
 
 

Additive manufacturing for quantum technologies
Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen; Zou, Ji; Gaber, Youssef; Benn, Laura;
Woolger, David; Attallah, Moataz; Boyer, Vincent; Bongs, Kai; Holynski, Michael

Citation for published version (Harvard):
Vovrosh, J, Voulazeris, G, Petrov, P, Zou, J, Gaber, Y, Benn, L, Woolger, D, Attallah, MM, Boyer, V, Bongs, K &
Holynski, M, Additive manufacturing for quantum technologies, 2017, Web publication/site, arXiv.

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 14. Nov. 2018

https://research.birmingham.ac.uk/portal/en/publications/additive-manufacturing-for-quantum-technologies(e9bb5d08-d76c-4f16-b1d0-28b44ea5362d).html


Additive manufacturing for quantum technologies
Jamie Vovrosh1, Georgios Voulazeris1,3, Plamen Petrov1, Ji Zou2, Youssef Gaber2, Laura
Benn3, David Woolger3, Moataz M. Attallah2, Vincent Boyer2, Kai Bongs1, and Michael
Holynski1,*

1School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.
2School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
3Magnetic Shields Limited, Staplehurst, UK
*m.holynski@bham.ac.uk

ABSTRACT

Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have
resulted in devices with extraordinary metrological sensitivities. To realise this potential outside of a lab environment the size,
weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive
manufacturing technique, as a production technique for the components that make up quantum sensors. As a demonstration
we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers.
The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum
demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system
reaching base pressures of 5±0.5×10−10 mbar, and showing an outgassing rate indistinguishable from a commercial ConFlat
flange in this pressure regime. These demonstrations show considerable promise for the use of additive manufacturing for cold
atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight
and assembly complexity.

Introduction
Quantum technologies utilising atom clouds are highly promising tools for creating ever more sensitive devices with applications
in a vast array of areas ranging from geophysical type applications1, 2 to satellite independent navigation3. The exceptional
performance of lab based systems4–6 has lead to recent work focused on transforming lab based atomic systems into compact
transportable versions7–10. To produce ever more compact and transportable devices the latest advances in micro-manufacturing
technology are being used including waveguide writing11 and reactive ion beam etching12. Using these manufacturing methods
has allowed for the miniaturisation of quantum technologies such as integrated atom chip based systems13, 14.

An emerging technology capable of allowing further minaturisation of quantum technology is additive manufacturing, such
as 3D-printing. The freedom of design offered during production by 3D-printing allows for rapid development of complex,
individually bespoke components and the potential to tune material properties during production. The focus of 3D-printing
technologies thus far has been on magnetic field generation15, 16, while little attention has been given to environmental isolation.
Here we report on two demonstrators of crucial environmental isolation technologies needed for the realisation of portable and
compact quantum technologies developed with 3D-printing, namely magnetic shielding and vacuum components.

Magnetic shielding is an essential component of atom based quantum technologies necessary to provide a suitable magnetic
environment and enable sensitive measurements. Currently the best available materials for magnetic shielding are soft magnetic
alloys, such as mu-Metal17. Despite mu-metal shields being widely used, they are characterised by a relatively high weight and
the inflexibility to adapt to more complex geometries, due to manufacturing limitations. While simple shapes such as cylinders
can be easily manufactured, linking shields together without loss of performance is challenging18. Existing shielding is thus
heavy and bulky, limiting the advancement of quantum technology towards portable and miniaturised systems. The majority of
production is currently realised through hand machining in workshops which limits the ability to create complicated geometries.
By using 3D-printing in contrast it is possible to design bespoke complex shielding for each application. However to achieve
the best possible magnetic shields the additive process used to create the shields need to be optimised to reduce cracking and
porosity in the printed structure, which reduces the effectiveness of the magnetic shields. Combining this with post processing
of the 3D-printed structure, the ability to produce magnetic shields with complex compact and light weight geometries closer to
the structure to be shielded should be realised.

Vacuum technology is another prominent component of quantum technology systems, used to isolate atoms from background
gasses. At lower pressures the longer measurement times can be achieved without decoherence19. For compact quantum
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sensors it is ideal that ultra high vacuum environments are achieved and maintained over long time periods. Since 3D-printing
is an additive process, it is possible that small voids and leak channels can form in the material during the printing process.
These voids could trap gases which would later vent slowly into the vacuum, making the part unsuitable for ultrahigh vacuum
environments20. Selection of the material which components are made out of has been shown to reduce these issues in 3D-
printed components inside vacuums21. Here we show that by optimising the 3D-printing parameters and materials, 3D-printing
techniques can be used to produce vacuum components. The production of 3D-printed vacuum parts allows for the time and
cost to build complicated, specialised geometries to be drastically reduced.

