). Such behaviors could lead to increased perceptions of unsupportive interaction and conflict, which may increase burnout susceptibility. Taken as a whole, the findings of the present study are aligned with the predictions of Bandura’s (1991) theory that significant others in one’s social environment play an important role on behavior. They also extended previous work by (Al-Yaaribi et al., 2016) by identifying task cohesion and burnout as additional potential consequences of prosocial and antisocial behaviors in sport.

The Role of Positive and Negative Affect

Positive affect mediated the relationship between teammate behaviors and task cohesion, such that, the more prosocial behaviors exhibited by one’s teammates during the
sport season, the higher the positive affect experienced by the recipients, and in turn the
higher their perceptions of task cohesion. This is in line with the social cognitive theory
(Bandura, 2001), which suggests that affective states mediate the effects of the social
environment on individuals’ behavior. Previous work (e.g., Al-Yaaribi et al., 2016) has also
revealed a link between prosocial teammate behaviors during matches and enjoyment, a
positive affective state, while positive affect has been related to task cohesion (Bruner et al.,
2014; Eys et al., 2003, 2009a). Our findings suggest that the mechanism through which
prosocial teammate behaviors influences task cohesion, may be through enhancing positive
affect. These findings provide further support to the assumption that athletes’ affective
responses to the athletic environment could have profound effects on cohesion (Carron et al.,
2012; Eys et al., 2003).

Positive affect also mediated the relationship between prosocial behaviors and burnout,
with players who experienced higher positive affect reporting lower levels of burnout. Thus,
the relationship between prosocial behaviors and burnout could be partly explained by
positive affect. This is consistent with previous research (Gustafsson et al., 2013, 2015),
which has shown that positive affect was negatively associated with burnout. Several studies
have pointed out that psychological well-being could lead to effective coping strategies and
prevention of burnout (e.g., Eklund & Defreese, 2015; DeFreese & Smith, 2013; Raedeke &
Smith, 2001). Our findings suggest that teammate prosocial behaviors could decrease burnout
indirectly by increasing positive affect. That is, the recipients of prosocial teammate
behaviors would experience increased positive affect which should reduce burnout during the
sport season. This study provided the first evidence consistent with a mediational model.

As expected, negative affect mediated the relationship between antisocial behaviors and
task cohesion, such that antisocial behaviors predicted negative affect which in turn was a
negative predictor of task cohesion. This is in line with previous research showing that
antisocial teammate behaviors and negative social interactions have been positively
associated with anger and anxiety (e.g., Al-Yaaribi et al., 2016; DeFreese & Smith, 2014),
both of which interfere with task cohesion (e.g., Bosselut et al., 2010; Eys et al., 2003). Our
findings provide support for the process through which antisocial behaviors could diminish
task cohesion. In addition, negative affect mediated the relationship between antisocial
behaviors and burnout. This is not surprising given previous research linking negative affect
to burnout (e.g., Gustafsson et al., 2013, 2015). Altogether, our study supports the role of
affective responses proposed in Smith’s (1986) model of burnout.

Practical Implications

The identified relationships between teammate behaviors and affect, task cohesion, and
burnout have important practical implications. The findings enhance our understanding of the
mechanisms through which prosocial and antisocial teammate behaviors may influence task
cohesion and burnout. Coaches should try to promote positive social interactions among
teammates by rewarding prosocial and discouraging antisocial conducts within the team as
these conducts could influence task cohesion, burnout, and affect. Therefore, coaches as well
as players should be aware of the possible beneficial and detrimental consequences of
teammate behaviors for the recipient and for the team as a whole. Finally, this study proposes
effective strategies for enhancing intra-team interaction and communication on developing
cohesion (Carron & Spink, 1993) and coping resources to deal with psychosocial stress
(Smith, 1986).

Limitations and Future Directions

Although our study revealed some interesting findings, it also has some limitations.
First, our data are cross-sectional, thus the causality of the proposed model pathways cannot
be established. Longitudinal or experimental research is needed to clarify the direction of
causality of our model pathways. For example, it is possible that task cohesion is an
antecedent of teammate behaviors as teammates with high perceptions of task cohesion may act more prosocially toward each other. Athletes with high level of burnout may engage in more antisocial behaviors toward their teammates. It is also possible that this relationship is bidirectional, in line with the tenets of social cognitive theory (Bandura, 1986, 2001) that the social environment and one’s behavior influence each other. A third limitation pertains to the generalizability of our findings, which is limited to adult athletes from team sports. Investigating prosocial and antisocial behaviors in individual sports or in younger populations is warranted.