Here for the first time we report on the design, manufacture and characterisation of both 3D-printed magnetic shielding
and vacuum flange demonstrator devices. We compare the performance of these demonstrator devices against an equivalent
traditionally produced component to evaluate the performance of the 3D-printed equivalent.

Results

Magnetic Shielding

A)

B)

56 mm

78mm

28 mm

56 mm 50 mm

78 mm

Figure 1. The 3D-printed magnetic shield structures used as test pieces. A) Closed ended magnetic shield dimensions and a
photo of the 3D-printed structure. B) Open ended magnetic shield dimensions and a photo of the 3D-printed structure.

To investigate the potential for 3D-printing to be used in the fabrication of magnetic shields the test pieces shown in figure 1
were produced. The magnetic shield was designed using computer aided design (CAD) and 3D-printed using the selective laser
melting (SLM) process22, 23. This method utilises a high-power scanning laser to locally melt powdered metal, in our case
a Ni-5Mo-15Fe alloy (or permalloy-80), allowing for a 3D structure to be built layer by layer. The SLM process allows for
optimal customisation and experimentation on the alloy composition, with the printing parameters affecting the micro-structural
characteristics of the material, and hence its magnetic properties24, 25.

The defects in terms of voids and cracking can retard and hinder the magnetic domain wall motion25. As a result more
energy is required to magnetise or demagnetise the material, degrading its permeability. The porosity and cracking within
the fabricated structure is a function of the energy density (ED) input to the material surface during the printing process26, 27.
Several samples were prepared with different ED values to minimise such unwanted defects. Each of the samples where
characterised by cutting the sample into thin slices which were polished and then examined with a scanning electron microscope
(SEM). Pictures where taken from different sections and analysed by imaging software which estimates the percentage of
porosity. This method allowed the analysis of the structural uniformity and to see what effect the printing conditions had on the
samples produced. Figure 2 shows an example of pictures captured by the SEM. The sample shown in figure 2 A was printed
with ED = 1.4 J/mm2 and has a structure characterised by a large number of pores with unconsolidated particles and cracks.
In contrast, the sample shown in figure 2 B was printed under ED = 4.9 J/mm2 and showed the best results with negligible
porosity and only few cracks.

In addition, phase assemblage and crystallographic texture of the as-fabricated permalloy were characterised using X-ray
diffraction (XRD). This revealed a variation in the crystallographic texture in the two different planes (see figure 3). From the
XRD pattern, it can be seen that a (001) grain orientation exists in both axes of the magnetic shields. The (001) is the hard
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Figure 2. Pictures captured by a SEM on different 3D-printed samples revealing structural defects. A) Sample printed under
non-optimal parameters with ED = 1.4 J/mm2 and shows a large number of defects. B) Sample produced with under optimum
parameters with ED = 4.9 J/mm2 showing minimal defects.

axis for an Ni enriched alloy, such as the permalloy-80 used to create the magnetic shields. The presence of the (001) grain
orientation will have a negative impact on the shielding factor of the shields28. Further optimisation of the SLM process used
may be able to reduce the percentage of the material with the (001) grain orientation. However the crystallographic property’s
look favourable in the transverse direction (XY-plane) which is the plane of interest for these experiments.

To characterise the magnetic shielding performance the amplitude ratio of the magnetic field without the presence of the
shield Bout , over the residual field measured at the same point after the shield installation Bin is used. This ratio is known
as the shielding factor St = Bout/Bin, where the subscript t indicates the magnetising field orientation along the transverse
shield axis. The magnetic shielding factors from both before and after annealing the test pieces, when using a test field of 50
mT magnetic field, can be seen in figures 4 A and 4 B. It can be seen that the maximum magnetic shielding factors obtained
before annealing for the open and closed pieces were 14±0.1 and 30±0.3 respectively. These maximum values were then
increased significantly with the application of the annealing process for both the open and closed pieces to 206± 13 and
542±64 respectively.

To see whether further treatment could improve the performance, heat treatment under hot isostatic pressing (HIP) was also
investigated. HIP is often performed during manufacture to release internal stresses within the materials used29. The effect of
applying HIP treatment prior to annealing on a 3D-printed test piece can be seen in figure 4 C. The details of the HIP cycle
parameters can be found in the Methods section. It can be seen that the shielding factor increased by a factor of 7 after the HIP
treatment, reaching a value of St ≈ 150 at the cylinder central region. This factor was then doubled after annealing, reaching a
shielding factor of St ≈ 260, approximately at the centre of the shield. As can be seen in figure 4 B the test piece which did
not undergo HIP treatment demonstrated very similar performance, suggesting that although HIP as an intermediate step is
important for optimising structural integrity it might not be necessary for magnetic shielding applications. In that case, opting to
follow only one heat treatment instead of two, could reduce potential production cost in the future. Alternatively, it is possible
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Figure 3. Comparison of the results from XRD tests on the unprocessed permalloy-80 powder and the sample produced with
ED = 4.9 J/mm2 along the XY and YZ-plane, respectively. The z axis is defined as the vertical axis of the sample. Each peak
represents the intensity of the detected regions with the same crystallographic orientation. Although both phases are almost
equally distributed on the YZ-plane, the (200) orientation dominates in the XY plane.

that further optimisation of the HIP parameters may also lead to further improvements.
The performance of the 3D-printed open ended test piece was compared to that of a mu-metal control shield with the same

dimensions, fabricated using standard techniques. These were both processed using the same procedure, which is optimised
based upon the mu-metal shield. A comparison of the magnetic shielding factors can be seen in figure 4 D. The shielding factor
of the test piece is found to be a factor of 2.75 smaller than the control shield, showing that 3D-printing has promise in the
creation of magnetic shields. In particular, this would be of benefit in the creation of complex geometries, which may allow for
substantial geometric improvements in the shield design to enable considerably better shielding per unit weight. Furthermore,
optimisation of the fabrication and post-processing may yield further improvements.

Vacuum components
Many materials that are commonly used in ultra high vacuum (UHV) are also 3D-printable materials, such as silver, gold,
stainless steel and titanium. The low vapour pressures of metals make them ideal for vacuum applications, however this is not
the only consideration in determining UHV compatibility. The processes used in 3D-printing metals could potentially give rise
to several adverse effects, such as introducing trapped gases resulting in virtual leaks, and micro-leak channels. In addition,
the resulting surface roughness and porosity of the printed part can greatly increase effective surface area and therefore out
gassing load. These problems must be ruled out if 3D-printed materials are to be used to create UHV systems. Additionally it is
important to determine if any special surface cleaning or passivation steps are necessary before 3D-printed vacuum parts can
be used. Currently the vacuum compatibility of 3D-printed materials has been shown for small components that sit inside a
vacuum system, such as for Al-Si10-Mg, titanium and silver16, 21, 30. However here we will show that 3D-printed parts can be
used to construct vacuum chambers, through acting as the vacuum wall and sealing to peripheral components.

The 3D-printed part was designed using CAD software and titanium (Ti) was chosen as it is a common vacuum material
and readily 3D-printed. Furthermore, its non-magnetic properties are well-suited to cold atomic physics. The test piece was
printed using direct metal laser sintering of alloy Ti-6Al-4V. The surface face of the test piece was smoothed with a milling
machine to allow for indium sealing to the system and cleaned ultrasonically with acetone. The inside of the 3D-printed part
was not smoothed. When sealed to a vacuum the seal was done by indium wire with 1 mm diameter. The test piece and the
method of sealing to a DN40CF can be seen in figure 5.

The experimental set up used to test the piece in comparison to a control flange produced by traditional methods (CFB70,
MDC Vacuum LDC made of 304 stainless steel) can be seen in figure 6. The set up consists of two branches which can be
independently sealed off from each other and the rest of the chamber. The test branch contains the test piece, while the reference
branch contains the control flange. The setup is pumped by an ion pump and the pumping speed for the two branches is the
same due to the same conductance to the ion pump.

Pumping was provided by a triode configuration ion pump (Agilent technologies, Vaclon Plus 20 StarCell) and the pressure
was measured using a cold cathode gauge (Pfeiffer, IKR 270). Moderate bake-out temperatures were achieved using heater
tapes (SWH Series, Omega UK) and adjustable transformers (EA-STT 2000B-4.5A, Farnell), providing a stable temperature
of ∼ 130 ◦C for 160 hours. The analogue output from the gauge controller was recorded every 0.5 s. The pressure during
bakeout and cooling down can be seen in figure 7. The data has been smoothed using a median filter to remove noise spikes.
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Figure 4. Measured shielding factors along the test and control shields longitudinal axes, under an external magnetic field of
50 mT. The dashed lines show the position of the open ends of the shields, while the solid lines shows the closed ends. A) Open
ended test shield B) Closed ended test shield C) Closed ended test shield which underwent HIP treatment. The increase in
shielding factor towards the open end of the test shield has been seen in 3D-printed shields that have not received the HIP
treatment and therefore is not an effect of the HIP treatment. D) Comparison of the open ended test shield and the control shield.
The inserted image shows the replica mu-metal shield. The mu-metal replica was annealed in pure dry hydrogen under the same
conditions as the 3D-printed samples. The maximum magnetic shielding factor measured in the control shield was 568±102.

The ultimate pressure achieved after baking was 5±0.5×10−10 mbar. The same base pressure was achieved when both the
reference and test branches were isolated from each other.