Conclusion

In conclusion, our findings join the existing literature body of moral behavior in sport by providing further support for Kavussanu and Boardley’s (2009) assertions that prosocial and antisocial behaviors have achievement-related consequences. Moreover, they extend earlier findings of Al-Yaaribi et al. (2016) by identifying relationships between prosocial and antisocial behaviors and the recipient’s affect, task cohesion, and burnout. Lastly, the present study makes a significant contribution to the recent body of literature highlighting teammate as a crucial social agent in sport (e.g., DeFreese & Smith, 2014; McLaren et al, 2016 Smith, 2007).
References

1 Al-Yaaribi, A., Kavussanu, M., & Ring, C. (2016). Consequences of teammate prosocial and
2 antisocial behavior for the recipient. Psychology of Sport and Exercise, 26, 102-112.
8 J.L. Gewirtz (Eds.), Handbook of moral behavior and development: Theory, research,
15 the conditions associated with antisocial behaviors among teammates in female teams.
16 Sport, Exercise, and Performance Psychology, doi.org/10.1037/spy0000090
18 Software.
19 Bianco, T., & Eklund, R.C. (2001). Conceptual considerations for social support research in
20 sport and exercise settings: The case of sport injury. Journal of Sport & Exercise
23 sportspersonship outcomes: Further validation of the Sportspersonship Coaching
24 Behaviors Scale (SCBS). Sport, Exercise, and Performance Psychology, 2, 32–47.
CONSEQUENCES OF TEAMMATE BEHAVIOR

CONSEQUENCES OF TEAMMATE BEHAVIOR

and comparing indirect effects in multiple mediator models. *Behavior Research
Methods, 40*, 879–891.

perspective. *Journal of Sport & Exercise Psychology, 19*, 396–417.

of stress mediated and moderation hypotheses. *Journal of Sport & Exercise Psychology, 26*,
525–541.

Morgantown, WV: Fitness Information Technology.

predictors of prosocial and antisocial functioning in male association football players.

(Ed.), *Motivation in sport and exercise* (pp. 199-215). Champaign, IL: Human
Kinetics.

Table 1: Descriptive Statistics, Alpha Coefficients, and Zero-Order Correlations (N = 272)

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prosocial behavior (.89)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Antisocial behavior -.40** (.84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Positive affect .38** -.26** (.86)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Negative affect -.40** .37** -.32** (.74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Task cohesion .41** -.36** .55** -.53** (.91)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Exhaustion -.23** .31** -.26** .46** -.14* (.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Reduced accomplishment -.27** .29* -.36** .31** -.21** .54** (.83)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Devaluation -.40** .37** -.39** .42** -.30** .44** .65** (.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.93</td>
<td>2.00</td>
<td>3.97</td>
<td>2.10</td>
<td>6.59</td>
<td>2.24</td>
<td>2.40</td>
<td>1.83</td>
</tr>
<tr>
<td>SD</td>
<td>0.94</td>
<td>0.77</td>
<td>0.96</td>
<td>1.10</td>
<td>2.22</td>
<td>0.84</td>
<td>0.87</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Note. Alpha coefficients are presented on the diagonal. Possible scale ranges: 1-5 for all variables except (1-9) for task cohesion.

*p < .05; **p < .01
Table 2

Fit Indices of Models of Individual Measures

<table>
<thead>
<tr>
<th>Latent factor</th>
<th>S-Bχ²</th>
<th>df</th>
<th>R-CFI</th>
<th>SRMR</th>
<th>R-RMSEA (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teammate behavior</td>
<td>47.65**</td>
<td>34</td>
<td>.98</td>
<td>.03</td>
<td>.03 (.00, .06)</td>
</tr>
<tr>
<td>Positive and negative affect</td>
<td>72.11**</td>
<td>34</td>
<td>.96</td>
<td>.03</td>
<td>.06 (.04, .08)</td>
</tr>
<tr>
<td>Task cohesion</td>
<td>45.31**</td>
<td>27</td>
<td>.97</td>
<td>.01</td>
<td>.05 (.02, .07)</td>
</tr>
<tr>
<td>Burnout</td>
<td>157.81**</td>
<td>86</td>
<td>.98</td>
<td>.02</td>
<td>.05 (.03, .06)</td>
</tr>
</tbody>
</table>

Note. S-Bχ² = Satorra–Bentler chi square statistic; R-CFI = robust comparative fit index; R-NNFI = Bentler-Bonett non-normed fit index; SRMR = standardized root mean residual; R-RMSEA = robust root mean square error of approximation; CI = 95% confidence interval.

**p < .01
Figure 1. Structural model showing the effects of prosocial and antisocial teammate behaviors on task cohesion and burnout and the mediating role of positive and negative affect.

Note: all path coefficients are standardized and significant ($p < .05$). For visual simplicity, the factor loadings and the correlation of error terms between positive and negative affect ($r = -.22$) are not shown in the model. E = exhaustion; R = reduced accomplishment; D = sport devaluation.
We focused only on task cohesion because: (a) this aspect of cohesion could be influenced by the type of teammate behaviors we examined which were highly relevant to the task at hand (e.g., encourage a teammate, give positive feedback to a teammate); and (b) all variables pertained to the specific sport context (i.e., perceived teammate behavior and emotions during training and matches), whereas social cohesion is reflected in the bond among team members that exists outside the sport context (e.g., Carron et al, 2012; Eys et al, 2009b).