The performance of the test flange was compared to the control flange via pressure rise tests. The results of these tests can
be seen in figure 8. The test branch was isolated from the reference branch and a pressure rise test preformed by turning the ion
pump off (cyan trace in figure 8). Second, the reference branch of the setup was isolated and the same pressure rise test was
performed for the test branch (red trace in figure 8). In addition, the pressure rise test was performed for the whole setup (blue
trace in figure 8) and for the pump and gauge only (green trace in figure 8).

From the rate of rise tests the out gassing rate for the reference branch was measured to be 5×10−12 mbar l s−1 cm−2

while for the test branch it was measured to be 4×10−12 mbar l s−1 cm−2, showing a comparable performance between the test
flange and the control flange. The vacuum chamber has remained at UHV with no deterioration in performance over 2 years,
showing great promise for the vacuum compatibility of 3D-printed titanium vacuum components and chambers. These results
demonstrate that 3D-printed titanium vacuum parts are suitable for use in the creation of UHV chambers and that no surface
finishing is needed on the inside of the vacuum parts to achieve vacuum levels of interest for cold atom quantum sensors.

Discussion
The use of 3D-printing for the creation of both magnetic shielding and vacuum chambers has been demonstrated. Initial
prototypes for 3D-printed magnetic shields show shielding factors within a factor of 3 of conventional approaches. While
this may be enhanced further through optimisation of the fabrication and post-processing techniques, the main benefit that
this brings is to enable the manufacture of more complex and compact shields, allowing a higher shielding factor per unit
weight. This promises to drastically reduce the weight of quantum technology based sensors, where the magnetic shielding can
occupy up to 50% of the weight. The vacuum test pieces have shown that 3D-printed titanium structures are suitable for use as
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A)

Ti piece 

DN40 CF Flange

In wire seal

M6 bolts

M6 washers

B)

DN40 CF Flange

Ti piece 

Figure 5. A) Digital render of the vacuum flange structure with components for vacuum sealing. The test piece was designed
with a top hat profile with a diameter of 70mm and indium sealed onto a stainless steel flange. The stainless steel flange had
bore holes of 30mm and 6 M6 tapped holes to apply pressure to the indium seal. Once sealed the DN40CF flange is attached to
the chamber using a standard copper gasket. The holes in test piece the are compatible with a DN40CF flange. B) The DN40
CF flange and test piece prior to Assembly.

vacuum walls, as a sealing surface, and by association chambers. The test system reached base pressures of 5±0.5×10−10

mbar, and demonstrated an out gassing rate indistinguishable from a commercial ConFlat flange. This has been achieved
without post-processing or surface finishing of the internal walls. Combining the ability to 3D-print both magnetic shielding
and vacuum systems will allow for a step change in the compactness and weight of quantum devices and facilitate greater
systems integration. This also has the potential to benefit wider applications, in particular in sectors which require low weight
shielding such as aerospace.

Methods

Magnetic Shielding Production details
The powder used to produce the magnetic shielding samples presented here was a Ni-5Mo-15Fe alloy (or permalloy-80),
purchased from the TLS Technik company. All testing samples were produced on a 400-W powered Concept Laser M2 Cusing
system, operating in an argon atmosphere using gas atomised powders in the size range 15-53 microns. Once printed special
heat treatments are used to enhance the physical properties of printed material. Two different types of heat treatment were
applied to the samples produced by SLM manufacturing of permalloy-80.

The process parameters for the first method, hot isostatic pressing (HIP), are shown in the time–temperature diagram in
figure 9. The selected cycle for this design of experiments is typically used for 3D-printed materials of similar composition,
predominantly to eliminate structural defects.

The second method is annealing in pure dry hydrogen, which was undertaken at the Magnetic Shields Ltd. facilities. This
cycle is used commercially by the company for bringing mu-metal shields to optimum magnetic performance as the final step
after manufacturing. The relevant parameters are shown in figure 10.

Magnetic Shielding Measurements
In preparation for testing the shielding performance, all the shields were demagnetised after production using a small degausser
(Eclipse Magnetics, DA955 demagnetiser). The measurements of the magnetic shielding factors where performed using a
Stefan Mayer 1-axis Fluxgate Magnetometer Fluxmaster which was fixed at the centre of the coils, while the shield was moved
around it. This was achieved by a rail base that allowed the shield to slide from the one side to the other, through the coils,
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Test branch

Reference branch

Test flange

Control flange
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Gate
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Gate
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Figure 6. The experimental set up for testing the performance of the 3D-printed flange compared to a commercial equivalent.

encompassing the sensor. The applied magnetic field strength in all experiments was 50 mT applied in the transverse orientation
configuration.

3D-printed flange production details
The 3D-printed test flange was prepared for printing using Solid Works and i.materialise.
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